Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
learn:courses:real-analog-chapter-1:start [2017/04/18 18:13] – [After Completing this Chapter, You Should be Able to:] Marthalearn:courses:real-analog-chapter-1:start [2023/02/09 15:12] (current) – external edit 127.0.0.1
Line 1: Line 1:
---> Real Analog: Chapter 1#  +====== Real Analog: Chapter 1 ====== 
-  * {{ :learn:courses:real-analog-chapter-1:realanalog-circuits1-chapter1.pdf |Chapter 1 PDF}} +[[{}/learn/courses/real-analog/start|Back to Landing Page]] 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p1.pdf |Lab 1.1}}: Solderless Breadboards, Open-circuits and Short-circuits +--> Chapter 1 Materials   
-      * {{ :learn:courses:real-analog-chapter-1:lab1p1_worksheet.docx |1.1 Worksheet}} +  * Lecture Material: 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p2p1.pdf |Lab 1.2.1}}: Independent Power Supplies, Ammeters, and Voltmeters +    * {{ :learn:courses:real-analog-chapter-1:lecture1.ppt |Lecture 1 PowerPoint Slides}}: Course overview, basic circuit parameters, passive sign convention 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p2p1_worksheet.docx |1.2.1 Worksheet}} +    * {{ :learn:courses:real-analog-chapter-1:lecture2.ppt |Lecture 2 PowerPoint Slides}}: Power generation & absorption, power sources, resistance 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p2p2.pdf |Lab 1.2.2}} Dependent Sources and MOSFETs +    * {{ :learn:courses:real-analog-chapter-1:lecture3.ppt |Lecture 3 PowerPoint Slides}}: Review, Kirchhoff's current law, Kirchhoff's voltage law 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p2p2_worksheet.docx |1.2.2 Worksheet}} +    * {{ :learn:courses:real-analog-chapter-1:lecture4.ppt |Lecture 4 PowerPoint Slides}}: Circuit analysis examples, series & parallel circuit elements 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p3p1.pdf |Lab 1.3.1}}: Resistors and Ohms Law - Resistance Variations +    * [[http://www.youtube.com/watch?v=d8qmIMGJ-9o&list=PLDEC730F6A8CDE318&index=1&feature=plpp_video| Lecture 1 Video]] 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p3p1_worksheet.docx |1.3.1 Worksheet}} +    * [[http://www.youtube.com/watch?v=HQ6TCjZDbCk&list=PLDEC730F6A8CDE318&index=2&feature=plpp_video| Lecture 2 Video]] 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p3p2.pdf |Lab 1.3.2}}: Resistors and Ohms Law - Voltage-Current Characteristics +    * [[http://www.youtube.com/watch?v=bvVTvxpZbfk&list=PLDEC730F6A8CDE318&index=3&feature=plpp_video| Lecture 3 Video]] 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p3p2_worksheet.docx |1.3.2 Worksheet}} +    * [[http://www.youtube.com/watch?v=C2hn1pDEObU&list=PLDEC730F6A8CDE318&index=4&feature=plpp_video| Lecture 4 Video]] 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p4p1.pdf |Lab 1.4.1}}: Dusk-to-Dawn Light +  * Chapter 1 Videos: 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p4p1_worksheet.docx |1.4.1 Worksheet}} +    * [[http://www.youtube.com/watch?v=o3jokyUJuSU&list=PL170A01159D42313D&index=1&feature=plpp_video| Lab 1 Video 1]]: DMM Usage: Measuring voltage, current, and resistance using a hand-held digital multimeter. Using breadboards to implement circuits 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p4p2.pdf |Lab 1.4.2}}: Resistive Network Power Dissipation +    * [[http://www.youtube.com/watch?v=I7xe8biuvds&list=PL170A01159D42313D&index=2&feature=plpp_video| Lab 1 Video 2]]: Resistors 1: Physical resistors. Nominal resistance values from color codes. Resistance measurement using ohmeters or measured voltage and current. 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p4p2_worksheet.docx |1.4.2 Worksheet+    * [[http://www.youtube.com/watch?v=4bJ9MvgSkY8&list=PL170A01159D42313D&index=3&feature=plpp_video| Lab 1 Video 3]]: Dependent Sources: MOSFETs and BJTs as dependent sources. 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p4p3.pdf |Lab 1.4.3}}: Input Resistance +    * [[http://www.youtube.com/watch?v=0ajtS0zSRvY&list=PL170A01159D42313D&index=4&feature=plpp_video| Lab 1 Video 4]]: Applications: Concept applications: dusk-to-dawn light and temperature measurement. 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p4p3_worksheet.docx |1.4.3 Worksheet}} +  * {{ :learn:courses:real-analog-chapter-1:real-analog-chapter-1.pdf | Chapter 1 Complete PDF}} 
-    * {{ :learn:courses:real-analog-chapter-1:lab1p4p4.pdf |Lab 1.4.4}}: Temperature Measurement System +    * {{ :learn:courses:real-analog-chapter-1:lab1p1.pdf |Lab 1.1}} 
-      * {{ :learn:courses:real-analog-chapter-1:lab1p4p4_worksheet.docx |1.4.4 Worksheet}}+      * {{ :learn:courses:real-analog-chapter-1:lab1p1_worksheet.docx |Worksheet 1.1}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p2p1.pdf |Lab 1.2.1}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p2p1_worksheet.docx |Worksheet 1.2.1}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p2p2.pdf |Lab 1.2.2}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p2p2_worksheet.docx |Worksheet 1.2.2}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p3p1.pdf |Lab 1.3.1}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p3p1_worksheet.docx |Worksheet 1.3.1}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p3p2.pdf |Lab 1.3.2}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p3p2_worksheet.docx |Worksheet 1.3.2}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p4p1.pdf |Lab 1.4.1}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p4p1_worksheet.docx |Worksheet 1.4.1}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p4p2.pdf |Lab 1.4.2}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p4p2_worksheet.docx |Worksheet 1.4.2}
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p4p3.pdf |Lab 1.4.3}} 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p4p3_worksheet.docx |Worksheet 1.4.3}} 
 +    * {{ :learn:courses:real-analog-chapter-1:lab1p4p4.pdf |Lab 1.4.4}} 
 +      * {{ :learn:courses:real-analog-chapter-1:back1p4p4_temperaturesensors.pdf |Background 1}}: Background material for lab 1.4.4: Resistive Temperature Sensors 
 +      * {{ :learn:courses:real-analog-chapter-1:lab1p4p4_worksheet.docx |Worksheet 1.4.4}} 
 +   * {{ :learn:courses:real-analog-chapter-1:realanalog-exercisesolutions-chapter1.pdf |Exercise Solutions}}: Chapter 1 exercise solutions 
 +   * {{ :learn:courses:real-analog-chapter-1:homework1.docx |Homework}}: Chapter 1 homework problems
  
-  * {{ :learn:courses:real-analog-chapter-1:realanalog-exercisesolutions-chapter1.pdf |Exercise Solutions}}: Chapter 1 exercise solutions +<--
-  * {{ :learn:courses:real-analog-chapter-1:homework1.docx |Homework}}: Chapter 1 homework problems +
-  * {{ :learn:courses:real-analog-chapter-1:back1p4p4_temperaturesensors.pdf |Background 1}}: Background material for lab 1.4.4: Resistive Temperature Sensors+
  
-====== 1. Introduction and Chapter Objectives ======+===== 1. Introduction and Chapter Objectives =====
 In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical circuits are constructed in order to direct the flow of electrons to perform a specific task. In other words, in circuit analysis and design, we are concerned with transferring electrical energy in order to accomplish a desired objective. For example, we may wish to use electrical energy to pump water into a reservoir; we can adjust the amount of electrical energy applied to the pump to vary the rate at which water is added to the reservoir. The electrical circuit, then, might be designed to provide the necessary electrical energy to the pump to create the desired water flow rate.  In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical circuits are constructed in order to direct the flow of electrons to perform a specific task. In other words, in circuit analysis and design, we are concerned with transferring electrical energy in order to accomplish a desired objective. For example, we may wish to use electrical energy to pump water into a reservoir; we can adjust the amount of electrical energy applied to the pump to vary the rate at which water is added to the reservoir. The electrical circuit, then, might be designed to provide the necessary electrical energy to the pump to create the desired water flow rate. 
  
Line 81: Line 98:
 Mathematically, current is represented as:  Mathematically, current is represented as: 
  
-$$ i=\frac{dq}{dw}\         (Eq. 1.2) $$ +$$ i=\frac{dq}{dt}\         (Eq. 1.2) $$ 
  
 Where //i// is the current in amperes, //q// is the charge in coulombs, and //t// is the time in seconds. Thus, current is the time rate of change of charge and units of charge are coulombs per second, or //amperes// (abbreviated as //A//).  Where //i// is the current in amperes, //q// is the charge in coulombs, and //t// is the time in seconds. Thus, current is the time rate of change of charge and units of charge are coulombs per second, or //amperes// (abbreviated as //A//). 
Line 152: Line 169:
  
 **Note**: **Note**:
-Many students attempt to choose current directions and voltage polarities so that their calculations result in positive values for voltages and currents. In general, this is a wast of time  -  it is best to arbitrarily assume __either__ a voltage polarity of current direction for each circuit element. +Many students attempt to choose current directions and voltage polarities so that their calculations result in positive values for voltages and currents. In general, this is a waste of time  -  it is best to arbitrarily assume __either__ a voltage polarity of current direction for each circuit element. 
  
 Choice of a positive direction for current dictates the choice of positive voltage polarity, per Fig. 1.1. Choice of a positive voltage polarity dictates the choice of positive current direction, per Fig. 1.1. Choice of a positive direction for current dictates the choice of positive voltage polarity, per Fig. 1.1. Choice of a positive voltage polarity dictates the choice of positive current direction, per Fig. 1.1.
Line 187: Line 204:
  
 === Example 1.5: === === Example 1.5: ===
-In Fig. (a) below, the element agrees with the passive sign convention since a positive current is entering the positive voltage node. Thus, the element of Fig. (a) is absorbing energy. In Fig. (b), the element is absorbing power - positive current is leaving the negative voltage node, which implies that positive current enters the positive voltage node. The element of Fig. (c) generates power; negative current enters the positive voltage node, which disagrees with the passive sign convention. Fig. (d) also illustrates an element which is generating power, since positive current is entering a negative voltage node. +In Fig. (a) below, the element agrees with the passive sign convention since a positive current is entering the positive voltage node. Thus, the element of Fig. (a) is absorbing energy. In Fig. (b), the element is absorbing power - positive current is leaving the negative voltage node, which implies that positive current enters the positive voltage node. The element of Fig. ( c) generates power; negative current enters the positive voltage node, which disagrees with the passive sign convention. Fig. (d) also illustrates an element which is generating power, since positive current is entering a negative voltage node. 
  
 {{ :learn:courses:real-analog-chapter-1:chapter1k.png |Example 1.5 image. }}  {{ :learn:courses:real-analog-chapter-1:chapter1k.png |Example 1.5 image. }} 
Line 288: Line 305:
  
 **Note:** **Note:**
-For the most part, we will consider only linear resistors in this text. These resistors obey the linear voltage-current relationship shown in equation (1.5). All real resistors are nonlinear to some extent, but can often be assumed to operate as linear resistors over some reange of voltages and currents. +For the most part, we will consider only linear resistors in this text. These resistors obey the linear voltage-current relationship shown in equation (1.5). All real resistors are nonlinear to some extent, but can often be assumed to operate as linear resistors over some range of voltages and currents. 
  
  
Line 294: Line 311:
  
 ==== Conductance ==== ==== Conductance ====
-//Conductance// is an important quantity in circuit design and analysis. Conductance is simply the reciprocal of resistance, defines as:+//Conductance// is an important quantity in circuit design and analysis. Conductance is simply the reciprocal of resistance, defined as:
  
 $$ G=\frac{1}{R}   (Eq. 1.6)$$ $$ G=\frac{1}{R}   (Eq. 1.6)$$
Line 597: Line 614:
 {{ :learn:courses:real-analog-chapter-1:chapter1au.png |Exercise image.}} {{ :learn:courses:real-analog-chapter-1:chapter1au.png |Exercise image.}}
  
-<--+[[{}/learn/courses/real-analog/start|Back to Landing Page]] 
 +[[{}/learn/courses/real-analog-chapter-2/start|Go to Chapter 2]] 
 +