How to Read a Datasheet

Here at Digilent we have a ton of products with a large amount of documentation and examples (like our Learn site and our Instructables page) letting you know how you can use our products. Within all of these, there are statements about what each product is (and is not) capable of in addition to the recommended operating condition. Some of you may be wondering, “How do we know these things?” Much of the information presented is determined from a datasheet. But where do we find this sort of information in the datasheet, or how do we even read a datasheet? Let’s find out.

Computer Memory: Differences between the types of…(what was it again)… memory!

Computers have several difference ways of keeping track of the information that it is given. Most people in the world, which included myself until recently, might think there are only two kinds of memory: the “random access memory” (RAM) that computers have, and the flash memory that you can put on a thumb drive and carry around in your backpack without an issue. However, despite knowing that these two types of memory are not the whole picture, it was my personal experience that trying to learn more usually resulted in my eyes instantly glazing over; this is rather unhelpful in terms of actually learning something. Keeping this in mind, we’re going to do a broad overview of the different types of RAM, hopefully without the glazing over effect.

Digilent Pmods: Input Pmods – Tactile User Input

Today, we’re going to check out the last chunk of the input Pmods™ that Digilent offers. This set of inputs are slightly different than the inherent sensors that we saw last time. Although these Pmods are designed to give the system board information about the outside world, but this time you are their whole world. These tactile Pmods are designed so that they respond when you physically interact with them. It’s kinda like playing outside…in the comfort of your own home.

Digilent Pmods: Input Pmods – Sensors

It is time to check out another set of the Digilent Pmods! Last time, we looked at a subset of the input focused Pmods, the analog-to-digital converters. Today, we’re going to take a look at more of the input Pmods, most of which incorporate ADCs into their design structure. These ten peripheral modules are all inherent sensors, reporting the temperature, location, light level, or movement without the user needing to physically interact with them.

Digilent WaveForms Software — What Is It and Who Should Use It?

On our website, WaveForms is described as a powerful suite of virtual instruments that brings analog and digital circuit design to your PC desktop. The instruments within WaveForms include an oscilloscope, logic analyzer, arbitrary waveform generator, digital pattern generator, power supplies, a voltmeter, virtual I/O devices, and a spectrum analyzer. Okay, so there’s a long list of fancy technical terms. But what makes WaveForms so special?

With So Many Starter Kit Options, Which One Should I Choose?

We here at Digilent Inc. are proud to be a leading hardware provider for educators, students, professionals, hobbyists, and hackers alike. We have developed numerous devices to help with every stage of developing projects, from learning the basics to prototyping to finished projects. If you can think of it, we have the hardware to help you build it. So it should come as no surprise that we have a few options to choose from should you decide you want a parts kit to go along with your new Electronics Explorer Board or chipKIT Max32. So, which kit is right for you? Well I’m here to help make that decision a little easier. I will be discussing three kits that we offer: the chipKIT Starter Kit, the Analog Parts Kit, and the TI myParts kit.

FPGA Design Flow Using Vivado Workshop!

Digilent is proud to announce that together with our Brazilian distribution partner, Anacom, and our academic partner Xilinx University Program, we will be hosting a workshop, “FPGA Design Flow using Vivado,” from Oct 29-30. This course will provide professors with an introduction to digital design tool flow in Xilinx All Programmable devices using Xilinx Vivado Design Suite. It will be held at Escola Politécnica da UFBA, Brazil. Attendees will use the Digilent Nexys 4 and the Xilinx Vivado Design Suite to gain the hands-on experience with digital design, basic HDL knowledge, Xilinx 7-series architecture overview, and Xilinx Vivado design suite.

Digilent Pmods — Motor Output

As we continue on with our exploration of the Pmods, after checking out some of the Output Pmods like the DAC, Audio, and Visual Pmods, we find ourselves at the final set (at least for now) of output Pmods. These five Pmods all drive different types of motors including servo, DC, and stepper motors. Through these Pmods, you can get your project on the move, whether its a robot arm, a box monster, or a line-following robot.

Pmod Communication: Serial Peripheral Interface

A while ago, we learned that one of the ways that Pmods are able to communicate with their host board is through SPI. We learned then that serial peripheral interface is a type of communication protocol where the “master” board and the “slave” device (in this case, a Pmod) are able to send bits of data to each other at the same time with the host board controlling the timing of the communication. Although this is a nice overview, it is my personal experience that theoretical overviews are not the most helpful in actually implementing what we are learning. This begs the question: how do you use SPI? Lets find out!