The (Ultimate) ZYBOt Guide

Back in March, we released a blog post announcing the ZYBOt. There was a set of Instructables and a video showing what the ZYBOt is all about. If you check those out, you can see that the ZYBOt is remote-controlled and has a video feed that can be displayed to a computer. The ZYBOt is a great project for people that want to dive into working with FPGAs and Linux.

Multisim: Why, Oh Why, Would I Need That?

If you’ve been keeping up with Digilent over that last couple of years, you may have heard about our merger with National Instruments. We’ve collaborated to create new products, and we’ve expanded our capabilities to work with more of NI’s products. One of those products is Multisim, a full-function testing and simulation environment for analog, digital, and power electronics designs.

History of the FPGA

As you probably know, one of Digilent’s major focuses is producing FPGA (field programmable gate array) boards and educating the public on FPGA design. One of the classes I was in last semester focused on FGPA design. This class is EE324 at WSU, which is taught by Digilent’s own Clint Cole. He gave a background lecture on the History of FPGA chips. Not only was it an extremely interesting lecture, but it also helped me understand the huge leaps in logic design that have been made since the 1960s. This is the history that led to the development of FPGA chips. The chips are the parts that Xilinx makes that we use on our FPGA boards.

What Are Muxes and Demuxes?

A huge part of FPGA design is using logic blocks in design. With logic blocks, you can compartmentalize your design, rather than trying implement everything in one shot. Designing without smaller blocks would be like trying to design a car without subsystems like the braking system or engine. About half of the way through the course there is a project that covers a variety of basic logic blocks, including multiplexers (muxes) and demultiplexers (demuxes). So what are muxes and demuxes?