
DT-Open Layers for .NET

UM-22161-U

User’s Manual
Class Library

Title Page



Copyright Page
Trademark and Copyright Inf
Measurement Computing Corporation, In
either trademarks or registered trademar
Trademarks section on mccdaq.com/lega
Other product and company names ment
companies.

© 2015 Measurement Computing Corpo
reproduced, stored in a retrieval system, 
photocopying, recording, or otherwise w
Corporation.

Notice
Measurement Computing Corporation do
use in life support systems and/or device
Corporation. Life support devices/system
into the body, or b) support or sustain life
injury. Measurement Computing Corpora
not subject to the testing required to ensu
people.
ormation
staCal, Universal Library, and the Measurement Computing logo are
ks of Measurement Computing Corporation. Refer to the Copyrights &
l for more information about Measurement Computing trademarks. 
ioned herein are trademarks or trade names of their respective

ration. All rights reserved. No part of this publication may be 
or transmitted, in any form by any means, electronic, mechanical, by
ithout the prior written permission of Measurement Computing

es not authorize any Measurement Computing Corporation product for 
s without prior written consent from Measurement Computing 
s are devices or systems that, a) are intended for surgical implantation 
 and whose failure to perform can be reasonably expected to result in 
tion products are not designed with the components required, and are 
re a level of reliability suitable for the treatment and diagnosis of 

http://www.mccdaq.com/legal.aspx


Table of Contents

Table of Contents
About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Intended Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

What You Should Learn from this Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Organization of this Manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Conventions Used in this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Where to Get Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 1: Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

What’s Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

What is the DT-Open Layers for .NET Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Device Collection Support in Open Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

What You Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Installing the Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Building Applications Using DT-Open Layers for .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Using the Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Using the Example Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Creating Your Own Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Distributing Your Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 2: Library Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

OpenLayers.Base Namespace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DeviceMgr Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Device Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

SimultaneousStart Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Subsystem Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

AnalogInputSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

AnalogOutputSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

DigitalInputSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

DigitalOutputSubsystem Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CounterTimerSubsystem Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

TachSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

QuadratureDecoderSubsystem Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

SupportedChannelInfo Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

SupportedChannels Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3



Contents

4

ChannelListEntry Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ChannelList Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

StrainGageTeds Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

BridgeSensorTeds Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Clock Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Trigger Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ReferenceTrigger Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

TriggeredScan Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Range Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Buffer Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

OlBuffer Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

BufferQueue Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

GeneralEventArgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

BufferDoneEventArgs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

DriverRunTimeErrorEventArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

EventDoneEventArgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

InterruptOnChangeEventArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

IOCompleteEventArgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

MeasureDoneEventArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

OlException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

OlError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Delegates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Enumerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

OpenLayers.DeviceCollection Namespace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

DeviceMgr Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

Device Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

SimultaneousStart Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

Subsystem Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

AnalogInputSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

AnalogOutputSubsystem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

SupportedChannelInfo Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

SupportedChannels Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ChannelListEntry Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



Contents
ChannelList Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Clock Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Trigger Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ReferenceTrigger Class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Range Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Buffer Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

OlBuffer Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

BufferQueue Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

GeneralEventArgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

BufferDoneEventArgs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

DriverRunTimeErrorEventArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IOCompleteEventArgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

OlException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

OlError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Delegates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Enumerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Chapter 3: Using the OpenLayers.Base Namespace . . . . . . . . . . . . . . . . . . . . . . . .  141

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Importing the Namespace for the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Getting a DeviceMgr Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Getting a Device Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Getting a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Determining the Available Channels and Setting up Channel Parameters. . . . . . . . . . . . 150

Physical and Logical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Logical Channel Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Channel Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IOType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Setting Up Voltage Input Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Termination Resistor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Sensor Gain and Offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Setting Up Current Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Setting Up Thermocouple Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Thermocouple Input Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

CJC Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Setting Up RTD Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Setting Up Strain Gage Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

TEDS for Strain Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5



Contents

6

Strain Gage Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Strain Gage Poisson Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Strain Gage Lead Wire Resistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Gage Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Strain Gage Nominal Resistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Strain Gage Offset Nulling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Strain Gage Shunt Calibration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Setting Up Accelerometer (IEPE) Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . 167

Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Excitation Current Source Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Setting Up Bridge-Based Sensors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

TEDS for Bridge-Based Sensors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bridge Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Transducer Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Transducer Rated Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Nominal Resistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Lead Wire Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Offset Nulling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Shunt Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Setting up Thermistor Input Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Setting Up Resistance Measurement Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Setting Up and Configuring a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Performing Analog I/O Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Single-Value Analog Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Continuous, Pre- and Post-Trigger Analog Input Operations Using a Start 
and Reference Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Continuous Post-Trigger Analog Input Operations Using One Channel and 
One Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Continuous, Post-Trigger Analog Input Operations Using Multiple Buffers  . . . . . . 187

Continuous, Pre-Trigger Analog Input Operations (Legacy Devices)  . . . . . . . . . . . . 190

Continuous, About-Trigger Analog Input Operations (Legacy Devices). . . . . . . . . . 193

Continuously Paced Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Continuous Waveform Generation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Setting the Channel Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Setting the Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Setting the Voltage Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Setting the Excitation Voltage Source and Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Setting the Synchronization Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Setting the Filter Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Setting up the Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



Contents
Adding Channels to a Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Adding Channels By Physical Channel Number. . . . . . . . . . . . . . . . . . . . . . . 206

Adding Channels By Channel Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Adding Channels By ChannelListEntry Object . . . . . . . . . . . . . . . . . . . . . . . . 207

Inserting Channels in the Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Inserting a Channel By Physical Channel Number . . . . . . . . . . . . . . . . . . . . . 208

Inserting a Channel By Channel Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Inserting a Channel By ChannelListEntry Object  . . . . . . . . . . . . . . . . . . . . . . 208

Replacing Channels in the ChannelList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Removing Channels from the Channel List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Setting the Gain of a ChannelListEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Inhibiting Channels in a Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Getting Information about Channels in the ChannelList Object . . . . . . . . . . . . . 212

Setting up a Clock Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Internal Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Setting Up a Trigger Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Software Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

TTLPos Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

TTLNeg Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

ThresholdPos Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

ThresholdNeg Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

DigitalEvent Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Sync Bus Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Setting up a Post-Trigger Scan Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Setting up Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

About QueuedCount and InProcessCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Buffer Completion Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Handling Input Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Handling Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Moving Data from an Inprocess OlBuffer Object . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Getting Information about a Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Cleaning up Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Setting Triggered Scan Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Using a Software Retrigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Using an External Retrigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Performing Digital I/O Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Single-Value Digital Input Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Single-Value Digital Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Continuous, Interrupt-On-Change Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Setting the Resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Performing Counter/Timer Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7



Contents

8

Event Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Up/Down Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Edge-to-Edge Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Continuous Edge-to-Edge Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Rate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

One-Shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Repetitive One-Shot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Setting the C/T Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using an Internal C/T Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using and External C/T Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using an Internally Cascaded Clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Setting the Gate Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Using a None (Software) Gate Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Using a HighLevel Gate Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Using a LowLevel Gate Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Using LowEdge Gate Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Using a HighEdge Gate Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Using a Level Gate Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Setting the Pulse Output Type and Pulse Width  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Performing Measure Counter Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Performing Tachometer Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Performing Quadrature Decoder Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Setting up the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Setting the X4Scaling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Setting the Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Starting Subsystems Simultaneously  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Auto-Calibrating a Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

BufferDoneEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

PreTriggerBufferDoneEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

QueueStoppedEvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

IOCompleteEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

QueueDoneEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

DriverRunTimeErrorEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

InterruptOnChangeEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

EventDoneEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

MeasureDoneEvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

GeneralFailureEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

DeviceRemovedEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Cleaning Up Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273



Contents
Chapter 4: Using the OpenLayers.DeviceCollection Namespace. . . . . . . . . . . . . .  275

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Importing the Namespace for the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Getting a DeviceMgr Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Getting a Device Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Getting a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Determining the Available Channels and Setting up Channel Parameters. . . . . . . . . . . . 282

Physical and Logical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Logical Channel Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Channel Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

IOType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Setting Up Voltage Input Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Sensor Gain and Offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Setting Up Accelerometer (IEPE) Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . 289

Coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Excitation Current Source Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Setting Up and Configuring a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Performing Analog I/O Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Single-Value Analog Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Continuous, Pre- and Post-Trigger Analog Input Operations Using a Start 
and Reference Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Continuous Post-Trigger Analog Input Operations Using One Channel and 
One Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Continuous, Post-Trigger Analog Input Operations Using Multiple Buffers  . . . . . . 300

Continuously Paced Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Continuous Waveform Generation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Setting the Channel Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Setting the Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Setting the Voltage Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Setting the Excitation Voltage Source and Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Setting up the Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Adding Channels to a Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311

Adding Channels By Physical Channel Number. . . . . . . . . . . . . . . . . . . . . . .  311

Adding Channels By Channel Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311

Adding Channels By ChannelListEntry Object . . . . . . . . . . . . . . . . . . . . . . . . 312

Inserting Channels in the Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Inserting a Channel By Physical Channel Number . . . . . . . . . . . . . . . . . . . . . 313

Inserting a Channel By Channel Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Inserting a Channel By ChannelListEntry Object  . . . . . . . . . . . . . . . . . . . . . . 314

Replacing Channels in the ChannelList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Removing Channels from the Channel List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9



Contents

10
Setting the Gain of a ChannelListEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Inhibiting Channels in a Channel List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Getting Information about Channels in the ChannelList Object . . . . . . . . . . . . . 317

Setting up a Clock Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Internal Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Setting Up a Trigger Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Software Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

TTLPos Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

TTLNeg Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

ThresholdPos Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

ThresholdNeg Trigger Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

DigitalEvent Trigger Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Setting up a Post-Trigger Scan Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Setting up Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

About QueuedCount and InProcessCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Buffer Completion Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Handling Input Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Handling Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Getting Information about a Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Cleaning up Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Starting Subsystems Simultaneously  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Auto-Calibrating a Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

BufferDoneEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

PreTriggerBufferDoneEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

QueueStoppedEvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

IOCompleteEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

QueueDoneEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

DriverRunTimeErrorEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

GeneralFailureEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

DeviceRemovedEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Cleaning Up Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Chapter 5: Programming Flowcharts for the OpenLayers.Base Namespace  . . . .  347

Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Single-Value Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Single-Value Digital Input Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Single-Value Digital Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Continuous Analog Input Operations - One Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354



Contents
Continuous Analog Input Operations - Multiple Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Continuous Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Continuous, Interrupt-On-Change Digital Input Operations . . . . . . . . . . . . . . . . . . . . . . . 359

Event Counting Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Up/Down Counting Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Edge-to-Edge Measurement Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Continuous Edge-to-Edge Measurement Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Pulse Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Measure Counter Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Tachometer Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Quadrature Decoder Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Simultaneously Starting Subsystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Chapter 6: Programming Flowcharts for the OpenLayers.DeviceCollection 
Namespace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401

Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Single-Value Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Continuous Analog Input Operations - One Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Continuous Analog Input Operations - Multiple Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Continuous Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Simultaneously Starting Subsystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Chapter 7: Product Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  427

Appendix A: Error Codes and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
11



Contents

12



About this Manual
This manual describes how to get started using the DT-Open Layers for .NET Class Library to 
develop application programs for data acquisition devices that conform to the DT-Open 
Layers standard.

Intended Audience

This document is intended for engineers, scientists, technicians, OEMs, system integrators, or 
others responsible for developing application programs using Microsoft® Visual Studio .NET 
2003 to 2012 to perform data acquisition operations.

It is assumed that you are a proficient programmer in Visual C# or Visual Basic .NET, and that 
you have familiarity with data acquisition principles and the requirements of your 
application.

What You Should Learn from this Manual

This manual provides installation instructions, summarizes the classes and members of the 
DT-Open Layers for .NET Class Library, and describes how to develop a data acquisition 
program using these classes. Using this manual, you should be able to successfully install the 
DT-Open Layers for .NET Class Library and get started writing a data acquisition application.

This manual is intended to be used with the online help for the DT-Open Layers for .NET 
Class Library, which is an integrated part of the software. 

Note: This manual describes only those class members that are specific to the DT-Open 
Layers for .NET Class Library. Refer to your Microsoft Visual Studio .NET documentation for 
information about inherited classes and class members.

Organization of this Manual

This manual is organized as follows:

• Chapter 1, “Getting Started,” describes what you need to use the DT-Open Layers for 
.NET Class Library, how to install the software, how to access the online help, and how to 
use the example programs.

• Chapter 2, “Library Summary,” summarizes the classes, delegates, enumerations, and 
structures provided in the DT-Open Layers for .NET Class Library. 

• Chapter 3, “Using the OpenLayers.Base Namespace,” describes how to use the 
OpenLayers.Base namespace to perform data acquisition operations on a DT-Open 
Layers-compliant device.
13



About this Manual

14
• Chapter 4, “Using the OpenLayers.DeviceCollection Namespace,” describes how to use
the OpenLayers.DeviceCollection namespace to perform data acquisition operations on a
DT-Open Layers-compliant device collection.

• Chapter 5, “Programming Flowcharts for the OpenLayers.Base Namespace,” provides
programming flowcharts for using the properties, methods, and events that are provided
in the OpenLayers.Base namespace of the DT-Open Layers for .NET Class Library.

• Chapter 6, “Programming Flowcharts for the OpenLayers.DeviceCollection Namespace,”
provides programming flowcharts for using the properties, methods, and events that are
provided in the OpenLayers.DeviceCollection namespace of the DT-Open Layers for .NET
Class Library.

• Chapter 7, “Product Support,” describes how to get help if you have trouble using the
DT-Open Layers for .NET Class Library.

• Appendix A, “Error Codes and Messages,” provides a list of error codes and descriptions
that can be returned by the DT-Open Layers for .NET Class Library.

• An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information that requires special emphasis, cautions provide
information to help you avoid losing data or damaging your equipment, and warnings
provide information to help you avoid catastrophic damage to yourself or your
equipment.

• Items that you select or type are shown in bold. Function names also appear in bold.

• Code fragments are shown in courier font.

• Methods and properties may be shown to indicate the class to which they belong, as
follows: DeviceMgr.Get method means that this is the Get method of the DeviceMgr
class. Similarly, SubsystemBase.AnalogSubsystem.AnalogInputSubsystem.Start means
that this is the Start method of the AnalogInputSubsystem class, which is derived from the
AnalogSubsystem class, which, in turn, is derived from the SubsystemBase class.

Related Information

Refer to the following documentation for more information on using the DT-Open Layers for 
.NET Class Library:

• DT-Open Layers for .NET Class Library Online Help. This help file is integrated as part of
the software. Refer to page 23 for information on how to open this help file.

• Device-specific documentation. These manuals are provided on your Data Acquisition
OMNI CDTM CD.

• Microsoft Visual Studio .NET documentation.



About this Manual
Where to Get Help

Should you run into problems installing or using the DT-Open Layers for .NET Class Library, 
our Technical Support Department is available to provide prompt, technical assistance. Refer 
to Chapter 7 for more information. If you are outside the U.S. or Canada, call your local 
distributor; see our web site (www.mccdaq.com) for the name and telephone number of your 
nearest distributor. 
15



About this Manual

16



1
Getting Started

What’s Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

What is the DT-Open Layers for .NET Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

What You Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Installing the Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Building Applications Using DT-Open Layers for .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Using the Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Using the Example Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Creating Your Own Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Distributing Your Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
17



Chapter 1

18
What’s Included
The following software is provided on the Data Acquisition OMNI CD for programming 
DT-Open Layers-compliant devices in Visual C# and Visual Basic .NET:

• DT-Open Layers for .NET Class Library – Provides properties, methods, and events for 
performing data acquisition operations. This library includes the OpenLayers.Base and 
OpenLayers.DeviceCollection namespaces.

• DT-Display for .NET Control – Provides a control for plotting data at high speed. You can 
use this control to plot data that was acquired from the DT-Open Layers for .NET Class 
Library. This control includes the OpenLayers.Controls and OpenLayers.Signals 
namespaces.

These assemblies are supported under Windows XP (32-bit), Windows Vista (32-bit and 
64-bit), Windows 7 (32-bit and 64-bit), and Windows 8 (32-bit and 64-bit).

This document describes the DT-Open Layers for .NET Class Library. For more information 
on the DT-Display control, refer to the DT-Display for .NET User’s Manual on the CD.



Getting Started
What is the DT-Open Layers for .NET Class Library
The DT-Open Layers for .NET Class Library is a native .NET set of object-oriented classes for 
programming Data Translation’s data acquisition devices in Visual C# and Visual Basic .NET.

The DT-Open Layers for .NET Class Library allows you to access the capabilities of your 
device programmatically. The library is fully compatible with the DT-Open Layers™ standard 
for developing integrated, modular application programs under Windows. Therefore, you can 
add support for a new data acquisition device at any time. Just add the new DT-Open Layers 
device driver, modify your code to incorporate the features of the new device, and then 
recompile the code. Any existing code remains unchanged.

Note: This library is not compatible with the DT-Open Layers Software Development Kit 
(SDK). Therefore, any existing programs written using the SDK must be modified to work 
with the DT-Open Layers for .NET Class Library.

The list of supported data acquisition devices is constantly expanding. For the most 
up-to-date information, refer to the Data Translation web site (www.mccdaq.com). 

Device Collection Support in Open Layers

Some devices, such as the VIBbox system, are collection of other devices and subsystems that 
are connected together through the Sync Bus. For devices and subsystems that support 
expansion through the Sync Bus, you can use the DT Device Collection Manager application 
to combine the devices to appear as one collection.

Once a device collection is defined, you can use the OpenLayers.DeviceCollection namespace 
in the DT-Open Layers for .NET Class Library to perform analog input and/or analog output 
operations on the collection. 

Note: Only subsystems that support expansion through the Sync Bus can be added to a 
collection. For most devices, this applies to the analog input subsystem only. However, some 
devices, such as the VIBbox and DT9857E module, support expansion of the analog input and 
analog output subsystems through the Sync Bus. The OpenLayers.DeviceCollection 
namespace supports only those subsystems that are added to the collection.
19



Chapter 1

20
What You Need
To use the DT-Open Layers for .NET Class Library, ensure that your system meets the 
following minimum requirements:

• PC with a Pentium II 450 MHz minimum processor (Pentium II 600 MHz recommended)

• Microsoft® Windows® XP Professional, Windows XP Home Edition (does not support 
creating Web applications or XML Web servers in .NET Professional), Windows Vista®, 
Windows 7®, Windows 8, or Windows Server™ 2003

• Minimum RAM requirements depend on the operating system you are using; consult 
your operating system documentation for details

• Visual Studio .NET 2005 to 2012 and .NET Framework 2.0 to 4.5 for developing Windows 
32-bit and 64-bit applications

• CD-ROM or DVD drive

• Super VGA (1024 x 768) or higher resolution display with 256 colors

• Microsoft mouse or compatible pointing device

• One or more of the supported Data Translation data acquisition devices

Note: You can deploy applications on the following operating systems: Windows XP 
Professional, Windows XP Home Edition, Windows Vista, Windows 7, Windows 8, and 
Windows Server 2003.



Getting Started
Installing the Software

Note: Ensure that you install Microsoft Visual Studio .NET before installing the DT-Open 
Layers for .NET Class Library.

The DT-Open Layers for .NET Class Library is installed automatically when you install the 
device driver for your device. Refer to your documentation for your device for more 
information.
21



Chapter 1

22
Building Applications Using DT-Open Layers
for .NET

When building applications using DT-Open Layers for .NET, you must reference the 
OpenLayers.Base.dll assembly.

If you are building 32-bit .NET applications (supported in Visual Studio .NET 2005 and 
higher), these assemblies are located in the following directory:

Program Files\Data Translation\DotNet\ OLClassLib\Framework 2.0 Assemblies

If you are building 64-bit .NET applications (supported in Visual Studio .NET 2005 and later), 
these assemblies are located in this directory: 

Program Files (x86)\Data Translation\DotNet\OLClassLib\Framework 2.0 Assemblies

You can determine how your application will run by configuring the build settings. For 
example, if you build your application with the "any CPU" build setting, your application will 
run as a 32-bit application on 32-bit systems or as a 64-bit application on 64-bit systems.



Getting Started
Using the Online Help
The online help for the DT-Open Layers for .NET Class Library is an integrated part of the 
software. 

You can access the help file in one of the following ways:

• From the Task Bar, select Start |Programs | Data Translation, Inc | DT-Open Layers for 
.NET | DT-Open Layers Class Library | DT-Open Layers for .NET API Help.
The stand-alone HTML help file is displayed. Click on OpenLayers.Base for help on the class 
library.

• Press F1 on any property or method of the class library for context-sensitive help.

The online help contains all of the specific reference information for each of the properties, 
methods, events, error codes, and so on, included in the DT-Open Layers for .NET Class 
Library.
23



Chapter 1

24
Using the Example Programs 
To help you understand more about using the classes included in the DT-Open Layers for 
.NET Class Library, the example programs, listed in Table 1, are provided. 

For detailed information on the example programs, refer to the SamplesHelp help file 
provided with the DT-Open Layers for .NET Class Library.

Table 1: Example Programs 

Example 
Type Example Name Example Description

Analog Input ReadSingleValueAsVolts Uses single-value mode to acquire a single value from an 
analog input channel and return the data in voltage, given 
the physical channel and input signal gain.

ReadSingleValueAsRaw Uses single-value mode to acquire a single value from an 
analog input channel and return the data in raw counts, 
given the physical channel and input signal gain.

ReadSingleValueAsSensor Uses single-value mode to acquire a single value from an 
analog input channel and return the data as a sensor 
value, given the physical channel number, input signal 
gain, sensor gain, and sensor offset.

ReadSingleValueAs 
Temperature

Uses single-value mode to acquire a single value from an 
analog input channel and return the data as a temperature 
value, based on a specified thermocouple or RTD type.

GetOneBuffer Configures the analog input subsystem for a sensor, and 
uses an internal clock to acquire one buffer of data from 
the specified analog input channel. The data is returned 
as sensor values.

ReadBufferedDataAsRaw Uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an analog input channel 
and return the data in raw counts. You can acquire data for 
a specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataAsRaw
DigTrigger

Uses continuous (post-trigger) mode, an internal clock, 
and either a software or external digital trigger to acquire 
multiple samples from an analog input channel and return 
the data in raw counts. You can acquire data for a 
specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataAsVolts Uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an analog input channel 
and return the data in voltage. You can acquire data for a 
specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).



Getting Started
Analog Input 
(cont.)

ReadBufferedDataAsVolts
SimStart

Uses continuous (post-trigger) mode, a simultaneous start 
list, and an internal clock to acquire multiple samples from 
analog input subsystems 0 and 1 simultaneously, and 
returns the data in voltage. You can acquire data for a 
specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataAsSensor Uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an analog input channel 
and return the data as sensor values based on the 
specified sensor gain and offset. You can acquire data for 
a specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataAs 
Temperature

Uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an RTD or thermocouple 
input that is connected to an analog input channel, and 
then returns the data in temperature based on the 
specified RTD type or thermocouple type and CJC source. 
You can acquire data for a specified number of buffers and 
then stop (finite), or requeue the buffers to acquire data 
continuously (continuous).

ReadBufferedIepeDataAsRaw Uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an IEPE input that is 
connected to an analog input channel, and then returns 
the data in raw counts. You can acquire data for a 
specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataInto
DtDisplay

Uses continuous (post-trigger) mode and an internal clock 
to acquire samples from an analog input channel 
continuously. When each buffer is completed, the data is 
converted to voltage and plotted to a form using the 
DT-Display control.

ReadBufferedDataAsBridge
BasedSensor

Configures the subsystem for bridge-based 
measurements, and uses continuous (post-trigger) mode 
and an internal clock to acquire multiple samples from an 
analog input channel. The data is returned in the 
engineering units of the sensor. You can acquire data for a 
specified number of buffers and then stop (finite), or 
requeue the buffers to acquire data continuously 
(continuous).

ReadBufferedDataAsStrain Configures the subsystem for strain measurements, and 
uses continuous (post-trigger) mode and an internal clock 
to acquire multiple samples from an analog input channel. 
The data is returned in microstrain values. You can 
acquire data for a specified number of buffers and then 
stop (finite), or requeue the buffers to acquire data 
continuously (continuous).

Table 1: Example Programs  (cont.)

Example 
Type Example Name Example Description
25



Chapter 1

26
Analog Input 
(cont.)

ReadBufferedDataFromMulti
Sensor

For devices, such as the DT9829 module, that support 
multiple sensor types, configures the selected analog 
input channel for the appropriate sensor type, and uses 
continuous (post-trigger) mode and an internal clock to 
acquire multiple samples from an analog input channel. 
The data is returned in the engineering units for the 
specified sensor type. You can acquire data for a specified 
number of buffers and then stop (finite), or requeue the 
buffers to acquire data continuously (continuous).

Analog Output WriteSingleValueAsVolts Writes a single voltage value to a single analog output 
channel.

WriteSingleValueAsRaw Writes a single raw count value to a single analog output 
channel.

WriteSingleValuesAsVolts For subsystems that support simultaneous operations, 
simultaneously writes single voltage values to four analog 
output channels.

WriteSingleValueAsRaw_
ProgRanges

Writes a single value, represented as a raw count, to a 
single analog output channel, and demonstrates how to 
specify the voltage range for the subsystem.

WriteBufferedDataAsVolts Uses continuous mode and an internal clock to write 
multiple values, represented as voltages, to the analog 
output channels. You can output three buffers of data and 
then stop (finite), or output data from the three buffers 
continuously (continuous).

Digital Input ReadSingleValue Reads a single value from a digital input port.

InterruptOnChange Reads data continuously from a digital input port, 
interrupting when a value of a digital input line changes 
state. The current value of the digital input port and the 
digital input lines that changed state are displayed.

Digital Output WriteSingleValue Writes a single value to a digital output port.

DT9871TempNET Supported on the DT9871 instrument only, configures the 
TEMPpoint instrument, acquires and displays data from 
up to 48 RTD or thermocouple input channels, optionally 
logs the acquired data to disk, reads the value of the 
digital input port, and updates the value of the digital 
output port. This application also allows you to set 
minimum and maximum threshold values for the analog 
input channels, and update the value of a digital output 
line when the threshold condition occurs.

Table 1: Example Programs  (cont.)

Example 
Type Example Name Example Description



Getting Started
Counter/
Timer

EventCounting Demonstrates how to use event counting and up/down 
counting mode to count events from an external clock 
connected to a counter/timer.

MeasureEdgeToEdge Uses edge-to-edge measurement mode to measures the 
time interval between a specified start edge and a 
specified stop edge of a gate or clock signal connected to 
a counter/timer.

PulseOut_RateGeneration Demonstrates how to use rate generation mode, one-shot 
mode, and repetitive one-shot mode to generate pulse 
output signals from a counter/timer.

Quadrature 
Decoder

ReadCounts Demonstrates how to read the count of a quadrature 
decoder.

Simultaneous 
Input

BufferedInputAnalog_Counter For devices that allow you to stream counter/timer data 
through the analog input subsystem, acquires continuous 
values for a specified analog input and counter/timer 
channel. You can acquire data for a specified number of 
buffers and then stop (finite), or requeue the buffers to 
acquire data continuously (continuous).

BufferedInputAnalog_Digital For devices that allow you to stream digital input data 
through the analog input subsystem, acquires continuous 
values for a specified analog input channel and digital 
input port. You can acquire data for a specified number of 
buffers and then stop (finite), or requeue the buffers to 
acquire data continuously (continuous).

Utilities ConvertData Converts a voltage value to a raw count, or converts a raw 
count to a voltage value, based on the data encoding, 
voltage range, and resolution of the subsystem.

Table 1: Example Programs  (cont.)

Example 
Type Example Name Example Description
27



Chapter 1

28
To open and run these examples, do the following:

1. Start Microsoft Visual Studio .NET.

2. Click File, click Open, and then click Project.

3. Select the example you want to open from C:\Program Files\
mccdaq\DotNet\OLClassLib\Examples folder (if you installed the software using the 
default destination location).

4. From the main menu of Microsoft Visual Studio .NET, click Build, and then click Build 
Solution to build the project. 

Note: These examples are provided as 32-bit applications. You can rebuild them as 64-bit 
applications, if desired, by referencing the x64 DT-Open Layers for .NET assembly 
(OpenLayers.Base.dll) located in Program Files (x86)\Data Translation\DotNet\
OLClassLib\Framework 2.0 Assemblies (64-bit). Refer to page 23 for more information.

5. To run the example, click Debug from the main menu, and then click Start.
The example program is now running.

6. Use the capabilities of the example program to see how it operates.

7. When you are finished using the example program, click Debug from the main menu,
then click Stop Debugging.

8. View the user interface of the example program by clicking the appropriate [Design] tab
on the main window.

9. View the source code for the example program by clicking the appropriate tab (such as
example.cs) on the main window.

10. Repeat steps 2 through 9 for each example program you want to open, run, and view.



Getting Started
Creating Your Own Program
To create your own application program, do the following:

1. Start Microsoft Visual Studio .NET.

2. Click File, click New, and then click Project.

3. Select the language you want to develop in (Visual Basic Projects or Visual C# Projects), 
and the template that you want to use (such as, Windows Application).

4. Enter the project name and where you want to save your project, and then click OK.
The design environment is shown.

5. From the Solution Explorer window, right-click References, and then click Add 
Reference (or from the Project Menu, select Add Reference).
The Add Reference dialog box appears.

6. From the .NET tab, click OpenLayers for .NET, click Select, and then click OK.
The OpenLayers.Base assembly is now referenced in your application.

7. If desired, click Object Browser from the main window, double-click openlayers.base, 
and then double-click OpenLayers.Base.
All the classes included in the library are listed.

8. Select any of the classes to see its methods and properties.

9. Press F1 to access the context-sensitive online help for the library.

10. Develop your code, as appropriate, using the example programs and the information in 
this manual.

11. To build your program, click Build from the main menu, and then click Build Solution.

12. To run your program, click Debug from the main menu, and then click Start.

13. To save your program, click File, and then click Save All.

14. When you are finished, click File, and the click Close Solution before exiting from 
Microsoft Visual Studio .NET.
29



Chapter 1

30
Distributing Your Program
When you distribute your program, ensure that you also distribute the version of the 
OpenLayers.Base assembly that was used to create your program. In addition, ensure that any 
Data Translation devices that are used by your program (along with their device drivers) are 
installed on the target machine.

One of the best ways to distribute your program is to create a Windows installation project 
that includes all the necessary files required to run your program. To create an installation 
project, do the following:

1. Open the program (solution) that you want to distribute within Visual Studio .NET.

2. From the File menu, select Add Project, and then select New Project.
The Add New Project dialog box appears.

3. Select Setup and Deployment Projects, and select the Setup Wizard template.

4. Specify a name, such as Setup, for the installation project, specify the location for the 
installation project on your development system, and then click OK.
The Welcome screen of the Setup wizard appears.

5. Click Next.

6. Select "Create a setup for a Windows application," and then click Next.

7. Select "Primary output from <the project to be distributed>," and then click Finish.
Your program and the files OpenLayers.Base.dll and OpenLayers.Personality.dll are added to the 
Application Folder of the installation project automatically.

8. From the Solutions Explorer, right click on the installation project, and click Build.

9. To test that the setup program works properly, right click on the installation project, click 
Install, and follow the prompts. 

10. Verify that your program and the files OpenLayers.Base.dll and 
OpenLayers.Personality.dll are installed in the directory that was specified by the setup 
program.

11. Distribute this setup program to your end users.



2
Library Summary

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

OpenLayers.Base Namespace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

OpenLayers.DeviceCollection Namespace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
31



Chapter 2

32
Overview
The DT-Open Layers for .NET Class Library consists of the OpenLayers.Base and 
OpenLayers.DeviceCollection namespaces. The OpenLayers.Base namespace provides the 
programming interface for all DT-Open Layers-compatible devices except device collections, 
which are programmed using the OpenLayers.DeviceCollection namespace.

The following elements comprise each namespace:

• Classes – Symbolic representations of objects. They define the operations that objects can 
perform using properties, methods, and events. In the DT-Open Layers for .NET Class 
Library, classes are used to define the I/O operations that can be performed on DT-Open 
Layers-compliant devices. 

• Delegates – Data structures that refer to a static method. In the DT-Open Layers for .NET 
Class Library, delegates are used to call user-specified methods when specific events 
occur. 

• Enumerations – Value types that associate names with specific values. In the DT-Open 
Layers for .NET Class Library, enumerations are used to define the values of properties 
and arguments used in methods.

• Structures – Value types that contain data members and functions like classes, but do not 
require heap allocation. In the DT-Open Layers for .NET Class Library, a structure is used 
to return specific information about DT-Open Layers devices.

This chapter summarizes the elements of the OpenLayers.Base and 
OpenLayers.DeviceCollection namespaces in the DT-Open Layers for .NET Class Library. 



Library Summary
OpenLayers.Base Namespace
The OpenLayers.Base namespace provides the programming interface for DT-Open 
Layers-compatible hardware devices. This is the interface to use for all DT-Open 
Layers-compatible devices, except those devices that are defined as collections (such as the 
VIBbox system or a user-defined collection created using the DT Device Collection Manager 
application).

This section describes the elements of the OpenLayers.Base namespace. Refer to Chapter 3 for 
more information on how to use the OpenLayers.Base namespace.

Classes

The OpenLayers.Base namespace contains the classes listed in Table 2. Each class contains 
properties, methods, and/or events that allow you to perform specific operations. This section 
describes the classes and their members.

Table 2: Classes Included in the OpenLayers.Base Namespace

Operation Type Class Name Description

Device 
Management

DeviceMgr Manages DT-Open Layers devices in the system and 
assigns Device objects.

Device Encapsulates an DT-Open Layers device and manages 
and distributes subsystems for the device.

SimultaneousStart Provides the properties for simultaneously starting 
multiple subsystems.

Analog Input 
Operations

AnalogInputSubsystem Provides the properties, methods, and events for 
performing analog input operations. 

This class inherits members from the 
AnalogSubsystema and SubsystemBaseb classes.

Analog Output 
Operations

AnalogOutputSubsystem Provides the properties, methods, and events for 
performing analog output operations.

This class inherits members from the 
AnalogSubsystema and SubsystemBaseb classes. 

Digital Input 
Operations

DigitalInputSubsystem Provides the properties, methods, and events for 
performing digital input operations. 

This class inherits members from the SubsystemBase 
classb.

Digital Output 
Operations

DigitalOutputSubsystem Provides the properties, methods, and events for 
performing digital output operations. 

This class inherits members from the SubsystemBase 
classb.
33



Chapter 2

34
Counter/Timer 
Operations

CounterTimerSubsystem Provides the properties, methods, and events for 
performing counter/timer operations. 

This class inherits members from the SubsystemBase 
classb.

Tachometer 
Operations 

TachSubsystem Provides the properties, methods, and events for 
performing operations. 

This class inherits members from the SubsystemBase 
classb.

Quadrature 
Decoder 
Operations

QuadratureDecoderSubsystem Provides the properties, methods, and events for 
performing quadrature decoder operations. 

This class inherits members from the SubsystemBase 
classb.

Channels SupportedChannelInfo Contains information that describes a channel that is 
associated with a specific subsystem.

SupportedChannels A collection of SupportedChannelInfo objects.

ChannelListEntry Encapsulates a channel entry for the channel list of a 
specified subsystem.

ChannelList Specifies a collection of ChannelListEntry objects for 
use in a continuous I/O operation.

StrainGageTeds Provides the properties for a strain gage sensor that 
uses TEDS (Transducer Electronic Data Sheet).

This class inherits members from the TedsBase class.

BridgeSensorTeds Provides the properties for a strain gage sensor that 
uses TEDS (Transducer Electronic Data Sheet).

This class inherits members from the TedsBase class.

Clocks Clock Provides an interface for controlling the clock of a 
subsystem.

Triggers Trigger Provides an interface for controlling the trigger of a 
subsystem. For device that support a start trigger and a 
reference trigger, this class controls the start trigger.

ReferenceTrigger Provides an interface for controlling the reference 
trigger of a subsystem.

TriggeredScan Provides support for scanning the entries in a 
ChannelList a specified number of times when the 
device detects a specified retrigger source.

Ranges Range Specifies the upper and lower limits of a voltage range 
for an analog subsystem.

Table 2: Classes Included in the OpenLayers.Base Namespace (cont.)

Operation Type Class Name Description



Library Summary
Buffer 
Management

OlBuffer Encapsulates a data buffer that is used in a continuous 
I/O operation.

BufferQueue Provides an interface for queuing OlBuffer objects to a 
device’s subsystem for continuous I/O operations.

Event Handling BufferDoneEventArgs Contains data related to the event BufferDoneEvent.

This class inherits members from the 
GeneralEventArgs class.c

DriverRunTimeErrorEventArgs Contains the data related to the event 
DriverRunTimeErrorEvent. 

This class inherits members from the 
GeneralEventArgs class.c

EventDoneEventArgs Contains the data related to the event EventDoneEvent. 

This class inherits members from the 
GeneralEventArgs class.c

InterruptOnChangeEventArgs Contains the data related to the event 
InterruptOnChangeEvent.

This class inherits members from the 
GeneralEventArgs class.c

IOCompleteEventArgs Contains the data related to the event 
IOCompleteEvent.

This class inherits members from the 
GeneralEventArgs class.c

MeasureDoneEventArgs Contains the data related to the event 
MeasureDoneEvent.

This class inherits members from the 
GeneralEventArgs class.c

Error Handling OlException DT-Open Layers exception class. Exceptions are raised 
in response to error conditions within the DT-Open 
Layers for .NET Class Library.

OlError Encapsulates an DT-Open Layers error code. 

Services Utility Provides properties and methods for getting information 
about assemblies and for converting data from raw 
counts to voltage and voltage to raw counts.

a. The AnalogSubsystem class provides the common properties, methods, and events for performing analog I/O operations. 
This is the base class for the analog input and analog output subsystems. This class inherits many of its capabilities from the 
SubsystemBase class. You cannot instantiate this object.

b. The SubsystemBase class provides the common properties, methods, and events that are inherited by the subsystems. This is 
the base class for all subsystems; you cannot instantiate this object. 

c. The GeneralEventArgs class contains data that is returned by all DT-Open Layers events that are sent to the user.

Table 2: Classes Included in the OpenLayers.Base Namespace (cont.)

Operation Type Class Name Description
35



Chapter 2

36
Device Management

The OpenLayers.Base namespace provides the following classes for managing devices:

• DeviceMgr, described below

• Device, described starting on page 36

• SimultaneousStart, described starting on page 38

DeviceMgr Class

The DeviceMgr class provides methods for managing DT-Open Layers devices in the system 
and for assigning a Device object to each DT-Open Layers device that you want to use. Table 3 
lists the methods in the DeviceMgr class. 

Note: This class exposes the Device object.

Device Class

The Device class provides a constructor, properties, and methods for encapsulating an 
DT-Open Layers device and managing and distributing subsystems for the device. 

To access a Device object, it is recommended that you use the DeviceMgr.GetDevice method. 
If you prefer, you can also get a Device object using the Device constructor of the Device class.

Note: This class exposes the following objects: SimultaneousStart, AnalogInputSubsystem, 
AnalogOutputSubsystem, DigitalInputSubsystem, DigitalOutputSubsystem, 
CounterTimerSubsystem, TachometerSubsystem, and QuadratureDecoderSubsystem.

Table 3: Methods of the DeviceMgr Class 

Member Type Member Name Description

Methods Get Returns a DeviceMgr object.

GetDevice Returns a Device object for the specified device.

GetDeviceNames Returns a list of all DT-Open Layers-compatible devices 
plugged into the system.

HardwareAvailable Returns True if an DT-Open Layers-compliant device is 
plugged into the system; otherwise, returns False.



Library Summary
Table 4 lists the members of the Device class.

Table 4: Members of the Device Class 

Member Type Member Name Description

Constructor Device Constructor Returns a Device object.

Read-Only 
Properties

BoardModelName Returns the model name of the device.

DeviceName Returns the user-defined name of the device. This name 
can be modified in the DT-Open Layers Control Panel 
applet.

DriverName Returns the name of the driver for this device.

DriverVersion Returns the version of the driver for this device.

PowerSource Returns whether the device is powered by internal or 
external power.

SupportsInternalAndExternal
Power

Returns True if the device is capable of using an internal 
and external power source; otherwise, returns False. 

Properties that 
Provide Interfaces

SimultaneousStart Provides an interface to the SimultaneousStart object.

Methods AnalogInputSubsystem Returns an AnalogInputSubsystem object.

AnalogOutputSubsystem Returns an AnalogOutputSubsystem object.

DigitalInputSubsystem Returns a DigitalInputSubsystem object.

DigitalOutputSubsystem Returns a DigitalOutputSubsystem object.

CounterTimerSubsystem Returns a CounterTimerSubsystem object.

TachSubsystem Returns a TachSubsystem object.

QuadratureDecoderSubsystem Returns a QuadratureDecoderSubsystem object.

Dispose Terminates the connection to the device. 

GetHardwareInfo Returns hardware specific-information about the current 
device.

SetHardwareInfo Writes hardware specific-information about the current 
device.

GetNumSubsystemElements Returns the number of available subsystem elements for 
a given subsystem type. 

DiagReadReg Returns the value of a specified register on the device. 
This is an advanced method and is not normally used.

DiagWriteReg Writes a value to the specified register on the device. 
This is an advanced method and is not normally used.

DiagReadCalPot Returns the value of the specified calibration pot register. 
This is an advanced method and is not normally used. 

DiagWriteCalPot Writes to the specified calibration pot. This is an 
advanced method and is not normally used. 
37



Chapter 2

38
SimultaneousStart Class

The SimultaneousStart class allows you to start multiple subsystems simultaneously using the 
properties listed in Table 5. 

You access the SimultaneousStart object through the Device object.

Subsystem Operations

The following major classes are provided within the OpenLayers.Base namespace for 
performing subsystem operations:

• AnalogInputSubsystem, described below

• AnalogOutputSubsystem, described starting on page 47

• DigitalInputSubsystem, described starting on page 52

• DigitalOutputSubsystem, described starting on page 56

• CounterTimerSubsystem, described starting on page 60

• TachSubsystem, described starting on page 65

• QuadratureDecoderSubsystem, described starting on page 69

AnalogInputSubsystem Class

The AnalogInputSubsystem class encapsulates all methods, properties, and events that are 
specific to analog input operations. Table 6 lists the members of the AnalogInputSubsystem 
class.

To create an instance of this class, use the Device.AnalogInputSubsystem method 
(recommended) or the AnalogInputSubsystem constructor.

Table 5: Additional Members of the SimultaneousStart Class 

Member Type Member Name Description

Methods AddSubsystem Adds a subsystem to the list of subsystems to simultaneous 
start. 

RemoveSubsystem Removes a subsystem from the list of subsystems to 
simultaneous start.

Clear Removes all subsystems from the simultaneous start list. 

GetSubsystemList Returns an array of subsystems that are currently on the 
simultaneous start list.

PreStart Simultaneously prestarts all subsystems on the simultaneous 
start list. 

Start Simultaneously starts all subsystems on the simultaneous start 
list. 



Library Summary
Note: This class provides interfaces to the following objects: BufferQueue, ChannelList, 
Clock, SupportedChannels, Trigger, and TriggeredScan.

This class inherits the members of the AnalogSubsystem and SubsystemBase classes.

Table 6: Members of the AnalogInputSubsystem Class 

Member Type Member Name Description

Constructor AnalogInputSubsystem Constructor Gets an analog input subsystem.

Read/Write 
Properties

AsynchronousStop Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelType Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFilterType For devices, like the TEMPpoint and VOLTpoint 
instruments, that support programmable filter types, 
gets and sets the filter type.

DataFlow Gets and sets the data flow mode (Continuous, 
SingleValue, ContinuousPreTrigger 
ContinuousPrePostTrigger) for the subsystem.

Encoding Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

ExcitationVoltageSource Gets and sets the excitation voltage source (internal, 
external, or disabled) to apply to the subsystem. 

ExcitationVoltageValue Gets and sets the value of the internal excitation voltage 
source to apply across the bridge for each channel of 
the subsystem.

ReturnCjcTemperaturesInStream Enables or disables the subsystem from returning CJC 
values in the data stream. 

StopOnError Gets and sets the stop-on-error condition (stop if 
overrun occurs, or continue if overrun occurs) for the 
subsystem.

SynchronizationMode For subsystems that allow you to synchronize 
operations on multiple devices using a synchronization 
connector, gets and sets the synchronization mode 
(None, Master, or Slave). 

SynchronousBufferDone Gets and sets the way Buffer Done events are executed 
(asynchronously or synchronously).

TemperatureFIlterType Deprecated property; replaced with the DataFilterType 
property.

VoltageRange Gets and sets the current voltage range for the 
subsystem.
39



Chapter 2

40
Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, 
CounterTimer, Tachometer, or QuadratureDecoder).

SupportsAutoCalibrate Returns True if the subsystem supports self-calibration, 
where an auto-zero function is performed through 
software; otherwise, returns False.

SupportsDataFilters Returns True if the subsystem supports programmable 
filter types; otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns False.

SupportsSimultaneousSampleHold Returns True if the subsystem supports acquisition on 
all channels simultaneously; otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting multiple 
subsystems simultaneously; otherwise, returns False. 

SupportsSynchronization Returns True if the subsystem supports synchronization 
with other devices; otherwise, returns False. 

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Data flow-related)

SupportsContinuous Returns True if the subsystem supports continuous data 
flow mode; otherwise, returns False.

SupportsContinuousPrePostTrigger Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

SupportsTriggeredScan Returns True if the subsystem supports triggered scan 
operations; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to WrapSingleBuffer. 
In addition, the buffer size must be less than or equal to 
the FifoSize.

Read-Only 
Properties 
(Channel-related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are supported 
by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Gain-related)

NumberOfSupportedGains Returns the number of available gains for this 
subsystem.

SupportedGains Returns an array of available gains for the subsystem.

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

Read-Only 
Properties 
(Range-related)

NumberOfRanges Returns the number of available voltage ranges for the 
subsystem. 

SupportedVoltageRanges Returns an array of available voltage ranges supported 
by the subsystem.

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
41



Chapter 2

42
Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported by 
the subsystem. 

Resolution Returns the current resolution of the subsystem.

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

QueuedBufferDones Returns the number of Buffer Done Events queued to 
be sent when SynchronousBufferDone is True.

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

SupportsInProcessFlush Returns True if the subsystem allows you to move data 
from the current OlBuffer object while it is being filled; 
otherwise, returns False.

Read-Only 
Properties 
(Temperature-
related)

SupportsCjcSourceChannel Returns True if the subsystem provides channels that 
are used for cold junction compensation (CJC); 
otherwise, returns False.

SupportsCjcSourceInternal Returns True if the subsystem supports a CJC (cold 
junction compensation) source that is internal to the 
hardware; otherwise, returns False.

SupportsInterleavedCjc
TemperaturesInStream

(Has meaning only if 
SupportsTemperatureDataInStream is True.) Returns 
True if the device can optionally interleave CJC 
temperature data with A/D data (either voltage or 
temperature depending on the thermocouple type) in 
the data stream; otherwise, returns False.

SupportsRTD Returns True if the subsystem supports RTD inputs; 
otherwise, returns False. 

SupportsTemperatureDataInStream Returns True if the subsystem supports temperature 
conversions in hardware, returning temperature data in 
the stream; otherwise, returns False.

SupportsTemperatureFilters Deprecated property; replaced by the 
SupportsDataFilters property, described on page 40.

SupportsThermistor Returns True if the subsystem supports thermistor 
inputs; otherwise, returns False. 

SupportsThermocouple Returns True if the subsystem supports thermocouple 
inputs; otherwise, returns False. 

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Accelerometer-
related)

SupportsACCoupling Returns True if the subsystem supports AC coupling, 
where the DC offset is removed; otherwise, returns 
False.

SupportsDCCoupling Returns True if the subsystem supports DC coupling, 
where the DC offset is included; otherwise, returns 
False.

SupportedExcitationCurrentValues Returns an array containing the available values for the 
internal excitation current source.

SupportsExternalExcitationCurrent
Src

Returns True if the subsystem supports an external 
excitation current source; otherwise, returns False.

SupportsInternalExcitationCurrent
Src

Returns True if the subsystem supports an internal 
excitation current source; otherwise, returns False.

Read-Only 
Properties (Bridge 
and Strain 
Gage-related)

MinExcitationVoltageValue Returns the minimum allowable excitation voltage that is 
supported by the subsystem if the 
ExcitationVoltageSource property is set to Internal.

MaxExcitationVoltageValue Returns the maximum allowable excitation voltage that 
is supported by the subsystem if the 
ExcitationVoltageSource property is set to Internal.

SupportsBridge Returns True if the subsystem supports bridge-based 
and/or general-purpose bridges; otherwise, returns 
False. 

SupportsExternalExcitationVoltage
Src

Returns True if the subsystem supports an external 
excitation voltage source; otherwise, returns False. 

SupportsInternalExcitationVoltage
Src

Returns True if the subsystem supports an internal 
excitation voltage source; otherwise, returns False. 

SupportsPerChannelVoltage
Excitation

Returns True if the device supports setting the voltage 
excitation source and/or value per channel; otherwise, 
returns False if the voltage excitation source/value must 
be set for the subsystem.

SupportsShuntCalibration Returns True if the subsystem supports shunt 
calibration; otherwise, returns False.

SupportsStrainGage Returns True if the subsystem supports strain gage 
measurements; otherwise, returns False. 

Read-Only 
Property (Current- 
Related)

SupportsCurrent Returns True if the subsystem supports current input 
measurements; otherwise, returns False. 

SupportsCurrentOutput Returns True if the subsystem supports current outputs; 
otherwise, returns False.

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
43



Chapter 2

44
Read-Only 
Property 
(Resistance- 
Related)

SupportsInternalExcitationCurrent
Src

Returns True if the subsystem supports an internal 
excitation current source; otherwise, returns False.

SupportedExcitationCurrentValues Returns an array containing the available values for the 
internal excitation current source.

SupportsExternalExcitationCurrent
Src

Returns True if the subsystem supports an external 
excitation current source; otherwise, returns False.

SupportsResistance Returns True if the subsystem can return resistance 
measurements; otherwise returns False. 

Properties that 
Provide Interfaces 

BufferQueue Provides an interface to a BufferQueue object.

ChannelList Provides an interface to a ChannelList object.

Clock Provides an interface to a Clock object.

ReferenceTrigger Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Trigger Provides an interface to a Trigger object.

TriggeredScan Provides an interface to the TriggeredScan object.

Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the current buffer to be 
filled.

AutoCalibrate Calibrates the subsystem in software, performing an 
auto-zero function.

Config Configures the subsystem based on the current 
property settings.

Dispose Releases the analog input subsystem’s connection to 
the DT-Open Layers device.

GetOneBuffer Using continuous acquisition, acquires one buffer of 
data from the specified channel. This method uses the 
specified clock frequency, trigger, and so on, for the 
acquisition. This method is synchronous and returns 
only when the requested data has been acquired or a 
calculated timeout value is exceeded.

GetSingleCjcValueAsTemperature For subsystems that support thermocouples and the 
ability to return floating-point values, acquires a single 
CJC temperature for an input channel and returns the 
temperature in the units you specify.

GetSingleCjcValuesAsTemperature For subsystems that support simultaneous operations, 
thermocouples, and the ability to return floating-point 
values, simultaneously acquires a single CJC 
temperature value for each input channel and returns 
the temperature values in the units you specify.

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Methods (cont.)  GetSingleValueAsBridgeBased
Sensor

For subsystems that support strain gages, acquires a 
single value from a full-bridge-based transducer and 
returns the value in the engineering units of the 
transducer.

 GetSingleValueAsCurrent For subsystems that support current measurement, 
acquires a single value from a current channel and 
returns the value in Amperes.

GetSingleValueAsNormalizedBridge
Output

For subsystems that support bridges, acquires a single 
value from a general-purpose bridge or bridge-based 
sensor and returns the value in the volts.

GetSingleValueAsRaw Acquires a single value from an input channel and 
returns it in raw counts.

GetSingleValueAsResistance Acquires a single value from a resistance measurement 
channel and returns the resistance value in ohms.

GetSingleValueAsSensor Acquires a single value from an input channel and 
returns it in the engineering units for the specified 
sensor.

 GetSingleValueAsStrain For subsystems that support strain gages, acquires a 
single value from an input channel and returns the value 
in microstrain.

GetSingleValueAsTemperature Overloaded method. Acquires a single value from a 
input channel and returns it as a temperature value 
based on the specified thermocouple or RTD type and 
temperature units.

GetSingleValueAsVolts Acquires a single value from an input channel and 
returns the data in voltage.

 GetSingleValuesAsCurrent For subsystems that support current measurement and 
simultaneous operations, simultaneously acquires a 
single value from a each current channel and returns 
the value in Amperes.

GetSingleValuesAsRaw For subsystems that support simultaneous operations, 
simultaneously acquires a single value from each input 
channel and returns the data in raw counts.

GetSingleValuesAsSensor For subsystems that support simultaneous operations, 
simultaneously acquires a single value from each input 
channel and returns the values in the engineering units 
of the specified sensor.

GetSingleValuesAsTemperature For subsystems that support simultaneous operations, 
thermocouples or RTDs, and the ability to return 
floating-point values, simultaneously acquires a single 
temperature value from each input channel and returns 
the data, in the units you specify, as an array of 
floating-point values.

GetSingleValuesAsVolts For subsystems that support simultaneous operations, 
simultaneously acquires a single value from each input 
channel and returns the data in voltages. 

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
45



Chapter 2

46
Methods (cont.) MoveFromBufferInprocess Moves samples from the OlBuffer object that is currently 
being filled into a new OlBuffer object. 

RawValueToSensor Overloaded method that converts a raw count to a 
sensor value in engineering units. 

RawValueToVolts Overloaded method that converts a raw count into a 
voltage value. 

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
filled, and reinitializes the subsystem to the default 
configuration. 

Start Starts a continuous operation on the analog input 
subsystem.

Stop Stops a continuous operation on the analog input 
subsystem after the current buffer has been filled.

ToString Returns a string that describes the analog input 
subsystem and element.

VoltsToRawValue Converts a voltage value into a raw count. 

Events BufferDoneEvent Occurs when the current OlBuffer object has been filled 
with post-trigger data, and if the operation is stopped, 
occurs for each of up to 8 inprocess buffers. 

DeviceRemovedEvent Occurs when a device is removed from the system.

DriverRunTimeErrorEventEvent Occurs when the device driver detects one of the 
following error conditions during runtime: FifoOverflow, 
FifoUnderflow, DeviceOverClocked, TriggerError, or 
DeviceError.

GeneralFailureEvent Occurs when a when a general library failure occurs.

IOCompleteEvent For analog input operations that use a reference trigger 
whose trigger type is something other than software 
(none), occurs when the last post-trigger sample is 
copied into the user buffer. Devices that do not support 
a reference trigger will never receive this event for 
analog input operations.

PreTriggerBufferDoneEvent Occurs when the OlBuffer object is filled with pre-trigger 
data (for an input operation only).

QueueDoneEvent Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEvent Occurs when a pre- or post-trigger acquisition operation 
completes or when you stop a continuous analog input 
operation. 

Table 6: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
AnalogOutputSubsystem Class

The AnalogOutputSubsystem class encapsulates all methods, properties, and events that are 
specific to analog output operations. Table 7 lists the members of the AnalogOutputSubsystem 
class.

To create an instance of this class, use the Device.AnalogOutputSubsystem method 
(recommended) or the AnalogOutputSubsystem constructor.

Note: This class provides interfaces to the following objects: BufferQueue, ChannelList, 
Clock, SupportedChannels, and Trigger.

This class inherits the members of the AnalogSubsystem and SubsystemBase classes. 

Table 7: Members Added with the AnalogOutputSubsystem Class 

Member Type Member Name Description

Constructor AnalogOutputSubsystem Constructor Gets an analog output subsystem.

Read/Write 
Properties

AsynchronousStop Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelType Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous or 
SingleValue) for the subsystem.

Encoding Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

StopOnError Gets and sets the stop-on-error condition (stop if 
underrun occurs, or continue if underrun occurs) for 
the subsystem.

SynchronizationMode For subsystems that allow you to synchronize 
operations on multiple devices using a 
synchronization connector, gets and sets the 
synchronization mode (None, Master, or Slave). 

SynchronousBufferDone Gets and sets the way Buffer Done events are 
executed (asynchronously or synchronously).

VoltageRange Gets and sets the current voltage range for the 
subsystem.

WrapSingleBuffer Gets and sets the wrap mode. If True, the device 
driver continuously reuses the first buffer queued to 
the subsystem. If False, the device driver uses all the 
buffers queued to the subsystem (this is the default 
mode). 
47



Chapter 2

48
Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, 
CounterTimer, Tachometer, or QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current 
outputs; otherwise, returns False.

SupportsMute Returns True if the subsystem supports the ability to 
mute and/or unmute the output voltage.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting 
multiple subsystems simultaneously; otherwise, 
returns False. 

SupportsSynchronization Returns True if the subsystem supports 
synchronization with other devices; otherwise, returns 
False. 

Read-Only 
Properties 
(Data 
flow-related)

SupportsContinuous Returns True if the subsystem supports continuous 
data flow mode; otherwise, returns False.

SupportsContinuousPrePostTrigger Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns 
False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

Table 7: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Data 
flow-related, 
cont.)

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to 
WrapSingleBuffer. In addition, the buffer size must be 
less than or equal to the FifoSize.

Read-Only 
Properties 
(Channel-related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are 
supported by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Gain-related)

NumberOfSupportedGains Returns the number of available gains for this 
subsystem.

SupportedGains Returns an array of available gains for the subsystem.

SupportsProgrammableGain Returns True if the subsystem supports 
programmable gain for ChannelListEntry objects; 
otherwise, returns False.

Read-Only 
Properties 
(Range-related)

NumberOfRanges Returns the number of available voltage ranges for the 
subsystem. 

SupportedVoltageRanges Returns an array of available voltage ranges 
supported by the subsystem.

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported 
by the subsystem. 

Resolution Returns the current resolution of the subsystem.

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Table 7: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description
49



Chapter 2

50
Read-Only 
Properties 
(Buffer-related)

QueuedBufferDones Returns the number of Buffer Done Events queued to 
be sent when SynchronousBufferDone is True.

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

SupportsWrapSingle Returns True if the subsystem supports reusing a 
single buffer for continuous operations; otherwise, 
returns False.

Properties that 
Provide 
Interfaces 

BufferQueue Provides an interface to a BufferQueue object.

ChannelList Provides an interface to a ChannelList object.

Clock Provides an interface to a Clock object.

ReferenceTrigger Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Trigger Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the data in current 
buffer to be output.

Config Configures the subsystem based on the current 
property settings.

Dispose Overloaded method that releases the analog output 
subsystem’s connection to the DT-Open Layers 
device.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the data in the current 
buffer to be output, and reinitializes the subsystem to 
the default configuration. 

Mute Attenuates the output voltage of the subsystem to 0 V 
over a hardware-dependent number of samples.

RawValueToSensor Overloaded method that converts a raw count to a 
sensor value in engineering units. 

RawValueToVolts Overloaded method that converts a raw count into a 
voltage value. 

SetSingleValueAsRaw Writes a single raw count to an analog output channel.

SetSingleValueAsVolts Writes a single voltage value to an analog output 
channel.

SetSingleValuesAsRaw For subsystems that support simultaneous operations, 
simultaneously updates the specified analog output 
channels with a single raw count value. You specify 
the channels to update and the value to output on 
each channel.

Table 7: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Methods (cont.) SetSingleValuesAsVolts For subsystems that support simultaneous operations, 
simultaneously updates the specified analog output 
channels with a single voltage value. You specify the 
channels to update and the value to output on each 
channel.

Start Starts a continuous operation on the analog output 
subsystem.

Stop Stops a continuous operation on the analog output 
subsystem after the data in the current buffer has 
been output.

ToString Returns a string that describes the analog output 
subsystem and element.

UnMute If the subsystem is muted, returns the output voltage 
of the subsystem to its current level over a 
hardware-dependent number of samples.

VoltsToRawValue Converts a voltage value into a raw count. 

Events BufferDoneEvent Occurs when all the data in the OlBuffer object has 
been output.

DeviceRemovedEvent Occurs when a device is removed from the system.

DriverRunTimeErrorEventEvent Occurs when the device driver detects one of the 
following error conditions during runtime: 
FifoOverflow, FifoUnderflow, DeviceOverClocked, 
TriggerError, or DeviceError.

GeneralFailureEvent Occurs when a when a general library failure occurs.

IOCompleteEvent For analog output operations, occurs when the when 
the last data point has been output from an analog 
output channel. In some cases, this event is raised 
well after the data is transferred from the buffer (and, 
therefore, well after BufferDoneEvent and 
QueueDoneEvents occur).

QueueDoneEvent Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEvent Occurs when a continuous analog output operation is 
stopped and the queue is emptied.

Table 7: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description
51



Chapter 2

52
DigitalInputSubsystem Class

The DigitalInputSubsystem class encapsulates all methods, properties, and events that are 
specific to digital input operations. Table 8 lists the members of the DigitalInputSubsystem 
class.

To create an instance of this class, use the Device.DigitalInputSubsystem method 
(recommended) or the DigitalInputSubsystem constructor.

Note: This class provides interfaces to the BufferQueue, ChannelList, Clock, 
SupportedChannels, and Trigger objects; however, for most DT-Open Layers devices, only 
SupportedChannels objects are supported for digital input operations.

This class inherits the members of the SubsystemBase class.

Table 8: Members Added with the DigitalInputSubsystem Class 

Member Type Member Name Description

Constructor DigitalInputSubsystem Constructor Gets a digital input subsystem.

Read/Write 
Properties

AsynchronousStopa Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelTypea Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous or 
SingleValue) for the subsystem.

Encodinga Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Resolution Gets and sets the resolution of the subsystem.

StopOnErrora Gets and sets the stop-on-error condition (stop if 
overrun or underrun occurs, or continue if overrun or 
underrun occurs) for the subsystem.

SynchronizationModea For subsystems that allow you to synchronize 
operations on multiple devices using a synchronization 
connector, gets and sets the synchronization mode 
(None, Master, or Slave). 

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 



Library Summary
Read-Only 
Properties 
(General, cont.)

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, 
CounterTimer, Tachometer, or QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current 
outputs; otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns 
False.otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting 
multiple subsystems simultaneously; otherwise, returns 
False. 

SupportsSynchronization Returns True if the subsystem supports 
synchronization with other devices; otherwise, returns 
False. 

Read-Only 
Properties 
(Data flow-related)

SupportsContinuous Returns True if the subsystem supports continuous 
data flow mode; otherwise, returns False.

SupportsContinuousPrePostTrigger Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsInterruptOnChange Returns True if the subsystem supports 
interrupt-on-change; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to WrapSingleBuffer. 
In addition, the buffer size must be less than or equal to 
the FifoSize.

Table 8: Members Added with the DigitalInputSubsystem Class  (cont.)

Member Type Member Name Description
53



Chapter 2

54
Read-Only 
Properties 
(Channel-related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are 
supported by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported 
by the subsystem. 

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

Properties that 
Provide Interfaces

BufferQueuea Provides an interface to a BufferQueue object.

ChannelLista Provides an interface to a ChannelList object.

Clocka Provides an interface to a Clock object.

ReferenceTriggera Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Triggera Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the current operation to 
complete.

Config Configures the subsystem based on the current 
property settings.

Dispose Overloaded method that releases the subsystem’s 
connection to the DT-Open Layers device.

Table 8: Members Added with the DigitalInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Methods (cont.) GetSingleValue Acquires a single value from the digital input 
subsystem.

ReadInterruptOnChangeMask Returns a bit mask that indicates which lines within a 
digital input port will generate interrupt-on-change 
events when they change state.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
completed, and reinitializes the subsystem to the 
default configuration. 

Start Starts a continuous operation on the subsystem.

Stop Stops a continuous operation on the subsystem.

ToString Returns a string that describes the digital input 
subsystem and element. 

WriteInterruptOnChangeMask Selects a set of digital input lines to perform 
interrupt-on-change operations. When any of the 
specified lines changes state, the event 
InterruptOnChangeEvent gets raised. 

Events BufferDoneEventa Occurs when the current OlBuffer object has been filled 
with post-trigger data, and if the operation is stopped, 
occurs for each of up to 8 inprocess buffers. 

DeviceRemovedEvent Occurs when a device is removed from the system.

GeneralFailureEvent Occurs when a when a general library failure occurs.

InterruptOnChangeEvent Occurs when a digital input bit changes state.

QueueDoneEventa Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEventa Occurs when a continuous analog I/O operation is 
stopped.

a. Currently, no DT-Open Layers devices support this property/method for the digital input subsystem; it is provided for future 
compatibility.

Table 8: Members Added with the DigitalInputSubsystem Class  (cont.)

Member Type Member Name Description
55



Chapter 2

56
DigitalOutputSubsystem Class

The DigitalOutputSubsystem class encapsulates all methods, properties, and events that are 
specific to digital output operations. Table 9 lists the members of the DigitalOutputSubsystem 
class.

To create an instance of this class, use the Device.DigitalOutputSubsystem method 
(recommended) or the DigitalOutputSubsystem constructor.

Note: This class provides interfaces to the BufferQueue, ChannelList, Clock, 
SupportedChannels, and Trigger objects; for most DT-Open Layers devices, only 
SupportedChannels objects are supported for digital output operations.

This class inherits the members of the SubsystemBase class.

Table 9: Members Added with the DigitalOutputSubsystem Class 

Member Type Member Name Description

Constructor DigitalOutputSubsystem 
Constructor

Gets a digital output subsystem.

Read/Write 
Properties

AsynchronousStopa Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelTypea Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous or 
SingleValue) for the subsystem.

Encodinga Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Resolution Gets and sets the resolution of the subsystem.

StopOnErrora Gets and sets the stop-on-error condition (stop if 
overrun or underrun occurs, or continue if overrun or 
underrun occurs) for the subsystem.

SynchronizationModea For subsystems that allow you to synchronize 
operations on multiple devices using a synchronization 
connector, gets and sets the synchronization mode 
(None, Master, or Slave). 

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 



Library Summary
Read-Only 
Properties 
(General, cont.)

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, 
CounterTimer, Tachometer, or QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current 
outputs; otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting 
multiple subsystems simultaneously; otherwise, 
returns False. 

SupportsSynchronization Returns True if the subsystem supports 
synchronization with other devices; otherwise, returns 
False. 

Read-Only 
Properties 
(Data flow-related)

SupportsContinuous Returns True if the subsystem supports continuous 
data flow mode; otherwise, returns False.

SupportsContinuousPrePost
Trigger

Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to WrapSingleBuffer. 
In addition, the buffer size must be less than or equal 
to the FifoSize.

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

Table 9: Members Added with the DigitalOutputSubsystem Class  (cont.)

Member Type Member Name Description
57



Chapter 2

58
Read-Only 
Properties 
(Channel-related)

NumberOfChannels Returns the total number of channels that are 
supported by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported 
by the subsystem. 

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

Properties that 
Provide Interfaces

BufferQueuea Provides an interface to a BufferQueue object.

ChannelLista Provides an interface to a ChannelList object.

Clocka Provides an interface to a Clock object.

ReferenceTriggera Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Triggera Provides an interface to a Trigger object.

Table 9: Members Added with the DigitalOutputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the current operation to 
complete.

Config Configures the subsystem based on the current 
property settings.

Dispose Overloaded method that releases the subsystem’s 
connection to the DT-Open Layers device.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
completed, and reinitializes the subsystem to the 
default configuration. 

SetSingleValue Writes a single output value to the digital output 
subsystem.

Start Starts a continuous operation on the subsystem.

Stop Stops a continuous operation on the subsystem.

ToString Returns a string that describes the digital output 
subsystem and element.

Events BufferDoneEventa Occurs when the data in the OlBuffer object has been 
output.

DeviceRemovedEvent Occurs when a device is removed from the system.

GeneralFailureEvent Occurs when a when a general library failure occurs.

QueueDoneEventa Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEventa Occurs when a continuous analog I/O operation is 
stopped.

a. Currently, no DT-Open Layers devices support this property/method for the digital output subsystem; it is provided for 
future compatibility.

Table 9: Members Added with the DigitalOutputSubsystem Class  (cont.)

Member Type Member Name Description
59



Chapter 2

60
CounterTimerSubsystem Class

The CounterTimerSubsystem class encapsulates all methods, properties, and events that are 
specific to counter/timer operations. Table 10 lists the members of the 
CounterTimerSubsystem class.

To create an instance of this class, use the Device.CounterTimerSubsystem method 
(recommended) or the CounterTimerSubsystem constructor.

Note: This class provides interfaces to the BufferQueue, ChannelList, Clock, 
SupportedChannels, and Trigger objects; for most DT-Open Layers devices, only the Clock 
and SupportedChannel objects are supported for counter/timer operations.

This class inherits the members of the SubsystemBase class.

Table 10: Members Added with the CounterTimerSubsystem Class 

Member Type Member Name Description

Constructor CounterTimerSubsystem 
Constructor

Gets a counter/timer subsystem.

Read/Write 
Properties 
(General)

AsynchronousStopa Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelTypea Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous, 
SingleValue) for the subsystem.

Encodinga Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Resolution Gets and sets the resolution of the subsystem.

StopOnErrora Gets and sets the stop-on-error condition (stop if overrun 
or underrun occurs, or continue if overrun or underrun 
occurs) for the subsystem.

SynchronizationModea For subsystems that allow you to synchronize operations 
on multiple devices using a synchronization connector, 
gets and sets the synchronization mode (None, Master, 
or Slave). 



Library Summary
Read/Write 
Properties
(C/T-related)

CascadeMode Gets and sets the cascade mode (Cascade or Single) for 
the subsystem.

CounterMode Gets and sets the counter/timer mode (Count, 
RateGenerator, OneShot, OneShotRepeat, UpDown, 
Measure, or ContinuousMeasure) for the subsystem.

GateType Gets and sets the gate type (None, HighLevel, LowLevel, 
HighEdge, LowEdge, or Level) for the subsystem.

PulseType Gets and sets the pulse type (HighToLow or LowToHigh) 
for the subsystem.

PulseWidth Gets and sets the width of the output pulse for the 
subsystem. 

StartEdge Gets and sets the start edge (GateRising, GateFalling, 
ClockRising, or ClockFalling) for a Measure or 
ContinuousMeasure operation on the subsystem.

StopEdge Gets and sets the stop edge (GateRising, GateFalling, 
ClockRising, or ClockFalling) for an edge-to-edge 
measurement operation on the subsystem.

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current outputs; 
otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating multiple 
channels simultaneously with a single value (using 
SetSingleValuesAsRaw or SetSingleValuesAsVolts); 
otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting multiple 
subsystems simultaneously; otherwise, returns False. 

SupportsSynchronization Returns True if the subsystem supports synchronization 
with other devices; otherwise, returns False. 

Table 10: Members Added with the CounterTimerSubsystem Class  (cont.)

Member Type Member Name Description
61



Chapter 2

62
Read-Only 
Properties 
(Counter-mode 
related)

SupportsCascading Returns True if the subsystem supports cascading of 
counter/timers; otherwise, returns False. 

SupportsContinuousMeasure Returns True if the counter/timer subsystem supports 
continuous edge-to-edge measurement operations; 
otherwise, returns False. 

SupportsCount Returns True if the counter/timer subsystem supports 
event counting operations; otherwise, returns False. 

SupportsMeasure Returns True if the counter/timer subsystem supports 
edge-to-edge measurement mode; otherwise, returns 
False.

SupportsOneShot Returns True if the counter/timer subsystem supports 
one-shot operations; otherwise, returns False. 

SupportsOneShotRepeat Returns True if the counter/timer subsystem supports 
repetitive one-shot operations; otherwise, returns False. 

SupportsRateGenerate Returns True if the counter/timer subsystem supports 
continuous pulse output (rate generation) operations; 
otherwise, returns False. 

SupportsUpDown Returns True if the counter/timer subsystem supports 
up/down counting operations; otherwise, returns False. 

Read-Only 
Properties 
(Edge-related)

SupportedEdgeTypes Returns an array containing the available edge types that 
are supported by the subsystem. 

SupportsClockFalling Returns True if the falling edge of the clock signal can be 
used in an edge-to-edge measurement operation; 
otherwise, returns False. 

SupportsClockRising Returns True if the rising edge of the clock signal can be 
used in an edge-to-edge measurement operation; 
otherwise, returns False. 

SupportsGateFalling Returns True if the falling edge of the gate signal can be 
used in a continuous edge-to-edge measurement 
operation.

SupportsGateRising Returns True if the rising edge of the gate signal can be 
used in an edge-to-edge measurement operation; 
otherwise, returns False.

Read-Only 
Properties 
(Gate-related)

SupportsGateHighEdge Returns True if the counter/timer subsystem supports a 
HighEdge gate type; otherwise, returns False. 

SupportsGateHighLevel Returns True if the counter/timer subsystem supports a 
HighLevel gate type; otherwise, returns False. 

SupportsGateLevel Returns True if the counter/timer subsystem supports a 
Level gate type; otherwise, returns False. 

SupportsGateLowEdge Returns True if the counter/timer subsystem supports a 
LowEdge gate type; otherwise, returns False. 

SupportsGateLowLevel Returns True if the counter/timer subsystem supports a 
LowLevel gate type; otherwise, returns False. 

Table 10: Members Added with the CounterTimerSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Gate-related, 
cont.)

SupportsGateNone Returns True if the counter/timer subsystem supports a 
software (None) gate type; otherwise, returns False. 

Read-Only 
Properties 
(Pulse output-
related)

SupportsHighToLowPulse Returns True if the counter/timer subsystem supports 
high-to-low pulse output types; otherwise, returns False. 

SupportsLowToHighPulse Returns True if the counter/timer subsystem supports 
low-to-high pulse output types; otherwise, returns False. 

SupportsVariablePulseWidth Returns True if the counter/timer subsystem supports 
programmable pulse widths; otherwise, returns False. 

Read-Only 
Properties 
(Data flow-
related)

SupportsContinuous Returns True if the subsystem supports continuous data 
flow mode; otherwise, returns False.

SupportsContinuousPrePost
Trigger

Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsInterrupt Returns True if the subsystem supports interrrupt-driven 
I/O; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value data 
flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports waveform-based 
operations using the onboard FIFO only; otherwise, 
returns False. If this property is True, the buffer wrap 
mode must be set to WrapSingleBuffer. In addition, the 
buffer size must be less than or equal to the FifoSize.

Read-Only 
Properties 
(Channel-
related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are supported 
by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Table 10: Members Added with the CounterTimerSubsystem Class  (cont.)

Member Type Member Name Description
63



Chapter 2

64
Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported by 
the subsystem. 

SupportedResolutions Returns an array containing the available resolutions that 
are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary encoding; 
otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, returns 
False. 

Properties that 
Provide 
Interfaces

BufferQueuea Provides an interface to a BufferQueue object.

ChannelLista Provides an interface to a ChannelList object.

Clock Provides an interface to a Clock object.

ReferenceTriggera Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Triggera Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the counter/timer 
subsystem. For this subsystem type, behaves like Stop.

Config Configures the subsystem based on the current property 
settings.

Dispose Overloaded method that releases the counter/timer 
subsystem’s connection to the DT-Open Layers device.

ReadCount Returns the current count of a counter/timer subsystem. 
This call is typically meaningful only for counter/timer 
subsystems that are set up for event counting, up/down 
counting, or continuous measure mode.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
completed, and reinitializes the subsystem to the default 
configuration. 

Start Starts an operation on the counter/timer subsystem. 

Stop Stops a continuous operation on the counter/timer 
subsystem. 

ToString Returns a string that describes the counter/timer 
subsystem and element. 

Table 10: Members Added with the CounterTimerSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
TachSubsystem Class

The TachSubsystem class encapsulates all methods, properties, and events that are specific to 
tachometer operations. Table 10 lists the members of the TachSubsystem class.

To create an instance of this class, use the Device.TachSubsystem method (recommended) or 
the TachSubsystem constructor.

Note: This class provides interfaces to the BufferQueue, ChannelList, Clock, 
SupportedChannels, and Trigger objects; for most DT-Open Layers devices, these objects are 
not supported for tachometer operations.

This class inherits the members of the SubsystemBase class.

Events BufferDoneEventa Occurs when the current OlBuffer object has been filled 
with post-trigger data, and if the operation is stopped, 
occurs for each of up to 8 inprocess buffers. For output 
operations, occurs when the data in the OlBuffer object 
has been output.

DeviceRemovedEvent Occurs when a device is removed from the system.

EventDoneEvent Occurs on some devices, such as the DT340, when a 
digital input line changes state or when an interval timer 
operation is complete.

GeneralFailureEvent Occurs when a when a general library failure occurs.

MeasureDoneEvent Occurs when an edge-to-edge measurement (Measure) 
operation is complete.

QueueDoneEventa Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEventa Occurs when a continuous analog I/O operation is 
stopped. 

a. Currently, no DT-Open Layers devices support this property/method for the counter/timer subsystem; it is provided for 
future compatibility.

Table 10: Members Added with the CounterTimerSubsystem Class  (cont.)

Member Type Member Name Description
65



Chapter 2

66
 
Table 11: Members Added with the TachSubsystem Class 

Member Type Member Name Description

Constructor TachSubsystem Constructor Gets a tachometer subsystem.

Read/Write 
Properties 
(General)

AsynchronousStopa Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelTypea Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlowa Gets and sets the data flow mode (Continuous, 
SingleValue, ContinuousPreTrigger, 
ContinuousPrePostTrigger) for the subsystem.

Encodinga Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Resolution Gets and sets the resolution of the subsystem.

StopOnErrora Gets and sets the stop-on-error condition (stop if overrun 
or underrun occurs, or continue if overrun or underrun 
occurs) for the subsystem.

SynchronizationModea For subsystems that allow you to synchronize operations 
on multiple devices using a synchronization connector, 
gets and sets the synchronization mode (None, Master, 
or Slave). 

Read/Write 
Properties
(Tach-related)

EdgeType Gets and sets the edge type (Falling or Rising) for the 
tachometer subsystem. 

StaleDataFlagEnabled Gets and sets the flag indicating whether or not the value 
of the tachometer is new. 

If StaleDataFlagEnabled is True, the most significant bit 
(MSB) of the value is set to 0 to indicate new data; 
reading the value before the measurement is complete 
returns an MSB of 1. 

If the StaleDataFlagEnabled is False, the MSB is always 
set to 0.

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
tachometer subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or IoComplete).



Library Summary
Read-Only 
Properties 
(General, cont.)

SubsystemType Returns the subsystem type (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current outputs; 
otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating multiple 
channels simultaneously with a single value (using 
SetSingleValuesAsRaw or SetSingleValuesAsVolts); 
otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting multiple 
subsystems simultaneously; otherwise, returns False. 

SupportsSynchronization Returns True if the subsystem supports synchronization 
with other devices; otherwise, returns False. 

Read-Only 
Properties
(Tachometer-
related)

Count Returns the current count between two consecutive 
edges (rising to rising or falling to falling) of the 
tachometer signal. 

SupportsFallingEdge Returns True if the subsystem supports falling edges of 
the tachometer signal; otherwise, returns False. 

SupportsRisingEdge Returns True if the subsystem supports rising edges of 
the tachometer signal; otherwise, returns False. 

SupportsStaleDataFlag Returns True if the subsystem supports the Stale Data 
flag.

Read-Only 
Properties 
(Data flow-
related)

SupportsContinuous Returns True if the subsystem supports continuous data 
flow mode; otherwise, returns False.

SupportsContinuousPrePost
Trigger

Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value data 
flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports waveform-based 
operations using the onboard FIFO only; otherwise, 
returns False. If this property is True, the buffer wrap 
mode must be set to WrapSingleBuffer. In addition, the 
buffer size must be less than or equal to the FifoSize.

Read-Only 
Properties 
(Channel-
related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are supported 
by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

Table 11: Members Added with the TachSubsystem Class  (cont.)

Member Type Member Name Description
67



Chapter 2

68
Read-Only 
Properties 
(Channel-
related, cont.)

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported by 
the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

SupportedResolutions Returns an array containing the available resolutions that 
are supported by the subsystem. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary encoding; 
otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, returns 
False. 

Properties that 
Provide 
Interfaces

BufferQueuea Provides an interface to a BufferQueue object.

ChannelLista Provides an interface to a ChannelList object.

Clocka Provides an interface to a Clock object.

ReferenceTriggera Provides an interface to a ReferenceTrigger object. 

SupportedChannelsa Provides an interface to a SupportedChannels object.

Triggera Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the subsystem. For this 
subsystem type, behaves like Stop.

Config Configures the subsystem based on the current property 
settings.

Dispose Overloaded method that releases the subsystem’s 
connection to the DT-Open Layers device.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
completed, and reinitializes the subsystem to the default 
configuration. 

Start Starts an operation on the subsystem. 

Stop Stops a continuous operation on the subsystem. 

ToString Returns a string that describes the subsystem and 
element. 

Table 11: Members Added with the TachSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
QuadratureDecoderSubsystem Class

The QuadratureDecoderSubsystem class encapsulates all methods, properties, and events that 
are specific to quadrature decoder operations. Table 12 lists the members of the 
QuadratureDecoderSubsystem class.

To create an instance of this class, use the Device.QuadratureDecoderSubsystem method 
(recommended) or the QuadratureDecoderSubsystem constructor.

Note: This class provides interfaces to the BufferQueue, ChannelList, Clock, 
SupportedChannels, and Trigger objects. For most DT-Open Layers devices, only 
SupportedChannel objects are supported for quadrature decoder operations.

This class inherits the members of the SubsystemBase class.

Events BufferDoneEventa For input operations, occurs when the OlBuffer object has 
been filled with post-trigger data. For output operations, 
occurs when all the data in the OlBuffer object has been 
output. If you stop an analog I/O operation, the event 
BufferDoneEvent is generated for the current buffer and 
for up to eight inprocess buffers before a 
QueueStoppedEvent event occurs.

DeviceRemovedEvent Occurs when a device is removed from the system.

GeneralFailureEvent Occurs when a when a general library failure occurs.

QueueDoneEventa Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEventa Occurs when a continuous analog I/O operation is 
stopped. 

a. Currently, no DT-Open Layers devices support this property/method for the tachometer subsystem; it is provided for future 
compatibility.

Table 12: Members Added with the QuadratureDecoderSubsystem Class 

Member Type Member Name Description

Constructor QuadratureDecoder
Subsystem Constructor

Gets a quadrature decoder subsystem.

Read/Write 
Properties 
(General)

AsynchronousStop Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelTypea Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

Table 11: Members Added with the TachSubsystem Class  (cont.)

Member Type Member Name Description
69



Chapter 2

70
Read/Write 
Properties 
(General, cont.)

DataFlowa Gets and sets the data flow mode (Continuous or 
SingleValue) for the subsystem.

Encodinga Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Resolutiona Gets and sets the resolution of the subsystem.

StopOnErrora Gets and sets the stop-on-error condition (stop if overrun 
or underrun occurs, or continue if overrun or underrun 
occurs) for the subsystem.

SynchronizationModea For subsystems that allow you to synchronize operations 
on multiple devices using a synchronization connector, 
gets and sets the synchronization mode (None, Master, 
or Slave). 

Read/Write 
Properties 
(Quadrature 
Decoder
-related)

ClockPreScale Gets and sets the clock prescale value for the quadrature 
decoder subsystem.

IndexMode Gets and sets the index mode (Disabled, Low, High) for 
the quadrature decoder subsystem. 

X4Scaling Gets and sets the quadrature decoder scaling mode (X1 
or X4).

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder).

SupportsCurrentOutput Returns True if the subsystem supports current outputs; 
otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating multiple 
channels simultaneously with a single value (using 
SetSingleValuesAsRaw or SetSingleValuesAsVolts); 
otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting multiple 
subsystems simultaneously; otherwise, returns False. 

Table 12: Members Added with the QuadratureDecoderSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(General, cont.)

SupportsSynchronization Returns True if the subsystem supports synchronization 
with other devices; otherwise, returns False. 

Read-Only 
Properties 
(Data 
flow-related)

SupportsContinuous Returns True if the subsystem supports continuous data 
flow mode; otherwise, returns False.

SupportsContinuousPrePost
Trigger

Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value data 
flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports waveform-based 
operations using the onboard FIFO only; otherwise, 
returns False. If this property is True, the buffer wrap 
mode must be set to WrapSingleBuffer. In addition, the 
buffer size must be less than or equal to the FifoSize.

Read-Only 
Properties 
(Channel-
related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are supported 
by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported by 
the subsystem. 

SupportedResolutions Returns an array containing the available resolutions that 
are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary encoding; 
otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Table 12: Members Added with the QuadratureDecoderSubsystem Class  (cont.)

Member Type Member Name Description
71



Chapter 2

72
Read-Only 
Properties 
(Buffer-related)

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, returns 
False. 

Properties that 
Provide 
Interfaces

BufferQueuea Provides an interface to a BufferQueue object.

ChannelLista Provides an interface to a ChannelList object.

Clocka Provides an interface to a Clock object.

ReferenceTriggera Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Triggera Provides an interface to a Trigger object.

Methods Abort Stops an operation on the quadrature decoder 
subsystem immediately without waiting for the current 
operation to complete. 

Config Configures the subsystem based on the current property 
settings.

Dispose Overloaded method that releases the quadrature 
decoder subsystem’s connection to the DT-Open Layers 
device.

ReadCount Returns the current count of the quadrature decoder 
subsystem. 

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
completed, and reinitializes the subsystem to the default 
configuration. 

Start Starts an operation on the quadrature decoder 
subsystem. 

Stop Stops an operation on the quadrature decoder 
subsystem. 

ToString Returns a string that describes the quadrature decoder 
subsystem and element. 

Events BufferDoneEventa Occurs when the current OlBuffer object has been filled 
with post-trigger data, and if the operation is stopped, 
occurs for each of up to 8 inprocess buffers. For output 
operations, occurs when the data in the OlBuffer object 
has been output.

DeviceRemovedEvent Occurs when a device is removed from the system.

GeneralFailureEvent Occurs when a when a general library failure occurs.

QueueDoneEventa Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEventa Occurs when a continuous analog I/O operation is 
stopped.

a. Currently, no DT-Open Layers devices support this property/method for the quadrature decoder subsystem; it is provided 
for future compatibility.

Table 12: Members Added with the QuadratureDecoderSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Channels

The following classes are provided within the OpenLayers.Base namespace for dealing with 
channels in a continuous I/O operation:

• SupportedChannelInfo, described below

• SupportedChannels, described starting on page 76

• ChannelListEntry, described starting on page 76

• ChannelList, described starting on page 77

• StrainGageTeds class, described starting on page 78

• BridgeSensorTeds class, described starting on page 80

SupportedChannelInfo Class

When you get a subsystem of a specified type, the software automatically populates the 
properties of the SupportedChannelInfo class, listed in Table 13, for each channel.

To access a SupportedChannelInfo object, use the SupportedChannels class, described on page 
76.

Table 13: Members of the SupportedChannelInfo Class 

Member Type Member Name Description

Read/Write 
Properties 
(General)

 Name Gets and sets the name for a channel. 

ExcitationCurrentSource Gets and sets the excitation current source (internal, 
external, or disabled) to apply to the channel.

ExcitationCurrentValue Gets and sets the value of the internal excitation current 
source to apply to the channel.

InputTerminationEnabled Specifies whether input termination is enabled (termination 
resistor is switched in) or disabled (not used) for the analog 
input channel.

LogicalChannelNumber Returns the zero-based logical channel number for the 
specified physical channel and subsystem type. 

LogicalChannelWord For channels with multi-word data (such as a 32-bit 
counter), returns the zero-based word number. For 
channels without multi-word data, returns -1. 

MultiSensorType For subsystems that support multiple sensor types for a 
channel, gets and sets the sensor type to use for the 
channel, such as voltage input, current, resistance, 
thermocouple, RTD, strain gage, bridge, and so on.

 PhysicalChannelNumber Returns the physical channel number that maps to the 
subsystem type, logical channel number, and the logical 
channel word. 

SensorWiringConfiguration Gets and sets the wiring configuration (two-wire, 
three-wire, or four-wire) for the channel.
73



Chapter 2

74
Read/Write 
Properties 
(General, cont.)

 Subsystem Returns the subsystem object (AnalogInputSubsystem, 
AnalogOutputSubsystem, DigitalInputSubsystem, 
DigitalOutputSubsystem, CounterTimerSubsystem, 
TachSubystem, or QuadratureDecoderSubsystem) with 
which the logical channel is associated.

Read/Write 
Properties 
(Generic 
Sensor-Related)

 SensorGain Gets and sets the gain specific to the sensor that is 
connected to the channel.

 SensorOffset Gets and sets the offset specific to the sensor that is 
connected to the channel.

Read/Write 
Properties 
(Accelerometer-
Related)

Coupling Gets and sets the coupling type to apply to the channel.

Read/Write 
Properties 
(Thermocouple-
Related)

ThermocoupleType Gets and sets the thermocouple type that is connected to 
this channel.

Read/Write 
Properties 
(RTD-Related)

RTDType Gets and sets the RTD type that is connected to this 
channel.

RtdACoefficient Gets and sets the A coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

RtdBCoefficient Gets and sets the B coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

RtdCCoefficient Gets and sets the C coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

RtdR0 Gets and sets the resistance of the RTD that is connected 
to this channel.

Read/Write 
Properties 
(Thermistor-
Related)

ThermistorACoefficient Gets and sets the A coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

ThermistorBCoefficient Gets and sets the B coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

ThermistorCCoefficient Gets and sets the C coefficient used in the Callendar-Van 
Dusen transfer function for the RTD that is connected to 
this channel.

Table 13: Members of the SupportedChannelInfo Class  (cont.)

Member Type Member Name Description



Library Summary
Read/Write 
Properties 
(Bridge- or 
Strain Gage-
Related)

BridgeConfiguration Gets and sets the configuration of the bridge-based sensor 
or general-purpose bridge that is connected to the 
channel.

GageFactor Gets and sets the gage factor, or sensitivity, of the strain 
gage. 

StrainGageBridgeConfiguration Gets and sets the configuration of the strain gage that is 
connected to the channel.

StrainGageLeadWireResistance Gets and sets the value of the lead wire resistance, in 
ohms.

StrainGageNominalResistance Gets and sets the resistance, in ohms, of the bridge while it 
is not under strain/load.

StrainGageOffsetNullingValue
InVolts

Gets and sets the value of the bridge output (in volts) in the 
unstrained/unloaded condition. Internally, this value is 
subtracted from any measurements before the voltage is 
converted to strain.

StrainGagePoissonRatio Gets and sets the Poisson ratio for the bridge.

StrainGageShuntCalibration
ResistorEnabled

Specifies whether the internal shunt calibration resistor is 
enabled (switched in) or disabled (not used).

StrainGageShuntCalibration
Value

Gets and sets the shunt calibration value for the bridge. 
Internally, the software multiplies the channel 
measurement with this value to adjust the gain of the 
device.

TransducerRatedOutputInMv Gets and sets the rated output of a full-bridge-based 
transducer, such as a load cell, in terms of mV/V excitation.

TransducerCapacity Gets and sets the full-scale range of a full-bridge-based 
transducer, such as a load cell, in its native engineering 
units.

Read-Only 
Properties

CjcChannel Gets the CJC (cold junction compensation) channel that is 
associated with this input channel.

IOType Returns the type of measurement that is supported by the 
channel. 

 SubsystemType Returns the type of subsystem (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, CounterTimer, 
Tachometer, or QuadratureDecoder) with which the logical 
channel is associated.

 SupportsInputTermination Returns True if the channel supports bias return 
termination resistor; otherwise, returns False.

Properties that 
Provide 
Interfaces

BridgeSensorTeds Provides an interface to the BridgeSensorTeds object.

StrainGageTeds Provides an interface to the StrainGageTeds object.

Table 13: Members of the SupportedChannelInfo Class  (cont.)

Member Type Member Name Description
75



Chapter 2

76
SupportedChannels Class

The SupportedChannels class provides the properties and methods listed in Table 13 to access 
a SupportedChannelInfo object.

You can access a SupportedChannels object through the following classes:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

• CounterTimerSubsystem, described on page 60

• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

ChannelListEntry Class

The ChannelListEntry class provides the constructor and properties listed in Table 15 to 
encapsulate a channel entry for a channel list of a specified subsystem.

Table 14: Members of the SupportedChannels Class 

Member Type Member Name Description

Read-Only 
Properties

Count Returns the number of SupportedChannelInfo objects in the 
SupportedChannels collection.

Item ([]) Returns the SupportedChannelInfo object at the specified 
index ([index]) of the SupportedChannels object.

Methods GetChannelInfo Overloaded method that returns a SupportedChannelInfo 
object for the specified channel. You can specify the channel by 
physical channel number, by name, by subsystem type and 
logical channel, or by subsystem type, logical channel, and 
logical channel word.

Table 15: Members of the ChannelListEntry Class 

Member Type Member Name Description

Constructor ChannelListEntry 
Constructor

Returns a ChannelListEntry object.

Read/Write 
Properties

Gain Gets and sets the gain to apply to the input signal of the associated 
ChannelListEntry object. The default value is 1.

Inhibit Gets and sets the inhibit state for the ChannelListEntry object. If 
True, the ChannelListEntry object takes up an entry in the 
ChannelList and is factored into the conversion time, but data is not 
returned for the ChannelListEntry object. If False (the default value), 
data is returned for the ChannelListEntry object.



Library Summary
ChannelList Class

The ChannelList class provides the properties and methods listed in Table 16 to create and 
manage a channel list, which is a collection of ChannelListEntry objects, for use in a 
continuous I/O operation.

A ChannelList object is accessible using any subsystem object whose SupportsContinuous 
property returns True. The following classes expose an interface to the ChannelList object:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

• CounterTimerSubsystem, described on page 60

Read-Only 
Properties

 Name Returns the name for the channel associated with the 
ChannelListEntry object. 

 PhysicalChannelNumber Returns the physical channel number that maps to the subsystem 
type, logical channel number, and the logical channel word. 

 SubsystemType Returns the type of subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) with which the logical channel is associated.

Table 16: Members of the ChannelList Class 

Member Type Member Name Description

Read/Write 
Property

 Item ([]) Returns or replaces the ChannelListEntry object at the specified 
index. 

Read-Only 
Property

CGLDepth Returns the maximum number of ChannelListEntry objects that 
the ChannelList can contain. 

Methods  Add Overloaded method that adds a channel to the end of the 
ChannelList. 

 Contains Returns True if the ChannelList object contains a specific 
ChannelListEntry object; otherwise, returns False.

 IndexOf Overloaded method that searches for the specified channel in the 
ChannelList and returns the zero-based index of the first 
occurrence of the channel within the ChannelList. 

 Insert Overloaded method that inserts a channel into the ChannelList 
object at the specified index. 

 Remove Removes the first occurrence of a specific ChannelListEntry object 
from the ChannelList object.

Table 15: Members of the ChannelListEntry Class  (cont.)

Member Type Member Name Description
77



Chapter 2

78
• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

StrainGageTeds Class

The StrainGageTeds class encapsulates all properties and methods that are specific to analog 
input channels that support TEDS (Transducer Electronic Data Sheet) for strain gages. Table 6 
lists the members of the StrainGageTeds class.

Note: This class inherits the members of the TedsBase class.

Table 17: Members of the StrainGageTeds Class 

Member Type Member Name Description

Read-Only 
Properties

BridgeType Gets the type of bridge (Full Bridge, Half Bridge, or Quarter 
Bridge) that was specified in the TEDS data for the 
channel.

CalDate Gets the calibration date that was specified in the TEDS 
data for the channel.

CalibrationPeriod Gets the calibration period that was specified in the TEDS 
data for the channel.

CalInitials Gets the calibration initials that were specified in the TEDS 
data for the channel.

ElectricalSignalType Gets the electrical signal type that was specified in the 
TEDS data for the channel.

GageArea Gets the area of each gage element, in mm², that was 
specified in the TEDS data for the channel.

GageFactor Gets the gage factor, or sensitivity, of the strain gage that 
was specified in the TEDS data for the channel.

GageResistance Gets the initial (unstrained) gage resistance, in ohms, that 
was specified in the TEDS data for the channel.

GageType Gets the type of gage that was specified in the TEDS data 
for the channel. Refer to page 95 for more information on 
the values that are defined for GageType:

IsTedsConfigured Inherited from the TedsBase class, returns True if the 
TEDS data stream is read successfully; otherwise, returns 
False. 

ManufacturerId Inherited from the TedsBase class, gets identifying 
information about the manufacturer of the sensor from the 
TEDS data for the channel.

MaxElectricalValue Gets the maximum electrical output, in V/V, that was 
specified in the TEDS data for the channel.



Library Summary
Read-Only 
Properties 
(cont.)

MaximumExcitationVoltage Gets the maximum excitation voltage that was specified in 
the TEDS data for the channel.

MaxPhysicalValue Gets the positive full-scale value, in strain, that was 
specified in the TEDS data for the channel.

MeasID Gets the measurement location ID that was specified in the 
TEDS data for the channel.

MinElectricalValue Gets the minimum electrical output, in V/V, that was 
specified in the TEDS data for the channel.

MinPhysicalValue Gets the negative full-scale value, in strain, that was 
specified in the TEDS data for the channel.

ModelNumber Inherited from the TedsBase class, gets the model number 
of the sensor from the TEDS data for the channel.

NominalExcitationVoltage Gets the nominal excitation voltage that was specified in 
the TEDS data for the channel.

PoissonCoefficient Gets the Poisson coefficient after installation that was 
specified in the TEDS data for the channel.

ResponseTime Gets the response time, in seconds, that was specified in 
the TEDS data for the channel.

SerialNumber Inherited from the TedsBase class, gets the serial number 
of the sensor from the TEDS data for the channel.

TransverseSensitivity Gets the transverse sensitivity, in percentage, that was 
specified in the TEDS data for the channel.

VersionLetter Inherited from the TedsBase class, gets the version letter 
of the sensor from the TEDS data for the channel.

VersionNumber Inherited from the TedsBase class, gets the version 
number of the sensor from the TEDS data for the channel.

YoungModulus Gets the Young’s modulus, or measure of the stiffness of 
the material, in MPa, that was specified in the TEDS data 
for the channel.

ZeroOffset Gets the zero offset value after installation, in V/V, that was 
specified in the TEDS data for the channel.

Methods ReadHardwareTeds Reads data from a TEDS-compatible sensor that is 
associated with the connected channel.

ReadVirtualTeds Reads TEDS data from a virtual TEDS file. 

Table 17: Members of the StrainGageTeds Class  (cont.)

Member Type Member Name Description
79



Chapter 2

80
BridgeSensorTeds Class

The BridgeSensorTeds class encapsulates all properties and methods that are specific to 
analog input channels that support TEDS (Transducer Electronic Data Sheet) for bridge-based 
transducers, such as load cells, with a linear output. Table 6 lists the members of the 
BridgeSensorTeds class.

Note: This class inherits the members of the TedsBase class.

Table 18: Members of the BridgeSensorTeds Class 

Member Type Member Name Description

Read-Only 
Properties

BridgeResistance Gets the initial (unstrained) gage resistance, in ohms, that 
was specified in the TEDS data for the channel.

BridgeType Gets the type of bridge (Full Bridge, Half Bridge, or Quarter 
Bridge) that was specified in the TEDS data for the 
channel.

CalDate Gets the calibration date that was specified in the TEDS 
data for the channel.

CalibrationPeriod Gets the calibration period that was specified in the TEDS 
data for the channel.

CalInitials Gets the calibration initials that were specified in the TEDS 
data for the channel.

ElectricalSignalType Gets the electrical signal type that was specified in the 
TEDS data for the channel.

IsTedsConfigured Inherited from the TedsBase class, returns True if the 
TEDS data stream is read successfully; otherwise, returns 
False. 

ManufacturerId Inherited from the TedsBase class, gets identifying 
information about the manufacturer of the sensor from the 
TEDS data for the channel.

MaxElectricalValue Gets the maximum electrical output, in V/V, that was 
specified in the TEDS data for the channel.

MaximumExcitationVoltage Gets the maximum excitation voltage that was specified in 
the TEDS data for the channel.

MaxPhysicalValue Gets the positive full-scale value, in strain, that was 
specified in the TEDS data for the channel.

MeasID Gets the measurement location ID that was specified in the 
TEDS data for the channel.

MinElectricalValue Gets the minimum electrical output, in V/V, that was 
specified in the TEDS data for the channel.

MinimumExcitationVoltage Gets the minimum excitation voltage that was specified in 
the TEDS data for the channel.



Library Summary
Clock Class

The Clock class provides the properties and methods listed in Table 19 for controlling the 
clock of a specified subsystem.

Read-Only 
Properties 
(cont.)

MinPhysicalValue Gets the negative full-scale value, in strain, that was 
specified in the TEDS data for the channel.

ModelNumber Inherited from the TedsBase class, gets the model number 
of the sensor from the TEDS data for the channel.

NominalExcitationVoltage Gets the nominal excitation voltage that was specified in 
the TEDS data for the channel.

PhysicalMeasurand Gets the physical Measureand units, described on page 
100, that were specified in the TEDS data for the channel.

ResponseTime Gets the response time, in seconds, that was specified in 
the TEDS data for the channel.

SerialNumber Inherited from the TedsBase class, gets the serial number 
of the sensor from the TEDS data for the channel.

 VersionLetter Inherited from the TedsBase class, gets the version letter 
of the sensor from the TEDS data for the channel.

VersionNumber Inherited from the TedsBase class, gets the version 
number of the sensor from the TEDS data for the channel.

Methods ReadHardwareTeds Reads data from a TEDS-compatible sensor that is 
associated with the connected channel.

ReadVirtualTeds Reads TEDS data from a virtual TEDS file. 

Table 19: Members of the Clock Class 

Member Type Member Name Description

Read/Write 
Properties

ExtClockDivider Gets and sets the current value of the external clock 
divider, which is used to set the frequency of an 
external clock source.

Frequency Gets and sets the frequency of the internal clock 
source.

Source Gets and sets the current clock source (Internal or 
External).

Read-Only 
Properties 
(General)

BaseClockFrequency Returns the frequency of the base clock for the 
subsystem.

SupportsSimultaneousClocking Returns True if the subsystem supports simultaneous 
clocking; otherwise, returns False. 

Table 18: Members of the BridgeSensorTeds Class  (cont.)

Member Type Member Name Description
81



Chapter 2

82
You can access a Clock object through the following classes:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

• CounterTimerSubsystem, described on page 60

• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

Triggers

The following classes are provided for controlling how a subsystem is triggered:

• Trigger, described below

• Reference trigger, described on page 84

• TriggeredScan, described on page 85

Trigger Class

The Trigger class provides the properties listed in Table 20 for controlling the trigger of a 
subsystem. For devices that support a start trigger and a reference trigger, the Trigger class is 
used to set up the start trigger, which starts pre-trigger data acquisition.

Read-Only 
Properties 
(Internal 
clock-related)

MaxFrequency Returns the maximum allowable internal clock 
frequency supported by the subsystem. 

MinFrequency Returns the minimum allowable internal clock 
frequency supported by the subsystem. 

SupportsInternalClock Returns True if the subsystem supports an internal 
clock source; otherwise, returns False. 

Read-Only 
Properties 
(External 
clock-related)

MaxExtClockDivider Returns the maximum allowable clock divider value 
supported by the subsystem. 

MinExtClockDivider Returns the minimum allowable clock divider value 
supported by the subsystem. 

SupportsExternalClock Returns True if the subsystem supports an external 
clock source; otherwise, returns False. 

Table 19: Members of the Clock Class  (cont.)

Member Type Member Name Description



Library Summary
You can access a Trigger object through the following classes:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

Table 20: Members of the Trigger Class 

Member Type Member Name Description

Read/Write 
Properties

Level Gets and sets the trigger threshold value. By default, the 
trigger threshold value is in voltage unless specified 
otherwise for the device; see the user’s manual for your 
device for valid threshold value settings.

PreTriggerSource Gets and sets the trigger type for the pre-trigger source of 
a subsystem when using one of the following data flow 
modes: DataFlow.ContinuousPrePostTrigger or 
DataFlow.ContinuousPreTrigger. 

ThresholdTriggerChannel Gets and sets the number of the channel that the device 
monitors for the ThresholdPos or ThresholdNeg trigger 
event. This property is valid only if the trigger type is 
ThresholdPos or ThresholdNeg.

TriggerType Gets and sets the trigger type (Software, TTLPos External 
TTL, DigitalEvent, TTLNeg External TTL, ThresholdPos, 
or ThresholdNeg) for the subsystem. 

Read-Only 
Properties

SupportedThresholdTrigger
Channels

Returns an array containing the channels that can be 
used for ThresholdPos or ThresholdNeg trigger types.

SupportsDigitalEventTrigger Returns True if the subsystem supports a digital event 
trigger type; otherwise, returns False.

SupportsNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL trigger; otherwise, returns False. 

SupportsNegThresholdTrigger Returns True if the subsystem supports an negative-going 
analog threshold trigger; otherwise, returns False.

SupportsPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL trigger; otherwise, returns False. 

SupportsPosThresholdTrigger Returns True if the subsystem supports a positive-going 
analog threshold trigger; otherwise, returns False.

SupportsSoftwareTrigger Returns True if the subsystem supports a software 
(internal) trigger; otherwise, returns False. 

SupportsSvPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL trigger for single-value operations; 
otherwise, returns False. 

SupportsSvNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL trigger for single-value operations; 
otherwise, returns False. 
83



Chapter 2

84
• CounterTimerSubsystem, described on page 60

• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

ReferenceTrigger Class

The ReferenceTrigger class provides the properties listed in Table 21 for controlling the 
reference trigger of a subsystem. For devices that support a reference trigger, pre-trigger data 
acquisition stops and post-trigger acquisition starts when the reference trigger event occurs. 
Post-trigger acquisition stops when the number of samples you specify for the post-trigger 
scan count has been reached.

Table 21: Members of the ReferenceTrigger Class 

Member Type Member Name Description

Read/Write 
Properties

Level Gets and sets the threshold value for the reference 
trigger. By default, the threshold value is in voltage unless 
specified otherwise for the device; see the user’s manual 
for your device for valid threshold value settings for the 
reference trigger.

PostTriggerScanCount Gets and sets the samples per channel to acquire after 
the reference trigger occurs. This property is valid only for 
the ReferenceTrigger object.

ThresholdTriggerChannel Gets and sets the number of the channel that the device 
monitors for the ThresholdPos or ThresholdNeg trigger 
event. This property is valid only if the reference trigger 
type is ThresholdPos or ThresholdNeg.

TriggerType Gets and sets the reference trigger type (Software, 
TTLPos External TTL, DigitalEvent, TTLNeg External 
TTL, ThresholdPos, or ThresholdNeg) for the subsystem. 

Read-Only 
Properties

SupportsDigitalEventTrigger Returns True if the subsystem supports a digital event 
reference trigger; otherwise, returns False.

SupportsNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL reference trigger; otherwise, returns 
False. 

SupportsNegThresholdTrigger Returns True if the subsystem supports an negative-going 
analog threshold trigger for the reference trigger; 
otherwise, returns False.

SupportsPosThresholdTrigger Returns True if the subsystem supports a positive-going 
analog threshold trigger for the reference trigger; 
otherwise, returns False.

SupportsPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL reference trigger; otherwise, returns 
False. 



Library Summary
You can access a ReferenceTrigger object through the following classes:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

• CounterTimerSubsystem, described on page 60

• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

TriggeredScan Class

The TriggeredScan class allows you to scan the entries in a ChannelList object a specified 
number of times when the device detects a specified retrigger source by using the properties 
listed in Table 22.

You can access the TriggeredScan object through the AnalogInputSubsystem class.

Read-Only 
Properties 
(cont.)

SupportsPostTriggerScanCount Returns True if the subsystem supports acquiring a 
specified number of samples after the reference trigger 
occurs; otherwise, returns False. 

SupportsSyncBusTrigger Returns True if the subsystem supports a Sync Bus 
trigger; otherwise, returns False.

SupportedThresholdTrigger
Channels

Returns an array containing the channels that can be 
used for ThresholdPos or ThresholdNeg reference trigger 
types.

Table 22: Members of the TriggeredScan Class 

Member Type Member Name Description

Read/Write 
Properties

Enabled Gets and sets whether triggered scan mode is enabled for 
the subsystem.

 MultiScanCount Gets and sets the number of times to scan the ChannelList 
object per retrigger. 

 RetriggerFrequency Gets and sets the current frequency of the retrigger source.

 RetriggerSource Gets and sets the trigger type (Software, TTLPos External, 
DigitalEvent, TTLNeg External, ThresholdPos, or 
ThresholdNeg) that retriggers the scan of the ChannelList 
object.

Table 21: Members of the ReferenceTrigger Class  (cont.)

Member Type Member Name Description
85



Chapter 2

86
Range Class

The Range class is used by the VoltageRange and SupportedVoltageRanges methods to 
return the lower and upper limits of the voltage range for an analog subsystem. 

Buffer Management

The following classes are provided for managing buffers in continuous I/O operations:

• OlBuffer, described below

• BufferQueue, described on page 89

OlBuffer Class

The OlBuffer class provides the constructor, properties, and methods listed in Table 24 for 
encapsulating a data buffer that is used in a continuous I/O operation.

Read-Only 
Properties

 MaxMultiScanCount Returns the maximum number of scans per retrigger that 
are supported by the subsystem.

 MaxRetriggerFreq Returns the maximum retrigger frequency that is supported 
by the subsystem. 

 MinRetriggerFreq Returns the minimum retrigger frequency that is supported 
by the subsystem. 

Table 23: Members of the Range Class 

Member Type Member Name Description

Constructor Range Constructor Initializes a new instance of a Range object with the 
specified lower and upper limits of the voltage range. 

Read/Write 
Properties

High Gets and sets the upper limit of the voltage range. 

Low Gets and sets the lower limit of the voltage range. 

Table 24: Members of the OlBuffer Class 

Member Type Member Name Description

Constructor OlBuffer Constructor Creates and returns an OlBuffer object that will hold a 
specified number of samples.

Read/Write 
Property

Tag Gets or sets a user-defined value.

Table 22: Members of the TriggeredScan Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties

BufferSizeInBytes Returns the size of the internal data buffer, in bytes. 

BufferSizeInSamples Returns the size of the internal data buffer, in samples. 

ChannelListOffset Returns the index into the ChannelList that corresponds to 
the first sample in the buffer. 

Encoding Returns the data encoding for the raw data (Binary or 
TwosComplement).

Item ([]) Returns the raw data value at the specified index of the 
buffer.

RawDataFormat Returns the format of the raw data (Int16, Uint16, Int32, 
Float, or Double).

Resolution Returns the resolution of the associated subsystem.

SampleSizeInBytes Returns the size, in bytes, of the samples in the buffer.

State Gets the current state (Idle, Queued, InProcess, 
Completed, or Released) of the OlBuffer object.

ValidSamples Gets the number of valid samples in the OlBuffer object.

VoltageRange Returns the current upper and lower limits of the voltage 
range for the associated subsystem.

Methods Dispose Overloaded method that deallocates the OlBuffer object. 

GetDataAsBridgeBasedSensor For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into the native 
engineering units of the full-bridge-based transducer, and 
then copies these values into a user-declared array of 
64-bit floating-point (double) values. 

GetDataAsCurrent For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into current values, 
in Amps, and then copies these values into a user-declared 
array of floating-point values. 

GetDataAsNormalizedBridge
Output

For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into normalized 
voltage values, in mV/Vexc, for the bridge-based sensor, 
and then copies these values into a user-declared array of 
floating-point values. 

GetDataAsRawByte Overloaded method. Copies the data, as raw counts, from 
an OlBuffer object into a user-declared array of bytes. 

GetDataAsRawInt16 Overloaded method. Used when the resolution of the 
subsystem is 16 bits or less and when the data encoding is 
twos complement, copies the data, as raw counts, from an 
OlBuffer object into a user-declared array of signed, 16-bit 
integers.

Table 24: Members of the OlBuffer Class  (cont.)

Member Type Member Name Description
87



Chapter 2

88
Methods (cont.) GetDataAsRawUInt16 Overloaded method. Used when the resolution of the 
subsystem is 16 bits or less and when the data encoding is 
binary, copies the data, as raw counts, from an OlBuffer 
object into a user-declared array of unsigned, 16-bit 
integers. 

GetDataAsRawUInt32 Overloaded method. Used when the resolution of the 
subsystem is greater than 16 bits, copies the data, as raw 
counts, from an OlBuffer object into a user-declared array 
of unsigned 32-bit integers. 

GetDataAsResistance For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into resistance 
values, in ohms, and then copies these resistance values 
into a user-declared array of 64-bit floating-point (double) 
values.

GetDataAsRpm For a specified ChannelListEntry, converts the tachometer 
data from the internal buffer of an OlBuffer object into RPM 
values, and then copies these values into a user-declared 
array of 64-bit floating-point (double) values.

GetDataAsSensor Overloaded method. Converts the data from an OlBuffer 
object into sensor values using the 
SupportedChannelInfo.SensorGain and 
SupportedChannelInfo.
SensorOffset values and copies this data into a 
user-declared array of floating-point (double) values. 

GetDataAsStrain For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into microstrain 
values, and then copies these microstrain values into a 
user-declared array of 64-bit floating-point (double) values. 

GetDataAsTemperatureByte For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into temperature 
and then copies these temperature values into a 
user-declared array of bytes.

GetDataAsTemperatureDouble For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into temperature 
and then copies these temperature values into a 
user-declared array of 64-bit floating-point (double) values.

GetDataAsVolts Overloaded method. Converts the data from an OlBuffer 
object into voltages, and copies this data into a 
user-declared array of floating-point values. 

GetDataAsVoltsByte For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into voltage values, 
and then copies these voltage values into a user-declared 
array of bytes. Each voltage value is stored as an Int32, 
and takes 4 bytes. 

Table 24: Members of the OlBuffer Class  (cont.)

Member Type Member Name Description



Library Summary
BufferQueue Class

The BufferQueue class provides the properties and methods listed in Table 25 for managing a 
queue of OlBuffer objects for a continuous I/O operation.

You can access a BufferQueue object through the following classes:

• AnalogInputSubsystem, described on page 38

• AnalogOutputSubsystem, described on page 47

• DigitalInputSubsystem, described on page 52

• DigitalOutputSubsystem, described on page 56

• CounterTimerSubsystem, described on page 60

• TachSubsystem, described on page 65

• QuadratureDecoderSubsystem, described on page 69

Methods (cont.) PutDataAsRaw Overloaded method that copies raw counts from a 
user-specified array into an OlBuffer object. 

PutDataAsVolts Overloaded method that copies voltage values from a 
user-specified array into an OlBuffer object.

Reallocate Reallocates the OlBuffer object to the specified number of 
samples. The existing internal data buffer is deallocated 
and any data that it contained is lost. 

Table 25: Members of the BufferQueue Class 

Member Type Member Name Description

Read-Only 
Properties

InProcessCount Returns the number of OlBuffer objects that have been taken 
from the queue and sent to the device for processing.

QueuedCount Returns the number of olBuffer objects that are on the 
subsystem queue (OlBuffer objects are in the queued state). 

Methods DequeueBuffer Removes the OlBuffer object at the front of the queue, and 
returns it to the user.

FreeAllQueuedBuffers Removes all OlBuffer objects from the subsystem queue and 
deallocates them. 

QueueBuffer Adds an OlBuffer object to the queue for the subsystem.

Table 24: Members of the OlBuffer Class  (cont.)

Member Type Member Name Description
89



Chapter 2

90
Event Handling

The following classes are provided for handling events raised by the OpenLayers.Base 
namespace:

• GeneralEventArgs, described on page 90

• BufferDoneEventArgs, described on page 90

• DriverRunTimeErrorEventArgs, described on page 90

• EventDoneEventArgs, described on page 91

• InterruptOnChangeEventArgs, described on page 91

• IOCompleteEventArgs, described on page 91

• MeasureDoneEventArgs, described on page 92

GeneralEventArgs

The GeneralEventArgs class provides the properties listed in Table 26 to return information 
about DT-Open Layers events. This object is generated internally and is returned to event 
delegates. Refer to page 94 for more information on delegates.

BufferDoneEventArgs

The BufferDoneEventArgs class inherits the members of the GeneralEventArgs class and adds 
the OlBuffer property. When the BufferDoneEvent event is raised, the completed buffer is 
returned in the OlBuffer property.

This object is generated internally and returned to the BufferDoneHandler delegate. Refer to 
page 94 for more information on delegates.

DriverRunTimeErrorEventArgs

The DriverRunTimeErrorEventArgs class inherits the members of the GeneralEventArgs class 
and adds the properties listed in Table 27 to return data related to the event 
DriverRunTimeErrorEvent.

This object is generated internally and returned to the DriverRunTimeErrorEventHandler 
delegate. Refer to page 94 for more information on delegates.

Table 26: Members of the GeneralEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

DateTime Returns the time stamp of when the associated event 
occurred. 

Subsystem Returns the subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) that raised the event. 



Library Summary
EventDoneEventArgs

The EventDoneEventArgs class inherits the members of the GeneralEventArgs class and adds 
the Data property. When the EventDoneEvent event is raised, the Data property returns the 
data associated with the event. The meaning of the data depends on the device and subsystem 
used. Refer to your device documentation for details.

This object is generated internally and returned to the EventDoneHandler delegate. Refer to 
page 94 for more information on delegates.

InterruptOnChangeEventArgs

The InterruptOnChangeEventArgs class inherits the members of the GeneralEventArgs class 
and adds the properties listed in Table 28 to return data related to the event 
InterruptOnChangeEvent.

This object is generated internally and returned to the InterruptOnChangeHandler delegate. 
Refer to page 94 for more information on delegates.

IOCompleteEventArgs

The IOCompleteEventArgs class inherits the members of the GeneralEventArgs class and 
adds the properties listed in Table 29 to return data related to the event IOCompleteEvent.

This object is generated internally and returned to the IOCompleteHandler delegate. Refer to 
page 94 for more information on delegates.

Table 27: Members of the DriverRunTimeErrorEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

ErrorCode Returns the error code that is associated with the driver error. 
Refer to Appendix A for more information.

Message Returns a descriptive string associated with the error code. 
Refer to Appendix A for more information.

Table 28: Members of the InterruptOnChangeEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

ChangedBits Returns the digital input bits that changed.

NewValue Returns the new value of the digital input port. 
91



Chapter 2

92
MeasureDoneEventArgs

The MeasureDoneEventArgs class inherits the members of the GeneralEventArgs class and 
adds the Count property to return the data related to the event MeasureDoneEvent. The 
Count is the number of internal clock ticks that were counted during the measurement period. 

This object is generated internally and returned to the MeasureDoneHandler delegate. Refer 
to page 94 for more information on delegates.

Error Handling

The following classes are provided for handling errors that may occur in the OpenLayers.Base 
namespace:

• OlException, described below

• OlError, described on page 93

OlException

The OlException class provides the properties listed in Table 30 for dealing with errors that 
can be generated by the library.

Table 29: Members of the IOCompleteEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

LastSampleNumber For analog input operations only, returns the total 
number of samples per channel that were acquired 
from the time acquisition was started (with the start 
trigger) to the last post-trigger sample. For example, a 
value of 100 indicates that a total of 100 samples 
(samples 0 to 99) were acquired.

You can subtract the value of the 
AnalogInputSubsystem.ReferenceTrigger.
PostTriggerScanCount property, described on page 
217, from the value of this property to determine when 
the reference trigger occurred and the number of 
pre-trigger samples that were acquired. For example, if 
the value of this property is 100, and you specified a 
value of 75 for the post-trigger scan count, you can 
determine that the reference trigger occurred at sample 
count 25 (100-75) of the last buffer; samples 25 through 
99 are post-trigger samples and samples 0 to 24 are 
pre-trigger samples.



Library Summary
OlError

The OlError class provides the OlError constructor for encapsulating an DT-Open Layers error 
code. The OlError class provides the methods listed in Table 31 for getting information about 
errors returned by the DT-Open Layers for .NET Class Library. Refer to Appendix A for a list 
of errors that may be returned by the DT-Open Layers for .NET Class Library.

Services

The Utility class provides the properties and methods listed in Table 32 for getting information 
about assemblies and for converting data from raw counts to voltage and voltage to raw 
counts.

Table 30: Members of the OlException Class 

Member Type Member Name Description

Read-Only 
Properties

ErrorCode Returns the error code from the DT-Open Layers for .NET 
Class Library that is associated with this exception. 

Message Returns the descriptive string for the exception. 

Subsystem Returns the subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) that raised the exception. If the exception 
is not related to a specific subsystem, returns null.

Table 31: Members of the OlError Class 

Member Type Member Name Description

Methods GetErrorCode Returns the error code that is associated with a specified error 
message in the DT-Open Layers for .NET Class Library.

GetErrorString Returns a description for the specified error code in the 
DT-Open Layers for .NET Class Library.

Table 32: Members of the Utility Class 

Member Type Member Name Description

Read-Only 
Property

AssemblyVersion Gets the major, minor, revision, and build numbers of 
the assembly. 

Methods ConvertTemperatureToVolts For a given thermocouple type and temperature value, 
converts the temperature value into voltage

ConvertVoltsToTemperature For a given thermocouple type and voltage value, 
converts the voltage value into temperature. 

ComputeRectangularRosette For a rectangular rosette, calculates the minimum and 
maximum principal strain values and their associated 
angles (in degrees).
93



Chapter 2

94
Delegates

DT-Open Layers events are reported to user-specified callback routines using the .NET 
delegates listed in Table 33.

Methods (cont.) ComputeDeltaRosette For a delta rosette, calculates the minimum and 
maximum principal strain values and their associated 
angles (in degrees).

GetThermocoupleRange Returns the temperature range for a given 
thermocouple type. 

RawValueToVolts Converts a data value from a raw count to a voltage.

VoltsToRawValue Converts a voltage value into a raw count.

Table 33: Delegates Included in the OpenLayers.Base Namespace

Delegate Name Description

BufferDoneHandler When the event BufferDoneEvent occurs, returns the subsystem 
that generated the event and the BufferDoneEventArgs object that 
is associated with the event.

BufferReusedHandler The BufferReusedHandler delegate is called when the event 
BufferReusedEvent occurs. 

DeviceRemovedHandler When the event DeviceRemovedEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

DriverRunTimeErrorEventHandler When the event DriverRunTimeErrorEvent occurs, returns the 
subsystem that generated the event and the 
DriverRunTimeErrorEventArgs object that is associated with the 
event.

EventDoneHandler When the event EventDoneEvent occurs, returns the subsystem 
that generated the event and the EventDoneEventArgs object that 
is associated with the event.

GeneralFailureHandler When the event GeneralFailureEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

InterruptOnChangeHandler When the event InterruptOnChangeEvent occurs, returns the 
subsystem that generated the event and the 
InterruptOnChangeEventArgs object that is associated with the 
event.

IOCompleteHandler When the event IOCompleteEvent occurs, returns the subsystem 
that generated the event and the IOCompleteEventArgs object that 
is associated with the event.

Table 32: Members of the Utility Class  (cont.)

Member Type Member Name Description



Library Summary
Enumerations

Table 34 lists the enumerations that are used by the properties and/or methods in the 
OpenLayers.Base namespace.

MeasureDoneHandler When the event MeasureDoneEvent occurs, returns the subsystem 
that generated the event and the MeasureDoneEventArgs object 
that is associated with the event.

PreTriggerBufferDoneHandler When the event PreTriggerBufferDoneEvent occurs, returns the 
subsystem that generated the event and the BufferDoneEventArgs 
object that is associated with the event.

QueueDoneHandler When the event QueueDoneEvent occurs, returns the subsystem 
that generated the event and the GeneralEventArgs object that is 
associated with the event.

QueueStoppedHandler When the event QueueStoppedEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

Table 34: Enumerations Included in the OpenLayers.Base Namespace

Enumeration Name Values Description

BridgeConfiguration FullBridge Full-bridge-based sensor, such as a load cell, or a 
general-purpose bridge that uses four active gages.

HalfBridge General-purpose bridge that uses two active gages.

QuarterBridge General-purpose bridge that uses one active gage. You 
must supply an external resistor that matches the 
nominal resistance of the bridge to complete the bridge 
externally.

CascadeMode Cascade Two counter/timers connected.

Single Counter/timer is not cascaded.

ChannelDataType Int16 Signed, 16-bit values.

Uint16 Unsigned, 16-bit values.

Int32 Signed, 32-bit values.

Float 32-bit floating-point values.

Double 64-bit, floating-point (double-bit) values.

ChannelType SingleEnded Channel is configured for single-ended connections.

Differential Channel is configured for differential connections.

ClockSource Internal Internal clock source.

External External clock source.

Table 33: Delegates Included in the OpenLayers.Base Namespace (cont.)

Delegate Name Description
95



Chapter 2

96
CounterMode Count Event counting mode.

RateGenerator Continuous pulse output (rate generation) mode.

OneShot Single output pulse (one-shot) mode.

OneShotRepeat Repetitive single output pulse (repetitive one-shot) 
mode.

UpDown Up/down counting mode.

Measure Edge-to-edge measurement mode.

ContinuousMeasure Continuous edge-to-edge measurement mode.

CouplingType DC DC coupling, where the DC offset is included.

AC AC coupling, where the DC offset is removed.

DataFilterType Raw No filter. Provides fast response times, but the data may 
be difficult to interpret. Use when you want to filter the 
data yourself. 

The Raw filter type returns the data exactly as it comes 
out of the Delta-Sigma A/D converters. Note that 
Delta-Sigma converters provide substantial digital 
filtering above the Nyquist frequency.

Generally, the only time it is desirable to use the Raw 
filter type is if you are using fast responding inputs, 
sampling them at higher speeds (> 1 Hz), and need as 
much response speed as possible. 

MovingAverage Provides a compromise of filter functionality and 
response time. This filter can be used in any application. 

This low-pass filter takes the previous 16 samples, adds 
them together, and divides by 16. 

DataFlow Continuous Continuous I/O operation.

SingleValue Single-value I/O operation.

ContinuousPreTrigger Continuous pre-trigger input operation.

ContinuousPrePost
Trigger

Continuous about-trigger operation.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
EdgeSelect GateRising The specified start or stop edge occurs on the rising 
edge of the gate signal.

GateFalling The specified start or stop edge occurs on the falling 
edge of the gate signal.

ClockRising The specified start or stop edge occurs on the rising 
edge of the clock signal.

ClockFalling The specified start or stop edge occurs on the falling 
edge of the clock signal.

ADCConversionComplete The specified start or stop edge occurs when the A/D 
conversion is complete. 

TachometerInputFalling The specified start or stop edge occurs on the falling 
edge of the tachometer input signal. 

TachometerInputRising The specified start or stop edge occurs on the rising 
edge of the tachometer input signal. 

DigitalInput0Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 0. 

DigitalInput0Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 0. 

DigitalInput1Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 1. 

DigitalInput1Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 1. 

DigitalInput2Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 2.

DigitalInput2Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 2. 

DigitalInput3Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 3. 

DigitalInput3Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 3. 

DigitalInput4Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 4. 

DigitalInput4Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 4. 

DigitalInput5Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 5.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description
97



Chapter 2

98
EdgeSelect (cont.) DigitalInput5Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 5. 

DigitalInput6Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 6. 

DigitalInput6Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 6. 

DigitalInput7Falling The specified start or stop edge occurs on the falling 
edge of digital input signal 7. 

DigitalInput7Rising The specified start or stop edge occurs on the rising 
edge of digital input signal 7. 

CT0ClockInputFalling The specified start or stop edge occurs on the falling 
edge of the clock input signal associated with 
counter/timer 0.  

CT0ClockInputRising The specified start or stop edge occurs on the rising 
edge of the clock input signal associated with 
counter/timer 0.  

CT0GateInputFalling The specified start or stop edge occurs on the falling 
edge of the gate input signal associated with 
counter/timer 0.  

CT0GateInputRising The specified start or stop edge occurs on the rising 
edge of the gate input signal associated with 
counter/timer 0.  

EdgeType Falling Falling edge of the tachometer signal.

Rising Rising edge of the tachometer signal.

Encoding Binary Binary data encoding.

TwosComplement Twos complement data encoding.

ErrorCode See Appendix A. The error codes that can be returned by the library.

ExcitationCurrentSource Internal Internal excitation current source.

External External excitation current source.

Disabled Excitation current source is disabled (no excitation is 
applied).

ExcitationVoltageSource Internal Internal excitation voltage source.

External External excitation voltage source.

Disabled Excitation voltage source is disabled (no excitation is 
applied).

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
GageType SingleElement Single element gage.

TwoPoissonElements Two elements with a Poisson arrangement.

TwoOppositeSigned
Elements 

Two elements, opposite sign (adjacent arms).

TwoSameSigned
Elements 

Two elements, same sign (opposite arms).

TwoElementChevron Two elements, 45° Chevron (torque or shear) 
arrangement.

FourSameSign
ElementsPoisson

Four elements, Poisson strains of same sign in opposite 
arms.

FourOppositeSigned
Elements

Four elements, Poisson strains of opposite sign in 
adjacent arms.

FourUniaxialElements Four elements, equal strains of opposite sign in adjacent 
arms.

FourElementDual
Chevron

Four elements, 45° Chevron (torque or shear) 
arrangement.

TeeRosetteGrid1_0
Degrees

Tee Rosette grid 1 or a (0°).

TeeRosetteGrid2_90
Degrees

Tee Rosette grid 2 or b (90°).

DeltaRosetteGrid1_0
Degrees 

 Delta Rosette grid 1 or a (0°).

DeltaRosetteGrid2_60Deg
rees

Delta Rosette grid 2 or b (60°).

DeltaRosetteGrid3_
120Degrees

Delta Rosette grid 3 or c (120°).

RectangularRosette
Grid1_0Degrees

Rectangular Rosette grid 1 or a (0°).

RectangularRosette
Grid2_45Degrees 

Rectangular Rosette grid 2 or a (45°).

RectangularRosette
Grid3_90Degrees 

Rectangular Rosette grid 3 or a (90°).

None Software gate.

HighLevel Enables a C/T operation when the gate signal is high.

LowLevel Enables a C/T operation when the gate signal is low.

HighEdge Enables a C/T operation on the rising edge of the gate 
signal.

LowEdge Enables a C/T operation on the falling edge of the gate 
signal.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description
99



Chapter 2

100
GateType (cont.) Level Enables a C/T operation on the transition from any level 
on the gate signal.

IOType VoltageIn The channel supports a voltage input.

VoltageOut The channels supports a voltage output.

DigitalInput The channel supports a digital input.

DigitalOutput The channel supports a digital output.

QuadratureDecoder The channel supports quadrature decoder operations.

CounterTimer The channel supports counter/timer operations.

Tachometer The channel supports tachometer input.

Current The channel supports a current input.

Thermocouple The channel supports a thermocouple input.

Rtd The channel supports an RTD input.

StrainGage The channel supports a strain gage input.

Accelerometer The channel supports an IEPE (accelerometer) input.

Bridge The channel supports a bridge-based sensor or 
general-purpose bridge input.

Thermistor The channel supports a thermistor input.

Resistance The channel supports a resistance measurement input.

MultiSensor The channel supports more than one sensor type. Use 
the SupportedChannelInfo.MultiSensorType property 
or the  SupportedChannelInfo.
SupportedMutliSensorTypes property to determine 
which sensor types are supported for the channel. 

OlBuffer.BufferState Idle Buffer is allocated but not queued to a subsystem.

Queued Buffer is queued to a subsystem.

InProcess Buffer is queued to a device driver.

Completed Buffer has been completed by the driver and is not 
queued to a subsystem.

Released Buffer has been released.

PhysicalMeasurandUnits Temperature_Kelvin Temperature (Kelvin).

Temperature_Celsius Temperature (Celsius).

Strain Strain.

Microstrain Microstrain.

Newton Force/Weight (Newton).

pounds Force/Weight (pounds).

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
PhysicalMeasurandUnits 
(cont.)

kilogramForcePer
Kilopound

Force/Weight (kilogram-force/kilopound).

Acceleration_m_ss Acceleration (m/s²).

Acceleration_g Acceleration (g).

Torque_Nm_Radian Torque (Nm/radian).

Torque_Nm Torque (Nm).

Torque_oz_in Torque (oz-in).

Pressure_Pascal Pressure (Pascal).

Pressure_PSI Pressure (PSI).

Mass_Kg Mass (kg).

Mass_g Mass (g).

Distance_m Distance (m).

Distance_mm Distance (mm).

Distance_inches Distance (inches).

Velocity_m_s Velocity (m/s).

Velocity_mph Velocity (mph).

Velocity_fps Velocity (fps).

AngularPosition_radian Angular Position (radian).

AngularPosition_
degrees

Angular Position (degrees).

RotationalVelocity_
radian_s

Rotational Velocity (radian/s).

RotationalVelocity_rpm Rotational Velocity (rpm).

Frequency Frequency.

Concentration_gram_
liter

Concentration (gram/liter).

Concentration_kg_liter Concentration (kg/liter).

MolarConcentration_
mole_m3

Molar Concentration (mole/m³).

MolarConcentration_
mole_l

Molar Concentration (mole/l).

Volumetric
Concentration_m3_m3

Volumetric Concentration (m³/m³).

Volumetric
Concentration_l_l

Volumetric Concentration (l/l).

MassFlow Mass Flow.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description
101



Chapter 2

102
PhysicalMeasurandUnits 
(cont.)

VolumetricFlow_m3_s Volumetric Flow (m³/s).

VolumetricFlow_m3_hr Volumetric Flow (m³/hr).

VolumetricFlow_gpm Volumetric Flow (gpm).

VolumetricFlow_cfm Volumetric Flow (cfm).

VolumetricFlow_l_min Volumetric Flow (l/min).

RelativeHumidity Relative Humidity.

Ratio_percent Ratio (percent).

Voltage Voltage.

RmsVoltage RMS Voltage.

Current Current.

RmsCurrent RMS Current.

Power_Watts Power (Watts).

PowerSource Internal The device is powered by the internal system power.

External The device is powered by an external power source.

PulseType HighToLow Low part of pulse is active.

LowToHigh High part of pulse is active.

QuadratureIndexMode Disabled Indexing disabled.

Low Reset quadrature decoder to 0 on falling edge of Index 
signal.

High Reset quadrature decoder to 0 on rising edge of Index 
signal.

ReferenceTriggerType None Triggering is disabled. 

TTLPos An external digital (TTL) signal attached to the device. 
The trigger occurs when the device detects a transition 
on the rising edge of the digital TTL signal. 

DigitalEvent A trigger is generated when an external digital event 
occurs. 

TTLNeg  An external digital (TTL) signal attached to the device. 
The trigger occurs when the device detects a transition 
on the falling edge of the digital TTL signal. 

ThresholdPos Either an analog signal from an analog input channel or 
an external analog signal attached to the device. A 
positive analog threshold trigger occurs when the device 
detects a positive-going signal that crosses a threshold 
value. The threshold level is generally set using an 
analog output subsystem on the device. 

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
ReferenceTriggerType (cont.)  ThresholdNeg Either an analog signal from an analog input channel or 
an external analog signal attached to the device. A 
negative analog threshold trigger occurs when the 
device detects a negative-going signal that crosses a 
threshold value. The threshold level is generally set 
using an analog output subsystem on the device. 

SyncBus An external Sync Bus signal attached to the device. For 
devices that support connecting multiple devices 
together in a master/slave relationship using Sync Bus 
(RJ45) connectors, the Sync Bus trigger occurs when 
the slave device detects a transition on the SyncBus 
trigger input of the Sync Bus connector. 

RTDType Pt3750 Temperature Coefficient of Resistance value of 
0.003750 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for Platinum 1000 Ω RTDs. This value 
is specified in the Low Cost standard.

Pt3850 Temperature Coefficient of Resistance value of 
0.003850 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for Platinum 100, 500, and 1000 Ω 
RTDs. This value is specified in the DIN/IEC 60751 and 
ASTM-E1137 standards.

Pt3911 Temperature Coefficient of Resistance value of 
0.003911 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for Platinum 100 Ω RTDs. This value is 
specified in the US Industrial Standard.

Pt3916 Temperature Coefficient of Resistance value of 
0.003916 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for Platinum 100 Ω RTDs. This value is 
specified in the Japanese JISC 1604-1989 standard.

Pt3920 Temperature Coefficient of Resistance value of 
0.003920 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for Platinum 100 Ω RTDs. This value is 
specified in the SAMA RC21-4-1966 standard.

Pt3928 Temperature Coefficient of Resistance value of 
0.003928 Ω / Ω /° C used in the Callendar-Van Dusen 
transfer function for the RTD. 

Custom A user-defined value for the Temperature Coefficient of 
Resistance in the Callendar-Van Dusen transfer function 
for the RTD.

SensorWiringConfiguration TwoWire The sensor type (typically, an RTD, thermistor, or 
resistance measurement) uses two wires to connect to 
the device.

ThreeWire The sensor type (typically, an RTD, thermistor, or 
resistance measurement) uses three wires to connect to 
the device.

FourWire The sensor type (typically, an RTD, thermistor, or 
resistance measurement) uses four wires to connect to 
the device.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description
103



Chapter 2

104
StrainGageBridge
Configuration

FullBridgeBending This configurations uses four active gages to measure 
bending strain. This configuration rejects axial strain, 
compensates for temperature and compensates for lead 
resistance.

FullBridgeBending
Poisson

This configuration uses four active gages to measure 
bending strain. This configuration also rejects axial 
strain, compensates for temperature, compensates for 
lead resistance, and compensates for the aggregate 
effect on the principle strain measurement due to the 
Poisson ratio of the specimen material.

FullBridgeAxialPoisson This configuration uses four active gages to measure 
axial strain. This configuration also compensates for 
temperature, rejects bending strain, compensates for 
lead resistance, and compensates for the aggregate 
effect on the principle strain measurement due to the 
Poisson ratio of the specimen material.

HalfBridgePoisson This configuration uses two active gages to measure 
either axial or bending strain. This configuration 
compensates for temperature, and compensates for the 
aggregate effect on the principle strain measurement 
due to the Poisson ratio of the specimen material.

HalfBridgeBending This configuration uses two active gages to measure 
bending strain. This configuration rejects axial strain and 
compensates for temperature. 

QuarterBridge This configuration uses a single active gage to measure 
axial or bending strain. You must supply an external 
resistor that matches the nominal resistance of the 
bridge to complete the bridge externally.

QuarterBridgeTemp
Compensation

This configuration uses one active gage and one dummy 
gage to measure axial and bending strain while 
compensating for temperature.

SubsystemBase.States Initialized The subsystem has been initialized but has not been 
configured.

ConfiguredForSingle
Value 

The subsystem has been configured for a single-value 
operation.

ConfiguredFor
Continuous

The subsystem has been configured for a continuous 
operation.

PreStarted The subsystem has been prestarted for a simultaneous 
operation.

Running The operation on the subsystem is running.

Stopping The operation on the subsystem is being stopped.

Aborting The operation on the subsystem is being aborted.

IoComplete The I/O operation on the subsystem is done.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
SubsystemType AnalogInput Analog input subsystem

AnalogOutput Analog output subsystem

DigitalInput Digital input subsystem

DigitalOutput Digital output subsystem

QuadratureDecoder Quadrature decoder subsystem

CounterTimer Counter/timer subsystem

Tachometer Tachometer subsystem

SynchronizationModes None No synchronization

Master Device is the master

Slave Device is a slave

TemperatureFilterType Deprecated enumeration; replaced by the DataFilterType enumeration, described on 
page 96.

TedsBridgeType Quarter Bridge Quarter-bridge configuration.

Half Bridge Half-bridge configuration.

Full Bridge Full-bridge configuration.

TedsTemplateId NotDefined No TEDS template associated with the channel.

BridgeSensors TEDS template for a bridge sensor that is associated 
with the channel.

StrainGage TEDS template for a strain gage that is associated with 
the channel.

TemperatureUnit Celsius Temperature specified in Celsius.

Fahrenheit Temperature specified in Fahrenheit.

Kelvin Temperature specified in Kelvin.

ThermocoupleType None No thermocouple; voltage input.

J Type J thermocouple.

K Type K thermocouple.

B Type B thermocouple.

E Type E thermocouple.

N Type N thermocouple.

R Type R thermocouple.

S Type S thermocouple.

T Type T thermocouple.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description
105



Chapter 2

106
Structures

The OpenLayers.Base namespace provides the following structures:

• HardwareInfo structure – This structure is used by the Device.GetHardwareInfo method 
to return information about a DT-Open Layers-compliant device.

Table 35 lists the fields that are contained in the HardwareInfo structure.

• SingleValuesInfoRaw structure – Used with the SetSingleValuesAsRaw method, 
specifies the analog output channel to update and the raw count to output on that 
channel. 

TriggerType Software Trigger is generated when the operation is started in 
software.

TTLPos Trigger is generated on a rising edge of an external, 
digital (TTL) signal.

DigitalEvent Trigger is generated when an external digital event 
occurs.

TTLNeg Trigger is generated on a falling edge of an external, 
digital (TTL) signal.

ThresholdPos Trigger is generated when a positive-going analog signal 
crosses a threshold value.

ThresholdNeg Trigger is generated when a negative-going analog 
signal crosses a threshold value.

Table 35: Fields of the HardwareInfo Structure in the OpenLayers.Base Namespace

Field Description

VendorId The identification number of the vendor. For most devices, this will 
be 0x087 hexadecimal, which is the vendor id for Data Translation 
devices.

ProductId The product identification number, such as DT9832.

DeviceId The version of the product. If only one version of the product 
exists, this number is 1. If two versions of the product exist, this 
number could be 1 or 2.

BoardId This field contains the year (1 or 2 digits), week (1 or 2 digits), test 
station (1 digit), and sequence number (3 digits) of the device 
when it was tested in Manufacturing. For example, if BoardId 
contains the value 5469419, this device was tested in 2005, week 
46, on test station 9, and is unit number 419.

Table 34: Enumerations Included in the OpenLayers.Base Namespace (cont.)

Enumeration Name Values Description



Library Summary
Table 36 lists the fields that are contained in the SingleValuesInfoRaw structure.

• SingleValuesInfoVolts structure – Used with the SetSingleValuesAsVolts method, 
specifies the analog output channel to update and the voltage value to output on that 
channel. 

Table 37 lists the fields that are contained in the SingleValuesInfoVolts structure.

Table 36: Fields of the SingleValuesInfoRaw Structure

Field Description

PhysicalChannel The number of the physical analog output channel to 
update. 

RawValue The raw count value to output on the specified analog 
output channel. 

Table 37: Fields of the SingleValuesInfoVolts Structure

Field Description

PhysicalChannel The number of the physical analog output channel to 
update. 

Voltage The voltage value to output on the specified analog output 
channel. 
107



Chapter 2

108
OpenLayers.DeviceCollection Namespace
The OpenLayers.DeviceCollection namespace provides the programming interface for 
DT-Open Layers-compatible device collections. This is the interface to use for devices that are 
defined as collections, such as the VIBbox system or a user-defined collection created using 
the DT Device Collection Manager application. (For all other DT-Open Layers-compatible 
devices, use the OpenLayers.Base namespace instead.)

Devices in a collection are connected together through the Sync Bus. Only subsystems, such as 
the analog input and possibly the analog output subsystem, are supported in the collection as 
these are the only subsystems that may provide expansion through the Sync Bus. Check your 
hardware documentation to determine which subsystems are supported in the collection.

This section describes the elements of the OpenLayers.DeviceCollection namespace. Refer to 
Chapter 4 for more information on how to use the OpenLayers.DeviceCollection namespace.

Classes

The OpenLayers.DeviceCollection namespace contains the classes listed in Table 38. Each class 
contains properties, methods, and/or events that allow you to perform specific operations. 
This section describes the classes and their members.

Table 38: Classes Included in the OpenLayers.DeviceCollection Namespace

Operation Type Class Name Description

Device 
Management

DeviceMgr Manages DT-Open Layers devices in the system and 
assigns Device objects.

Device Encapsulates an DT-Open Layers device and manages 
and distributes subsystems for the device.

SimultaneousStart Provides the properties for simultaneously starting 
multiple subsystems.

Analog Input 
Operations

AnalogInputSubsystem Provides the properties, methods, and events for 
performing analog input operations. 

This class inherits members from the 
AnalogSubsystema and SubsystemBaseb classes.

Analog Output 
Operations

AnalogOutputSubsystem Provides the properties, methods, and events for 
performing analog output operations.

This class inherits members from the 
AnalogSubsystema and SubsystemBaseb classes. 



Library Summary
Channels SupportedChannelInfo Contains information that describes a channel that is 
associated with a specific subsystem.

SupportedChannels A collection of SupportedChannelInfo objects.

ChannelListEntry Encapsulates a channel entry for the channel list of a 
specified subsystem.

ChannelList Specifies a collection of ChannelListEntry objects for 
use in a continuous I/O operation.

Clocks Clock Provides an interface for controlling the clock of a 
subsystem.

Triggers Trigger Provides an interface for controlling the trigger of a 
subsystem. For device that support a start trigger and a 
reference trigger, this class controls the start trigger.

ReferenceTrigger Provides an interface for controlling the reference 
trigger of a subsystem.

Ranges Range Specifies the upper and lower limits of a voltage range 
for an analog subsystem.

Buffer 
Management

OlBuffer Encapsulates a data buffer that is used in a continuous 
I/O operation.

BufferQueue Provides an interface for queuing OlBuffer objects to a 
device’s subsystem for continuous I/O operations.

Event Handling BufferDoneEventArgs Contains data related to the event BufferDoneEvent.

This class inherits members from the 
GeneralEventArgs class.c

DriverRunTimeErrorEventArgs Contains the data related to the event 
DriverRunTimeErrorEvent. 

This class inherits members from the 
GeneralEventArgs class.c

IOCompleteEventArgs Contains the data related to the event 
IOCompleteEvent.

This class inherits members from the 
GeneralEventArgs class.c

Error Handling OlException DT-Open Layers exception class. Exceptions are raised 
in response to error conditions within the DT-Open 
Layers for .NET Class Library.

OlError Encapsulates an DT-Open Layers error code. 

a. The AnalogSubsystem class provides the common properties, methods, and events for performing analog I/O operations. 
This is the base class for the analog input and analog output subsystems. This class inherits many of its capabilities from the 
SubsystemBase class. You cannot instantiate this object.

b. The SubsystemBase class provides the common properties, methods, and events that are inherited by the subsystems. This is 
the base class for all subsystems; you cannot instantiate this object. 

c. The GeneralEventArgs class contains data that is returned by all DT-Open Layers events that are sent to the user.

Table 38: Classes Included in the OpenLayers.DeviceCollection Namespace (cont.)

Operation Type Class Name Description
109



Chapter 2

110
Device Management

The OpenLayers.DeviceCollection namespace provides the following classes for managing 
devices:

• DeviceMgr, described below

• Device, described starting on page 110

• SimultaneousStart, described starting on page 111

DeviceMgr Class

The DeviceMgr class provides methods for managing DT-Open Layers devices in the system 
and for assigning a Device object to each DT-Open Layers device that you want to use. Table 
39 lists the methods in the DeviceMgr class. 

Note: This class exposes the Device object.

Device Class

The Device class provides a constructor, properties, and methods for encapsulating an 
DT-Open Layers device and managing and distributing subsystems for the device. 

To access a Device object, it is recommended that you use the DeviceMgr.GetDevice method. 
If you prefer, you can also get a Device object using the Device constructor of the Device class.

Note: This class exposes the AnalogInputSubsystem, AnalogOutputSubsystem, and 
SimultaneousStart objects.

Table 39: Methods of the DeviceMgr Class 

Member Type Member Name Description

Methods Get Returns a DeviceMgr object.

GetDevice Returns a Device object for the specified device.

GetDeviceNames Returns a list of all DT-Open Layers-compatible devices 
plugged into the system.

HardwareAvailable Returns True if an DT-Open Layers-compliant device is 
plugged into the system; otherwise, returns False.



Library Summary
Table 40 lists the members of the Device class.

SimultaneousStart Class

The SimultaneousStart class allows you to start multiple subsystems simultaneously using the 
properties listed in Table 41. You access the SimultaneousStart object through the Device 
object.

Table 40: Members of the Device Class 

Member Type Member Name Description

Constructor Device Constructor Returns a Device object.

Read-Only 
Properties

CollectionDevices Returns an array of Device objects for each device in the 
collection.

DeviceName Returns the user-defined name of the device. This name 
can be modified in the DT-Open Layers Control Panel 
applet.

MasterIndex Returns the index of the master Device object in the 
CollectionDevices array. 

Properties that 
Provide Interfaces

SimultaneousStart Provides an interface to the SimultaneousStart object.

Methods AnalogInputSubsystem Returns an AnalogInputSubsystem object.

AnalogOutputSubsystem Returns an AnalogOutputSubsystem object.

Dispose Terminates the connection to the device. 

GetHardwareInfo Returns hardware specific-information about the current 
device collection.

GetNumSubsystemElements Returns the number of available subsystem elements for 
a given subsystem type. 

Table 41: Additional Members of the SimultaneousStart Class 

Member Type Member Name Description

Methods AddSubsystem Adds a subsystem to the list of subsystems to simultaneous 
start. 

RemoveSubsystem Removes a subsystem from the list of subsystems to 
simultaneous start.

Clear Removes all subsystems from the simultaneous start list. 

GetSubsystemList Returns an array of subsystems that are currently on the 
simultaneous start list.

PreStart Simultaneously prestarts all subsystems on the simultaneous 
start list. 

Start Simultaneously starts all subsystems on the simultaneous start 
list. 
111



Chapter 2

112
Subsystem Operations

The following major classes are provided within the OpenLayers.DeviceCollection namespace 
for performing subsystem operations:

• AnalogInputSubsystem, described below

• AnalogOutputSubsystem, described starting on page 117

AnalogInputSubsystem Class

The AnalogInputSubsystem class encapsulates all methods, properties, and events that are 
specific to analog input operations. Table 42 lists the members of the AnalogInputSubsystem 
class.

To create an instance of this class, use the Device.AnalogInputSubsystem method 
(recommended) or the AnalogInputSubsystem constructor.

Note: This class provides interfaces to the following objects: BufferQueue, ChannelList, 
Clock, SupportedChannels, and Trigger.

This class inherits the members of the AnalogSubsystem and SubsystemBase classes.

Table 42: Members of the AnalogInputSubsystem Class 

Member Type Member Name Description

Constructor AnalogInputSubsystem Constructor Gets an analog input subsystem.

Read/Write 
Properties

AsynchronousStop Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelType Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous, 
SingleValue, ContinuousPreTrigger 
ContinuousPrePostTrigger) for the subsystem.

Encoding Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

StopOnError Gets and sets the stop-on-error condition (stop if 
overrun occurs, or continue if overrun occurs) for the 
subsystem.

SynchronousBufferDone Gets and sets the way Buffer Done events are executed 
(asynchronously or synchronously).

VoltageRange Gets and sets the current voltage range for the 
subsystem.



Library Summary
Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput or 
AnalogOutput).

SupportsAutoCalibrate Returns True if the subsystem supports self-calibration, 
where an auto-zero function is performed through 
software; otherwise, returns False.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting multiple 
subsystems simultaneously; otherwise, returns False. 

Read-Only 
Properties 
(Data flow-related)

SupportsContinuous Returns True if the subsystem supports continuous data 
flow mode; otherwise, returns False.

SupportsContinuousPrePostTrigger Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to WrapSingleBuffer. 
In addition, the buffer size must be less than or equal to 
the FifoSize.

Table 42: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
113



Chapter 2

114
Read-Only 
Properties 
(Channel-related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are supported 
by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Gain-related)

NumberOfSupportedGains Returns the number of available gains for this 
subsystem.

SupportedGains Returns an array of available gains for the subsystem.

SupportsProgrammableGain Returns True if the subsystem supports programmable 
gain for ChannelListEntry objects; otherwise, returns 
False.

Read-Only 
Properties 
(Range-related)

NumberOfRanges Returns the number of available voltage ranges for the 
subsystem. 

SupportedVoltageRanges Returns an array of available voltage ranges supported 
by the subsystem.

Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported by 
the subsystem. 

Resolution Returns the current resolution of the subsystem.

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

QueuedBufferDones Returns the number of Buffer Done Events queued to 
be sent when SynchronousBufferDone is True.

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

Table 42: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Accelerometer-
related)

SupportsIepe Returns True if the subsystem supports IEPE 
(accelerometer) inputs; otherwise, returns False. 

SupportsACCoupling Returns True if the subsystem supports AC coupling, 
where the DC offset is removed; otherwise, returns 
False.

SupportsDCCoupling Returns True if the subsystem supports DC coupling, 
where the DC offset is included; otherwise, returns 
False.

SupportedExcitationCurrentValues Returns an array containing the available values for the 
internal excitation current source.

SupportsExternalExcitationCurrent
Src

Returns True if the subsystem supports an external 
excitation current source; otherwise, returns False.

SupportsInternalExcitationCurrent
Src

Returns True if the subsystem supports an internal 
excitation current source; otherwise, returns False.

Read-Only 
Property (Current- 
Related)

SupportsCurrentOutput Returns True if the subsystem supports current outputs; 
otherwise, returns False.

Properties that 
Provide Interfaces 

BufferQueue Provides an interface to a BufferQueue object.

ChannelList Provides an interface to a ChannelList object.

Clock Provides an interface to a Clock object.

ReferenceTrigger Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Trigger Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the current buffer to be 
filled.

AutoCalibrate Calibrates the subsystem in software, performing an 
auto-zero function.

Config Configures the subsystem based on the current 
property settings.

Dispose Releases the analog input subsystem’s connection to 
the DT-Open Layers device.

GetOneBuffer Using continuous acquisition, acquires one buffer of 
data from the specified channel. This method uses the 
specified clock frequency, trigger, and so on, for the 
acquisition. This method is synchronous and returns 
only when the requested data has been acquired or a 
calculated timeout value is exceeded.

GetSingleValueAsRaw Acquires a single value from an input channel and 
returns it in raw counts.

Table 42: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
115



Chapter 2

116
Methods (cont.) GetSingleValueAsSensor Acquires a single value from an input channel and 
returns it in the engineering units for the specified 
sensor.

GetSingleValueAsVolts Acquires a single value from an input channel and 
returns the data in voltage.

MoveFromBufferInprocess Moves samples from the OlBuffer object that is currently 
being filled into a new OlBuffer object. 

RawValueToSensor Overloaded method that converts a raw count to a 
sensor value in engineering units. 

RawValueToVolts Overloaded method that converts a raw count into a 
voltage value. 

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the current buffer to be 
filled, and reinitializes the subsystem to the default 
configuration. 

Start Starts a continuous operation on the analog input 
subsystem.

Stop Stops a continuous operation on the analog input 
subsystem after the current buffer has been filled.

ToString Returns a string that describes the analog input 
subsystem and element.

VoltsToRawValue Converts a voltage value into a raw count. 

Events BufferDoneEvent Occurs when the current OlBuffer object has been filled 
with post-trigger data, and if the operation is stopped, 
occurs for each of up to 8 inprocess buffers. 

DeviceRemovedEvent Occurs when a device is removed from the system.

DriverRunTimeErrorEventEvent Occurs when the device driver detects one of the 
following error conditions during runtime: FifoOverflow, 
FifoUnderflow, DeviceOverClocked, TriggerError, or 
DeviceError.

GeneralFailureEvent Occurs when a when a general library failure occurs.

Table 42: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
AnalogOutputSubsystem Class

The AnalogOutputSubsystem class encapsulates all methods, properties, and events that are 
specific to analog output operations. Table 43 lists the members of the 
AnalogOutputSubsystem class.

To create an instance of this class, use the Device.AnalogOutputSubsystem method 
(recommended) or the AnalogOutputSubsystem constructor.

Note: This class provides interfaces to the following objects: BufferQueue, ChannelList, 
Clock, SupportedChannels, and Trigger.

This class inherits the members of the AnalogSubsystem and SubsystemBase classes. 

Events (cont.) IOCompleteEvent For analog input operations that use a reference trigger 
whose trigger type is something other than software 
(none), occurs when the last post-trigger sample is 
copied into the user buffer. Devices that do not support 
a reference trigger will never receive this event for 
analog input operations.

PreTriggerBufferDoneEvent Occurs when the OlBuffer object is filled with pre-trigger 
data (for an input operation only).

QueueDoneEvent Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEvent Occurs when a pre- or post-trigger acquisition operation 
completes or when you stop a continuous analog input 
operation. 

Table 43: Members Added with the AnalogOutputSubsystem Class 

Member Type Member Name Description

Constructor AnalogOutputSubsystem Constructor Gets an analog output subsystem.

Read/Write 
Properties

AsynchronousStop Gets and sets the stop behavior (synchronous or 
asynchronous) of the subsystem.

ChannelType Gets and sets the channel type (SingleEnded or 
Differential) for the subsystem.

DataFlow Gets and sets the data flow mode (Continuous or 
SingleValue) for the subsystem.

Encoding Gets and sets the data encoding (Binary or 
TwosComplement) for the subsystem.

Table 42: Members of the AnalogInputSubsystem Class  (cont.)

Member Type Member Name Description
117



Chapter 2

118
Read/Write 
Properties

StopOnError Gets and sets the stop-on-error condition (stop if 
underrun occurs, or continue if underrun occurs) for 
the subsystem.

SynchronousBufferDone Gets and sets the way Buffer Done events are 
executed (asynchronously or synchronously).

VoltageRange Gets and sets the current voltage range for the 
subsystem.

WrapSingleBuffer Gets and sets the wrap mode. If True, the device 
driver continuously reuses the first buffer queued to 
the subsystem. If False, the device driver uses all the 
buffers queued to the subsystem (this is the default 
mode). 

Read-Only 
Properties 
(General)

Device Returns the Device object that is associated with the 
subsystem.

Element Returns the element number of the subsystem.

FifoSize Returns the size of the FIFO on the device that is 
associated with the subsystem.

IsRunning Returns True if the subsystem is currently running; 
otherwise, returns False. 

ReturnsFloats Returns True if the subsystem returns floating-point 
values; otherwise, returns False indicating that the 
subsystem returns integer values. 

State Returns the current state of the subsystem (Initialized, 
ConfiguredForSingleValue, ConfiguredForContinuous, 
PreStarted, Running, Stopping, Aborting, or 
IoComplete).

SubsystemType Returns the subsystem type (AnalogInput or 
AnalogOutput).

SupportsCurrentOutput Returns True if the subsystem supports current 
outputs; otherwise, returns False.

SupportsMute Returns True if the subsystem supports the ability to 
mute and/or unmute the output voltage.

SupportsSetSingleValues Returns True if the subsystem supports updating 
multiple channels simultaneously with a single value 
(using SetSingleValuesAsRaw or 
SetSingleValuesAsVolts); otherwise, returns False.

SupportsSimultaneousStart Returns True if the subsystem supports starting 
multiple subsystems simultaneously; otherwise, 
returns False. 

Table 43: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Read-Only 
Properties 
(Data 
flow-related)

SupportsContinuous Returns True if the subsystem supports continuous 
data flow mode; otherwise, returns False.

SupportsContinuousPrePostTrigger Returns True if the subsystem supports continuous 
about-trigger data flow mode; otherwise, returns 
False.

SupportsContinuousPreTrigger Returns True if the subsystem supports continuous 
pre-trigger data flow mode; otherwise, returns False.

SupportsSingleValue Returns True if the subsystem supports single-value 
data flow mode; otherwise, returns False.

SupportsWaveformModeOnly Returns True if the subsystem supports 
waveform-based operations using the onboard FIFO 
only; otherwise, returns False. If this property is True, 
the buffer wrap mode must be set to 
WrapSingleBuffer. In addition, the buffer size must be 
less than or equal to the FifoSize.

Read-Only 
Properties 
(Channel-related)

MaxDifferentialChannels Returns the number of differential channels that are 
supported by the subsystem.

MaxSingleEndedChannels Returns the number of single-ended channels that are 
supported by the subsystem.

NumberOfChannels Returns the total number of channels that are 
supported by the subsystem.

SupportsChannelListInhibit Returns True if the subsystem supports inhibition of a 
ChannelList entry; otherwise, returns False.

SupportsDifferential Returns True if the subsystem supports differential 
channels; otherwise, returns False. 

SupportsSingleEnded Returns True if the subsystem supports single-ended 
channels; otherwise, returns False. 

Read-Only 
Properties 
(Gain-related)

NumberOfSupportedGains Returns the number of available gains for this 
subsystem.

SupportedGains Returns an array of available gains for the subsystem.

SupportsProgrammableGain Returns True if the subsystem supports 
programmable gain for ChannelListEntry objects; 
otherwise, returns False.

Read-Only 
Properties 
(Range-related)

NumberOfRanges Returns the number of available voltage ranges for the 
subsystem. 

SupportedVoltageRanges Returns an array of available voltage ranges 
supported by the subsystem.

Table 43: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description
119



Chapter 2

120
Read-Only 
Properties 
(Resolution-
related)

NumberOfResolutions Returns the number of resolutions that are supported 
by the subsystem. 

Resolution Returns the current resolution of the subsystem.

SupportedResolutions Returns an array containing the available resolutions 
that are supported by the subsystem. 

SupportsSoftwareResolution Returns True if the subsystem supports software 
programmable resolution; otherwise, returns False. 

Read-Only 
Properties 
(Data encoding-
related)

SupportsBinaryEncoding Returns True if the subsystem supports Binary 
encoding; otherwise, returns False.

SupportsTwosCompEncoding Returns True if the subsystem supports 
TwosComplement encoding; otherwise, returns False. 

Read-Only 
Properties 
(Buffer-related)

QueuedBufferDones Returns the number of Buffer Done Events queued to 
be sent when SynchronousBufferDone is True.

SupportsBuffering Returns True if the subsystem supports continuous 
acquisition to or from OlBuffer objects; otherwise, 
returns False. 

SupportsWrapSingle Returns True if the subsystem supports reusing a 
single buffer for continuous operations; otherwise, 
returns False.

Properties that 
Provide 
Interfaces 

BufferQueue Provides an interface to a BufferQueue object.

ChannelList Provides an interface to a ChannelList object.

Clock Provides an interface to a Clock object.

ReferenceTrigger Provides an interface to a ReferenceTrigger object. 

SupportedChannels Provides an interface to a SupportedChannels object.

Trigger Provides an interface to a Trigger object.

Methods Abort Stops a continuous operation on the subsystem 
immediately without waiting for the data in current 
buffer to be output.

Config Configures the subsystem based on the current 
property settings.

Dispose Overloaded method that releases the analog output 
subsystem’s connection to the DT-Open Layers 
device.

Reset Stops a continuous operation on a subsystem 
immediately without waiting for the data in the current 
buffer to be output, and reinitializes the subsystem to 
the default configuration. 

Mute Attenuates the output voltage of the subsystem to 0 V 
over a hardware-dependent number of samples.

RawValueToSensor Overloaded method that converts a raw count to a 
sensor value in engineering units. 

Table 43: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description



Library Summary
Methods (cont.) RawValueToVolts Overloaded method that converts a raw count into a 
voltage value. 

SetSingleValueAsRaw Writes a single raw count to an analog output channel.

SetSingleValueAsVolts Writes a single voltage value to an analog output 
channel.

SetSingleValuesAsRaw For subsystems that support simultaneous operations, 
simultaneously updates the specified analog output 
channels with a single raw count value. You specify 
the channels to update and the value to output on 
each channel.

SetSingleValuesAsVolts For subsystems that support simultaneous operations, 
simultaneously updates the specified analog output 
channels with a single voltage value. You specify the 
channels to update and the value to output on each 
channel.

Start Starts a continuous operation on the analog output 
subsystem.

Stop Stops a continuous operation on the analog output 
subsystem after the data in the current buffer has 
been output.

ToString Returns a string that describes the analog output 
subsystem and element.

UnMute If the subsystem is muted, returns the output voltage 
of the subsystem to its current level over a 
hardware-dependent number of samples.

VoltsToRawValue Converts a voltage value into a raw count. 

Events BufferDoneEvent Occurs when all the data in the OlBuffer object has 
been output.

DeviceRemovedEvent Occurs when a device is removed from the system.

DriverRunTimeErrorEventEvent Occurs when the device driver detects one of the 
following error conditions during runtime: 
FifoOverflow, FifoUnderflow, DeviceOverClocked, 
TriggerError, or DeviceError.

GeneralFailureEvent Occurs when a when a general library failure occurs.

IOCompleteEvent For analog output operations, occurs when the when 
the last data point has been output from an analog 
output channel. In some cases, this event is raised 
well after the data is transferred from the buffer (and, 
therefore, well after BufferDoneEvent and 
QueueDoneEvents occur).

QueueDoneEvent Occurs when no OlBuffer objects are available on the 
queue and the operation stops.

QueueStoppedEvent Occurs when a continuous analog output operation is 
stopped and the queue is emptied.

Table 43: Members Added with the AnalogOutputSubsystem Class  (cont.)

Member Type Member Name Description
121



Chapter 2

122
Channels

The following classes are provided within the OpenLayers.DeviceCollection namespace for 
dealing with channels in a continuous I/O operation:

• SupportedChannelInfo, described below

• SupportedChannels, described starting on page 123

• ChannelListEntry, described starting on page 124

• ChannelList, described starting on page 124

SupportedChannelInfo Class

When you get a subsystem of a specified type, the software automatically populates the 
properties of the SupportedChannelInfo class, listed in Table 44, for each channel.

To access a SupportedChannelInfo object, use the SupportedChannels class, described on page 
123.

Table 44: Members of the SupportedChannelInfo Class 

Member Type Member Name Description

Read/Write 
Properties 
(General)

 Name Gets and sets the name for a channel. 

ExcitationCurrentSource Gets and sets the excitation current source (internal, 
external, or disabled) to apply to the channel.

ExcitationCurrentValue Gets and sets the value of the internal excitation current 
source to apply to the channel.

LogicalChannelNumber Returns the zero-based logical channel number for the 
specified physical channel and subsystem type. 

LogicalChannelWord For channels with multi-word data (such as a 32-bit 
counter), returns the zero-based word number. For 
channels without multi-word data, returns -1. 

 PhysicalChannelNumber Returns the physical channel number that maps to the 
subsystem type, logical channel number, and the logical 
channel word. 

 Subsystem Returns the subsystem object (AnalogInputSubsystem or 
AnalogOutputSubsystem) with which the logical channel is 
associated.

Read/Write 
Properties 
(Generic 
Sensor-Related)

 SensorGain Gets and sets the gain specific to the sensor that is 
connected to the channel.

 SensorOffset Gets and sets the offset specific to the sensor that is 
connected to the channel.



Library Summary
SupportedChannels Class

The SupportedChannels class provides the properties and methods listed in Table 13 to access 
a SupportedChannelInfo object.

You can access a SupportedChannels object through the following classes:

• AnalogInputSubsystem, described on page 112

• AnalogOutputSubsystem, described on page 117

Read/Write 
Properties 
(Accelerometer-
Related)

Coupling Gets and sets the coupling type to apply to the channel.

Read-Only 
Properties

IOType Returns the type of measurement that is supported by the 
channel. 

 SubsystemType Returns the type of subsystem (AnalogInput, 
AnalogOutput, DigitalInput, DigitalOutput, CounterTimer, 
Tachometer, or QuadratureDecoder) with which the logical 
channel is associated.

Table 45: Members of the SupportedChannels Class 

Member Type Member Name Description

Read-Only 
Properties

Count Returns the number of SupportedChannelInfo objects in the 
SupportedChannels collection.

Item ([]) Returns the SupportedChannelInfo object at the specified 
index ([index]) of the SupportedChannels object.

Methods GetChannelInfo Overloaded method that returns a SupportedChannelInfo 
object for the specified channel. You can specify the channel by 
physical channel number, by name, by subsystem type and 
logical channel, or by subsystem type, logical channel, and 
logical channel word.

Table 44: Members of the SupportedChannelInfo Class  (cont.)

Member Type Member Name Description
123



Chapter 2

124
ChannelListEntry Class

The ChannelListEntry class provides the constructor and properties listed in Table 46 to 
encapsulate a channel entry for a channel list of a specified subsystem.

ChannelList Class

The ChannelList class provides the properties and methods listed in Table 47 to create and 
manage a channel list, which is a collection of ChannelListEntry objects, for use in a 
continuous I/O operation.

Table 46: Members of the ChannelListEntry Class 

Member Type Member Name Description

Constructor ChannelListEntry 
Constructor

Returns a ChannelListEntry object.

Read/Write 
Properties

Gain Gets and sets the gain to apply to the input signal of the associated 
ChannelListEntry object. The default value is 1.

Inhibit Gets and sets the inhibit state for the ChannelListEntry object. If 
True, the ChannelListEntry object takes up an entry in the 
ChannelList and is factored into the conversion time, but data is not 
returned for the ChannelListEntry object. If False (the default value), 
data is returned for the ChannelListEntry object.

Read-Only 
Properties

 Name Returns the name for the channel associated with the 
ChannelListEntry object. 

 PhysicalChannelNumber Returns the physical channel number that maps to the subsystem 
type, logical channel number, and the logical channel word. 

 SubsystemType Returns the type of subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) with which the logical channel is associated.

Table 47: Members of the ChannelList Class 

Member Type Member Name Description

Read/Write 
Property

 Item ([]) Returns or replaces the ChannelListEntry object at the specified 
index. 

Read-Only 
Property

CGLDepth Returns the maximum number of ChannelListEntry objects that 
the ChannelList can contain. 

Methods  Add Overloaded method that adds a channel to the end of the 
ChannelList. 

 Contains Returns True if the ChannelList object contains a specific 
ChannelListEntry object; otherwise, returns False.

 IndexOf Overloaded method that searches for the specified channel in the 
ChannelList and returns the zero-based index of the first 
occurrence of the channel within the ChannelList. 



Library Summary
A ChannelList object is accessible using any subsystem object whose SupportsContinuous 
property returns True. The following classes expose an interface to the ChannelList object:

• AnalogInputSubsystem, described on page 112

• AnalogOutputSubsystem, described on page 117

Clock Class

The Clock class provides the properties and methods listed in Table 48 for controlling the 
clock of a specified subsystem.

Methods (cont.)  Insert Overloaded method that inserts a channel into the ChannelList 
object at the specified index. 

 Remove Removes the first occurrence of a specific ChannelListEntry object 
from the ChannelList object.

Table 48: Members of the Clock Class 

Member Type Member Name Description

Read/Write 
Properties

ExtClockDivider Gets and sets the current value of the external clock 
divider, which is used to set the frequency of an 
external clock source.

Frequency Gets and sets the frequency of the internal clock 
source.

Source Gets and sets the current clock source (Internal or 
External).

Read-Only 
Properties 
(General)

BaseClockFrequency Returns the frequency of the base clock for the 
subsystem.

SupportsSimultaneousClocking Returns True if the subsystem supports simultaneous 
clocking; otherwise, returns False. 

Read-Only 
Properties 
(Internal 
clock-related)

MaxFrequency Returns the maximum allowable internal clock 
frequency supported by the subsystem. 

MinFrequency Returns the minimum allowable internal clock 
frequency supported by the subsystem. 

SupportsInternalClock Returns True if the subsystem supports an internal 
clock source; otherwise, returns False. 

Read-Only 
Properties 
(External 
clock-related)

MaxExtClockDivider Returns the maximum allowable clock divider value 
supported by the subsystem. 

MinExtClockDivider Returns the minimum allowable clock divider value 
supported by the subsystem. 

SupportsExternalClock Returns True if the subsystem supports an external 
clock source; otherwise, returns False. 

Table 47: Members of the ChannelList Class  (cont.)

Member Type Member Name Description
125



Chapter 2

126
You can access a Clock object through the following classes:

• AnalogInputSubsystem, described on page 112

• AnalogOutputSubsystem, described on page 117

Triggers

The following classes are provided for controlling how a subsystem is triggered:

• Trigger, described below

• Reference trigger, described on page 84

Trigger Class

The Trigger class provides the properties listed in Table 49 for controlling the trigger of a 
subsystem. For devices that support a start trigger and a reference trigger, the Trigger class is 
used to set up the start trigger, which starts pre-trigger data acquisition.

Table 49: Members of the Trigger Class 

Member Type Member Name Description

Read/Write 
Properties

Level Gets and sets the trigger threshold value. By default, the 
trigger threshold value is in voltage unless specified 
otherwise for the device; see the user’s manual for your 
device for valid threshold value settings.

PreTriggerSource Gets and sets the trigger type for the pre-trigger source of 
a subsystem when using one of the following data flow 
modes: DataFlow.ContinuousPrePostTrigger or 
DataFlow.ContinuousPreTrigger. 

ThresholdTriggerChannel Gets and sets the number of the channel that the device 
monitors for the ThresholdPos or ThresholdNeg trigger 
event. This property is valid only if the trigger type is 
ThresholdPos or ThresholdNeg.

TriggerType Gets and sets the trigger type (Software, TTLPos External 
TTL, DigitalEvent, TTLNeg External TTL, ThresholdPos, 
or ThresholdNeg) for the subsystem. 

Read-Only 
Properties

SupportedThresholdTrigger
Channels

Returns an array containing the channels that can be 
used for ThresholdPos or ThresholdNeg trigger types.

SupportsDigitalEventTrigger Returns True if the subsystem supports a digital event 
trigger type; otherwise, returns False.

SupportsNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL trigger; otherwise, returns False. 

SupportsNegThresholdTrigger Returns True if the subsystem supports an negative-going 
analog threshold trigger; otherwise, returns False.

SupportsPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL trigger; otherwise, returns False. 

SupportsPosThresholdTrigger Returns True if the subsystem supports a positive-going 
analog threshold trigger; otherwise, returns False.



Library Summary
You can access a Trigger object through the following classes:

• AnalogInputSubsystem, described on page 112

• AnalogOutputSubsystem, described on page 117

ReferenceTrigger Class

The ReferenceTrigger class provides the properties listed in Table 50 for controlling the 
reference trigger of a subsystem. For devices that support a reference trigger, pre-trigger data 
acquisition stops and post-trigger acquisition starts when the reference trigger event occurs. 
Post-trigger acquisition stops when the number of samples you specify for the post-trigger 
scan count has been reached.

Read-Only 
Properties 
(cont.)

SupportsSoftwareTrigger Returns True if the subsystem supports a software 
(internal) trigger; otherwise, returns False. 

SupportsSvPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL trigger for single-value operations; 
otherwise, returns False. 

SupportsSvNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL trigger for single-value operations; 
otherwise, returns False. 

Table 50: Members of the ReferenceTrigger Class 

Member Type Member Name Description

Read/Write 
Properties

Level Gets and sets the threshold value for the reference 
trigger. By default, the threshold value is in voltage unless 
specified otherwise for the device; see the user’s manual 
for your device for valid threshold value settings for the 
reference trigger.

PostTriggerScanCount Gets and sets the samples per channel to acquire after 
the reference trigger occurs. This property is valid only for 
the ReferenceTrigger object.

ThresholdTriggerChannel Gets and sets the number of the channel that the device 
monitors for the ThresholdPos or ThresholdNeg trigger 
event. This property is valid only if the reference trigger 
type is ThresholdPos or ThresholdNeg.

TriggerType Gets and sets the reference trigger type (Software, 
TTLPos External TTL, DigitalEvent, TTLNeg External 
TTL, ThresholdPos, or ThresholdNeg) for the subsystem. 

Table 49: Members of the Trigger Class  (cont.)

Member Type Member Name Description
127



Chapter 2

128
You can access a ReferenceTrigger object through the following classes:

• AnalogInputSubsystem, described on page 112.

• AnalogOutputSubsystem, described on page 117.

Range Class

The Range class is used by the VoltageRange and SupportedVoltageRanges methods to 
return the lower and upper limits of the voltage range for an analog subsystem. 

Read-Only 
Properties

SupportsDigitalEventTrigger Returns True if the subsystem supports a digital event 
reference trigger; otherwise, returns False.

SupportsNegExternalTTLTrigger Returns True if the subsystem supports an external, 
falling-edge, TLL reference trigger; otherwise, returns 
False. 

SupportsNegThresholdTrigger Returns True if the subsystem supports an negative-going 
analog threshold trigger for the reference trigger; 
otherwise, returns False.

SupportsPosThresholdTrigger Returns True if the subsystem supports a positive-going 
analog threshold trigger for the reference trigger; 
otherwise, returns False.

SupportsPosExternalTTLTrigger Returns True if the subsystem supports an external, 
rising-edge, TLL reference trigger; otherwise, returns 
False. 

SupportsPostTriggerScanCount Returns True if the subsystem supports acquiring a 
specified number of samples after the reference trigger 
occurs; otherwise, returns False. 

SupportedThresholdTrigger
Channels

Returns an array containing the channels that can be 
used for ThresholdPos or ThresholdNeg reference trigger 
types.

Table 51: Members of the Range Class 

Member Type Member Name Description

Constructor Range Constructor Initializes a new instance of a Range object with the 
specified lower and upper limits of the voltage range. 

Read/Write 
Properties

High Gets and sets the upper limit of the voltage range. 

Low Gets and sets the lower limit of the voltage range. 

Table 50: Members of the ReferenceTrigger Class  (cont.)

Member Type Member Name Description



Library Summary
Buffer Management

The following classes are provided for managing buffers in continuous I/O operations:

• OlBuffer, described below

• BufferQueue, described on page 131

OlBuffer Class

The OlBuffer class provides the constructor, properties, and methods listed in Table 52 for 
encapsulating a data buffer that is used in a continuous I/O operation.

Table 52: Members of the OlBuffer Class 

Member Type Member Name Description

Constructor OlBuffer Constructor Creates and returns an OlBuffer object that will hold a 
specified number of samples.

Read/Write 
Property

Tag Gets or sets a user-defined value.

Read-Only 
Properties

BufferSizeInBytes Returns the size of the internal data buffer, in bytes. 

BufferSizeInSamples Returns the size of the internal data buffer, in samples. 

ChannelListOffset Returns the index into the ChannelList that corresponds to 
the first sample in the buffer. 

Encoding Returns the data encoding for the raw data (Binary or 
TwosComplement).

Item ([]) Returns the raw data value at the specified index of the 
buffer.

RawDataFormat Returns the format of the raw data (Int16, Uint16, Int32, 
Float, or Double).

Resolution Returns the resolution of the associated subsystem.

SampleSizeInBytes Returns the size, in bytes, of the samples in the buffer.

State Gets the current state (Idle, Queued, InProcess, 
Completed, or Released) of the OlBuffer object.

ValidSamples Gets the number of valid samples in the OlBuffer object.

VoltageRange Returns the current upper and lower limits of the voltage 
range for the associated subsystem.

Methods Dispose Overloaded method that deallocates the OlBuffer object. 

GetDataAsRawByte Overloaded method. Copies the data, as raw counts, from 
an OlBuffer object into a user-declared array of bytes. 

GetDataAsRawInt16 Overloaded method. Used when the resolution of the 
subsystem is 16 bits or less and when the data encoding is 
twos complement, copies the data, as raw counts, from an 
OlBuffer object into a user-declared array of signed, 16-bit 
integers.
129



Chapter 2

130
Methods (cont.) GetDataAsRawUInt16 Overloaded method. Used when the resolution of the 
subsystem is 16 bits or less and when the data encoding is 
binary, copies the data, as raw counts, from an OlBuffer 
object into a user-declared array of unsigned, 16-bit 
integers. 

GetDataAsRawUInt32 Overloaded method. Used when the resolution of the 
subsystem is greater than 16 bits, copies the data, as raw 
counts, from an OlBuffer object into a user-declared array 
of unsigned 32-bit integers. 

GetDataAsRpm For a specified ChannelListEntry, converts the tachometer 
data from the internal buffer of an OlBuffer object into RPM 
values, and then copies these values into a user-declared 
array of 64-bit floating-point (double) values.

GetDataAsSensor Overloaded method. Converts the data from an OlBuffer 
object into sensor values using the 
SupportedChannelInfo.SensorGain and 
SupportedChannelInfo.
SensorOffset values and copies this data into a 
user-declared array of floating-point (double) values. 

GetDataAsVolts Overloaded method. Converts the data from an OlBuffer 
object into voltages, and copies this data into a 
user-declared array of floating-point values. 

GetDataAsVoltsByte For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into voltage values, 
and then copies these voltage values into a user-declared 
array of bytes. Each voltage value is stored as an Int32, 
and takes 4 bytes. 

PutDataAsRaw Overloaded method that copies raw counts from a 
user-specified array into an OlBuffer object. 

PutDataAsVolts Overloaded method that copies voltage values from a 
user-specified array into an OlBuffer object.

Reallocate Reallocates the OlBuffer object to the specified number of 
samples. The existing internal data buffer is deallocated 
and any data that it contained is lost. 

Table 52: Members of the OlBuffer Class  (cont.)

Member Type Member Name Description



Library Summary
BufferQueue Class

The BufferQueue class provides the properties and methods listed in Table 53 for managing a 
queue of OlBuffer objects for a continuous I/O operation.

You can access a BufferQueue object through the following classes:

• AnalogInputSubsystem, described on page 112

• AnalogOutputSubsystem, described on page 117

Event Handling

The following classes are provided for handling events raised by the 
OpenLayers.DeviceCollection namespace:

• GeneralEventArgs, described on page 131

• BufferDoneEventArgs, described on page 132

• DriverRunTimeErrorEventArgs, described on page 132

• IOCompleteEventArgs, described on page 132

GeneralEventArgs

The GeneralEventArgs class provides the properties listed in Table 54 to return information 
about DT-Open Layers events. This object is generated internally and is returned to event 
delegates. Refer to page 134 for more information on delegates.

Table 53: Members of the BufferQueue Class 

Member Type Member Name Description

Read-Only 
Properties

InProcessCount Returns the number of OlBuffer objects that have been taken 
from the queue and sent to the device for processing.

QueuedCount Returns the number of olBuffer objects that are on the 
subsystem queue (OlBuffer objects are in the queued state). 

Methods DequeueBuffer Removes the OlBuffer object at the front of the queue, and 
returns it to the user.

FreeAllQueuedBuffers Removes all OlBuffer objects from the subsystem queue and 
deallocates them. 

QueueBuffer Adds an OlBuffer object to the queue for the subsystem.
131



Chapter 2

132
BufferDoneEventArgs

The BufferDoneEventArgs class inherits the members of the GeneralEventArgs class and adds 
the OlBuffer property. When the BufferDoneEvent event is raised, the completed buffer is 
returned in the OlBuffer property.

This object is generated internally and returned to the BufferDoneHandler delegate. Refer to 
page 134 for more information on delegates.

DriverRunTimeErrorEventArgs

The DriverRunTimeErrorEventArgs class inherits the members of the GeneralEventArgs class 
and adds the properties listed in Table 55 to return data related to the event 
DriverRunTimeErrorEvent.

This object is generated internally and returned to the DriverRunTimeErrorEventHandler 
delegate. Refer to page 134 for more information on delegates.

IOCompleteEventArgs

The IOCompleteEventArgs class inherits the members of the GeneralEventArgs class and 
adds the properties listed in Table 56 to return data related to the event IOCompleteEvent.

This object is generated internally and returned to the IOCompleteHandler delegate. Refer to 
page 134 for more information on delegates.

Table 54: Members of the GeneralEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

DateTime Returns the time stamp of when the associated event 
occurred. 

Subsystem Returns the subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) that raised the event. 

Table 55: Members of the DriverRunTimeErrorEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

ErrorCode Returns the error code that is associated with the driver error. 
Refer to Appendix A for more information.

Message Returns a descriptive string associated with the error code. 
Refer to Appendix A for more information.



Library Summary
Error Handling

The following classes are provided for handling errors that may occur in the OpenLayers.Base 
namespace:

• OlException, described below

• OlError, described on page 134

OlException

The OlException class provides the properties listed in Table 57 for dealing with errors that 
can be generated by the OpenLayers.DeviceCollection namespace.

Table 56: Members of the IOCompleteEventArgs Class 

Member Type Member Name Description

Read-Only 
Properties

LastSampleNumber For analog input operations only, returns the total 
number of samples per channel that were acquired 
from the time acquisition was started (with the start 
trigger) to the last post-trigger sample. For example, a 
value of 100 indicates that a total of 100 samples 
(samples 0 to 99) were acquired.

You can subtract the value of the 
AnalogInputSubsystem.ReferenceTrigger.
PostTriggerScanCount property, described on page 
322, from the value of this property to determine when 
the reference trigger occurred and the number of 
pre-trigger samples that were acquired. For example, if 
the value of this property is 100, and you specified a 
value of 75 for the post-trigger scan count, you can 
determine that the reference trigger occurred at sample 
count 25 (100-75) of the last buffer; samples 25 through 
99 are post-trigger samples and samples 0 to 24 are 
pre-trigger samples.

Table 57: Members of the OlException Class 

Member Type Member Name Description

Read-Only 
Properties

ErrorCode Returns the error code from the DT-Open Layers for .NET 
Class Library that is associated with this exception. 

Message Returns the descriptive string for the exception. 

Subsystem Returns the subsystem (AnalogInput, AnalogOutput, 
DigitalInput, DigitalOutput, CounterTimer, Tachometer, or 
QuadratureDecoder) that raised the exception. If the exception 
is not related to a specific subsystem, returns null.
133



Chapter 2

134
OlError

The OlError class provides the OlError constructor for encapsulating an DT-Open Layers error 
code. The OlError class provides the methods listed in Table 58 for getting information about 
errors returned by the DT-Open Layers for .NET Class Library. Refer to Appendix A for a list 
of errors that may be returned by the DT-Open Layers for .NET Class Library.

Delegates

DT-Open Layers events are reported to user-specified callback routines using the .NET 
delegates listed in Table 33.

Table 58: Members of the OlError Class 

Member Type Member Name Description

Methods GetErrorCode Returns the error code that is associated with a specified error 
message in the DT-Open Layers for .NET Class Library.

GetErrorString Returns a description for the specified error code in the 
DT-Open Layers for .NET Class Library.

Table 59: Delegates Included in the OpenLayers.DeviceCollection Namespace

Delegate Name Description

BufferDoneHandler When the event BufferDoneEvent occurs, returns the subsystem 
that generated the event and the BufferDoneEventArgs object that 
is associated with the event.

DeviceRemovedHandler When the event DeviceRemovedEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

DriverRunTimeErrorEventHandler When the event DriverRunTimeErrorEvent occurs, returns the 
subsystem that generated the event and the 
DriverRunTimeErrorEventArgs object that is associated with the 
event.

GeneralFailureHandler When the event GeneralFailureEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

IOCompleteHandler When the event IOCompleteEvent occurs, returns the subsystem 
that generated the event and the IOCompleteEventArgs object that 
is associated with the event.

PreTriggerBufferDoneHandler When the event PreTriggerBufferDoneEvent occurs, returns the 
subsystem that generated the event and the BufferDoneEventArgs 
object that is associated with the event.



Library Summary
Enumerations

Table 60 lists the enumerations that are used by the properties and/or methods in the 
OpenLayers.Base namespace.

QueueDoneHandler When the event QueueDoneEvent occurs, returns the subsystem 
that generated the event and the GeneralEventArgs object that is 
associated with the event.

QueueStoppedHandler When the event QueueStoppedEvent occurs, returns the 
subsystem that generated the event and the GeneralEventArgs 
object that is associated with the event.

Table 60: Enumerations Included in the OpenLayers.Device Collection Namespace

Enumeration Name Values Description

ChannelDataType Int16 Signed, 16-bit values.

Uint16 Unsigned, 16-bit values.

Int32 Signed, 32-bit values.

Float 32-bit floating-point values.

Double 64-bit, floating-point (double-bit) values.

ChannelType SingleEnded Channel is configured for single-ended connections.

Differential Channel is configured for differential connections.

ClockSource Internal Internal clock source.

External External clock source.

CouplingType DC DC coupling, where the DC offset is included.

AC AC coupling, where the DC offset is removed.

DataFlow Continuous Continuous I/O operation.

SingleValue Single-value I/O operation.

ContinuousPreTrigger Continuous pre-trigger input operation.

ContinuousPrePost
Trigger

Continuous about-trigger operation.

Encoding Binary Binary data encoding.

TwosComplement Twos complement data encoding.

ErrorCode See Appendix A. The error codes that can be returned by the library.

Table 59: Delegates Included in the OpenLayers.DeviceCollection Namespace (cont.)

Delegate Name Description
135



Chapter 2

136
ExcitationCurrentSource Internal Internal excitation current source.

External External excitation current source.

Disabled Excitation current source is disabled (no excitation is 
applied).

IOType VoltageIn The channel supports a voltage input.

VoltageOut The channels supports a voltage output.

DigitalInput The channel supports a digital input.

DigitalOutput The channel supports a digital output.

QuadratureDecoder The channel supports quadrature decoder operations.

CounterTimer The channel supports counter/timer operations.

Tachometer The channel supports tachometer input.

Current The channel supports a current input.

Thermocouple The channel supports a thermocouple input.

Rtd The channel supports an RTD input.

StrainGage The channel supports a strain gage input.

Accelerometer The channel supports an IEPE (accelerometer) input.

Bridge The channel supports a bridge-based sensor or 
general-purpose bridge input.

Thermistor The channel supports a thermistor input.

Resistance The channel supports a resistance measurement input.

MultiSensor The channel supports more than one sensor type. Use 
the SupportedChannelInfo.MultiSensorType property 
or the  SupportedChannelInfo.
SupportedMutliSensorTypes property to determine 
which sensor types are supported for the channel. 

OlBuffer.BufferState Idle Buffer is allocated but not queued to a subsystem.

Queued Buffer is queued to a subsystem.

InProcess Buffer is queued to a device driver.

Completed Buffer has been completed by the driver and is not 
queued to a subsystem.

Released Buffer has been released.

ReferenceTriggerType None Triggering is disabled. 

TTLPos An external digital (TTL) signal attached to the device. 
The trigger occurs when the device detects a transition 
on the rising edge of the digital TTL signal. 

DigitalEvent A trigger is generated when an external digital event 
occurs. 

Table 60: Enumerations Included in the OpenLayers.Device Collection Namespace (cont.)

Enumeration Name Values Description



Library Summary
ReferenceTriggerType (cont.) TTLNeg  An external digital (TTL) signal attached to the device. 
The trigger occurs when the device detects a transition 
on the falling edge of the digital TTL signal. 

ThresholdPos Either an analog signal from an analog input channel or 
an external analog signal attached to the device. A 
positive analog threshold trigger occurs when the device 
detects a positive-going signal that crosses a threshold 
value. The threshold level is generally set using an 
analog output subsystem on the device. 

 ThresholdNeg Either an analog signal from an analog input channel or 
an external analog signal attached to the device. A 
negative analog threshold trigger occurs when the 
device detects a negative-going signal that crosses a 
threshold value. The threshold level is generally set 
using an analog output subsystem on the device. 

SubsystemBase.States Initialized The subsystem has been initialized but has not been 
configured.

ConfiguredForSingle
Value 

The subsystem has been configured for a single-value 
operation.

ConfiguredFor
Continuous

The subsystem has been configured for a continuous 
operation.

PreStarted The subsystem has been prestarted for a simultaneous 
operation.

Running The operation on the subsystem is running.

Stopping The operation on the subsystem is being stopped.

Aborting The operation on the subsystem is being aborted.

IoComplete The I/O operation on the subsystem is done.

SubsystemType AnalogInput Analog input subsystem

AnalogOutput Analog output subsystem

DigitalInput Digital input subsystem

DigitalOutput Digital output subsystem

QuadratureDecoder Quadrature decoder subsystem

CounterTimer Counter/timer subsystem

Tachometer Tachometer subsystem

Table 60: Enumerations Included in the OpenLayers.Device Collection Namespace (cont.)

Enumeration Name Values Description
137



Chapter 2

138
Structures

The OpenLayers.DeviceCollection namespace provides the following structures:

• HardwareInfo structure – This structure is used by the Device.GetHardwareInfo method 
to return information about a DT-Open Layers-compliant device.

Table 35 lists the fields that are contained in the HardwareInfo structure.

• SingleValuesInfoRaw structure – Used with the SetSingleValuesAsRaw method, 
specifies the analog output channel to update and the raw count to output on that 
channel. 

Table 62 lists the fields that are contained in the SingleValuesInfoRaw structure.

TriggerType Software Trigger is generated when the operation is started in 
software.

TTLPos Trigger is generated on a rising edge of an external, 
digital (TTL) signal.

DigitalEvent Trigger is generated when an external digital event 
occurs.

TTLNeg Trigger is generated on a falling edge of an external, 
digital (TTL) signal.

ThresholdPos Trigger is generated when a positive-going analog signal 
crosses a threshold value.

ThresholdNeg Trigger is generated when a negative-going analog 
signal crosses a threshold value.

Table 61: Fields of the HardwareInfo Structure in the OpenLayers.DeviceCollection Namespace

Field Description

CollectionId This field contains a unique collection ID value that is generated 
using the addition of the last two digits of the year multiplied by 
10e7 (0 - 990000000) and the number of minutes into the current 
year (0 - 527040). Valid values for this field are 0 - 990527040.

NumberofDevices This field contains the number of devices in the collection. .

VendorId The identification number of the vendor. For most devices, this is 
0x087 hexadecimal. 

Table 60: Enumerations Included in the OpenLayers.Device Collection Namespace (cont.)

Enumeration Name Values Description



Library Summary
• SingleValuesInfoVolts structure – Used with the SetSingleValuesAsVolts method, 
specifies the analog output channel to update and the voltage value to output on that 
channel. 

Table 63 lists the fields that are contained in the SingleValuesInfoVolts structure.

Table 62: Fields of the SingleValuesInfoRaw Structure

Field Description

PhysicalChannel The number of the physical analog output channel to 
update. 

RawValue The raw count value to output on the specified analog 
output channel. 

Table 63: Fields of the SingleValuesInfoVolts Structure

Field Description

PhysicalChannel The number of the physical analog output channel to 
update. 

Voltage The voltage value to output on the specified analog output 
channel. 
139



Chapter 2

140



3
Using the OpenLayers.Base

Namespace
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Importing the Namespace for the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Getting a DeviceMgr Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Getting a Device Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Getting a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Determining the Available Channels and Setting up Channel Parameters. . . . . . . . . . . . 150

Performing Analog I/O Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Performing Digital I/O Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Performing Counter/Timer Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Performing Measure Counter Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Performing Tachometer Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Performing Quadrature Decoder Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Starting Subsystems Simultaneously  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Auto-Calibrating a Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Cleaning Up Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
141



Chapter 3

142
Overview
To perform a data acquisition operation on a DT-Open Layers-compliant device, you need to 
do the following:

1. Import the namespace into your program.

2. Get a DeviceMgr object to manage DT-Open Layers devices.

3. Get a Device object for each DT-Open Layers device that you want to use. 

4. Get a subsystem of each type that you want to use.

5. Determine what channels are supported on each subsystem, and set up channel 
parameters.

6. Set up and configure the subsystem.

7. Perform the I/O operations. 

8. Start subsystems simultaneously, if supported.

9. Auto-calibrate the subsystem, if supported.

10. Handle events.

11. Handle errors.

12. When finished, clean up the memory and resources used by the operations.

The remaining sections in this chapter describe these steps in detail.



Using the OpenLayers.Base Namespace
Importing the Namespace for the Library
To use any of the classes in the OpenLayers.Base namespace, you first need to import the 
namespace into your program, as follows:

Visual C#
using OpenLayers.Base

Visual Basic
Imports OpenLayers.Base
143



Chapter 3

144
Getting a DeviceMgr Object
Before performing any operation using the OpenLayers.Base namespace, you must first use 
the DeviceMgr.Get method to return a DeviceMgr object. The DeviceMgr object is responsible 
for managing all DT-Open Layers devices in your system.

The following examples shows how to get a DeviceMgr object:

Visual C#
DeviceMgr deviceMgr = DeviceMgr.Get();

Visual Basic
deviceMgr As DeviceMgr = DeviceMgr.Get()



Using the OpenLayers.Base Namespace
Getting a Device Object
Once you have a DeviceMgr object, use the DeviceMgr.GetDevice method to return a Device 
object for each DT-Open Layers device that you want to use.

Note: If you wish, you can also create a Device object using the Device constructor instead 
of using the GetDevice method.

The following examples shows how to get a Device object for the device named deviceName:

Visual C#
Device device = deviceMgr.GetDevice (deviceName);

Visual Basic
device As Device = deviceMgr.GetDevice(deviceName)

You can determine if a DT-Open Layers-compatible device is plugged into your system by 
using the DeviceMgr.HardwareAvailable method. If this method returns True, at least one 
DT-Open Layers-compatible device is plugged into your system.

To determine the names of all DT-Open Layers-compatible devices plugged into your system, 
use the DeviceMgr.GetDeviceNames method.

You can also use the use the following properties and/or methods to return information about 
the specified Device object:

• Device.BoardModelName property − Returns the model name of the device.

• Device.DeviceName property − Returns the user-defined name for the device. You can 
modify this name using the DT-Open Layers Control Panel applet. 

• Device.DriverName property − Returns the name of the Windows device driver for the 
device. 

• Device.DriverVersion property − Returns the version of the Windows device driver for 
the device. 

• Device.GetHardwareinfo method − Returns the driver id, product id, board id, and 
vendor id for the specified device. See page 106 for more information on these fields.
145



Chapter 3

146
Getting a Subsystem
The following subsystem types are defined in the OpenLayers.Base namespace:

• AnalogInputSubsystem – This subsystem type represents the analog input channels of 
your device, if supported. Use this subsystem type if you want to acquire data from the 
analog input channels.

If your device supports streaming digital input, counter/timer, and or quadrature 
decoder data through the analog input subsystem, use AnalogInputSubsystem to read 
this data.

• AnalogOutputSubsystem – This subsystem type represents the analog output channels of 
your device, if supported. Use this subsystem type if you want to update the values of the 
analog output channels.

If your device supports streaming digital output data through the analog output 
subsystem, use AnalogOutputSubsystem to update the data on the digital output ports.

• DigitalInputSubsystem – This subsystem type represents the digital input lines of your 
device, if supported. Use this subsystem type if you want to read the values of the digital 
input lines on your device. 

If your device supports it, you can also use DigitalInputSubsystem to generate an 
interrupt when a digital input line changes state.

• DigitalOutputSubsystem – This subsystem type represents the digital output lines of your 
device, if supported. Use this subsystem type if you want to update the values the digital 
output lines.

• CounterTimerSubsystem – This subsystem type represents the counter/timer channels of 
your device, if supported. Use this subsystem type if you want to read the value of 
counter or output pulses from the counter under various conditions.

• TachSubsystem – This subsystem type represents the tachometer input channels of your 
device, if supported. Use this subsystem type if you want to read the value of a 
tachometer measurement.

• QuadratureDecoderSubsystem – This subsystem type represents the quadrature decoder 
channels of your device, if supported. Use this subsystem type if you want to perform 
quadrature decoder operations.

Your device may support all or a subset of these functions or subsystem types. In addition, 
your device may support multiple instances, called elements, of the same subsystem type. 
Element numbering is zero-based; that is, the first instance of the subsystem is called element 
0, the second instance of the subsystem is called element 1, and so on. For example, if your 
device has two digital input ports, two subsystems of type DigitalInputSubsystem are 
available, differentiated as elements 0 and 1.



Using the OpenLayers.Base Namespace
Once you have a Device object, you need to get a subsystem of the appropriate type for each 
subsystem element that you want to use. While you can do this using the constructor 
provided in each subsystem class, it is recommended that you use one of the following 
methods of the Device class:

• Device.AnalogInputSubsystem method – Returns an analog input subsystem for a 
specified element and Device object. Most DT-Open Layers devices group all the analog 
input channels into one analog input subsystem element (0). However, some devices, like 
the DT9820 Series, provide one element per A/D converter.

The following example shows how to get an AnalogInputSubsystem object for element 0:

Visual C#
AnalogInputSubsystem ainSS = device.AnalogInputSubsystem (0);

Visual Basic
ainSS As AnalogInputSubsystem = device.AnalogInputSubsystem(0)

• Device.AnalogOutputSubsystem method – Returns an analog output subsystem for a 
specified element and Device object. Most DT-Open Layers devices group all the analog 
output channels into one analog output subsystem element (0). The following example 
shows how to get an AnalogOutputSubsystem object for element 0:

Visual C#
AnalogOutputSubsystem aoutSS = device.AnalogOutputSubsystem (0);

Visual Basic
aoutSS As AnalogOutputSubsystem = device.AnalogOutputSubsystem(0)

• Device.DigitalInputSubsystem method – Returns a digital input subsystem for a 
specified element and Device object. Most DT-Open Layers devices provide one digital 
input subsystem element for each digital input port. The following example shows how to 
get a DigitalInputSubsystem object for element 0:

Visual C#
DigitalInputSubsystem dinSS = device.DigitalInputSubsystem (0);

Visual Basic
dinSS As DigitalInputSubsystem = device.DigitalInputSubsystem(0)

• Device.DigitalOutputSubsystem method – Returns a digital output subsystem for a 
specified element and Device object. Most DT-Open Layers devices provide one digital 
output subsystem element for each digital output port. The following example shows 
how to get a DigitalOutputSubsystem object for element 0:

Visual C#
DigitalOutputSubsystem doutSS = device.DigitalOutputSubsystem (0);

Visual Basic
doutSS As DigitalOutputSubsystem = 

device.DigitalOutputSubsystem(0)
147



Chapter 3

148
• Device.CounterTimerSubsystem method – Returns a counter/timer subsystem for a 
specified element and Device object. Most DT-Open Layers devices provide one 
counter/timer subsystem element for each counter/timer channel. The following example 
shows how to get a CounterTimerSubsystem object for element 0:

Visual C#
CounterTimerSubsystem ctSS = device.CounterTimerSubsystem (0);

Visual Basic
ctSS As CounterTimerSubsystem = device.CounterTimerSubsystem(0)

• Device.TachSubsystem method – Returns a tachometer subsystem for a specified element 
and Device object. Most DT-Open Layers devices provide one tachometer subsystem 
element for each tachometer input channel. The following example shows how to get a 
TachSubsystem object for element 0:

Visual C#
TachSubsystem tachSS = device.TachSubsystem (0);

Visual Basic
tachSS As TachSubsystem = device.TachSubsystem(0)

• Device.QuadratureDecoderSubsystem method – Returns a quadrature decoder 
subsystem for a specified element and Device object. Most DT-Open Layers devices 
provide one quadrature decoder subsystem element for each quadrature decoder channel. 
The following example shows how to get a QuadratureDecoderSubsystem object for 
element 0:

Visual C#
QuadratureDecoderSubsystem quadSS =
device.QuadratureDecoderSubsystem (0);

Visual Basic
quadSS As QuadratureDecoderSubsystem =

device.QuadratureDecoderSubsystem(0)

You can determine the type of a specified subsystem by using the SubsystemType property 
within the appropriate subsystem class.

To return the number of elements supported by a specified subsystem type on a specified 
device, use the Device.GetNumSubsystemElements method.

You can determine the state of a subsystem using the State property within the appropriate 
subsystem class. The following states have been defined:

• Initialized – The subsystem has been initialized, but not configured. 

• ConfiguredForSingleValue – The subsystem has been configured for a single-value 
operation.

• ConfiguredForContinuous – The subsystem has been configured for a continuous 
operation.



Using the OpenLayers.Base Namespace
• Running – The subsystem is running.

Note: You can also use the IsRunning property within the appropriate subsystem class to 
determine if the subsystem is running.

• Stopping – The operation on the subsystem is in the process of stopping.

• Aborting – The operation on the subsystem is in the process of being aborted.

• Prestarted – The subsystem has been prestarted for a continuous simultaneous operation. 

• IOComplete – For analog input subsystems, the final post-trigger samples has been 
copied to the user buffer. For analog output subsystems, the final analog output sample 
has been written from the FIFO on the device; this is a transient state, which may not be 
seen, but does occur.
149



Chapter 3

150
Determining the Available Channels and Setting up 
Channel Parameters

When you get a subsystem of a specified type, the software automatically determines the 
number of available channels for the subsystem and creates a SupportedChannelInfo object 
for each channel. The SupportedChannelInfo object contains the following information:

• physical channel number

• logical channel number

• logical channel word

• channel name

• I/O type

• Information that pertains to voltage input channels:

− termination resistor

− sensor gain

− sensor offset

• Information that pertains to thermocouple channels:

− thermocouple type

− CJC channel

• Information that pertains to RTD channels:

− RTD type

− resistor value (R0) for an RTD 

− coefficient A value for an RTD

− coefficient B value for an RTD

− coefficient C value for an RTD

− sensor wiring configuration

• Information that pertains to thermistor channels:

− coefficient A value for a thermistor

− coefficient B value for a thermistor

− coefficient C value for a thermistor

− sensor wiring configuration

• Information that pertains to resistance measurement channels:

− sensor wiring configuration

− excitation current source

− value for the internal excitation current source



Using the OpenLayers.Base Namespace
• Information that pertains to accelerometer (IEPE) channels:

− coupling

− excitation current source

− value for the internal excitation current source

• Information that pertains to bridge-based sensors:

− bridge configuration

− bridge transducer capacity

− bridge transducer rated output

− strain gage lead wire resistance

− strain gage nominal resistance

− strain gage offset nulling value in volts

− strain gage shunt calibration resistor (enabled or disabled)

− strain gage shunt calibration value

• Information that pertains to strain gage channels:

− strain gage bridge configuration

− strain gage poisson ratio

− strain gage lead wire resistance

− strain gage gage factor

− strain gage nominal resistance

− strain gage offset nulling value in volts

− strain gage shunt calibration resistor (enabled or disabled)

− strain gage shunt calibration value

To get a collection of SupportedChannelInfo objects, use the SupportedChannels class. 

You can get the SupportedChannelInfo object for a specific channel using the 
SupportedChannels.GetChannelInfo method and any one of the following arguments:

• The physical channel number.

• The user-defined name of the channel.

• The subsystem type and logical channel number.

• The subsystem type, logical channel number, and logical channel word.

You can also use the SupportedChannels.Item ([]) property to return the 
SupportedChannelsInfo object at a specific index.

The following subsections describe the elements of the SupportedChannelsInfo class in more 
detail.
151



Chapter 3

152
Physical and Logical Channels

The logical channel number, which is zero-based, maps the physical channel to the channel’s 
subsystem type. If the channels are native to the AnalogInputSubsystem, the logical channel 
number is the same as the physical channel number. If channels from other subsystem types 
are accessible through the AnalogInputSubsystem, the logical channel numbers are not the 
same as the physical channel numbers for the non-native channels. 

For example, in Table 64, the SupportedChannels object for the analog input subsystem 
contains 8 analog input channels, four digital input ports, and two 32-bit counter/timers. As 
you can see, physical channels 0 to 7 map to logical channels 0 to 7 of the analog input 
subsystem, physical channels 8 to 11 map to logical channels 0 to 3 of the digital input 
subsystem, and physical channels 12 to 15 map to logical channels 0 and 1 of the 
counter/timer subsystem (in this case, since each counter is 32-bits, one logical channel maps 
to two 16-bit physical channels).

You can determine the number of a physical channel for a given subsystem using the 
SupportedChannelInfo.PhysicalChannelNumber property.

Table 64: Example of Logical and Physical Channels in a SupportedChannels Object 
for an Analog Input Subsystem 

Subsystem Type
Logical Channel 

Number
Physical Channel 

Number

Analog Input 0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Digital Input 0 8

1 9

2 10

3 11

Counter/Timer 0 12

0 13

1 14

1 15



Using the OpenLayers.Base Namespace
You can determine the number of a logical channels for a given subsystem using the 
SupportedChannelInfo.LogicalChannelNumber property.

To reference a channel by number, specify either the physical channel number or the 
subsystem type and logical channel number.

Logical Channel Word

For channels like 32-bit counter/timers that return multi-word data, the logical channel word, 
which is zero-based, maps the physical channel to the data word that it returns. For example, 
looking at the counter/timer subsystem type in Table 65, physical channel 12 has a logical 
channel word of 0, indicating that this channel returns the first 16-bits of data. Physical 
channel 13 has a logical channel word of 1, indicating that this channel returns the second 
16-bits of data.

For channels that do not return multi-word data, the value of the logical channel word is -1. 

Table 65: Example of Logical and Physical Channels in a SupportedChannels Object 
or an Analog Input Subsystem 

Subsystem Type
Logical Channel 

Number
Physical Channel 

Number
Logical Channel 

Word

Analog Input 0 0 –1

1 1 –1

2 2 –1

3 3 –1

4 4 –1

5 5 –1

6 6 –1

7 7 –1

Digital Input 0 8 –1

1 9 –1

2 10 –1

3 11 –1

Counter/Timer 0 12 0

0 13 1

1 14 0

1 15 1
153



Chapter 3

154
You can determine the value of the logical channel word for a given channel using the 
SupportedChannelInfo.LogicalChannelWord property.

To reference a channel by logical channel word, specify the subsystem type, logical channel 
number, and logical channel word.

Channel Name

By default, each channel that is listed in the SupportedChannelInfo class has a name that 
describes the subsystem type and includes the logical channel number and logical channel 
word, if applicable. Examples of default names include Ain0 for analog input channel 0, 
Aout1 for analog output channel 1, Din0 for digital input channel 0, Dout2 for digital output 
channel 2, CT0 Word 1 for counter/timer channel 0 (word 1), and Quad1 Word 0 for 
quadrature decoder channel 1 (word 0).

You can specify your own name for a channel using the SupportedChannelInfo.Name 
property. 

To reference a channel by name, specify the name of the channel.

IOType

You can determine what kind of I/O operation is supported for a particular channel of a given 
subsystem using the SupportedChannelInfo.IOType property.

This property returns one of the following I/O types:

• VoltageIn – Refer to page 155 for information on setting up additional parameters for this 
channel I/O type.

• VoltageOut

• DigitalInput

• DigitalOutput

• QuadratureDecoder

• CounterTimer

• Tachometer

• Current – Refer to page 157 for information on setting up additional parameters for this 
channel I/O type.

• Thermocouple – Refer to page 157 for information on setting up additional parameters for 
this channel I/O type.

• Rtd – Refer to page 160 for information on setting up additional parameters for this 
channel I/O type.

• StrainGage – Refer to page 162 for information on setting up additional parameters for 
this channel I/O type.

• Accelerometer – Refer to page 167 for information on setting up additional parameters for 
this channel I/O type.



Using the OpenLayers.Base Namespace
• Bridge – Refer to page 168 for information on setting up additional parameters for this 
channel I/O type.

• Thermistor – Refer to page 172 for information on setting up additional parameters for 
this channel I/O type.

• Resistance – Refer to page 173 for information on setting up additional parameters for this 
channel I/O type.

• MultiSensor – A MultiSensor I/O type means that the channel supports multiple sensors 
types. You must specify the sensor type that is connected to the channel using the 
SupportedChannelInfo.MultiSensorType property, as described in the following 
subsections.

Setting Up Voltage Input Channels

To determine whether a specific channel supports voltage inputs or multiple sensor types, use 
the SupportedChannelInfo.IOType property. If the value of IOType is MultiSensor, you must 
set the multisensor type to VoltageIn using the SupportedChannelInfo.MultiSensorType 
property to use the channel for voltage measurements.

Note: You can read a single voltage value from one channel using the 
AnalogInputSubsystem. GetSingleValueAsVolts method. If the analog input subsystem 
supports simultaneous operations (AnalogInputSubsystem.
SupportsSimultaneousSampleHold is True), you can read a single voltage value from all 
channels using the AnalogInputSubsystem.GetSingleValuesAsVolts method. Refer to page 
176 for more information. 

If you are acquiring data to a buffer, you can read the voltage value from the specified 
channels using the OlBuffer.GetDataAsVolts method. Refer to page 223 for more 
information.

Termination Resistor

Some voltage input channels support a bias return termination resistor. To determine if the 
channel supports input termination, use the 
SupportedChannelInfo.SupportsInputTermination property. 

The bias return termination resistor is typically enabled for floating and grounded voltage 
sources. It is typically disabled for voltage sources with grounded references. Refer to the 
documentation for your device for wiring information.

You can enable or disable the bias return termination resistor using the 
SupportedChannelInfo.InputTerminationEnabled property. If this property is True, the 
termination resistor is enabled. If this property is False, the termination resistor is not used.
155



Chapter 3

156
Sensor Gain and Offset

If you want to read a value from a channel in engineering units, like pressure, and your 
channel supports voltage measurements only, you can specify the gain and offset for the 
sensor using the SupportedChannelInfo.SensorGain and 
SupportedChannelInfo.SensorOffset properties.

Note: If the channel supports an I/O type other than voltage, such as thermocouple, RTD, 
thermistor, resistance, current, strain gage, or bridge, use the properties specific to these I/O 
types instead of the sensor gain and offset. For example, if you want to read a temperature 
value from a thermocouple input, use the ThermocoupleType property, described on page 
158, instead of the sensor gain and offset.

The sensor gain and offset are used to scale a sample from raw counts to a sensor format. The 
scaling occurs in two steps. First, the raw count value is converted to prescaled voltage using 
the gain applied to the input signal. Then, the prescaled voltage is scaled using the following 
equation:

y = mx + b

where y is the scaled sensor value, m is the sensor gain, x is the prescaled value in voltage, and 
b is the sensor offset. 

The following example shows how to set the sensor gain and offset of channel 0 of the analog 
input subsystem using the SupportedChannels object:

Visual C#
SupportedChannelInfo Ch0Info =

ainSS.SupportedChannels.GetChannelInfo(
SubsystemType.AnalogInput,0);

.

.
// Set the sensor gain and offset
Ch0Info.SensorGain = 2;
Ch0Info.SensorOffset = 10;

Visual Basic
Dim Ch0Info As SupportedChannelInfo =

ainSS.SupportedChannels.GetChannelInfo(
SubsystemType.AnalogInput, 0)

.

.
' Set the sensor gain and offset
Ch0Info.SensorGain = 2
Ch0Info.SensorOffset = 10



Using the OpenLayers.Base Namespace
Setting Up Current Input Channels

To determine if the analog input subsystem supports current inputs, use the 
AnalogInputSubsystem. SupportsCurrent property.

If this value is True, determine whether the specific channel supports current or multiple 
sensor types using the SupportedChannelInfo.IOType property. If the value of IOType is 
MultiSensor, you must set the multisensor type to Current using the 
SupportedChannelInfo.MultiSensorType property to use the channel for current 
measurements.

Some current channels support a bias return termination resistor. To determine if the channel 
supports input termination, use the SupportedChannelInfo.SupportsInputTermination 
property. 

The bias return termination resistor is typically enabled for floating and grounded current 
sources. It is typically disabled for current sources with grounded references. Refer to the 
documentation for your device for wiring information.

You can enable or disable the bias return termination resistor using the 
SupportedChannelInfo.InputTerminationEnabled property. If this property is True, the 
termination resistor is enabled. If this property is False, the termination resistor is not used.

Note: You can read a single current value from one channel using the 
AnalogInputSubsystem.GetSingleValueAsCurrent method. Refer to page 176 for more 
information. 

If you are acquiring data to a buffer, you can read the current value from the specified 
channels using the OlBuffer.GetDataAsCurrent method. Refer to page 222 for more 
information.

Setting Up Thermocouple Input Channels

To determine if the analog input subsystem supports thermocouple inputs, use the 
AnalogInputSubsystem.SupportsThermocouple property.

If this value is True, determine whether the specific channel supports thermocouple inputs or 
multiple sensor types using the SupportedChannelInfo.IOType property. If the value of 
IOType is MultiSensor, you must set the multisensor type to Thermocouple using the 
SupportedChannelInfo.MultiSensorType property to use the channel for thermocouple 
measurements.

For channels that support thermocouples, you can set the following properties:

• Thermocouple input type, described on this page

• CJC source, described on page 159
157



Chapter 3

158
Note: You can read a single temperature value from one channel using the 
AnalogInputSubsystem. GetSingleValueAsTemperature method. If the analog input 
subsystem supports simultaneous operations 
(AnalogInputSubsystem.SupportsSimultaneousSampleHold is True), you can read a single 
temperature value from all channels using the 
AnalogInputSubsystem.GetSingleValuesAsTemperature method. Refer to page 176 for 
more information. 

If you are acquiring data to a buffer, you can read the temperature from the specified 
channels using the OlBuffer.GetDataAsTemperatureByte or 
OlBuffer.GetDataAsTemperatureDouble method, depending on whether your device 
returns temperature values as integer or floating-point (4 byte) values. To determine if your 
subsystem returns floating-point values, use the AnalogInputSubsystem. ReturnsFloats 
property. Refer to page 223 for more information.

Thermocouple Input Types

If the subsystem supports thermocouple inputs, specify the type of thermocouple that is 
connected to the input channel using the SupportedChannelInfo.ThermocoupleType 
property. The following thermocouple types are defined: 

• None – Specifies voltage rather than temperature

• J – Specifies a J thermocouple type 

• K – Specifies a K thermocouple type

• B – Specifies a B thermocouple type

• E – Specifies a E thermocouple type

• N – Specifies a N thermocouple type

• R – Specifies a R thermocouple type

• S – Specifies a S thermocouple type

• T – Specifies a T thermocouple type

If the thermocouple type is set to None, data is returned in voltage rather than temperature. If 
the thermocouple type is set for any of the other defined thermocouple types, the data is 
returned in temperature; you can specify the units as degrees C, F, or K.

Note: If the AnalogInputSubsystem. SupportsTemperatureDataInStream is True, each 
channel’s ThermocoupleType property is set to the value that was stored on the device when 
the subsystem was last configured. If AnalogInputSubsystem.SupportsTemperature
DataInStream is False, the default thermocouple type is J.

You can get the temperature range for a specified thermocouple type using the 
Utility.GetThermocoupleRange method.



Using the OpenLayers.Base Namespace
CJC Sources

Some devices do temperature conversion hardware based on the value of an internal CJC 
(cold junction compensation) channel. Every sample in the data stream corresponds to a single 
(typically, floating-point) value that represents either the temperature (in degrees C) or the 
voltage of the input channel, based on its thermocouple type.

Other devices return A/D input values as raw counts and the DT-Open Layers for .NET Class 
Library converts these values into temperatures or voltage based on the thermocouple input 
type and the value of the CJC channel. 

To determine if your subsystem does temperature conversion in hardware, use the 
AnalogInputSubsystem. SupportsTemperatureDataInStream property. If this property 
returns True, temperature conversion is done by the DT-Open Layers for .NET Class Library.

To determine if the analog input subsystem supports a CJC (cold junction compensation) 
source that is internal to the hardware, use the AnalogInputSubsystem. 
SupportsCjcSourceInternal property. To determine if the analog input subsystem supports 
channels that are used for CJC, use the AnalogInputSubsystem. SupportsCjcSourceChannel 
property. 

If the analog input subsystem supports one or more channels that are used for CJC, you can 
determine which CJC channel is associated with a specific input channel using the 
SupportedChannelInfo.CjcChannel property. This property applies only to devices that 
support a channel (not an internal source) as the CJC source. By default, channel 0 is used as 
the CJC source.

Note: Some devices that support temperature conversion in hardware also provide the 
option of returning CJC values in the data stream. This option is seldom used, but is provided 
if you want to implement your own temperature conversion algorithms in software when 
using continuous operations.

To determine if the subsystem supports interleaving CJC temperature values with A/D 
values (either voltage or temperature depending on the thermocouple type) in the data 
stream, use the AnalogInputSubsystem.SupportsInterleavedCjcTemperatures
InStream property.

By default, the subsystem is disabled from returning CJC values in the data stream. To enable 
the subsystem to return CJC values in the data stream, use the AnalogInputSubsystem. 
ReturnCjcTemperaturesInStream property. When enabled, two (typically floating-point) 
values are returned in the data stream for each channel: the first value represents the 
temperature or voltage of the input channel (based on the thermocouple type of the input), 
and the second value represents the CJC temperature, in degrees C. Generally, in this 
configuration, a thermocouple type of None is specified for each channel; use 
GetDataAsVolts, described on page 222 to read the data). If you return CJC values in the data 
stream, ensure that you allocate a buffer that is twice as large to accommodate the CJC values 
(number of samples x 2). 

Refer to page 176 and page 223 for more information on reading CJC values.
159



Chapter 3

160
Setting Up RTD Input Channels

To determine if the analog input subsystem supports RTD inputs, use the 
AnalogInputSubsystem.SupportsRTD property.

If this value is True, determine whether the specific channel supports RTDs or multiple sensor 
types using the SupportedChannelInfo.IOType property. If the value of IOType is 
MultiSensor, you must set the multisensor type to Rtd using the 
SupportedChannelInfo.MultiSensorType property to use the channel for RTD 
measurements.

In an RTD measurement, the measurement device reads the voltage drop across the RTD as 
the resistance changes and converts the voltage to the appropriate temperature using the 
Callendar-Van Dusen transfer function:

where,

• RT is the resistance at temperature.

• R0 is the resistance at 0° C.

• A, B, and C are the Callendar-Van Dusen coefficients for a particular RTD type. (The value 
of C is 0 for temperatures above 0° C.)

For channels that support RTD inputs, you must specify the type of RTD that is connected to 
the input channel using the SupportedChannelInfo.RTDType property. To specify the R0 
coefficient, use the SupportedChannelInfo.RtdR0 property. To specify the A coefficient, use 
the SupportedChannelInfo.RtdACoefficient property. To specify the B coefficient, use the 
SupportedChannelInfo.RtdBCoefficient property. To specify the C coefficient, use the 
SupportedChannelInfo.RtdCCoefficient property. 

Table 66 lists the values that are supported for these properties:

RT R0 1 AT BT
2
CT

3
T 100–( )+ + +[ ]=



Using the OpenLayers.Base Namespace
If you specify a value of Pt3850 for SupportedChannelInfo.RTDType, you must also specify 
SupportedChannelInfo.RtdR0, unless you are using a 100 Ω RTD (the default value). 

If you specify a value of Custom for SupportedChannelInfo.RTDType, you must specify the 
values for SupportedChannelInfo.RtdR0, SupportedChannelInfo.RtdACoefficient, 
SupportedChannelInfo.RtdBCoefficient, and SupportedChannelInfo.RtdCCoefficient. 
Otherwise, the software automatically sets the appropriate value for 
SupportedChannelInfo.RtdR0, SupportedChannelInfo.RtdACoefficient, 
SupportedChannelInfo.RtdBCoefficient, and SupportedChannelInfo.RtdCCoefficient 
based on the selected RTD type.

Note: If the AnalogInputSubsystem. SupportsTemperatureDataInStream property is True, 
each channel’s RTDType property is set to the value that was stored on the device when the 
subsystem was last configured.

Use the SupportedChannelInfo.SensorWiringConfiguration property to specify the wiring 
configuration (two-wire, three-wire, or four-wire) for the RTD.

RTD data on most devices is represented as floating-point values (4 bytes). To determine if 
your subsystem returns floating-point values, use the AnalogInputSubsystem. ReturnsFloats 
property.

Table 66: Values Supported for RTD Properties

Values for the 
RTDType 
Property

Values for the
RtdR0 Property

( Ω)

Values for the
RtdACoefficient 

Property

Values for the
RtdBCoefficient

Property

Values for the
RtdCCoefficient

Property

Pt3850a

(the default)

a. Uses a Temperature Coefficient of Resistance (TCR) value of 0.003850 Ω / Ω /° C as specified in the DIN/IEC 60751 
ASTM-E1137 standard. 

100 (the default), 500, 
or 1000

3.9083 x 10–3 –5.775 x 10–7 –4.183 x 10–12

Pt3920b

b. Uses a TCR value of 0.003920 Ω / Ω /° C as specified in the SAMA RC21-4-1966 standard.

98.129 3.9787 x 10–3 –5.869 x 10–7 –4.167 x 10–12

Pt3911c

c. Uses a TCR value of 0.003911 Ω / Ω /° C as specified in the US Industrial Standard standard.

100 3.9692 x 10–3 –5.8495 x 10–7 –4.233 x 10–12

Pt3750d

d. Uses a TCR value of 0.003750 Ω / Ω /° C as specified in the Low Cost standard.

1000 3.81 x 10–3 –6.02 x 10–7 –6.0 x 10–12

Pt3916e

e. Uses a TCR value of 0.003916 Ω / Ω /° C as specified in the Japanese JISC 1604-1989 standard.

100 3.9739 x 10–3 –5.870 x 10–7 –4.4 x 10–12

Pt3928f

f. Uses a TCR value of 0.003928 Ω / Ω /° C as specified in the ITS-90 standard.

100 3.9888 x 10–3 –5.915 x 10–7 –3.85 x 10–12

Custom User-defined User-defined User-defined User-defined
161



Chapter 3

162
Note: You can read a single temperature value from one channel using the 
AnalogInputSubsystem. GetSingleValueAsTemperature method. If the analog input 
subsystem supports simultaneous operations (AnalogInputSubsystem. 
SupportsSimultaneousSampleHold is True), you can read a single temperature value from 
all channels using the AnalogInputSubsystem. GetSingleValuesAsTemperature method. 
Refer to page 176 for more information. 

If you are acquiring data to a buffer, you can read the temperature from the specified 
channels using the OlBuffer.GetDataAsTemperatureByte or 
OlBuffer.GetDataAsTemperatureDouble method. Refer to page 223 for more information.

Setting Up Strain Gage Input Channels

To determine if the analog input subsystem supports strain gage measurements, use the 
AnalogInputSubsystem.SupportsStrainGage property. 

If this value is True, determine whether the specific channel supports strain gage 
measurements or multiple sensor types using the SupportedChannelInfo.IOType property. If 
the value of IOType is MultiSensor, you must set the multisensor type to StrainGage using the 
SupportedChannelInfo.MultiSensorType property to use the channel for strain gage 
measurements.

For channels that support strain gages, you can set the following properties for the channel:

• TEDS information, if supported, as described on page 163 

• Strain Gage configuration, described on page 165

• Poisson ratio, described on page 166

• Lead wire resistance, described on page 166

• Gage factor, described on page 166

• Nominal resistance, described on page 166

• Offset nulling value, described on page 166

• Shunt calibration resistor and value, described on page 167



Using the OpenLayers.Base Namespace
Note: You must set the excitation source and value for the subsystem, as described on page 
203.

You can read a single microstrain value from a strain gage channel using the 
AnalogInputSubsystem.GetSingleValueAsStrain method. For a device that supports 
simultaneous A/Ds, you can acquire a single value from each analog input channel and 
return the data as an array of values in microstrain using the 
AnalogInputSubsystem.GetSingleValuesAsStrain method. Refer to page 176 for more 
information. 

If you are acquiring data to a buffer, you can read data from each strain gage, in microstrain, 
using the OlBuffer.GetDataAsStrain method. Refer to page 224 for more information.

In some cases, you may wish to use a rosette, which is arrangement of two or more closely 
positioned strain gage grids that are oriented to measure the normal strains along different 
directions in the underlying surface of a test material. The DT-Open Layers for .NET Class 
Library supports rectangular and delta rosettes; tee rosettes are not supported.

A rectangular rosette is an arrangement of three strain gage grids where the second grid is 
angularly displaced from the first grid by 45 degrees and the third grid is angularly displaced 
from the first grid by 90 degrees. In this arrangement, each strain gage grid (configured as a 
quarter bridge strain gage) corresponds to an analog input channel. You can read the strain 
value from each analog input channel individually, and if desired, use the utility method 
Utility.ComputeRectangularRosette to calculate the minimum and maximum principal strain 
values and their associated angles (in degrees).

A delta rosette is an arrangement of three strain gage grids where the second grid is angularly 
displaced from the first grid by 60 degrees and the third grid is angularly displaced from the 
first grid by 120 degrees. In this arrangement, each strain gage grid (configured as a quarter 
bridge strain gage) corresponds to an analog input channel. You can read the strain value from 
each analog input channel individually, and if desired, use the utility method 
Utility.ComputeDeltaRosette to calculate the minimum and maximum principal strain 
values and their associated angles (in degrees).

TEDS for Strain Gages

If your strain gage supports a TEDS interface, you can read the TEDS data from the strain gage 
directly using the SupportedChannelInfo.StrainGageTeds.ReadHardwareTeds method, or 
from a TEDS data file using the SupportedChannelInfo.StrainGageTeds.ReadVirtualTeds 
method. 

Note: The properties in the StrainGageTeds class are read-only. It is up the application to 
read the value of these properties and to apply the appropriate values to the 
SupportedChannelInfo strain gage properties.

Table 67 lists the properties that you can read to access the TEDS data for a strain gage. 
163



Chapter 3

164
Table 67: Read-Only Properties for Accessing TEDS Data for Strain Gages 

Property Description

BridgeType Gets the type of bridge (Full Bridge, Half Bridge, or Quarter 
Bridge) that was specified in the TEDS data for the channel.

CalDate Gets the calibration date that was specified in the TEDS data for 
the channel.

CalibrationPeriod Gets the calibration period that was specified in the TEDS data for 
the channel.

CalInitials Gets the calibration initials that were specified in the TEDS data for 
the channel.

ElectricalSignalType Gets the electrical signal type that was specified in the TEDS data 
for the channel.

GageArea Gets the area of each gage element, in mm², that was specified in 
the TEDS data for the channel.

GageFactor Gets the gage factor, or sensitivity of the strain gage, that was 
specified in the TEDS data for the channel.

GageResistance Gets the initial (unstrained) gage resistance, in ohms, that was 
specified in the TEDS data for the channel.

GageType Gets the type of gage that was specified in the TEDS data for the 
channel. Refer to page 95 for more information on the values that 
are defined for GageType:

IsTedsConfigured Inherited from the TedsBase class, returns True if the TEDS data 
stream is read successfully; otherwise, returns False. 

ManufacturerId Inherited from the TedsBase class, gets identifying information 
about the manufacturer of the sensor from the TEDS data for the 
channel.

MaxElectricalValue Gets the maximum electrical output, in V/V, that was specified in 
the TEDS data for the channel.

MaximumExcitationVoltage Gets the maximum excitation voltage that was specified in the 
TEDS data for the channel.

MaxPhysicalValue Gets the positive full-scale value, in strain, that was specified in the 
TEDS data for the channel.

MeasID Gets the measurement location ID that was specified in the TEDS 
data for the channel.

MinElectricalValue Gets the minimum electrical output, in V/V, that was specified in 
the TEDS data for the channel.

MinPhysicalValue Gets the negative full-scale value, in strain, that was specified in 
the TEDS data for the channel.

ModelNumber Inherited from the TedsBase class, gets the model number of the 
sensor from the TEDS data for the channel.

NominalExcitationVoltage Gets the nominal excitation voltage that was specified in the TEDS 
data for the channel.



Using the OpenLayers.Base Namespace
Strain Gage Configuration

For an analog input channel that supports a strain gage input, you can specify one of the 
following configurations using the SupportedChannelInfo.StrainGageBridgeConfiguration 
property:

• FullBridgeBending – This configurations uses four active gages to measure bending 
strain. This configuration rejects axial strain, compensates for temperature, and 
compensates for lead resistance.

• FullBridgeBendingPoisson – This configuration uses four active gages to measure 
bending strain. This configuration also rejects axial strain, compensates for temperature, 
compensates for lead resistance, and compensates for the aggregate effect on the principle 
strain measurement due to the Poisson ratio of the specimen material.

• FullBridgeAxialPoisson – This configuration uses four active gages to measure axial 
strain. This configuration also compensates for temperature, rejects bending strain, 
compensates for lead resistance, and compensates for the aggregate effect on the principle 
strain measurement due to the Poisson ratio of the specimen material.

• HalfBridgePoisson – This configuration uses two active gages to measure either axial or 
bending strain. This configuration compensates for temperature, and compensates for the 
aggregate effect on the principle strain measurement due to the Poisson ratio of the 
specimen material.

• HalfBridgeBending – This configuration uses two active gages to measure bending 
strain. This configuration rejects axial strain and compensates for temperature. 

PoissonCoefficient Gets the Poisson coefficient after installation that was specified in 
the TEDS data for the channel.

ResponseTime Gets the response time, in seconds, that was specified in the 
TEDS data for the channel.

SerialNumber Inherited from the TedsBase class, gets the serial number of the 
sensor from the TEDS data for the channel.

TransverseSensitivity Gets the transverse sensitivity, in percentage, that was specified in 
the TEDS data for the channel.

VersionLetter Inherited from the TedsBase class, gets the version letter of the 
sensor from the TEDS data for the channel.

VersionNumber Inherited from the TedsBase class, gets the version number of the 
sensor from the TEDS data for the channel.

YoungModulus Gets the Young’s modulus, or measure of the stiffness of the 
material, in MPa, that was specified in the TEDS data for the 
channel.

ZeroOffset Gets the zero offset value after installation, in V/V,  that was 
specified in the TEDS data for the channel.

Table 67: Read-Only Properties for Accessing TEDS Data for Strain Gages  (cont.)

Property Description
165



Chapter 3

166
• QuarterBridge – This configuration uses a single active gage to measure axial or bending 
strain. You must supply an external resistor that matches the nominal resistance of the 
bridge to complete the bridge externally.

Note: If you are using a rectangular or delta rosette, configure each channel to use the 
QuarterBridge configuration.

• QuarterBridgeTempComp – This configuration uses one active gage and one dummy 
gage to measure axial and bending strain while compensating for temperature.

Strain Gage Poisson Ratio

For an analog input channel that uses the FullBridgeBendingPoisson, FullBridgeAxialPoisson, 
and HalfBridgePoisson bridge configuration, you can specify the Poisson ratio of the 
specimen material using the SupportedChannelInfo.StrainGagePoissonRatio property. The 
Poisson ratio is a material-dependent constant that is the ratio of transverse (perpendicular) 
contraction to axial strain.

Strain Gage Lead Wire Resistance

For an analog input channel that supports a strain gage input and does not use remote 
sensing, you can specify the lead wire resistance of the bridge, in ohms, using the 
SupportedChannelInfo.StrainGageLeadWireResistance property.

If remote sensing is used, specify 0 for this property.

Gage Factor

For an analog input channel that supports a strain gage input, you can specify the gage factor 
of the strain gage using the SupportedChannelInfo.StrainGageGageFactor property.

Strain Gage Nominal Resistance

For an analog input channel that supports a strain gage input, you can specify the nominal 
resistance of the bridge (Rg), in ohms, when it is not under strain or load using the 
SupportedChannelInfo.StrainGageNominalResistance property.

Strain Gage Offset Nulling

For an analog input channel that supports a strain gage input, a balanced bridge produces 
zero volts under ideal conditions with zero strain applied. In practice, however, the output of 
a bridge in an unstrained condition is offset from zero slightly due to imperfect matching of 
bridge resistances.

You can adjust the offset of the channel by performing offset nulling on the channel. To 
perform offset nulling, read the value of the bridge in an unstrained condition using the 
AnalogInputSubsystem.GetSingleValueAsVolts method. Then, specify the value that you 
read using the SupportedChannelInfo.StrainGageOffsetNullingValueInVolts property. 
Internally, this value is subtracted from all subsequent measurements before the voltage is 
converted to strain.



Using the OpenLayers.Base Namespace
Strain Gage Shunt Calibration

To determine if the analog input subsystem supports shunt calibration, use the 
AnalogInputSubsystem. SupportsShuntCalibration property.

You can use shunt calibration to correct span errors in the measurement path. You can also use 
shunt calibration to verify the integrity of the setup by turning on the shunt resistor before 
you acquire data.

If you want to use the internal shunt calibration resistor provided by the device, ensure that 
the internal RSHUNT+ and RSHUNT– lines are connected across the gage and that no strain is 
applied to the specimen, and then enable the resistor by setting the  
SupportedChannelInfo.StrainGageShuntCalibrationResistorEnabled property to True. (Be 
sure to set this value back to False when the shunt calibration procedure is complete.)

Once the internal shunt resistor is enabled or you have connected your own shunt resistor to 
the bridge, read the value of the bridge using the 
AnalogInputSubsystem.GetSingleValueAsStrain method. Then, divide the expected value 
of the bridge by the actual value that you read, and specify the result, in microstrain, using the 
SupportedChannelInfo.StrainGageShuntCalibrationValue property. Internally, the software 
multiplies the channel measurement with this value to adjust the gain of the device. 

Refer to the user's manual for your device for more information on shunt calibration. 

Setting Up Accelerometer (IEPE) Input Channels

To determine if the analog input subsystem supports IEPE inputs, use the 
AnalogInputSubsystem.SupportsIepe property.

Determine whether the specific channel supports IEPE inputs or multiple sensor types using 
the SupportedChannelInfo.IOType property. If the value of IOType is MultiSensor, you must 
set the multisensor type to Accelerometer using the 
SupportedChannelInfo.MultiSensorType property to use the channel for accelerometer 
measurements.

For channels that support accelerometers (IEPE inputs), you can set the following properties:

• Coupling

• Excitation current source

Coupling

To determine if the analog input subsystem supports DC coupling (where DC offset is 
included), use the AnalogInputSubsystem. SupportsDCCoupling property. To determine if 
the analog input subsystem supports AC coupling (where the DC offset is removed), use the 
AnalogInputSubsystem.SupportsACCoupling property. 

You can specify one of the coupling type using the SupportedChannelInfo.Coupling 
property. By default, DC coupling is used.
167



Chapter 3

168
Excitation Current Source Values

To determine if the analog input subsystem supports an internal excitation current source, use 
the AnalogInputSubsystem.SupportsInternalExcitationCurrentSrc property. To determine if 
the analog input subsystem supports an external excitation current source, use the 
AnalogInputSubsystem.SupportsExternalExcitationCurrentSrc property. 

You can specify the excitation current source (Internal, External, or Disabled) using the 
SupportedChannelInfo.ExcitationCurrentSource property. By default, the excitation current 
source is disabled.

If you set the excitation current source to Internal, you can also set the value of the excitation 
current source using the SupportedChannelInfo.ExcitationCurrentValue property. To 
determine what current source values are supported by the subsystem, use the 
AnalogInputSubsystem.SupportedExcitationCurrentValues property. By default, the first 
value in the list of supported values is used.

Setting Up Bridge-Based Sensors

To determine if the analog input subsystem supports bridge-based sensors or general-purpose 
bridges, use the AnalogInputSubsystem.SupportsBridge property. 

If this value is True, determine whether the specific channel supports bridge measurements or 
multiple sensor types using the SupportedChannelInfo.IOType property. If the value of 
IOType is MultiSensor, you must set the multisensor type to Bridge using the 
SupportedChannelInfo.MultiSensorType property.

For full-bridge-based sensors, you can set the following properties for the channel:

• TEDS information, if available, as described on page 169 

• Bridge configuration, described on 

• Transducer capacity, described on page 171

• Transducer rated output, described on page 171

• Nominal resistance, described on page 171

• Lead wire resistance, described on page 171

• Offset nulling value, described on page 171

• Shunt calibration resistor and value, described on page 172



Using the OpenLayers.Base Namespace
Note: You must set the excitation source and value for the subsystem, as described on page 
203.

For full-bridge-based sensors, you can read a single value in the native engineering units of 
the sensor using the AnalogInputSubsystem.GetSingleValueAsBridgeBasedSensor 
method. For a device that supports simultaneous A/Ds, you can acquire a single value from 
each bridge-based sensor and return the data as an array of values (in the native engineering 
units of the sensor) using the AnalogInputSubsystem. 
GetSingleValuesAsBridgeBasedSensor method. Refer to page 176 for more information.

If you are acquiring data to a buffer, you can read data from each bridge-based sensor (in the 
native engineering units of the sensor) using the OlBuffer.GetDataAsBridgeBasedSensor 
method. Refer to page 224 for more information.

For general-purpose bridges, you can read a single normalized bridge output value, in volts, 
from the bridge using the AnalogInputSubsystem. 
GetSingleValueAsNominalBridgeOutput method. If you are acquiring data to a buffer, you 
can read the normalized bridge output value from the specified channels, in mV/Vexe, using 
the OlBuffer.GetDataAsNormalizedBridgeOutput method. Refer to page 176 and page 224 
for more information.

TEDS for Bridge-Based Sensors

If your bridge-based sensor or transducer supports a TEDS interface, you can read the TEDS 
data from the sensor directly using the 
SupportedChannelInfo.BridgeSensorTeds.ReadHardwareTeds method, or from a TEDS 
data file using the SupportedChannelInfo.BridgeSensorTeds.ReadVirtualTeds method. 

Note: The properties in the BridgeSensorTeds class are read-only. It is up the application to 
read the value of these properties and to apply the appropriate values to the 
SupportedChannelInfo strain gage properties.

Table 68 lists the properties that you can read to access the TEDS data for a bridge-based 
sensor.

Table 68: Read-Only Properties for Accessing TEDS Data for Bridge-Based Sensor

Property Description

BridgeResistance Gets the initial (unstrained) gage resistance, in ohms, that was 
specified in the TEDS data for the channel.

BridgeType Gets the type of bridge (Full Bridge, Half Bridge, or Quarter 
Bridge) that was specified in the TEDS data for the channel.

CalDate Gets the calibration date that was specified in the TEDS data for 
the channel.
169



Chapter 3

170
CalibrationPeriod Gets the calibration period that was specified in the TEDS data for 
the channel.

CalInitials Gets the calibration initials that were specified in the TEDS data for 
the channel.

ElectricalSignalType Gets the electrical signal type that was specified in the TEDS data 
for the channel.

IsTedsConfigured Inherited from the TedsBase class, returns True if the TEDS data 
stream is read successfully; otherwise, returns False. 

ManufacturerId Inherited from the TedsBase class, gets identifying information 
about the manufacturer of the sensor from the TEDS data for the 
channel.

MaxElectricalValue Gets the maximum electrical output, in V/V, that was specified in 
the TEDS data for the channel.

MaximumExcitationVoltage Gets the maximum excitation voltage that was specified in the 
TEDS data for the channel.

MaxPhysicalValue Gets the positive full-scale value, in strain, that was specified in the 
TEDS data for the channel.

MeasID Gets the measurement location ID that was specified in the TEDS 
data for the channel.

MinElectricalValue Gets the minimum electrical output, in V/V, that was specified in 
the TEDS data for the channel.

MinimumExcitationVoltage Gets the minimum excitation voltage that was specified in the 
TEDS data for the channel.

MinPhysicalValue Gets the negative full-scale value, in strain, that was specified in 
the TEDS data for the channel.

ModelNumber Inherited from the TedsBase class, gets the model number of the 
sensor from the TEDS data for the channel.

NominalExcitationVoltage Gets the nominal excitation voltage that was specified in the TEDS 
data for the channel.

PhysicalMeasurand Gets the physical Measurand (units), described on page 100, that 
were specified in the TEDS data for the channel.

ResponseTime Gets the response time, in seconds, that was specified in the 
TEDS data for the channel.

SerialNumber Inherited from the TedsBase class, gets the serial number of the 
sensor from the TEDS data for the channel.

VersionLetter Inherited from the TedsBase class, gets the version letter of the 
sensor from the TEDS data for the channel.

VersionNumber Inherited from the TedsBase class, gets the version number of the 
sensor from the TEDS data for the channel.

Table 68: Read-Only Properties for Accessing TEDS Data for Bridge-Based Sensor (cont.)

Property Description



Using the OpenLayers.Base Namespace
Bridge Configuration

For an analog input channel that supports a bridge input, you can specify one of the following 
configurations using the SupportedChannelInfo.BridgeConfiguration property:

• FullBridge – Use this configuration for bridge-based sensors or transducers, such as load 
cells, or general-purpose bridges that use four active gages.

• HalfBridge – Use this configuration for general-purpose bridges that use two active 
gages.

• QuarterBridge – Use this configuration for general-purpose bridges that use one active 
gages.

Transducer Capacity

Use the SupportedChannelInfo.TransducerCapacity property to specify or return the 
full-scale range of the bridge-based sensor or transducer in its native engineering units. This 
value is supplied by the manufacturer of the bridge-based sensor or transducer.

Transducer Rated Output

Use the SupportedChannelInfo.TransducerRatedOutputInMv property to specify or return 
the rated output of the transducer in terms of mV/V excitation. This value is supplied by the 
manufacturer of the bridge-based sensor or transducer.

Nominal Resistance

For an analog input channel that supports a full-bridge-based transducer that does not use 
remote sensing, you can specify the nominal resistance of the bridge (Rg), in ohms, when it is 
not under strain or load using the SupportedChannelInfo.StrainGageNominalResistance 
property.

Lead Wire Resistance

For an analog input channel that supports a full-bridge-based transducer that does not use 
remote sensing, you can specify the lead wire resistance of the bridge, in ohms, using the 
SupportedChannelInfo.StrainGageLeadWireResistance property.

If remote sensing is used, specify 0 for this property.

Offset Nulling

For an analog input channel that supports a strain gage input, a balanced bridge produces 
zero volts under ideal conditions with zero strain applied. In practice, however, the output of 
a bridge in an unstrained condition is offset from zero slightly due to imperfect matching of 
bridge resistances.

You can adjust the offset of the channel by performing offset nulling on the channel. To 
perform offset nulling, read the value of the bridge in an unstrained condition using the 
AnalogInputSubsystem.GetSingleValueAsVolts method. Then, specify the value that you 
read using the SupportedChannelInfo.StrainGageOffsetNullingValueInVolts property. 
171



Chapter 3

172
Internally, this value is subtracted from all subsequent measurements before the voltage is 
converted to strain.

Shunt Calibration

To determine if the analog input subsystem supports shunt calibration, use the 
AnalogInputSubsystem.SupportsShuntCalibration property.

You can use shunt calibration to correct span errors in the measurement path. You can also use 
shunt calibration to verify the integrity of the setup by turning on the shunt resistor before 
you acquire data.

If you want to use the internal shunt calibration resistor provided by the device, ensure that 
the internal RSHUNT+ and RSHUNT– lines are connected across the gage and that no strain is 
applied to the specimen, and then enable the resistor by setting the  
SupportedChannelInfo.StrainGageShuntCalibrationResistorEnabled property to True. (Be 
sure to set this value back to False when the shunt calibration procedure is complete.)

Once the internal shunt resistor is enabled or you have connected your own shunt resistor to 
the bridge, read the value of the bridge using the 
AnalogInputSubsystem.GetSingleValueAsStrain method. Then, divide the expected value 
of the bridge by the actual value that you read, and specify the result, in microstrain, using the 
SupportedChannelInfo.StrainGageShuntCalibrationValue property. Internally, the software 
multiplies the channel measurement with this value to adjust the gain of the device. Refer to 
the user's manual for your device for more information on shunt calibration. 

Setting up Thermistor Input Channels

To determine if the analog input subsystem supports thermistor inputs, use the 
AnalogInputSubsystem.SupportsThermistor property.

If this value is True, determine whether the specific channel supports thermistors or multiple 
sensor types using the SupportedChannelInfo.IOType property. If the value of IOType is 
MultiSensor, you must set the multisensor type to Thermistor using the 
SupportedChannelInfo.MultiSensorType property to use the channel for thermistor 
measurements.

The resistance of NTC thermistors increases with decreasing temperature. The resistance to 
temperature relationship is characterized by the Steinhart-Hart equation:

where,

• T is the temperature, in degrees Kelvin.

• R is the resistance at T, in Ohms.

• A, B, and C are the Steinhart-Hart coefficients for a particular thermistor type and value, 
and are supplied by the thermistor manufacturer. 

1
T
--- A BlnR Cln R( )3+ +=



Using the OpenLayers.Base Namespace
The value of the A, B, and C coefficients depend on the thermistor type and value that you are 
using. Specify the A coefficient using the SupportedChannelInfo.ThermistorACoefficient 
property. Specify the B coefficient using the SupportedChannelInfo.ThermistorBCoefficient 
property. Specify the C coefficient using the SupportedChannelInfo.ThermistorCCoefficient 
property. 

Use the SupportedChannelInfo.SensorWiringConfiguration property to specify the wiring 
configuration (two-wire, three-wire, or four-wire) for the thermistor.

Note: You can read a single temperature value from one channel using the 
AnalogInputSubsystem. GetSingleValueAsTemperature method. Refer to page 176 for 
more information. 

If you are acquiring data to a buffer, you can read the temperature from the specified 
channels using the OlBuffer.GetDataAsTemperatureByte or 
OlBuffer.GetDataAsTemperatureDouble method. Refer to page 223 for more information.

Setting Up Resistance Measurement Channels

To determine if the analog input subsystem supports resistance measurements, use the 
AnalogInputSubsystem.SupportsResistance property. 

If this value is True, determine whether the specific channel supports resistance or multiple 
sensor types using the SupportedChannelInfo.IOType property. If the value of IOType is 
MultiSensor, you must set the multisensor type to Resistance using the 
SupportedChannelInfo.MultiSensorType property to use the channel for resistance 
measurements.

To determine if the analog input subsystem supports an internal excitation current source, use 
the AnalogInputSubsystem.SupportsInternalExcitationCurrentSrc property. To determine if 
the analog input subsystem supports an external excitation current source, use the 
AnalogInputSubsystem.SupportsExternalExcitationCurrentSrc property. 

If the analog input channel supports a programmable current source, you can specify one of 
the excitation current source (Internal, External, or Disabled (the default value)) using the 
SupportedChannelInfo.ExcitationCurrentSource property.

If you set the excitation current source to Internal, you can also set the value of the excitation 
current source using the SupportedChannelInfo.ExcitationCurrentValue property. To 
determine what current source values are supported by the subsystem, use the 
AnalogInputSubsystem.SupportedExcitationCurrentValues property. By default, the first 
value in the list of supported values is used.
173



Chapter 3

174
Note: You can read a single resistance value from one channel using the 
AnalogInputSubsystem.GetSingleValueAsResistancemethod. Refer to page 176 for more 
information. 

If you are acquiring data to a buffer, you can read resistance values from the specified 
channels using the OlBuffer.GetDataAsResistance method. Refer to page 223 for more 
information.

Use the SupportedChannelInfo.SensorWiringConfiguration property to specify the wiring 
configuration (two-wire, three-wire, or four-wire) for the resistance measurement.



Using the OpenLayers.Base Namespace
Setting Up and Configuring a Subsystem
Once you have gotten a subsystem and know about its supported channels, you can set up the 
subsystem for the I/O operation that you want to perform, and then configure it.

The way you set up the subsystem depends on the operation that you want to perform. Refer 
to the following sections for specific information on setting up I/O operations:

• For analog I/O operations, refer to page 176.

• For digital I/O operations, refer to page 229.

• For counter/timer operations, refer to page 232. 

• For tachometer operations, refer to page 251.

• For quadrature decoder operations, refer to page 253.

• For simultaneous operations, refer to page 255.

Call the Config method within the appropriate subsystem class to configure the subsystem 
before performing the I/O operation.
175



Chapter 3

176
Performing Analog I/O Operations
Using the DT-Open Layers for .NET Class Library, you can perform the following types of 
analog I/O operations.

• Single value analog input, described below

• Single value analog output, described on page 180

• Continuous pre- and post-trigger analog input using a start and reference trigger, 
described on page 185

• Continuous post-trigger analog input, described on page 187

• Continuous pre-trigger analog input, described on page 190

• Continuous about-trigger analog input, described on page 193

• Continuously paced analog output, described on page 196

• Continuous waveform generation analog output, described on page 198

Note: On some devices, an AnalogOutputSubsystem element is used to set an analog 
threshold trigger; these elements support single-value analog output operations only.

Single-Value Analog Input Operations

Single-value operations are the simplest to use but offer the least flexibility and efficiency. In a 
single-value analog input operation, a single data value is read from a single channel. The 
operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
AnalogInputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, set up the AnalogInputSubsystem object for a single value 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.



Using the OpenLayers.Base Namespace
5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter, set the filter type using the 
AnalogInputSubsystem.DataFilterType property. See page 204 for more information.

8. Configure the subsystem using the AnalogInputSubsystem.Config method.

9. Acquire a single value using one of the following methods:

For Devices with Multiplexed A/D architectures:

− AnalogInputSubsystem.GetSingleValueAsRaw – Acquires a single value from a 
specified analog input channel using a specified gain, and returns the value as a raw 
count.

− AnalogInputSubsystem.GetSingleValueAsVolts – Acquires a single value from a 
specified analog input channel using a specified gain, and returns the data as a voltage.

For subsystems that support temperature conversions in hardware 
(SupportsTemperatureDataInStream is True), a voltage value is returned only if the 
specified channel is configured for a ThermocoupleType of None. If the channel is 
configured for any other ThermocoupleType, an exception is raised. Refer to page 158 
for more information on thermocouples.

− AnalogInputSubsystem.GetSingleValueAsSensor – Acquires a single value from a 
specified analog input channel at a specified gain, and returns the data as a sensor 
value.

− AnalogInputSubsystem.GetSingleValueAsCurrent – For analog input subsystems 
that support current measurements, acquires a single current value from a specified 
analog input channel, and returns the data, in Amperes, as a floating-point value.

− AnalogInputSubsystem.GetSingleValueAsTemperature – Overloaded method. 
Acquires a single temperature value from a specified analog input channel and returns 
the temperature data in the units you specify.

For subsystems that support temperature conversions in hardware 
(SupportsTemperatureDataInStream is True), a temperature value is returned only if 
the specified channel is configured for a ThermocoupleType other than None. 
Otherwise, an exception is raised. Refer to page 158 for more information on 
thermocouples.
177



Chapter 3

178
− AnalogInputSubsystem.GetSingleCjcValueAsTemperature – For analog input 
subsystems that support thermocouples, acquires a single CJC temperature value for a 
specified input channel and returns the temperature in the units you specify.

This function is seldom needed. It is provided in the rare case when you want the 
application program, instead of the device, to correct and linearize temperature values 
based on the CJC temperature. To use this method, your device must support 
thermocouples and the ability to return floating-point values. Refer to page 158 for 
more information on thermocouples.

− AnalogInputSubsystem.GetSingleValueAsResistance – For analog input subsystems 
that support resistance measurements, acquires a single resistance value from a 
specified analog input channel, and returns the data, in ohms, as a floating-point 
value.

− AnalogInputSubsystem.GetSingleValueAsStrain – For analog input subsystems that 
support strain gages, acquires a single value from a specified analog input channel, 
and returns the data in microstrain.

− AnalogInputSubsystem.GetSingleValueAsBridgeBasedSensor – For analog input 
subsystems that support bridge-based sensors, acquires a single value from a 
full-bridge-based sensor and returns the data in the native engineering units of the 
sensor.

− AnalogInputSubsystem.GetSingleValueAsNormalizedBridgeOutput – For analog 
input subsystems that support bridge measurements, acquires a single normalized 
output value from the bridge and returns the data in volts.

For Devices with Simultaneous A/D architectures:

− AnalogInputSubsystem.GetSingleValuesAsRaw – Simultaneously acquires a single 
value from each input channel and returns the values as an array of raw counts.

If your device supports streaming digital inputs, counter/timers, and/or quadrature 
decoder inputs through the analog input subsystem, GetSingleValuesAsRaw returns 
the data for all the analog input channels, digital input ports, counter/timer channels, 
and/or quadrature decoder channels. 

For meaningful digital input, counter/timer, and/or quadrature decoder data, ensure 
that you configure and/or start an operation on these subsystems before calling 
GetSingleValuesAsRaw. Refer to page 230 for information on configuring a 
continuous digital input operation, page 232, page 234, and page 237 for information 
on configuring counter/timer operations, and page 253 for information on configuring 
quadrature decoder operations.

− AnalogInputSubsystem.GetSingleValuesAsVolts – Simultaneously acquires a single 
value from each analog input channel and returns the data as an array of voltage 
values.

For subsystems that support temperature conversions in hardware 
(SupportsTemperatureDataInStream is True), a voltage value is returned only if the 
specified channels are configured for a ThermocoupleType of None. If the channel is 
configured for any other ThermocoupleType, an exception is raised. Refer to page 158 
for more information on thermocouples.



Using the OpenLayers.Base Namespace
− AnalogInputSubsystem.GetSingleValuesAsSensor – Simultaneously acquires a 
single value from each analog input channel and returns the data as an array of sensor 
values.

− AnalogInputSubsystem.GetSingleValuesAsTemperature – For analog input 
subsystems that support temperature measurements, simultaneously acquires a single 
temperature value from each analog input channel and returns the data as an array of 
temperature values, in the units you specify.

For subsystems that support temperature conversions in hardware 
(SupportsTemperatureDataInStream is True), a temperature value is returned only if 
the specified channels are configured for a ThermocoupleType other than None. 
Otherwise, an exception is raised. Refer to page 158 for more information on 
thermocouples.

− AnalogInputSubsystem.GetSingleCjcValuesAsTemperature – For analog input 
subsystems that support thermocouples, simultaneously acquires a single CJC 
temperature for each input channel and returns the data as an array of temperature 
values, in the units you specify.

This function is seldom needed. It is provided in the rare case when you want the 
application program, instead of the device, to correct and linearize temperature values 
based on the CJC temperature. To use this method, your device must support 
simultaneous operations, thermocouples, and the ability to return floating-point 
values.

− AnalogInputSubsystem.GetSingleValuesAsStrain – For analog input subsystems 
that support strain gages, simultaneously acquires a single value from each analog 
input channel and returns the data as an array of values in microstrain.

− AnalogInputSubsystem.GetSingleValuesAsBridgeBasedSensor – For analog input 
subsystems that support bridge-based sensors, simultaneously acquires a single value 
from each full-bridge-based sensor and returns the data as an array of values in the 
native engineering units of the sensor.

Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Refer to the example programs ReadSingleValueAsRaw, ReadSingleValueAsVolts, 
ReadSingleValueAsSensor, and ReadSingleValueAsTemperature to see how to perform a 
single-value analog input operation.

Note: After the acquisition is complete, you can convert a raw count value to voltage using 
the AnalogInputSubsystem.RawValueToVolts method or to a sensor value using the 
AnalogInputSubsystem.RawToSensorValues method. You can also convert a voltage to a 
temperature value using the Utility.ConvertVoltsToTemperature method. If you want to 
convert voltage to raw counts, you can use the AnalogInputSubsystem.VoltsToRawValue 
method.
179



Chapter 3

180
Single-Value Analog Output Operations

In a single-value analog output operation, a single data value is output from a single analog 
output channel. The operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
AnalogOutputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an AnalogOutputSubsystem object, as described on page 146, set up the 
AnalogOutputSubsystem object for a single value operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. Configure the subsystem using the AnalogOutputSubsystem.Config method.

6. Output a single value using one of the following methods:

For Devices with Multiplexed D/A architectures:

− AnalogOutputSubsystem.SetSingleValueAsRaw – Outputs a single raw count on the 
specified analog output channel.

− AnalogOutputSubsystem.SetSingleValueAsVolts – Outputs a single voltage value on 
a specified analog output channel.

For Devices with Simultaneous D/A architectures (SupportsSetSingleValues is True):

− AnalogOutputSubsystem.SetSingleValuesAsRaw – Outputs a single raw count on 
each specified analog output channel. If an analog output channel is not specified, the 
value of the output channel will not change; the output channel maintains the last 
value that was written to it. 

− AnalogOutputSubsystem.SetSingleValuesAsVolts – Outputs a single voltage value 
on each specified analog output channel. If an analog output channel is not specified, 
the value of the output channel will not change; the output channel maintains the last 
value that was written to it.

Note: You can convert a raw count value to voltage using the 
AnalogOutputSubsystem.RawValueToVolts method. You can also convert a temperature 
value to a voltage using the Utility.ConvertTemperatureToVolts method. If you want to 
convert voltage to raw counts, you can use the 
AnalogOutputSubsystem.VoltsToRawValue method.



Using the OpenLayers.Base Namespace
Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Refer to the example programs WriteSingleValueAsRaw, WriteSingleValueAsVolts, and 
WriteSingleValueAsRaw_ProgRanges to see how to perform a single-value analog output 
operation.
181



Chapter 3

182
Continuous, Pre- and Post-Trigger Analog Input Operations Using a 
Start and Reference Trigger

Note: This mode requires use of an AnalogInputSubsystem.Trigger object and 
AnalogInputSubsystem.ReferenceTrigger object. Some devices may not support this mode.

Use this mode when you want to acquire pre-trigger data from multiple analog input channels 
continuously when a specified trigger occurs and, when a reference trigger occurs, acquire a 
specified number of post-trigger samples.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, set up the AnalogInputSubsystem object for a continuous 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter types for measuring 
temperature, set the filter type using the AnalogInputSubsystem.DataFilterType 
property. See page 204 for more information.

8. Set up the channel list (including setting the gain and inhibit value for each entry), as 
described on page 204.



Using the OpenLayers.Base Namespace
Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must configure the digital input 
subsystem for a single-value operation before starting the analog input operation. Refer to 
page 230 for information on continuous digital input operations, page 232, page 234, and 
page 237 for information on continuous counter/timer operations, page 251 for 
information on tachometer operations, and page 253 for information on quadrature 
decoder operations.

9. Set up the clock, as described on page 212.

10. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the trigger type 
that starts pre-trigger acquisition. Refer to page 213 for more information on supported 
trigger sources.

11. Use the AnalogInputSubsystem.ReferenceTrigger.TriggerType property to specify the 
trigger type that stops pre-trigger acquisition and starts post-trigger acquisition. Refer to 
page 213 for more information on supported trigger sources.

12. If the start or reference trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel or 
AnalogInputSubsystem.ReferenceTrigger.ThresholdTriggerChannel property. 
Refer to page 215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level or 
AnalogInputSubsystem.ReferenceTrigger.Level property. Refer to page 215 for more 
information.

13. Specify the number of samples to acquire after the reference trigger occurs using the 
AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount property. Refer to 
page 217 for more information on the post-trigger scan count.

14. If supported by your device, set up triggered scan mode, as described on page 227.

15. Set up the input buffers, as described on page 218.

16. If your program is running under a heavy CPU load, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True for synchronous 
execution of each BufferDoneEvent event in a single worker thread.

17. Configure the subsystem using the AnalogInputSubsystem.Config method.

18. Call the AnalogInputSubsystem.Start method to start the operation. 

Pre-trigger acquisition begins when the start trigger is detected. When the reference trigger 
occurs, pre-trigger acquisition stops and post-trigger acquisition begins until the number of 
samples specified by PostTriggerScanCount has been acquired. At that point, you will get the 
last buffer that has valid samples; the remainder of the buffers are cancelled.
183



Chapter 3

184
Figure 1 illustrates this mode using a channel list of two entries: channel 0 and channel 1. In 
this example, pre-trigger analog input data is acquired when the start trigger is detected. 
When the reference trigger occurs, the specified number of post-trigger samples (3, in this 
example) are acquired. 

Figure 1: Continuous Pre- and Post-Trigger Operations Using a Start and Reference Trigger

If desired, you can also stop a continuous pre- and post-trigger operation using one of the 
following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. The driver raises a BufferDoneEvent event for the completed buffer and sets the 
OlBuffer.ValidSamples property to the number of samples in the completed buffer. It 
then raises a BufferDoneEvent event for up to eight inprocess buffers, setting the 
OlBuffer.ValidSamples property to 0, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 218 for more information on 
buffers, and to page 257 for information on dealing with events.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. The driver raises a BufferDoneEvent event for up to eight inprocess 
buffers, setting the OlBuffer.ValidSamples property to 0, and then raises a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Note: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to fill). If 
you try to perform another operation while the stop is in progress, an exception is raised with 
the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Start Trigger occurs

Chan 0
Chan 1

Chan 0

A/D 
Sample 
Clock

Reference Trigger occurs

Pre-trigger data acquired 3 Post-trigger 
samples acquired

Chan 1

Chan 0
Chan 1

Chan 0
Chan 1

Chan 0
Chan 1

PostTriggerScanCount = 3

Chan 0
Chan 1

Chan 0



Using the OpenLayers.Base Namespace
Continuous Post-Trigger Analog Input Operations Using One 
Channel and One Buffer

Use this mode when you want to acquire one buffer of post-trigger data from one analog 
input channel.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, perform the following steps:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter types for measuring 
temperature, set the filter type using the AnalogInputSubsystem.DataFilterType 
property. See page 204 for more information.

8. Set up the channel list (including setting the gain and inhibit value for the channel, and 
adding the channel to the channel list), as described on page 204.

9. Set up the clock, as described on page 212.

10. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the post-trigger 
source that starts the operation. Refer to page 213 for more information on supported 
trigger sources.

11. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.
185



Chapter 3

186
12. Call the AnalogInputSubsystem.GetOneBuffer method to acquire one buffer of 
post-trigger data from the specified channel in the channel list. You specify the number of 
samples to acquire in the call.

This method is synchronous and returns only after the requested data has been acquired 
or the specified timeout value, in milliseconds, has been exceeded. If the buffer is not 
filled before the specified timeout value is exceeded, AnalogInputSubsystem.Abort is 
called and a TimeoutException is raised. If a GeneralFailureEvent or 
DriverRuntimeErrorEvent occurs during acquisition, an OlException with the appropriate 
error code is raised. 

13. Handle the input buffer, as described on page 221.

When the trigger occurs, post-trigger acquisition begins. When the number of samples have 
been acquired or the specified timeout value is exceeded, the OlBuffer object is returned.

Refer to the example program GetOneBuffer to see how to perform a continuous (post-trigger) 
analog input operation using one buffer.



Using the OpenLayers.Base Namespace
Continuous, Post-Trigger Analog Input Operations Using Multiple 
Buffers

Note: This mode does not support use of the AnalogInputSubsystem.ReferenceTrigger 
object. To use a ReferenceTrigger object, refer to page 185.

Use continuous post-trigger mode when you want to acquire data from multiple analog input 
channel continuously when a specified start trigger occurs.

To determine if the subsystem supports continuous, post-trigger analog input operations, use 
the AnalogInputSubsystem.SupportsContinuous property. If this property returns a value of 
True, the subsystem supports continuous post-trigger analog input operations.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, set up the AnalogInputSubsystem object for a continuous 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter types for measuring 
temperature, set the filter type using the AnalogInputSubsystem.DataFilterType 
property. See page 204 for more information.

8. Set up the channel list (including setting the gain and inhibit value for each entry), as 
described on page 204.
187



Chapter 3

188
Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must configure the digital input 
subsystem for a single-value operation before starting the analog input operation. Refer to 
page 230 for information on continuous digital input operations, page 232, page 234, and 
page 237 for information on continuous counter/timer operations, page 251 for 
information on tachometer operations, and page 253 for information on quadrature 
decoder operations.

9. Set up the clock, as described on page 212.

10. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the post-trigger 
source that starts the operation. Refer to page 213 for more information on supported 
trigger sources.

11. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.

12. If supported by your device, set up triggered scan mode, as described on page 227.

13. Set up the input buffers, as described on page 218.

14. If your program is running under a heavy CPU load, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True for synchronous 
execution of each BufferDoneEvent event in a single worker thread.

15. Configure the subsystem using the AnalogInputSubsystem.Config method.

16. Call the AnalogInputSubsystem.Start method to start the continuous post-trigger 
operation. 

When the post-trigger is detected, the device cycles through the channel list, acquiring the 
value for each ChannelListEntry object in the channel list; this process is defined as a scan. The 
device then wraps to the start of the channel list and repeats the process continuously until 
either the allocated buffers are filled or you stop the operation. The event BufferDoneEvent is 
generated as each buffer is filled with analog input data; refer to page 257 for information on 
dealing with events and reading the data in the buffer.

Figure 2 illustrates continuous post-trigger mode using a channel list of three entries: channel 
0, channel 1, and channel 2. In this example, post-trigger analog input data is acquired on each 
clock pulse of the A/D sample clock. The device wraps to the beginning of the channel list and 
repeats continuously.



Using the OpenLayers.Base Namespace
Figure 2: Continuous Post-Trigger Mode

To stop a continuous post-trigger operation, use one of the following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. The driver raises a BufferDoneEvent event for the completed buffer and sets the 
OlBuffer.ValidSamples property to the number of samples in the completed buffer. It 
then raises a BufferDoneEvent event for up to eight inprocess buffers, setting the 
OlBuffer.ValidSamples property to 0, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 218 for more information on 
buffers, and to page 257 for information on dealing with events.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. The driver raises a BufferDoneEvent event for up to eight inprocess 
buffers, setting the OlBuffer.ValidSamples property to 0, and then raises a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Notes: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to fill). If 
you try to perform another operation while the stop is in progress, an exception is raised with 
the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Refer to the example programs ReadBufferedDataAsRaw, 
ReadBufferedDataAsRawDigTrigger, ReadBufferedDataAsVolts, ReadBufferedDataAsSensor, 
ReadBufferedDataAsTemperature, and ReadBufferedDataIntoOscilloscope to see how to 
perform a continuous (post-trigger) analog input operation.

Post-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D Sample 
Clock

Post-trigger data acquired 
continuously
189



Chapter 3

190
Continuous, Pre-Trigger Analog Input Operations (Legacy Devices)

Note: This mode does not support use of the AnalogInputSubsystem.ReferenceTrigger 
object. To use a ReferenceTrigger object, see page 185.

Some older, legacy devices support continuous pre-trigger analog input operations. Use 
continuous pre-trigger mode when you want to continuously acquire data before a specific 
external trigger occurs.

To determine if the subsystem supports continuous pre-trigger operations, use the 
AnalogInputSubsystem.SupportsContinuousPreTrigger property. If this property returns a 
value of True, continuous pre-trigger mode is supported.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, set up the AnalogInputSubsystem object for a continuous 
pre-trigger operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to ContinuousPreTrigger.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter types for measuring 
temperature, set the filter type using the AnalogInputSubsystem.DataFilterType 
property. See page 204 for more information.

8. Set up the channel list (including setting the gain and the inhibit value for each entry), as 
described on page 204.



Using the OpenLayers.Base Namespace
Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must also configure the digital input 
subsystem for a single-value operation before starting the analog input operation. Refer to 
page 230 for information on continuous digital input operations, page 232, page 234, and 
page 237 for information on continuous counter/timer operations, page 251 for 
information on tachometer operations, and page 253 for information on quadrature 
decoder operations.

9. (Optional) Set up the clock, as described on page 212.

10. Use the AnalogInputSubsystem.Trigger.PretriggerSource property to specify the trigger 
source that starts the pre-trigger operation (generally this is a software trigger). 

11. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the external 
post-trigger source that stops the pre-trigger operation. Refer to page 213 for more 
information on supported trigger sources.

12. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.

13. If supported by your device, set up triggered scan mode, as described on page 227.

14. Set up the input buffers, as described on page 218.

15. Configure the subsystem using the AnalogInputSubsystem.Config method.

16. Call the AnalogInputSubsystem.Start method to start the continuous pre-trigger 
operation. 

Pre-trigger acquisition begins when the device detects the pre-trigger source and stops when 
the device detects an external post-trigger source, indicating that the first post-trigger sample 
was acquired (this sample is ignored). The event PreTriggerBufferDoneEvent is generated as 
each buffer is filled with pre-trigger analog input data; refer to page 257 for information on 
dealing with events and reading data from the buffers.

Figure 3 illustrates continuous pre-trigger mode using a channel list of three entries: channel 0, 
channel 1, and channel 2. In this example, pre-trigger analog input data is acquired on each 
clock pulse of the A/D sample clock. The device wraps to the beginning of the channel list and 
the acquisition repeats continuously until the post-trigger event occurs.When the post-trigger 
event occurs, acquisition stops.
191



Chapter 3

192
Figure 3: Continuous Pre-Trigger Mode

To stop a continuous pre-trigger operation, use one of the following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. The driver raises a PreTriggerBufferDoneEvent event for the completed buffer and 
sets the OlBuffer.ValidSamples property to the number of samples in the completed 
buffer. It then raises a PreTriggerBufferDoneEvent event for up to eight inprocess buffers, 
setting the OlBuffer.ValidSamples property to 0, before raising a QueueStoppedEvent 
event. All subsequent triggers or retriggers are ignored. Refer to page 218 for more 
information on buffers, and to page 257 for information on dealing with events.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. The driver raises a PreTriggerBufferDoneEvent event for up to eight 
inprocess buffers, setting the OlBuffer.ValidSamples property to 0, and then raises a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Notes: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called.

If you set the AsynchronousStop property to False (the default setting) control does not 
return to your program after Stop is called until the buffer completes or 20 seconds elapses (if 
the buffer takes longer than 20 seconds to fill). If you try to perform another operation while 
the stop is in progress, an exception is raised with the error code "SubsystemStopping" and 
the exception message "The subsystem is in the process of stopping or aborting".

Pre-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D 
Sample 
Clock

Post-trigger event occurs

Chan 0

Pre-trigger data acquired
Acquisition stops



Using the OpenLayers.Base Namespace
Continuous, About-Trigger Analog Input Operations (Legacy 
Devices)

Note: This mode does not support use of the AnalogInputSubsystem.ReferenceTrigger 
object. To use the ReferenceTrigger object, see page 185.

Some older, legacy devices support continuous about-trigger analog input operations. Use 
continuous about-trigger mode when you want to continuously acquire data both before and 
after a specific external trigger occurs. This operation is equivalent to doing both a pre-trigger 
and a post-trigger acquisition.

To determine if the subsystem supports continuous about-trigger operations, use the 
AnalogInputSubsystem.SupportsContinuousPrePostTrigger property. If this property 
returns a value of True, continuous about-trigger mode is supported.

Once you have an AnalogInputSubsystem object, as described on page 146, and set up the 
channels as described on page 154, set up the AnalogInputSubsystem object for a continuous 
about-trigger operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to ContinuousPrePostTrigger.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as resistance, 
accelerometers, strain gages, or bridges), set the excitation voltage source for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property, and if 
using an internal excitation source, set the value of the internal excitation voltage source 
using the AnalogInputSubsystem.ExcitationVoltageValue property. See page 203 for 
more information on excitation voltage sources.

6. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog input 
subsystem on each device using the AnalogInputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

7. (Optional) For subsystems that support programmable filter types for measuring 
temperature, set the filter type using the AnalogInputSubsystem.DataFilterType 
property. See page 204 for more information.

8. Set up the channel list (including setting the gain and inhibit value for each entry), as 
described on page 204.
193



Chapter 3

194
Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must also configure the digital input 
subsystem for a single-value operation before starting the analog input operation. Refer to 
page 230 for information on continuous digital input operations, page 232, page 234, and 
page 237 for information on continuous counter/timer operations, page 251 for 
information on tachometer operations, and page 253 for information on quadrature 
decoder operations.

9. (Optional) Set up the clock, as described on page 212.

10. Use the AnalogInputSubsystem.Trigger.PreTriggerSource property to specify the trigger 
source that starts the pre-trigger operation (generally this is a software trigger). 

11. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the external 
post-trigger source that stops the pre-trigger operation and starts the post-trigger 
operation. Refer to page 213 for more information on supported trigger sources.

12. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.

13. If supported by your device, set up triggered scan mode, as described on page 227.

14. Set up the input buffers, as described on page 218.

15. If your program is running under a heavy CPU load, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True for synchronous 
execution of each BufferDoneEvent event in a single worker thread.

16. Configure the subsystem using the AnalogInputSubsystem.Config method.

17. Call the AnalogInputSubsystem.Start method to start the continuous about-trigger 
operation. 

The about-trigger acquisition begins when the device detects the pre-trigger source. The event 
PreTriggerBufferDoneEvent is generated as each buffer is filled with pre-trigger analog input 
data; refer to page 257 for information on dealing with events. 

When it detects an external post-trigger source, the device stops acquiring pre-trigger data 
and starts acquiring post-trigger data. The event BufferDoneEvent is generated as each buffer 
is filled with post-trigger analog input data. The about-trigger operation continues until either 
the allocated buffers are filled or you stop the operation.



Using the OpenLayers.Base Namespace
Figure 4 illustrates continuous about-trigger mode using a channel list of three entries: 
channel 0, channel 1, and channel 2. In this example, pre-trigger analog input data is acquired 
on each clock pulse of the A/D sample clock. The device wraps to the beginning of the 
channel list and the acquisition repeats continuously until the post-trigger event occurs. When 
the post-trigger event occurs, post-trigger acquisition begins on each clock pulse of the A/D 
sample clock; refer to page 212 for more information on clock sources. The device wraps to the 
beginning of the channel list and acquires post-trigger data continuously. 

Figure 4: Continuous About-Trigger Mode

To stop a continuous about-trigger operation, use one of the following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. Depending on when the operation was stopped, the driver raises either a 
PreTriggerBufferDoneEvent or a BufferDoneEvent for the completed buffer and sets the 
OlBuffer.ValidSamples property to the number of samples in the completed buffer. It 
then raises either a PreTriggerBufferDoneEvent or BufferDoneEvent event for up to eight 
inprocess buffers, setting the OlBuffer.ValidSamples property to 0, before raising a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored. Refer to 
page 218 for more information on buffers, and to page 257 for information on dealing with 
events and reading data from the buffers.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. Depending on when the operation was aborted, the driver raises 
either a PreTriggerBufferDoneEvent or BufferDoneEvent for up to eight inprocess buffers, 
setting the OlBuffer.ValidSamples property to 0, and then raises a QueueStoppedEvent 
event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Pre-trigger event occurs

Chan 0
Chan 1

Chan 0

. . . 

A/D 
Sample 
Clock

Post-trigger event occurs

Pre-trigger data acquired Post-trigger data acquired

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1
195



Chapter 3

196
Notes: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to fill). 

If you try to perform another operation while the stop is in progress, an exception is raised 
with the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Continuously Paced Analog Output Operations

Use continuously paced output mode if you want to accurately control the period between 
conversions of individual analog output channels in the channel list. 

To determine if the subsystem supports continuous analog output operations, use the 
AnalogOutputSubsystem.SupportsContinuous property. If this property returns a value of 
True, the subsystem supports continuously paced analog output operations.

Once you have an AnalogOutputSubsystem object, as described on page 146, set up the 
AnalogOutputSubsystem object for a continuous operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. Set up the channel list, as described on page 204.

Note: If you want to continuously update the digital output channels as part of the analog 
output stream, you must set up the channel list to include the digital output port. In 
addition, you must configure the digital output subsystem for a single-value operation, as 
described on page 230, before starting the analog output operation.

6. (Optional) Set up the clock, as described on page 212.

7. (Optional) Use the AnalogOutputSubsystem.Trigger.TriggerType property to specify the 
trigger source that starts the operation. Refer to page 213 for more information on 
supported trigger sources.



Using the OpenLayers.Base Namespace
8. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogOutputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogOutputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.

9. Set the AnalogOutputSubsystem.WrapSingleBuffer property to False (the default value) 
to specify a buffer wrap mode of none. In this mode, the operation continues indefinitely 
as long as you process the buffers ad put them back on the queue in a timely manner. 

10. Use software to fill the output buffer with the values that you want to write to the analog 
output channels and to the digital output port, if applicable. Refer to page 218 for more 
information on output buffers.

11. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog output 
subsystem on each device using the AnalogOutputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

12. Configure the subsystem using the AnalogOutputSubsystem.Config method.

13. Call the AnalogOutputSubsystem.Start method to start the continuous analog output 
operation. 

When it detects the appropriate trigger, the device starts writing output values to the 
channels, as determined by the channel list. The operation repeats continuously until either all 
the data is output from the buffers or you stop the operation. The event BufferDoneEvent 
occurs as each OlBuffer object is completed. If no buffers are available on the queue, the 
operation stops, and the event QueueDoneEvent is raised. Refer to page 218 for more 
information about buffers.

Make sure that the host computer transfers data to the output channel list fast enough so that 
the list always has data to output; otherwise, the event DriverRunTimeErrorEvent is raised. 
Refer to page 266 for more information on this event.

If your device supports it, you can mute the output, which attenuates the output voltage to 
0 V by calling AnalogOutputSubsystem.Mute. This does not stop the analog output 
operation; instead, the analog output voltage is reduced to 0 V over a hardware-dependent 
number of samples. You can unmute the output voltage to its current level by calling 
AnalogOutputSubsystem.UnMute. To determine if muting and unmuting are supported by 
your device, read the value of the AnalogOutputSubsystem.SupportsMute property. If this 
value is True, muting and unmuting are supported.

To stop a continuous analog output operation, do not send new data to the device or use one 
of the following methods:

• AnalogOutputSubsystem.Stop – Stops the operation after all the data in the current 
buffer has been output. The driver raises a BufferDoneEvent event for the completed 
buffer and up to eight inprocess buffers, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 218 for more information on 
buffers.
197



Chapter 3

198
• AnalogOutputSubsystem.Abort – Stops the operation immediately without waiting for 
the data in the current buffer to be output. The driver raises a BufferDoneEvent event for 
the partially completed buffer and up to eight inprocess buffers, before raising a 
QueueStoppedEvent event. All subsequent triggers are ignored.

• AnalogOutputSubsystem.Reset – Stops the operation immediately without waiting for 
the data in the current buffer to be output, and reinitializes the subsystem to the default 
configuration. 

Notes: If you set the AnalogOutputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to be 
output).

If you try to perform another operation while the stop is in progress, an exception is raised 
with the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Refer to the example program WriteBufferedDataAsVolts to see how to perform a 
continuously paced analog output operation.

Continuous Waveform Generation Operations

Use waveform generation mode if you want to output a waveform repetitively to analog 
output channels and, if supported, digital output ports, as specified in the ChannelList object.

To determine if the subsystem supports waveform generation operations, use the following 
properties:

• AnalogOutputSubsystem.SupportsContinuous property – If this property returns a 
value of True, continuous output operations are supported. This is a requirement for 
waveform generation operations.

• AnalogOutputSubsystem.SupportsWrapSingle property – If this property returns a 
value of True, the device driver will output data continuously from the first buffer queued 
to the analog output subsystem. This is a requirement for waveform generation 
operations. Refer to page 218 for more information on buffers.

• AnalogOutputSubsystem.SupportsWaveformModeOnly property – If this property 
returns a value of True, the device driver will output a waveform continuously from the 
onboard FIFO only. Set the AnalogOutputSubsystem.WrapSingleBuffer property to 
True. In addition, set the buffer size to be less than or equal to the FIFO size specified by 
the AnalogOutputSubsystem.FifoSize property. Refer to page 218 for more information 
on buffers.



Using the OpenLayers.Base Namespace
Once you have an AnalogOutputSubsystem object, as described on page 146, set up the 
AnalogOutputSubsystem object for a continuous operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 201 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 202 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 202 for more information on 
voltage ranges.

5. Set up the channel list, as described on page 204.

Note: If you want to continuously update the digital output channels as part of the analog 
output stream, you must set up the channel list to include the digital output port. In 
addition, you must configure the digital output subsystem for a single-value operation, as 
described on page 230, before starting the analog output operation.

6. (Optional) Set up the clock, as described on page 212.

7. (Optional) Use the AnalogOutputSubsystem.Trigger.TriggerType property to specify the 
trigger source that starts the operation. Refer to page 213 for more information on 
supported trigger sources.

8. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogOutputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
215 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogOutputSubsystem.Trigger.Level property. Refer to page 215 for more 
information.

9. Set the AnalogOutputSubsystem.WrapSingleBuffer property to True, so that a single 
buffer is reused.

10. Use software to fill the output buffer with the values that you want to write to the analog 
output channels and to the digital output port, if applicable. Refer to your device 
documentation for details on the waveform pattern that you can specify and to page 218 
for more information on output buffers.
199



Chapter 3

200
Note: For devices that have a FIFO onboard for waveform generation operations, the 
device driver downloads the buffer into the FIFO on the device if the size of the buffer is 
less than or equal to the FIFO size. The driver (or device) outputs the data starting from 
the first location in the FIFO. When it reaches the end of the FIFO, the driver (or device) 
continues outputting data from the first location of the FIFO and the process continues 
indefinitely until you stop it. 

You can determine the size of the FIFO on the device using the 
AnalogOutputSubsystem.FifoSize property. This property returns the actual FIFO size in 
kilobytes.

11. (Optional) For subsystems that allow you to synchronize operations on multiple devices 
using a synchronization connector, set the synchronization mode of the analog output 
subsystem on each device using the AnalogOutputSubsystem.SynchronizationMode 
property. See page 203 for more information on synchronization.

12. Configure the subsystem using the AnalogOutputSubsystem.Config method.

13. Call the AnalogOutputSubsystem.Start method to start the continuous analog output 
operation. 

When it detects a trigger, the host computer writes the pattern in the buffer to specified output 
channels, as determined by the channel list. 

If your device supports it, you can mute the output, which attenuates the output voltage to 
0 V by calling AnalogOutputSubsystem.Mute. This does not stop the analog output 
operation; instead, the analog output voltage is reduced to 0 V over a hardware-dependent 
number of samples. You can unmute the output voltage to its current level by calling 
AnalogOutputSubsystem.UnMute. To determine if muting and unmuting are supported by 
your device, read the value of the AnalogOutputSubsystem.SupportsMute property. If this 
value is True, muting and unmuting are supported.

To stop a continuous analog output operation, do not send new data to the device or use one 
of the following methods:

• AnalogOutputSubsystem.Stop – Stops the operation after all the data in the current 
buffer has been output. The driver raises a BufferDoneEvent event for the completed 
buffer and up to eight inprocess buffers, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 218 for more information on 
buffers.

• AnalogOutputSubsystem.Abort – Stops the operation immediately without waiting for 
the data in the current buffer to be output. The driver raises a BufferDoneEvent event for 
the partially completed buffer and up to eight inprocess buffers, before raising a 
QueueStoppedEvent event. All subsequent triggers are ignored.

• AnalogOutputSubsystem.Reset – Stops the operation immediately without waiting for 
the data in the current buffer to be output, and reinitializes the subsystem to the default 
configuration. 



Using the OpenLayers.Base Namespace
Notes: If you set the AnalogOutputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to be 
output).

If you try to perform another operation while the stop is in progress, an exception is raised 
with the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Setting the Channel Type

The DT-Open Layers for .NET Class Library supports the following channel types for a 
specified analog I/O subsystem:

• SingleEnded – Use this configuration when you want to measure high-level signals, noise 
is insignificant, the source of the input is close to the device, and all the input signals are 
referred to the same common ground.

To determine if the subsystem supports the single-ended channel type, use the 
SupportsSingleEnded property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports single-ended inputs.

To determine how many single-ended channels are supported by the subsystem, use the 
MaxSingleEndedChannels property of the appropriate subsystem.

• Differential – Use this configuration when you want to measure low-level signals (less 
than 1 V), you are using an A/D converter with high resolution (greater than 12 bits), 
noise is a significant part of the signal, or common-mode voltage exists.

To determine if the subsystem supports the differential channel type, use the 
SupportsDifferential property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports differential inputs.

To determine how many differential channels are supported by the subsystem, use the 
MaxDifferentialChannels property of the appropriate subsystem.

Set and/or return the channel type using the ChannelType property of the appropriate 
subsystem.

Note: For pseudo-differential analog inputs, specify the single-ended channel type; in this 
case, how you wire these signals determines the configuration. This option provides less 
noise rejection than the differential configuration, but twice as many analog input channels.

For older model devices, this setting is jumper-selectable and must be specified in the driver 
configuration dialog.
201



Chapter 3

202
Setting the Data Encoding

Two data encoding types are available: binary and twos complement.

To determine if your subsystem supports binary data encoding, use the 
SupportsBinaryEncoding property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports binary data encoding.

To determine if your subsystem supports twos complement data encoding, use the 
SupportsTwosCompEncoding property of the appropriate subsystem. If this property returns 
a value of True, the subsystem supports twos complement data encoding.

Use the Encoding property of the appropriate subsystem to specify the data encoding type.

Setting the Voltage Range

To determine how many ranges the subsystem supports, use the NumberOfRanges property 
of the appropriate subsystem.

To determine all the available voltage ranges for your subsystem, use the 
SupportedVoltageRanges property of the appropriate subsystem. 

Some analog output subsystems support both voltage and current output channels. To 
determine if the subsystem supports current outputs, use the 
AnalogOutputSubsystem.SupportsCurrentOutput property. 

Use the VoltageRange property of the appropriate subsystem to set or return the voltage 
range for the subsystem. 

Note: If you are using a current output channel, determine how the voltage range maps to 
your current output range and write the appropriate voltage to the output channel.

The following example shows how to set the voltage range for an analog input subsystem to 
the first range in the list of supported voltage ranges:

Visual C#
ainSS.VoltageRange = ainSS.SupportedVoltageRanges[0];

Visual Basic
ainSS.VoltageRange = ainSS.SupportedVoltageRanges(0)



Using the OpenLayers.Base Namespace
Setting the Excitation Voltage Source and Value

To determine if the analog input subsystem supports an internal excitation voltage source, use 
the AnalogInputSubsystem.SupportsInternalExcitationVoltageSrc property. To determine if 
the analog input subsystem supports an external excitation voltage source, use the 
AnalogInputSubsystem.SupportsExternalExcitationVoltageSrc property. 

You specify the excitation voltage source to use (Internal, External, or Disabled) for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property. By default, 
the excitation voltage source is disabled.

If you set the excitation voltage source to Internal, you can also set the value of the excitation 
voltage source using the SupportedChannelInfo.ExcitationVoltageValue property. 

You can determine the minimum allowable value for the internal excitation voltage source 
using the AnalogInputSubsystem.MinExcitationVoltageValue property. Similarly, you can 
determine the maximum allowable value for the internal excitation voltage source using the 
AnalogInputSubsystem.MaxExcitationVoltageValue property. 

Setting the Synchronization Mode

Some devices provide one or more synchronization connectors (such as an LVDS RJ45 or Sync 
Bus connector) that allows you to synchronize operations on multiple devices. In this 
configuration, the subsystem on one device is configured as the master and the subsystem on 
the other device is configured as a slave. When the subsystem on the master module is 
triggered, the specified subsystem on both the master device and the slave device start 
operating at the same time.

To determine if your subsystem supports the ability to program the synchronization mode, 
use the SupportsSynchronization property of the appropriate subsystem. 

If the subsystem supports programmable synchronization modes, use the 
SynchronizationMode property to set or get the current synchronization mode; the following 
values are supported:

• None – The subsystem is configured to ignore the synchronization circuit.

• Master – Sets the subsystem as a master; the synchronization connector on the device is 
configured to output a synchronization signal.

• Slave – Sets the subsystem as a slave; the synchronization connector on the device is 
configured to accept a synchronization signal as an input.

Refer to your hardware documentation for more information on how synchronization works 
for your device.
203



Chapter 3

204
Setting the Filter Type

For some devices, like the TEMPpoint and VOLTpoint instruments, that support 
programmable filter types for measuring data, you can set the filter type.

To determine if your subsystem supports the ability to program the filter type, use the 
SupportsDataFilters property of the appropriate subsystem. 

If the subsystem supports programmable filter types, use the DataFilterType property to set 
or get the current filter type; the following values are supported:

• Raw – No filter. Provides fast response times, but the data may be difficult to interpret. 
Use when you want to filter the data yourself.

The Raw filter type returns the data exactly as it comes out of the Delta-Sigma A/D 
converters. Note that Delta-Sigma converters provide substantial digital filtering above 
the Nyquist frequency.

Generally, the only time it is desirable to use the Raw filter type is if you are using fast 
responding inputs, sampling them at higher speeds (> 1 Hz), and need as much response 
speed as possible.

• MovingAverage – Provides a compromise of filter functionality and response time. This 
filter can be used in any application. This low-pass filter takes the previous 16 samples, 
adds them together, and divides by 16.

Note: The properties SupportsTemperatureFilters andTemperatureFilterType are 
deprecated properties that have been replaced by SupportsDataFilters and DataFilterType, 
respectively.

Setting up the Channel List

Note: Single-value operations do not use a channel list.

If you want to acquire data from or update multiple channels, you need to use a continuous 
operation mode and specify the channels that you want to sample (and the order in which to 
sample them) in a ChannelList object. 

Channels are sampled or updated in order from the first entry to the last entry in the 
ChannelList object. Channel numbering is zero-based; that is, the first entry in the ChannelList 
is at index 0, the second entry is at index 1, and so on.

The ChannelList property is accessible using any subsystem class whose 
SupportsContinuous property is True. Typically, a ChannelList is used with the 
AnalogInputSubsystem and AnalogOutputSubsystem classes. 



Using the OpenLayers.Base Namespace
For an analog input subsystem, you can specify analog input channels, as well as digital 
inputs, counter/timers, and/or quadrature decoders in the ChannelList object, if your device 
supports it. Similarly, for an analog output subsystem, you can specify analog output channels 
as well as digital outputs in the ChannelList object, if your device supports it. Refer to page 
150 for more information on available channels. 

You can add sequential channels (such as channels 0, 1, 2, 3) or random channels (such as 
channels 2, 9, 7) to the ChannelList object, and can specify a channel more than once in the list 
(such as channels 1, 2, 1), if your device supports it.

For devices that support simultaneous sample-and-hold mode, the channel numbers must 
typically be in ascending order (such as 3, 6, 8, and so on), and cannot be repeated. To 
determine if the subsystem supports simultaneous sample-and-hold mode, use the 
AnalogInputSubsystem.SupportsSimultaneousSampleHold property. If this property 
returns a value of True, the subsystem supports simultaneous sample-and-hold mode.

Other devices may limit the order in which you can enter a channel in the channel list. See the 
user’s manual for your device to determine any channel ordering limitations.

The following example shows a ChannelList that contains four channels. Channel 1 is 
sampled first, followed by channel 2, channel 1 again, and then channel 0:

Adding Channels to a Channel List

The ChannelList.Add method adds a channel to the end of the ChannelList object, and 
returns the index of the added channel. You can specify the channel to add in one of the 
following ways:

• By physical channel number

• By channel name

• By ChannelListEntry object

The following sections describe these methods.

Table 69: Example of a ChannelList Object

Channel-List Index Channel Description

0 1 Sample channel 1.

1 2 Sample channel 2.

2 1 Sample channel 1 again.

3 0 Sample channel 0.
205



Chapter 3

206
Adding Channels By Physical Channel Number 

This method is the simplest way to add channels into the ChannelList object, particularly if 
you are adding channels that are native to the subsystem type (such as analog input channels 
on an analog input subsystem).

For native channels, the physical channel number always equals the logical channel number. 
While non-native channels, such as digital inputs that are streamed through the analog input 
subsystem, can also be added this way, the physical channel number is not the same as the 
logical channel number, so you may find it easier to add the channel by name or by 
ChannelListEntry object instead.

A new ChannelListEntry object is returned for each physical channel that is added this way. 
Refer to page 208 for more information on ChannelListEntry objects.

The following example shows how to use the Add method to add physical channel 0 to the 
end of a ChannelList for an analog input subsystem:

Visual C#
ch = AinSS.ChannelList.Add(0);

Visual Basic
ch = AinSS.ChannelList.Add(0)

Adding Channels By Channel Name

The channel name is the name that you assigned to the channel using the 
SupportedChannelInfo class, described on page 150. A new ChannelListEntry object is 
returned for each channel that is added this way. Refer to page 208 for more information on 
ChannelListEntry objects.

The following example shows how to use the Add method to add a channel named Sensor to 
the end of a ChannelList for an analog input subsystem:

Visual C#
//Specify the name Sensor for the first
//analog input channel.
ainSS.SupportedChannels[0].Name = "Sensor";
//Add the channel named Sensor to the ChannelList
ch = ainSS.ChannelList.Add("Sensor");

Visual Basic
'Specify the name Sensor for the first
'analog input channel.
ainSS.SupportedChannels(0).Name = "Sensor"
ch = AinSS.ChannelList.Add("Sensor")



Using the OpenLayers.Base Namespace
Adding Channels By ChannelListEntry Object

This method is useful if you want a more generic approach to adding channels. This approach 
frees you from keeping track of physical channel numbers and their names.

To get a ChannelListEntry object, use the ChannelListEntry constructor within the 
ChannelListEntry class, specifying the SupportedChannelInfo object for the channel that you 
want to sample or update. See page 150 for more information on SupportedChannelInfo 
objects.

This example creates a ChannelListEntry called Ch0 for physical channel 0 of the analog input 
subsystem, using all the information contained in SupportedChannelInfo for that channel.

Visual C#
ChannelListEntry Ch0 = new ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 0 ));

Visual Basic
Dim Ch0 As New ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 0 ))

Note: It is recommended that you set the gain (see page 210) and inhibition value (page 211) 
for each ChannelListEntry object after you create it. However, it is possible to set or change 
these values after the ChannelListEntry object is added to the ChannelList.

The following example shows how to use the Add method to add ChannelListEntry object 
Ch0 to the end of a ChannelList:

Visual C#
AinSS.ChannelList.Add(Ch0);

Visual Basic
AinSS.ChannelList.Add(Ch0)

Inserting Channels in the Channel List

The ChannelList.Insert method inserts a channel at the specified index of a ChannelList 
object, incrementing all higher index entries by 1, and returns the index of the added channel. 
You can specify the channel to insert in one of the following ways:

• By physical channel number

• By channel name

• By ChannelListEntry object

The following sections describe these methods.
207



Chapter 3

208
Inserting a Channel By Physical Channel Number

This method is the simplest way to insert channels into the ChannelList object, particularly if 
you are inserting channels that are native to the subsystem type (such as analog input 
channels on an analog input subsystem). 

For native channels, the physical channel number always equals the logical channel number. 
While non-native channels, such as digital inputs that are streamed through the analog input 
subsystem, can also be inserted this way, the physical channel number is not the same as the 
logical channel number, so you may find it easier to insert the channel by name or by 
ChannelListEntry object instead.

A new ChannelListEntry object is returned for each physical channel that is inserted this way. 
Refer to page 208 for more information on ChannelListEntry objects.

The following example shows how to use the Insert method to insert physical channel 3 at 
index 0 of the ChannelList for an analog input subsystem. The channel that was formally at 
index 0 is now at index 1.

Visual C#
ch = AinSS.ChannelList.Insert(0, 3);

Visual Basic
ch = AinSS.ChannelList.Insert(0, 3)

Inserting a Channel By Channel Name

The channel name is the name that you assigned to the channel using the 
SupportedChannelInfo class, described on page 150. A new ChannelListEntry object is 
returned for each channel that is inserted this way. Refer to page 208 for more information on 
ChannelListEntry objects.

The following example shows how to use the Insert method to insert a channel named Ain3 at 
index 0 of the ChannelList for an analog input subsystem. The channel that was formally at 
index 0 is now at index 1.

Visual C#
ch = AinSS.ChannelList.Insert(0, "Ain3");

Visual Basic
ch = AinSS.ChannelList.Insert(0, "Ain3")

Inserting a Channel By ChannelListEntry Object

This method is useful if you want a more generic approach to inserting channels. This 
approach frees you from keeping track of physical channel numbers and their names.

To get a ChannelListEntry object, use the ChannelListEntry constructor within the 
ChannelListEntry class, specifying the SupportedChannelInfo object for each channel that you 
want to sample or update. See page 150 for more information on SupportedChannelInfo 
objects.



Using the OpenLayers.Base Namespace
This example creates a ChannelListEntry called Ch3 for physical channel 3 of the analog input 
subsystem, using all the information contained in SupportedChannelInfo for that channel.

Visual C#
ChannelListEntry Ch3 = new ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 3 ));

Visual Basic
Dim Ch3 As New ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 3 ))

Note: It is recommended that you set the gain (see page 210) and inhibition value (page 211) 
for each ChannelListEntry object after you create it. However, it is possible to set or change 
these values after the ChannelListEntry object is added to the ChannelList.

The following example shows how to use the Insert method to insert ChannelListEntry object 
Ch3 at index 0 of the ChannelList. The channel that was formally at index 0 is now at index 1.

Visual C#
AinSS.ChannelList.Insert(0, Ch3);

Visual Basic
AinSS.ChannelList.Insert(0, Ch3)

Replacing Channels in the ChannelList

The ChannelList.Item ([]) property replaces a ChannelListEntry object at the specified index of 
the ChannelList. An exception is raised if an entry does not exist at the specified index.

The following example shows how to use the Item ([]) property to replace the 
ChannelListEntry object at index 1 of the ChannelList with ChannelListEntry object Ch3:

Visual C#
AinSS.ChannelList[1] = Ch3;

Visual Basic
AinSS.ChannelList(1) = Ch3
209



Chapter 3

210
Removing Channels from the Channel List

To remove a ChannelListEntry from the ChannelList object, use the ChannelList.Remove 
method. This method removes the first instance of the specified ChannelListEntry object from 
the ChannelList object, decrementing all higher index entries by 1. 

The following example shows how to remove the first instance of ChannelListEntry object 
Ch0 from the ChannelList object using the Remove method:

Visual C#
AinSS.ChannelList.Remove(Ch0);

Visual Basic
AinSS.ChannelList.Remove(Ch0)

Setting the Gain of a ChannelListEntry

The voltage range divided by the gain determines the effective range for a channel. For 
example, if your device provides a voltage range of ±10 V and you want to measure a ±1.5 V 
signal, specify a range of ±10 V and a gain of 4; the effective input range for this channel is 
then ±2.5 V (±10/4), which provides the best sampling accuracy for that channel.

To determine if the subsystem supports programmable gain, use the 
SupportsProgrammableGain property of the appropriate subsystem. If this property returns 
a value of True, programmable gain is supported.

To determine the number of gains the subsystem supports, use the 
NumberofSupportedGains property of the appropriate subsystem. To list all of the gain 
values supported by the subsystem, use the SupportedGains property.

The simplest way to specify the gain for a channel is by using a single-value operation. (In this 
case, a ChannelListEntry object is not used.) Refer to page 176 for more information on 
single-value analog input operations; refer to page 180 for more information on single-value 
analog output operations.

If you are using a ChannelListEntry object, specify or return the gain for each 
ChannelListEntry object using the ChannelListEntry.Gain property.

This example shows how to apply a gain of 2 to a ChannelListEntry called Ch0.

Visual C#
Ch0.Gain = 2;

Visual Basic
Ch0.Gain = 2

You can also apply gain to a ChannelListEntry in the ChannelList, as shown below; this 
example applies a gain of 2 to the ChannelListEntry at index 0 of the ChannelList:

Visual C#
AinSS.ChannelList[0].Gain = 2;



Using the OpenLayers.Base Namespace
Visual Basic
AinSS.ChannelList(0).Gain = 2

Note: The driver sets the actual gain as closely as possible to the number specified. You can 
read back the exact gain after configuring the subsystem using the Gain property. If your 
subsystem does not support programmable gain, enter a value of 1 (the default value) for the 
gain.

Inhibiting Channels in a Channel List

If supported by your subsystem, you can inhibit data from being returned by the 
ChannelListEntry object. This feature is useful if you want to discard values that are acquired 
by specific channels. 

To determine if a subsystem supports inhibition, use the SupportsChannelListInhibit 
property inherited from the SubsystemBase class. If this property returns a value of True, the 
subsystem supports channel inhibition.

Using the Inhibit property of the ChannelListEntry class, you can enable or disable inhibition 
for each ChannelListEntry object. If you set this property to True, the acquired value is 
discarded after the channel entry is sampled. If you set this property to False (the default 
value), the acquired value is stored after the channel entry is sampled. 

This example shows how to set the channel inhibit value of the ChannelListEntry called Ch0 
to True:

Visual C#
Ch0.Inhibit = 1;

Visual Basic
Ch0.Inhibit = 1

You can also set the inhibit value of a ChannelListEntry in the ChannelList, as shown below; 
this example sets the inhibit value to True for the ChannelListEntry at index 3 of the 
ChannelList:

Visual C#
AinSS.ChannelList[3].Inhibit = 1; 

Visual Basic
AinSS.ChannelList(3).Inhibit = 1
211



Chapter 3

212
Getting Information about Channels in the ChannelList Object

You can get information about the contents of a ChannelList object using the following 
methods:

• ChannelList.Contains method – Determines whether a specified ChannelListEntry object 
is contained in the ChannelList.

• ChannelList.IndexOf method – Searches for a specified channel (specified by physical 
channel or ChannelListEntry object) in the ChannelList and returns the zero-based index 
of the first occurrence within the ChannelList.

• ChannelList.CGLDepth property – Returns the maximum number of channels or 
ChannelListEntry objects that the ChannelList can contain.

Setting up a Clock Source

The DT-Open Layers for .NET Class Library defines internal and external clock sources, 
described in the following subsections. Note that single-value operations do not use clocks.

Note: Some subsystems allow you to read or update multiple channels on a single clock 
pulse. You can determine whether multiple channels are read or updated on a single clock 
pulse by using the Clock.SupportsSimultaneousClocking property.

In addition, some subsystems support different clock frequencies depending on whether the 
device is powered by an internal power source or an external power source. To determine if 
your device supports an internal power source or an external power source, use the 
PowerSource property inherited from the SubsystemBase class. 

Internal Clock Source

The internal clock is the clock source on the device that paces data acquisition or output for 
each ChannelListEntry object in the channel list.

To determine if the subsystem supports an internal clock, use the 
Clock.SupportsInternalClock property. If this property returns a value of True, an internal 
clock is supported.

To determine the maximum frequency supported by the internal clock, use the 
Clock.MaxFrequency property. To determine the minimum frequency supported by the 
internal clock, use the Clock.MinFrequency property.

Specify the clock source as internal using the Clock.Source property. Then, use the 
Clock.Frequency property to specify the frequency at which to pace the operation.



Using the OpenLayers.Base Namespace
Note: According to sampling theory (Nyquist Theorem), you should specify a frequency for 
an A/D signal that is at least twice as fast as the input’s highest frequency component. For 
example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 
40 kHz. Doing so avoids an error condition called aliasing, in which high frequency input 
components erroneously appear as lower frequencies after sampling.

The driver sets the frequency of the internal clock as close as possible to the value that you 
specified in the Frequency property. You can determine the actual frequency that was set on 
the hardware by reading the value of the Frequency property after the subsystem has been 
configured (using the Config method).

External Clock Source

The external clock is a clock source attached to the device that paces data acquisition or output 
for each channel in the channel list. This clock source is useful when you want to pace at rates 
not available with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the 
Clock.SupportsExternalClock property. If this property returns a value of True, an external 
clock is supported.

To determine the maximum external clock divider that the subsystem supports, use the 
Clock.MaxExtClockDivider property. To determine the minimum external clock divider that 
the subsystem supports, use the Clock.MinExtClockDivider property.

Specify the clock source as external using the Clock.Source property. Then, use the 
Clock.ExtClockDivider property to set or get the clock divider that is used to determine the 
frequency of the external clock source. The frequency of the external clock input divided by 
the external clock divider determines the frequency at which to pace the operation.

Setting Up a Trigger Type

Note: Single-value operations do not use triggers.

The DT-Open Layers for .NET Class Library provides the Trigger class that can be used to set 
up a start trigger, and the ReferenceTrigger class that can be used to set up a reference trigger, 
if supported by your device. The following trigger types are available for the start and 
reference triggers:

• Software

• TTLPos

• TTLNeg 

• ThresholdPos
213



Chapter 3

214
• ThresholdNeg

• DigitalEvent

For devices that support a start trigger and reference trigger for performing continuous 
pre-and post-trigger analog input operations, specify the start trigger type using the 
AnalogInputSubsystem.Trigger.TriggerType property and specify the reference trigger type 
using the AnalogInputSubsystem.ReferenceTrigger.TriggerType property; refer to page 185 
for more information on pre- and post-trigger operations using a start and reference trigger.

For devices that support continuous post-trigger and about-trigger operations without using a 
reference trigger, specify the post-trigger source using the 
AnalogInputSubsystem.Trigger.TriggerType property; refer to page 187 for more 
information on post-trigger operations and page 193 for more information on about-trigger 
operations.

For legacy devices that support a pre-trigger source without using a reference trigger, use the 
AnalogInputSubsystem.Trigger.PreTriggerSource property of the Trigger class; see page 190 
for more information on pre-trigger operations. To specify a retrigger source, use the 
AnalogInputSubsystem.TriggeredScan.RetriggerSource property; see page 228 for more 
information on retriggers.

The following subsections describe these trigger sources. Note that you cannot specify a 
trigger source for single-value operations.

Software Trigger Source

A software trigger occurs when you start the operation; internally, the computer writes to the 
device to begin the operation.

To determine if the subsystem supports a software trigger for the start trigger, use the 
Trigger.SupportsSoftwareTrigger property. If this property returns a value of True, a software 
trigger is supported.

To determine if the subsystem supports a software trigger for the reference trigger, use the 
ReferenceTrigger.SupportsSoftwareTrigger property. If this property returns a value of True, 
a software trigger is supported.

TTLPos Trigger Source

The TTLPos trigger source is an external digital (TTL) signal attached to the device. The 
trigger occurs when the device detects a transition on the rising edge of the digital TTL signal.

To determine if the subsystem supports a TTLPos trigger for a start trigger, use the 
Trigger.SupportsPosExternalTTLTrigger property. If this property returns a value of True, a 
TTLPos trigger is supported.

To determine if the subsystem supports a TTLPos trigger for a reference trigger, use the 
ReferenceTrigger.SupportsPosExternalTTLTrigger property. If this property returns a value 
of True, a TTLPos trigger is supported.



Using the OpenLayers.Base Namespace
To determine if the subsystem supports a TTLPos trigger for a single-value operation, use the 
Trigger.SupportsSvPosExternalTTLTrigger property. If this property returns a value of True, 
a TTLPos trigger is supported.

TTLNeg Trigger Source

The TTLNeg trigger source is an external digital (TTL) signal attached to the device. The 
trigger occurs when the device detects a transition on the falling edge of the digital TTL signal.

To determine if the subsystem supports a TTLNeg trigger for a start trigger, use the 
Trigger.SupportsNegExternalTTLTrigger property. If this property returns a value of True, a 
TTLNeg trigger is supported.

To determine if the subsystem supports a TTLNeg trigger for a reference trigger, use the 
ReferenceTrigger.SupportsNegExternalTTLTrigger property. If this property returns a value 
of True, a TTLNeg trigger is supported.

To determine if the subsystem supports a TTLNeg trigger for a single-value operation, use the 
Trigger.SupportsSvNegExternalTTLTrigger property. If this property returns a value of True, 
a TTLNeg trigger is supported.

ThresholdPos Trigger Source

A threshold trigger is generally either an analog signal from an analog input channel or an 
external analog signal attached to the device. A positive analog threshold (ThresholdPos) 
trigger occurs when the device detects a positive-going signal that crosses a threshold value. 

To determine if the subsystem supports a ThresholdPos trigger for the start trigger, use the 
Trigger.SupportsPosThresholdTrigger property. If this property returns a value of True, a 
ThresholdPos trigger is supported.

To determine if the subsystem supports a ThresholdPos trigger for the reference trigger, use 
the ReferenceTrigger.SupportsPosThresholdTrigger property. If this property returns a value 
of True, a ThresholdPos trigger is supported.

To determine which channels support a threshold trigger for the start trigger, use the 
Trigger.SupportedThresholdTriggerChannels property. To set the channel that you want to 
use for the threshold start trigger, use the Trigger.ThresholdTriggerChannel property. 

To determine which channels support a threshold trigger for the reference trigger, use the 
ReferenceTrigger.SupportedThresholdTriggerChannels property. To set the channel that you 
want to use for the threshold reference trigger, use the 
ReferenceTrigger.ThresholdTriggerChannel property. 

On some devices, the threshold level is set using an analog output subsystem on the device. 
On other devices, you set the threshold level using the Trigger.Level property (for the start 
trigger) or ReferenceTrigger.Level property (for the reference trigger). By default, the trigger 
threshold value is in voltage unless specified otherwise for the device; see the user’s manual 
for your device for valid threshold value settings.
215



Chapter 3

216
Note: The threshold level set by the Trigger.Level or ReferenceTrigger.Level property 
depends on the voltage range and gain of the subsystem. For example, if the voltage range of 
the analog input subsystem is ±10 V, and the specified gain is 1, specify a threshold voltage 
level within ±10 V. Likewise, if the voltage range of the analog input subsystem is ±10 V, and 
the specified gain is 10, specify a threshold voltage level within ±1 V. Refer to your device 
documentation for details on how to specify the threshold value for your device.

ThresholdNeg Trigger Source

A threshold trigger is generally either an analog signal from an analog input channel or an 
external analog signal attached to the device. A negative analog threshold trigger 
(ThresholdNeg) occurs when the device detects a negative-going signal that crosses a 
threshold value. 

To determine if the subsystem supports a ThresholdNeg trigger for the start trigger, use the 
Trigger.SupportsNegThresholdTrigger property. If this property returns a value of True, a 
ThresholdNeg trigger is supported.

To determine if the subsystem supports a ThresholdNeg trigger for the reference trigger, use 
the ReferenceTrigger.SupportsNegThresholdTrigger property. If this property returns a 
value of True, a ThresholdNeg trigger is supported.

To determine which channels support a threshold trigger for the start trigger, use the 
Trigger.SupportedThresholdTriggerChannels property. To set the channel that you want to 
use for the threshold start trigger, use the Trigger.ThresholdTriggerChannel property. 

To determine which channels support a threshold trigger for the reference trigger, use the 
ReferenceTrigger.SupportedThresholdTriggerChannels property. To set the channel that you 
want to use for the threshold reference trigger, use the 
ReferenceTrigger.ThresholdTriggerChannel property. 

On some devices, the threshold level is set using an analog output subsystem on the device. 
On other devices, you set the threshold level using the Trigger.Level property (for the start 
trigger) or the ReferenceTrigger.Level property (for the reference trigger). By default, the 
trigger threshold value is in voltage unless specified otherwise for the device; see the user’s 
manual for your device for valid threshold value settings.

Note: The threshold level set by the Trigger.Level or ReferenceTrigger.Level property 
depends on the voltage range and gain of the subsystem. For example, if the voltage range of 
the analog input subsystem is ±10 V, and the specified gain is 1, specify a threshold voltage 
level within ±10 V. Likewise, if the voltage range of the analog input subsystem is ±10 V, and 
the specified gain is 10, specify a threshold voltage level within ±1 V. Refer to your device 
documentation for details on how to specify the threshold value for your device.



Using the OpenLayers.Base Namespace
DigitalEvent Trigger Source

For a DigitalEvent trigger source, a trigger is generated when an external digital event occurs. 

To determine if the subsystem supports a DigitalEvent trigger for the start trigger, use the 
Trigger.SupportsDigitalEventTrigger property. If this property returns a value of True, a 
DigitalEvent trigger is supported.

To determine if the subsystem supports a DigitalEvent trigger for the reference trigger, use the 
ReferenceTrigger.SupportsDigitalEventTrigger property. If this property returns a value of 
True, a DigitalEvent trigger is supported.

Sync Bus Trigger Source

For devices that support connecting multiple devices together in a master/slave relationship 
using Sync Bus (RJ45) connectors, the slave device may support the ability to configure a Sync 
Bus trigger source as the reference trigger.

To determine if the subsystem supports a Sync Bus trigger source as the reference trigger, use 
ReferenceTrigger.SupportsSyncBusTrigger property. If this property returns a value of True, 
a Sync Bus trigger is supported.

Use the Sync Bus trigger source as the reference trigger if you want the slave device to receive 
a Sync Bus trigger from one of the other devices to stop pre-trigger acquisition and start 
post-trigger acquisition.

If you want to set the slave module to receive a Sync Bus trigger as the start trigger source, set 
the synchronization mode of the device to Slave using the SynchronizationMode property of 
for the subsystem, described on page 203; the Sync Bus trigger is used by the slave module as 
the start trigger source by default. 

Setting up a Post-Trigger Scan Count

On devices that support a reference trigger for performing continuous pre- and post-trigger 
analog input operations, you can specify how many samples to acquire after the reference 
trigger occurs using the AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount 
property.

To determine if your device supports the ability to specify the number of post-trigger samples 
to acquire, use the AnalogInputSubsystem.ReferenceTrigger.
SupportsPostTriggerScanCount property.
217



Chapter 3

218
Setting up Buffers

Note: Single-value operations do not use buffers.

Continuous analog input and analog output operations require buffers in which to store data. 
For input operations, a queue exists to hold the buffers that are empty and ready for input. For 
output operations, the queue holds buffers that you have filled with data and are ready for 
output.

To determine if the subsystem supports buffering, use the SupportsBuffering property within 
the appropriate subsystem class. If this property returns a value of True, buffering is 
supported.

If you want to acquire one buffer of data from one channel using a continuous analog input 
operation, use the AnalogInputSubsystem.GetOneBuffer method; this method allocates an 
OlBuffer object of the size you specify and acquires one buffer of data for you.

For all other operations, use the OlBuffer constructor within the OlBuffer class to create an 
OlBuffer object for use with an analog input or analog output subsystem. The library 
automatically allocates an internal data buffer, which is encapsulated by the OlBuffer object. 
You specify the subsystem with which to associate the OlBuffer object as well the size (in 
samples) of the internal buffer to allocate.

If desired, you can use the OlBuffer.Tag property, if desired, to name the buffer with the 
contents that are contained in the buffer.

Note: If you use the ReturnCjcTemperaturesInStream property, described on page 159, to 
return CJC data in the data stream, ensure that you set the size of the internal buffer to be 
twice as large to accommodate the returned CJC values for each channel (number of samples 
per channel x 2).

If you set the size of the internal buffer that is encapsulated by an OlBuffer object and later 
you want to change the size, call the OlBuffer.Reallocate method. This method reallocates 
the internal buffer to the specified number of samples; the initial internal buffer is deallocated 
and any data that it contained is lost. 

The AnalogInputSubsystem.GetOneBuffer method uses one buffer. Other continuous 
analog input operations require a minimum of two OlBuffer objects. Continuous analog 
output operations require a minimum of two OlBuffer objects if WrapSingleBuffer is False; if 
WrapSingleBuffer is True, one OlBuffer object is required. 

Once you have created the OlBuffer objects for multiple buffer operations (and, for output 
operations, filled the corresponding internal buffers with data), put the OlBuffer objects on the 
queue using the BufferQueue.QueueBuffer method of the appropriate subsystem.



Using the OpenLayers.Base Namespace
The following example shows how to create multiple OlBuffer objects for a continuous analog 
input operation and put them on the queue for the analog input subsystem. In this example, 
an internal buffer of 1024 samples is allocated when the OlBuffer object is created:

Visual C#
// Create the buffers
for (int i=0; i<4; ++i)
{

AinBuffer[i] = new OlBuffer (1024, ainSS);
// Put the buffers on the queue
ainSS.BufferQueue.QueueBuffer (AinBuffer[i]);

}

Visual Basic
While i < 4

' Create the buffers
AinBuffers(i) = New OlBuffer(1024, ainSS)
' Put the buffers on the queue
ainSS.BufferQueue.QueueBuffer(AinBuffers(i))
i += 1

End While

When you start a continuous operation, the device takes up to eight OlBuffer objects from the 
subsystem queue and begins filling them (for input operations) or outputting data from them 
(for output operations) at the specified clock rate. The state of these objects changes from 
queued to inprocess. 

About QueuedCount and InProcessCount

You can determine the number of OlBuffer objects that are on the subsystem queue by using 
the BufferQueue.QueuedCount property. You can determine the number of OlBuffer objects 
that are inprocess by using the BufferQueue.InProcessCount property.

Every time an OlBuffer object transitions from the queued state to the inprocess state, the 
value of the QueuedCount property decreases by 1 and the value of the InProcessCount 
property increases by 1. For example, assume that you call QueueBuffer for 10 OlBuffer 
objects; the QueuedCount is 10 and the InProcessCount is 0. Once you call Start for the 
subsystem, up to 8 OlBuffer objects are moved from the queued state to the inprocess state. 
QueuedCount is now 2 and InProcessCount is 8. 

If you do not put the OlBuffer objects back on the queue as they are completed, the 
QueuedCount decreases while the InProcessCount remains the same (as a new inprocess 
buffer replaces a completed buffer) until the QueuedCount gets to 0, then the InProcessCount 
starts decreasing until all the OlBuffer objects are completed, as shown below: 
219



Chapter 3

220
Buffer Completion Events

Note: Buffer completion events are not generated if you use the 
AnalogInputSubsystem.GetOneBuffer method. This is a synchronous method that does not 
return until the buffer has been acquired or the timeout value has expired. 

One or more of the following events is generated when a buffer is completed:

• BufferDoneEvent – For input operations, this event is generated when the internal buffer 
of the OlBuffer object has been filled with post-trigger data. For output operations, this 
event is generated when all the data in the internal buffer of the OlBuffer object has been 
output. Refer to page 259 for more information on this event.

• PreTriggerBufferDoneEvent – For input operations only, this event is generated when the 
internal buffer of the OlBuffer object has been filled with pre-trigger data. Refer to page 
261 for more information on this event.

• QueueStoppedEvent – This event occurs when you stop a continuous analog I/O 
operation with Stop or Abort. Refer to page 262 for more information on this event.

Table 70: InProcessCount Example 

Completed Buffers QueueCount InProcessCount

0 10 0

0 2 8

1 1 8

2 0 8

3 0 7

4 0 6

5 0 5

6 0 4

7 0 3

8 0 2

9 0 1

10 0 0



Using the OpenLayers.Base Namespace
• IOCompleteEvent – For analog input operations that use a reference trigger whose 
trigger type is something other than software (none), this event occurs when the last 
post-trigger sample is copied into the user buffer; devices that do not support a reference 
trigger will never receive this event for analog input operations.

For analog output operations, this event is generated when the last data point has been 
output from the analog output channel. Refer to page 263 for more information on this 
event.

• QueueDoneEvent – This event is generated when no OlBuffer objects are available on the 
queue and the operation stops. Refer to page 265 for more information on this event.

Handling Input Buffers

Each time a BufferDoneEvent or PreTriggerBufferDoneEvent event is raised, your application 
program must handle the event or you will lose the data in the internal buffer of the OlBuffer 
object. Refer to page 257 for more information about handling events and buffers.

You can post-process OlBuffer objects, if you wish. One technique for doing this is to allocate 
an array that will hold the OlBuffer objects as they are completed. When the BufferDoneEvent 
or PreTriggerBufferDoneEvent event occurs, move the OlBuffer object into a array. When the 
operation is complete, process the OlBuffer objects in your array.

For continuous analog input operations, use one of the following methods to copy the data 
from the internal buffer of an OlBuffer object into a user-declared array/variable (the data 
type of this array/variable is dictated by the method/property you choose):

Note: For ease of use, all of these methods allocate the returned array to the correct size. 
Simply declare an array of the appropriate type for use with one these methods.

• OlBuffer.GetDataAsRawByte – Copies the data, as raw counts, from the internal buffer 
of the OlBuffer object into a user-declared array of bytes. You can copy all the data from 
the buffer or only the data for a specific ChannelListEntry in the buffer. Note that if the 
ChannelListEntry occurs more than once in the buffer, the data for each occurrence of the 
ChannelListEntry is copied.

To use this method, first declare an array of bytes.

Note: This method is useful when writing binary data to a file. Since each sample takes 
more than one array entry, other uses may be limited.

• OlBuffer.GetDataAsRawInt16 – Used when the resolution of the subsystem is 16 bits or 
less and when the data encoding is twos complement, copies the data, as raw counts, from 
the internal buffer of the OlBuffer object into a user-declared array of signed, 16-bit 
integers (short). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.
221



Chapter 3

222
To use this method, first declare an array of signed, 16-bit integers (short).

• OlBuffer.GetDataAsRawUInt16 – Used when the resolution of the subsystem is 16 bits or 
less and when the data encoding is binary, copies the data, as raw counts, from the 
internal buffer of the OlBuffer object into a user-declared array of unsigned, 16-bit integers 
(ushort). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of unsigned, 16-bit integers (ushort).

• OlBuffer.GetDataAsRawUInt32 – Used when the resolution of the subsystem is greater 
than 16 bits, copies the data, as raw counts, from the internal buffer of the OlBuffer object 
into a user-declared array of unsigned 32-bit integers (uint). You can copy all the data 
from the buffer or only the data for a specific ChannelListEntry in the buffer. Note that if 
the ChannelListEntry occurs more than once in the buffer, the data for each occurrence of 
the ChannelListEntry is copied.

To use this method, first declare an array of unsigned, 32-bit integers (uint).

• OlBuffer.GetDataAsSensor – Converts the data from the internal buffer of the OlBuffer 
object into sensor values using the specified sensor gain and offset (described on page 
156), and copies this data into a user-declared array of 64-bit floating-point values 
(double). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsVolts – Converts the data from the internal buffer of the OlBuffer 
object into voltages, and copies this data into a user-declared array of 64-bit floating-point 
(double) values. You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

Note: If the AnalogInputSubsystem.ReturnCjcTemperaturesInStream property is set to 
True, the CJC values, in temperature, are interleaved with the channel data; therefore, the 
returned array will be twice the number of valid samples (OlBuffer.ValidSamples). Refer 
to page 159 for more information on the ReturnCjcTemperaturesInStream property.

• OlBuffer.GetDataAsVoltsByte – For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into voltage values, and then copies these voltage 
values into a user-declared array of bytes. Each temperature value is stored as an Int32, 
and takes 4 bytes. 

To use this method, first declare an array of bytes.

• OlBuffer.GetDataAsCurrent – For a specified ChannelListEntry, converts the data from 
the internal buffer of the OlBuffer object into current values, in Amperes, and copies this 
data into a user-declared array of 64-bit floating-point (double) values. Note that if the 
ChannelListEntry occurs more than once in the buffer, the data for each occurrence of the 
ChannelListEntry is copied.



Using the OpenLayers.Base Namespace
To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsResistance – For a specified ChannelListEntry, converts the data 
from the internal buffer of the OlBuffer object into resistance values, in ohms, and copies 
this data into a user-declared array of 64-bit floating-point (double) values. Note that if the 
ChannelListEntry occurs more than once in the buffer, the data for each occurrence of the 
ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsTemperatureByte – For a specified ChannelListEntry, converts the 
data from the internal buffer of the OlBuffer object into temperatures based on the 
specified thermocouple, RTD, or thermistor (described on page 157, page 160, and page 
172), and copies this data into a user-declared array of bytes. Note that if the 
ChannelListEntry occurs more than once in the buffer, the data for each occurrence of the 
ChannelListEntry is copied.

To use this method, first declare an array of bytes.

Note: If the AnalogInputSubsystem.SupportsTemperatureInDataStream property is 
True, this method raises an exception if the SupportedChannelInfo.ThermocoupleType 
is None. If the AnalogInputSubsystem.ReturnCjcTemperaturesInStream property is set 
to True, the CJC values are interleaved with the channel data; therefore, the returned array 
will be twice the number of valid samples (OlBuffer.ValidSamples). Refer to page 159 for 
more information on the ReturnCjcTemperaturesInStream property.

• OlBuffer.GetDataAsTemperatureDouble – For a specified ChannelListEntry, converts 
the data from the internal buffer of the OlBuffer object into temperatures based on the 
specified thermocouple, RTD, or thermistor (described on page 157, page 160, and page 
172), and copies this data into a user-declared array of 64-bit floating-point (double) 
values. Note that if the ChannelListEntry occurs more than once in the buffer, the data for 
each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

Note: If the AnalogInputSubsystem.SupportsTemperatureInDataStream property is 
True, this method raises an exception if the SupportedChannelInfo.ThermocoupleType 
is None.

If the AnalogInputSubsystem.ReturnCjcTemperaturesInStream property is set to True, 
the CJC values are interleaved with the channel data; therefore, the returned array will be 
twice the number of valid samples (OlBuffer.ValidSamples). Refer to page 159 for more 
information on the ReturnCjcTemperaturesInStream property.

• OlBuffer.GetDataAsRpm – For a specified ChannelListEntry, converts the tachometer 
data from the internal buffer of an OlBuffer object into RPM (rotations per minute) values, 
and then copies these values into a user-declared array of 64-bit floating-point (double) 
values. Note that if the ChannelListEntry occurs more than once in the buffer, the data for 
each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.
223



Chapter 3

224
• OlBuffer.GetDataAsStrain – Converts the data from the internal buffer of an OlBuffer 
object into microstrain values, and then copies these microstrain values into a 
user-declared array of 64-bit floating-point (double) values. You can copy all the data from 
the buffer or only the data for a specific ChannelListEntry in the buffer. 

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsBridgeBasedSensor – Converts the data from the internal buffer of 
an OlBuffer object into the native engineering units of the full-bridge-based sensor, and 
then copies these values into a user-declared array of 64-bit floating-point (double) values. 
You can copy all the data from the buffer or only the data for a specific ChannelListEntry 
in the buffer. 

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsNormalizedBridgeOutput – Converts the data from the internal 
buffer of an OlBuffer object into the normalized output value of the bridge, in volts, and 
then copies these values into a user-declared array of 64-bit floating-point (double) values. 
You can copy all the data from the buffer or only the data for a specific ChannelListEntry 
in the buffer. 

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.Item property ([]) – Copies the raw count value at the specified index of the 
buffer specified by the OlBuffer object into a user-declared signed, 32-bit integer variable 
(int).

When you have finished copying the data from the internal buffer of the OlBuffer object, you 
can put the OlBuffer object back on the queue for the analog input subsystem using the 
AnalogInputSubsystem.BufferQueue.QueueBuffer method.

See the example for the event BufferDoneEvent starting on page 259 for an example of using 
the GetDataAsSensor method to handle input buffers.

Handling Output Buffers

For continuous analog output operations, you need to create an array and fill it with data, 
then copy this data from the array to the internal buffer of the OlBuffer object using one of the 
following methods:

• OlBuffer.PutDataAsRaw – Copies raw counts from a user-specified array into the 
internal buffer of the OlBuffer object. This is an overloaded method that allows you to 
copy all the data from the array into the buffer or only the data for a specific 
ChannelListEntry in the array into the buffer. Note that if the ChannelListEntry occurs 
more than once in the array, the data for each occurrence of the ChannelListEntry is 
copied.

If your subsystem supports a resolution of 16-bits or less, declare an array of unsigned, 
16-bit integers (ushort) for use with this method.

If your subsystem supports a resolution greater than 16 bits, declare an array of unsigned, 
32-bit integers (uint) for use with this method.



Using the OpenLayers.Base Namespace
• OlBuffer.PutDataAsVolts – Copies voltages from a user-specified array into the internal 
buffer of the OlBuffer object. This is an overloaded method that allows you to copy all the 
data from the array into the buffer or only the data for a specific ChannelListEntry in the 
array into the buffer. Note that if the ChannelListEntry occurs more than once in the array, 
the data for each occurrence of the ChannelListEntry is copied.

Declare an array of 64-bit floating-point values (double) for use with this method.

When you have finished copying the data into the internal buffer of the OlBuffer object, put 
the OlBuffer object back on the queue for the analog output subsystem using the 
AnalogOutputSubsystem.BufferQueue.QueueBuffer method. 

The following example shows how to create an OlBuffer object, fill the internal buffer of this 
OlBuffer object with 100 samples, and put the OlBuffer object on the analog output subsystem 
queue:

Visual C#
// Allocate a buffer of 100 samples
DacBuffer = new OlBuffer (100, aoutSS);
//Create an array of data
for (int i = 0; i < 100; i++)

{
data[i] = i;

}
// Copy the raw data to the buffer
DacBuffer.PutDataAsRaw (data);
// Queue the buffer for output
aoutSS.BufferQueue.QueueBuffer (DacBuffer);

Visual Basic
' Allocate a buffer of 100 samples
DacBuffer = New OlBuffer(100, aoutSS)
' Create an array of data
Dim i As Integer

For i = 0 To 99
data(i) = i

Next i
' Copy the raw data to the buffer
DacBuffer.PutDataAsRaw(data)
' Queue the buffer for output
aoutSS.BufferQueue.QueueBuffer(DacBuffer)

Moving Data from an Inprocess OlBuffer Object

Some devices allow you to transfer data from the internal buffer of an OlBuffer object while it 
is being filled. Typically, you would use this method when a continuous analog input 
operation is running slowly.

To determine if the subsystem supports this capability, use the 
AnalogInputSubsystem.SupportsInProcessFlush property. If this property returns a value of 
True, your subsystem supports moving data from the internal buffer as it is being filled. 
225



Chapter 3

226
Use the AnalogInputSubsystem.MoveFromBufferInprocess method to move data from the 
internal buffer of an OlBuffer object that is in the process of being filled to the internal buffer 
of a new OlBuffer object, which has not been put on the queue. 

Note: Some devices transfer data to the host in segments instead of one sample at a time. For 
example, data from the DT3010 device is transferred to the host in 64 byte segments; the 
number of valid samples is always a multiple of 64 depending on the number of samples 
transferred to the host when MoveFromBufferInprocess was called. It is up to your 
application to take this into account when flushing an inprocess buffer. Refer to your device 
documentation for more information.

Getting Information about a Buffer

The DT-Open Layers for .NET Class Library provides the following additional properties for 
getting information about buffers:

• OlBuffer.BufferSizeInBytes – Returns the size, in bytes, of the internal data buffer that is 
encapsulated by the OlBuffer object.

• OlBuffer.BufferSizeInSamples – Returns the size, in samples, of the internal data buffer 
that is encapsulated by the OlBuffer object.

• OlBuffer.ChannelListOffset – Returns the index into the ChannelList that corresponds to 
the first sample in the internal buffer of the OlBuffer object.

• OlBuffer.Encoding – Returns the data encoding for the raw data (binary or twos 
complement) in the internal buffer of the OlBuffer object.

• OlBuffer.RawDataFormat – Returns the format of the raw data (Int16, Uint16, Int32, Float 
(32-bit float), or Double (64-bit float)) in the internal buffer of the OlBuffer object.

• OlBuffer.Resolution – Returns the resolution of the subsystem that is associated with the 
OlBuffer object.

• OlBuffer.SampleSizeInBytes – Returns the size of a sample, in bytes. Typically, each 
sample requires 2 bytes.

• OlBuffer.State property – Returns the state of the OlBuffer object. Valid states are as 
follows:

− Idle – The OlBuffer object has been created, but has not been queued to a subsystem.

− Queued – The OlBuffer object has been queued to a subsystem with 
OlBuffer.QueueBuffer.

− InProcess – The OlBuffer object has been sent to the device driver for processing. A 
maximum of eight OlBuffer objects can be inprocess at one time.

− Completed – For an input operation, the internal buffer of the OlBuffer object has been 
filled, and the OlBuffer object has not been put back on queue for the subsystem. For 
an output operation, all the data in the internal buffer of the OlBuffer object has been 
output, and the OlBuffer object has not been put back on the queue for the subsystem.

− Released – The internal data buffer of the OlBuffer object has been deallocated by 
calling OlBuffer.Dispose.



Using the OpenLayers.Base Namespace
• OlBuffer.ValidSamples – Returns the number of valid samples in the internal buffer of 
the OlBuffer object. 

For analog input operations, the ValidSamples property is set to the number of samples in 
the completed buffer under normal circumstances. However, in some cases, like if Abort 
is called in the middle of an operation, ValidSamples reflects the number of samples in 
the buffer when Abort was called. In addition, if Abort or Stop is called, any OlBuffer 
object whose state is Inprocess will have a ValidSamples of 0.

Note: If the AnalogInputSubsystem.ReturnCjcTemperaturesInStream property is set to 
True, the CJC values will be interleaved with the channel data; therefore, the returned 
array will be twice the number of valid samples (OlBuffer.ValidSamples). Refer to page 
159 for more information on the ReturnCjcTemperaturesInStream property.

For analog output operations, ValidSamples is always equal to the maximum number of 
samples that the buffer was allocated to hold.

• OlBuffer.VoltageRange – Returns the upper limit and lower limit of the voltage range for 
the associated subsystem.

Cleaning up Buffers

When you are finished performing continuous analog I/O operations, use can use one of the 
following methods to clean up the OlBuffer objects:

• BufferQueue.DequeueBuffer – Removes and returns the OlBuffer object at the front of 
the queue.

• BufferQueue.FreeAllQueuedBuffers – Removes all OlBuffer objects from the queue and 
deallocates the internal data buffers that are encapsulated by them.

Setting Triggered Scan Mode

Note: Single-value operations do not support triggered scan mode.

On some devices, the analog input subsystem supports triggered scan mode. In triggered scan 
mode, the device scans the channel list a specified number of times when it detects the 
specified retrigger source, acquiring the data for each channel in the channel list. The 
conversion rate of each channel in the scan is determined by the frequency of the A/D sample 
clock; refer to page 212 for more information on clock sources. The conversion rate of each 
scan is determined by the period between retriggers.

To determine if the subsystem supports triggered scan mode, use the 
AnalogInputSubsystem.SupportsTriggeredScan property. If this property returns a value of 
True, triggered scan mode is supported. 

To enable (or disable) triggered scan mode, use the TriggeredScan.Enabled property.
227



Chapter 3

228
To determine the maximum number of times that the device can scan the channel list per 
retrigger, use the TriggeredScan.MaxMultiScanCount property.

Use the TriggeredScan.MultiScanCount property to set or get the number of times to scan the 
channel list per retrigger.

Use the TriggeredScan.RetriggerSource property to specify the retrigger source; the retrigger 
source can be any of the supported trigger sources. Refer to page 213 for more information on 
the supported trigger sources. The following subsections describe considerations when using 
a software or external retrigger source.

Using a Software Retrigger Source

If you are using a software retrigger source, specify the period between retriggers using the 
TriggeredScan.RetriggerFrequency property. 

You can determine the maximum retrigger frequency supported by the subsystem using the 
TriggeredScan.MaxRetriggerFreq property. You can determine the minimum retrigger 
frequency supported by the subsystem using the TriggeredScan.MinRetriggerFreq property. 

When it detects an initial trigger (pre-trigger source or post-trigger source), the device scans 
the channel list a specified number of times (determined by the 
TriggeredScan.MultiscanCount property), then stops. When the software retrigger occurs, 
determined by the frequency of the internal retrigger clock, the process repeats.

We recommend that you set the retrigger frequency as follows:

Min. Retrigger = # of CGL entries x # of CGLs per trigger + 2 μs
Period A/D sample clock frequency

Max. Retrigger =                  1                   
Frequency Min. Retrigger Period

For example, if you have 512 ChannelListEntry objects in the ChannelList object, are scanning 
the channel list 256 times every trigger or retrigger, and are using an A/D sample clock with a 
frequency of 1 MHz, set the maximum retrigger frequency to 7.62 Hz, since

7.62 Hz = 1_______
( 512 * 256) +2 μs

1 MHz

Using an External Retrigger Source

If you are using an external retrigger source, the period between retriggers cannot be 
accurately controlled. The device ignores external triggers that occur while it is acquiring data. 
Only retrigger events that occur when the device is waiting for a trigger are detected and 
acted on. Some devices may generate the event DriverRunTimeErrorEvent. Refer to page 266 
for more information on this event.

Refer to page 213 and to your device/device driver documentation for supported external 
retrigger sources.



Using the OpenLayers.Base Namespace
Performing Digital I/O Operations
Using the DT-Open Layers for .NET Class Library, you can perform the following types of 
digital input operations:

• Single-value digital input, described below

• Single-value digital output, described on page 230

• Continuous digital input (interrupt-on-change), described on page 230

Single-Value Digital Input Operations

In a single-value digital input operation, a single data value is read from a single digital input 
port. The operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
DigitalInputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an DigitalInputSubsystem object, as described on page 146, set up the 
DigitalInputSubsystem object for a single value operation as follows:

1. Set the DigitalInputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the resolution of the subsystem using the 
DigitalInputSubsystem.Resolution property. Refer to page 231 for more information on 
resolution.

3. Configure the subsystem using the DigitalInputSubsystem.Config method.

Then, to acquire a single value from the digital input port, use the 
DigitalInputSubsystem.GetSingleValue method. You specify the digital input port to read 
and a gain of 1.

Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Note: If your device supports it, you can read a digital input port as part of the analog input 
stream. Ensure that you set up and configure the digital input subsystem, as described in this 
section, before starting the analog input operation. Refer to page 204 for more information on 
specifying a ChannelList object for an analog input subsystem.

Refer to the example program ReadSingleValue to see how to perform a single-value digital 
input operation.
229



Chapter 3

230
Single-Value Digital Output Operations

In a single-value digital output operation, a single data value is output from a single digital 
output port. The operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
DigitalOutputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an DigitalInputSubsystem object, as described on page 146, set up the 
DigitalInputSubsystem object for a single value operation as follows:

1. Set the DigitalOutputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the resolution of the subsystem using the 
DigitalOutputSubsystem.Resolution property. Refer to page 231 for more information 
on resolution.

3. Configure the subsystem using the DigitalOutputSubsystem.Config method.

Then, to output a single value from the digital output port, use the 
DigitalOutputSubsystem.SetSingleValue method. You specify the digital output port to 
update and a gain of 1.

Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Note: If your device supports it, you can update a digital output port as part of the analog 
output stream. Ensure that you set up and configure the digital output subsystem, as 
described in this section, before starting the analog output operation. Refer to page 204 for 
more information on specifying a ChannelList object for an analog output subsystem.

Refer to the example program WriteSingleValue to see how to perform a single-value digital 
output operation.

Continuous, Interrupt-On-Change Operations

Use continuous digital input operation when you want to continuously monitor the state of 
the digital input lines, generating an interrupt when a digital input line changes state. 

To determine if the digital input subsystem supports continuous operations, use the 
DigitalInputSubsytem.SupportsContinuous property. If this property returns a value of 
True, continuous mode is supported.

To determine if the digital input subsystem supports interrupt-on-change operations, use the 
DigitalInputSubsytem.SupportsInterruptOnChange property. If this property returns a 
value of True, interrupt-on-change operations are supported.



Using the OpenLayers.Base Namespace
Once you have an DigitalInputSubsystem object, as described on page 146, set up the 
DigitalInputSubsystem object for a continuous operation as follows:

1. Set the DigitalInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the resolution of the subsystem using the 
DigitalInputSubsystem.Resolution property. Refer to page 231 for more information on 
resolution.

3. Select the digital input lines that you want to monitor for change of state using the 
WriteInterruptOnChangeMask method. (Note that you can read the current mask setting 
by using the DigitalInputSubsystem.ReadInterruptOnChangeMask method.)

4. Configure the subsystem using the DigitalInputSubsystem.Config method.

Once the subsystem is configured, call the DigitalInputSubsystem.Start method to start the 
interrupt-on-change operation. 

An InterruptOnChangeEvent event is raised whenever one of the selected digital input lines 
(specified by the WriteInterruptOnChangeMask method) changes state. Use the 
InterruptOnChangeHandler, described on page 268, to deal with InterruptOnChangeEvent 
events.

To stop an continuous digital input operation, use one of the following methods:

• DigitalInputSubsystem.Stop – Stops the digital input operation.

• DigitalInputSubsystem.Abort – For this subsystem type, behaves like Stop.

• Reset – Stops the operation immediately, and reinitializes the subsystem to the default 
configuration. 

Refer to the example program InterruptOnChange to see how to perform a continuous, 
interrupt-on-change operation on a digital input port.

Setting the Resolution

To determine if the subsystem supports software-programmable resolution, use the 
SupportsSoftwareResolution property of the appropriate subsystem. If this property returns 
a value of True, the subsystem supports software-programmable resolution.

To determine the number of resolution settings supported by the subsystem, use the 
NumberOfResolutions property of the appropriate subsystem. To list all the resolution 
settings supported by the subsystem, use the SupportedResolutions property of the 
appropriate subsystem.

Use the Resolution property of the appropriate subsystem to set and/or return the number of 
bits of resolution for the subsystem. Typically, you can set this property for digital I/O 
operations only.
231



Chapter 3

232
Performing Counter/Timer Operations
The counter/timer subsystem supports general-purpose user counter/timers and measure 
counters. This section describes the operation of general-purpose counter/timers. Refer to 
page 249 for information on measure counters.

Each user counter/timer channel accepts a clock input signal and gate input signal and 
outputs a clock output signal (also called a pulse output signal), as shown in Figure 5. 

Figure 5: Counter/Timer Channel

Each counter/timer channel corresponds to a counter/timer (C/T) subsystem. To specify the 
counter to use in software, specify the appropriate C/T subsystem. For example, counter 0 
corresponds to C/T subsystem element 0; counter 3 corresponds to C/T subsystem element 3.

Using the DT-Open Layers for .NET Class Library, you can perform the following types of 
counter/timer operations.

• Event counting, described on page 232

• Up/down counting, described on page 234

• Edge-to-edge measurement, described on page 235

• Continuous edge-to-edge measurement, described on page 237

• Rate generation (continuous pulse output), described on page 239

• One-shot, described on page 241

• Repetitive one-shot, described on page 242

The following subsections describe these counter/timer operations in more detail.

Event Counting

Use event counting mode to count events from the counter’s associated clock input source.

To determine if the subsystem supports event counting, use the 
CounterTimerSubsystem.SupportsCount property. If this property returns a value of True, 
event counting mode is supported.

Clock Input SIgnal
(internal, external, or 
internally cascaded)

Counter/Timer

Gate Input Signal
(software or external input)

Pulse Output Signal



Using the OpenLayers.Base Namespace
Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for a event counting operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of Count.

3. Specify the C/T clock source for the operation. In event counting mode, an external C/T 
clock source is more useful than the internal C/T clock source. Refer to page 244 for more 
information on specifying a clock source.

4. (Optional) Set the cascade mode of the counter/timer subsystem to either Cascade for 
cascaded counter/timers or Single for non-cascaded counter/timers using the 
CounterTimerSubsystem.CascadeMode. Refer to page 245 for more information.

5. Specify the gate type that enables the operation; refer to page 245 for more information on 
specifying the gate type.

6. Configure the subsystem using the CounterTimerSubsystem.Config method.

Start an event counting operation using the CounterTimerSubsystem.Start method. To read 
the current number of events counted, use the CounterTimerSubsystem.ReadCount method.

To stop an event counting operation, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Figure 6 shows an example of an event counting operation. In this example the gate type is 
low level.

Figure 6: Example of Event Counting

Refer to the example program EventCounting to see how to perform an event counting 
operation.

Gate Input
Signal Low level

enables operation

High level
disables operation

External C/T 
Clock 

Input Signal

Event counting
operation starts

Event counting
operation stops

3 events are counted while 
the operation is enabled
233



Chapter 3

234
Up/Down Counting

Use up/down counting mode to increment or decrement the number of rising edges that 
occur on the counter’s associated clock input, depending on the level of the counter’s 
associated gate signal. If the gate signal is high, the C/T increments; if the gate signal is low, 
the C/T decrements.

To determine if the subsystem supports up/down counting, use the 
CounterTimerSubsystem.SupportsUpDown property. If this property returns a value of 
True, up/down counting mode is supported.

Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for an up/down counting operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of UpDown.

3. Specify the C/T clock source for the operation as External; see page 244 for more 
information on C/T clock sources. 

Note: For up/down counting operations, you do not specify the gate type in software. 

4. Start the up/down counting operation using the CounterTimerSubsystem.Start method.

5. Read the number of rising edges counted using the CounterTimerSubsystem.ReadCount 
method.

To stop an up/down counting operation, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Figure 7 shows an example of an up/down counting operation. The counter increments when 
the gate signal is high and decrements when the gate signal is low. 

Figure 7: Example of Up/Down Counting

Gate Input
Signal

High-level gate; 
count increments 
on rising edges 

Low-level gate; 
count decrements 

on rising edges

External C/T 
Clock 

Input Signal

Up/down counting
operation starts

Up/down counting
operation stops

3 rising edges are 
counted while the gate 

is high; count = 0 + 3 = 3 

2 rising edges 
are counted while 

the gate is low; 
count = 3 - 2 = 1 



Using the OpenLayers.Base Namespace
Refer to the example program EventCounting to see how to perform an up/down counting 
operation.

Edge-to-Edge Measurement

Use edge-to-edge measurement to measure the time interval between a specified start edge 
and a specified stop edge. The start edge and the stop edge can occur on the rising edge of the 
counter’s associated gate input, the falling edge of the counter’s associated gate input, the 
rising edge of the counter’s associated clock input, or the falling edge of the counter’s 
associated clock input. When the start edge is detected, the counter starts incrementing, and 
continues incrementing until the stop edge is detected. 

You can use edge-to-edge measurement to measure the following:

• Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low 
state, or the amount of time between a rising edge and a falling edge or between a falling 
edge and a rising edge). You can calculate the pulse width as follows:

− Pulse width = Number of counts/Internal CT Clock Freq

• Period of a signal pulse (the time between two occurrences of the same edge – rising edge 
to rising edge or falling edge to falling edge). You can calculate the period as follows:

− Period = 1/Frequency

− Period = Number of counts/Internal CT Clock Freq

• Frequency of a signal pulse (the number of periods per second). You can calculate the 
frequency as follows:

− Frequency = Internal CT Clock Freq/Number of Counts

To determine if the subsystem supports edge-to-edge measurements, use the 
CounterTimerSubsystem.SupportsMeasure property. If this property returns a value of True, 
edge-to-edge measurement mode is supported.

To determine which edges can be selected in an edge-to-edge measurement operation, use the 
following properties:

• CounterTimerSubsystem.SupportsGateRising – Returns a value of True if the rising 
edge of the gate signal can be used in an edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsGateFalling – Returns a value of True if the falling 
edge of the gate signal can be used in an edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsClockRising – Returns a value of True if the rising 
edge of the clock signal can be used in an edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsClockFalling – Returns a value of True if the falling 
edge of the clock signal can be used in an edge-to-edge measurement operation.

You can also use the CounterTimerSubsystem.SupportedEdgeTypes property. This property 
returns an array of supported edge types.
235



Chapter 3

236
Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for an edge-to-edge measurement operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of Measure. 

3. Specify the C/T clock source for the operation as internal; refer to page 244 for more 
information on this clock source. 

4. Specify the start edge with the CounterTimerSubsystem.StartEdge property 

5. Specify the stop edge with the CounterTimerSubsystem.StopEdge property. 

6. Configure the counter/timer subsystem using the CounterTimerSubsystem.Config 
method.

7. Start the edge-to-edge measurement operation using the CounterTimerSubsystem.Start 
method.

8. Use the MeasureDoneHandler delegate to receive the MeasureDoneEventArgs argument 
and to handle the event MeasureDoneEvent. The MeasureDoneEventArgs class contains 
the subsystem that raised the event, the time stamp of when the event occurred, and the 
value of the counter. 

To stop an edge-to-edge measurement operation, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Figure 8 shows an example of an edge-to-edge measurement operation. The start edge is a 
rising edge on the gate signal; the stop edge is a falling edge on the gate signal. 

Figure 8: Example of Edge-to-Edge Measurement 

Refer to the example program MeasureEdgeToEdge to see how to perform an edge-to-edge 
measurement operation.

Gate Input
Signal

Rising-edge on gate; 
count starts 

Falling-edge on gate; 
count stop

External C/T 
Clock 

Input Signal

Edge-to-edge measurement 
operation starts

Edge-to-edge measurement 
operation stops

3 rising edges are counted 
between the start edge and 

the stop edge



Using the OpenLayers.Base Namespace
Continuous Edge-to-Edge Measurement

In continuous edge-to-edge measurement mode, the counter automatically performs an 
edge-to-edge measurement operation, where the counter starts incrementing when it detects 
the specified start edge and stops incrementing when it detects the specified stop edge. When 
the operation completes, the counter remains idle until it is next read. On the next read, the 
current value of the counter (from the previous edge-to-edge measurement operation) is 
returned and the next edge-to-edge measurement operation is started automatically. 

Note: If you read the counter before the measurement is complete, 0 is returned. 

You can use a continuous edge-to-edge measurement to measure the following:

• Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low 
state, or the amount of time between a rising edge and a falling edge or between a falling 
edge and a rising edge). You can calculate the pulse width as follows:

− Pulse width = Number of counts/Internal C/T Clock Freq

• Period of a signal pulse (the time between two occurrences of the same edge - rising edge 
to rising edge or falling edge to falling edge). You can calculate the period as follows:

− Period = 1/Frequency

− Period = Number of counts/Internal C/T Clock Freq

• Frequency of a signal pulse (the number of periods per second). You can calculate the 
frequency as follows:

− Frequency = Internal C/T Clock Freq/Number of Counts

To determine if the subsystem supports continuous edge-to-edge measurements, use the 
CounterTimerSubsystem.SupportsContinuousMeasure property. If this property returns a 
value of True, continuous edge-to-edge measurement mode is supported.

To determine which edges can be selected in a continuous edge-to-edge measurement 
operation, use the following properties:

• CounterTimerSubsystem.SupportsGateRising – Returns a value of True if the rising 
edge of the gate signal can be used in a continuous edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsGateFalling – Returns a value of True if the falling 
edge of the gate signal can be used in a continuous edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsClockRising – Returns a value of True if the rising 
edge of the clock signal can be used in a continuous edge-to-edge measurement operation.

• CounterTimerSubsystem.SupportsClockFalling – Returns a value of True if the falling 
edge of the clock signal can be used in a continuous edge-to-edge measurement operation.

You can also use the CounterTimerSubsystem.SupportedEdgeTypes property. This property 
returns an array of supported edge types.
237



Chapter 3

238
Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for a continuous edge-to-edge measurement operation as 
follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of 
ContinuousMeasure.

3. Specify the C/T clock source for the operation as Internal; refer to page 244 for more 
information. 

4. Specify the start edge with the CounterTimerSubsystem.StartEdge property.

5. Specify the stop edge with the CounterTimerSubsystem.StopEdge property.

6. Configure the counter/timer subsystem using the CounterTimerSubsystem.Config 
method. 
The continuous edge-to-edge measurement operation starts immediately.

7. Read the current value of the counter using the CounterTimerSubsystem.ReadCount 
method.

If your device allows you to stream counter/timer data through the analog input subsystem, 
you can also add the counter/timer channel to the channel list for an analog input operation. 
If you read the value of the counter/timer as part of the analog input data stream, you might 
see results similar to the following:

To stop an edge-to-edge measurement operation, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Table 71: An Example of Performing a Continuous Edge-to-Edge Measurement Operation
as Part of the Analog Input ChannelList 

Time A/D Value
Counter/

Timer Value
Status of Continuous Edge-to-Edge 

Measurement Mode

10 5002 0 Operation started when the C/T subsystem was 
configured, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete 

40 5002 12373 Operation complete

50 5000 0 Next operation started, but is not complete 

60 5002 0 Operation not complete 

70 5004 0 Operation not complete 

80 5003 12403 Operation complete 

90 5002 0 Next operation started, but is not complete



Using the OpenLayers.Base Namespace
Rate Generation

Use rate generation mode to generate a continuous pulse output signal from the counter; this 
mode is sometimes referred to as continuous pulse output or pulse train output. You can use 
this pulse output signal as an external clock to pace analog input, analog output, or other 
counter/timer operations.

To determine if the subsystem supports rate generation mode, use the 
CounterTimerSubsystem.SupportsRateGenerate property. If this property returns a value of 
True, rate generation mode is supported.

Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for a rate generation operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of RateGenerator.

3. Specify the C/T clock source for the operation. In rate generation mode, either the internal 
or external C/T clock input source is appropriate depending on your application. Refer to 
page 244 for information on specifying the C/T clock source.

4. Specify the frequency of the C/T clock output signal. For an internal C/T source, setting 
the Clock.Frequency property determines the frequency of the output pulse. 

For an external C/T clock source, setting the external clock divider using the 
Clock.ExtClockDivider property determines the frequency of the output pulse. The 
frequency of the clock input source divided by the clock divider determines the frequency 
of the output pulse. Refer to page 244 for information on specifying the C/T clocks.

5. Specify the gate type that enables the operation; refer to page 245 for more information on 
specifying the gate type.

6. Specify the polarity of the output pulses (high-to-low transitions or low-to-high 
transitions) and the duty cycle of the output pulses; refer to page 247 for more 
information.

7. Configure the counter/timer subsystem using the CounterTimerSubsystem.Config 
method. 

8. Start rate generation mode using the CounterTimerSubsystem.Start method. The counter 
outputs a pulse of the specified type and frequency continuously as long as the gate 
enables the operation. As soon as the gate signal disables the operation, the pulse output 
operation stops.

To stop rate generation while it is in progress, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Figure 9 shows an example of an enabled rate generation operation using an external C/T 
clock source with an input frequency of 4 kHz, a clock divider of 4, a low-to-high pulse type, 
and a duty cycle of 50%. (The gate type does not matter for this example.) A 1 kHz square 
wave is the generated output.
239



Chapter 3

240
Figure 9: Example of Rate Generation Mode with a 50% Duty Cycle

Figure 10 shows the same example using a duty cycle of 75%.

Figure 10: Example of Rate Generation Mode with a 75% Duty Cycle

Figure 11 shows the same example using a duty cycle of 25%.

Pulse
Output
Signal

External C/T 
Clock 

Input Signal
(4 kHz)

50% duty cycle

Continuous Pulse
Output Operation Starts

Pulse
Output
Signal

External C/T 
Clock 

Input Signal
(4 kHz)

75% duty cycle

Continuous Pulse
Output Operation Starts



Using the OpenLayers.Base Namespace
Figure 11: Example of Rate Generation Mode with a 25% Duty Cycle

Refer to the example program PulseOut_RateGeneration to see how to perform a rate 
generation operation.

One-Shot

Use one-shot mode to generate a single pulse output signal from the counter when the 
operation is triggered (determined by the gate input signal). You can use this pulse output 
signal as an external digital (TTL) trigger to start analog input, analog output, or other 
operations.

To determine if the subsystem supports one-shot mode, use the 
CounterTimerSubsystem.SupportsOneShot property. If this property returns a value of True, 
one-shot mode is supported.

Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for a one-shot operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of OneShot.

3. Specify the C/T clock source for the operation. Refer to page 244 for more information on 
specifying the C/T clock source. 

4. Specify the gate type that triggers the operation; refer to page 245 for more information.

5. Specify the polarity of the output pulse (high-to-low transition or low-to-high transition); 
refer to page 247 for more information.

Note: In the case of a one-shot operation, the pulse width is automatically set to 100%. 
The value of the PulseWidth property is ignored.

Pulse
Output
Signal

External C/T 
Clock 

Input Signal
(4 kHz)

25% duty cycle

Continuous Pulse
Output Operation Starts
241



Chapter 3

242
6. Configure the counter/timer subsystem using the CounterTimerSubsystem.Config 
method.

7. Start the one-shot pulse output operation using the CounterTimerSubsystem.Start 
method. When the one-shot operation is triggered (determined by the gate input signal), a 
single pulse is output; then, the one-shot operation stops. All subsequent clock input 
signals and gate input signals are ignored.

Figure 12 shows an example of a one-shot operation using an external gate input (rising edge), 
a clock output frequency of 1 kHz (one pulse every 1 ms), and a low-to-high pulse type. 

Figure 12: Example of One-Shot Mode

Refer to the example program PulseOut_RateGeneration to see how to perform a one-shot 
operation.

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal each time the device detects a 
trigger (determined by the gate input signal). You can use this mode to clean up a poor clock 
input signal by changing its pulse width, then outputting it.

To determine if the subsystem supports repetitive one-shot mode, use the 
CounterTimerSubsystem.SupportsOneShotRepeat property. If this property returns a value 
of True, repetitive one-shot mode is supported.

Once you have a CounterTimerSubsystem object, as described on page 146, set up the 
CounterTimerSubsystem object for a repetitive one-shot operation as follows:

1. Set the CounterTimerSubsystem.DataFlow property to Continuous.

2. Set the CounterTimerSubsystem.CounterMode property to a value of OneShotRepeat.

Pulse
Output
Signal

External 
Gate

Signal

100% duty cycle

One-Shot Operation Starts

1 ms period



Using the OpenLayers.Base Namespace
3. Specify the C/T clock source for the operation. In repetitive one-shot mode, the internal 
C/T clock source is more useful than the external C/T clock source. Refer to page 244 for 
more information on specifying the C/T clock source. 

4. Specify the polarity of the output pulses (high-to-low transitions or low-to-high 
transitions). Refer to page 247 for more information. 

Note: In the case of a repetitive one-shot operation, the pulse width is automatically set to 
100%. The value of the PulseWidth property is ignored.

5. Specify the gate type that triggers the operation. Refer to page 245 for more information.

6. Configure the counter/timer subsystem using the CounterTimerSubsystem.Config 
method.

7. Start a repetitive one-shot pulse output operation using the 
CounterTimerSubsystem.Start method. When the one-shot operation is triggered 
(determined by the gate input signal), a pulse is output. When the device detects the next 
trigger, another pulse is output.

To stop a repetitive one-shot operation, call the CounterTimerSubsystem.Stop or 
CounterTimerSubsystem.Abort method. For this subsystem type, Stop and Abort behave 
identically.

Note: Triggers that occur while the pulse is being output are not detected by the device.

Figure 13 shows an example of a repetitive one-shot operation using an external gate (rising 
edge), a clock output frequency of 1 kHz (one pulse every 1 ms), and a low-to-high pulse type.

Figure 13: Example of Repetitive One-Shot Mode Using a 99.99% Duty Cycle

Pulse
Output
Signal

External 
Gate

Signal

100% duty cycle

Repetitive One-Shot 
Operation Starts

1 ms period

100% duty cycle 100% duty 
cycle

1 ms period
243



Chapter 3

244
Refer to the example program PulseOut_RateGeneration to see how to perform a repetitive 
one-shot operation.

Setting the C/T Clock

The DT-Open Layers for .NET Class Library defines the following clock sources for 
counter/timers:

• Internal C/T clock 

• External C/T clock 

• Internally cascaded clock 

The following subsections describe these clock sources.

Using an Internal C/T Clock

The internal C/T clock is the clock source on the device that paces a counter/timer operation 
for a C/T subsystem. 

To determine if the subsystem supports an internal C/T clock, use the 
Clock.SupportsInternalClock property. If this property returns a value of True, an internal 
C/T clock is supported.

To specify the clock source, use the Clock.Source property.

Using the Clock.Frequency property, specify the frequency of the clock output signal.

To determine the maximum frequency that the subsystem supports, use the 
Clock.MaxFrequency property. To determine the minimum frequency that the subsystem 
supports, use the Clock.MinFrequency property.

Using and External C/T Clock

The external C/T clock is a clock source attached to the counter/timer subsystem that paces 
counter/timer operations. The external C/T clock is useful when you want to pace at rates not 
available with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the 
Clock.SupportsExternalClock property. If this property returns a value of True, an external 
clock is supported.

Specify the clock source as internal using the Clock.Source property. Then, use the 
Clock.ExtClockDivider property to set or get the clock divider used to determine the 
frequency at which to pace the operation. The clock input source divided by the clock divider 
determines the frequency of the clock signal.

To determine the maximum external clock divider that the subsystem supports, use the 
Clock.MaxExtClockDivider property. To determine the minimum external clock divider that 
the subsystem supports, use the Clock.MinExtClockDivider property.



Using the OpenLayers.Base Namespace
Using an Internally Cascaded Clock

You can also internally connect or cascade the clock output signal from one counter/timer to 
the clock input signal of the next counter/timer in software. In this way, you can create a 32-bit 
counter out of two 16-bit counters, for example.

To determine if the subsystem supports internal cascading, use the 
CounterTimerSubsystem.SupportsCascading property. If this function returns a value of 
True, internal cascading is supported.

Set the cascade mode of the subsystem to Cascade or Single (not cascaded) using the 
CounterTimerSubsystem.CascadeMode property.

Note: If a counter/timer is cascaded, you specify the clock input and gate input for the first 
counter in the cascaded pair. For example, if counters 1 and 2 are cascaded, specify the clock 
input and gate input for counter 1.

Setting the Gate Type

The active edge or level of the gate input to the counter enables or triggers counter/timer 
operations. The CounterTimerSubsystem class defines the following gate input types:

• None (software)

• HighLevel

• LowLevel

• HighEdge

• LowEdge

• Level

To specify the gate type, use the CounterTimerSubsystem.GateType property. The following 
subsections describe these gate types.

Using a None (Software) Gate Type

A gate type of None (software) enables the counter/timer operation immediately when the 
CounterTimerSubsystem.GateType property is set.

To determine if the subsystem supports a software gate, use the 
CounterTimerSubsystem.SupportsGateNone property. If this property returns a value of 
True, a gate type of None is supported.
245



Chapter 3

246
Using a HighLevel Gate Type

A HighLevel external gate type enables a counter/timer operation when the external gate 
signal is high, and disables a counter/timer operation when the external gate signal is low. 
Note that this gate type is used only for the following operations: event counting (see page 
232) and rate generation (see page 239).

To determine if the subsystem supports a HighLevel external gate input, use the 
CounterTimerSubsystem.SupportsGateHighLevel property. If this property returns a value 
of true, a HighLevel gate type is supported.

Using a LowLevel Gate Type

A LowLevel external gate type enables a counter/timer operation when the external gate 
signal is low, and disables the counter/timer operation when the external gate signal is high. 
Note that this gate type is used only for the following operations: event counting (see page 
232) and rate generation (see page 239).

To determine if the subsystem supports a LowLevel external gate input, use the 
CounterTimerSubsystem.SupportsGateLowLevel property. If this property returns a value 
of true, a LowLevel gate type is supported.

Using LowEdge Gate Type

A LowEdge external gate type triggers a counter/timer operation on the transition from the 
high edge to the low edge (falling edge). Note that this gate type is used only for one-shot and 
repetitive one-shot mode; refer to page 242 for more information on these modes.

To determine if the subsystem supports a LowEdge external gate input, use the 
CounterTimerSubsystem.SupportsGateLowEdge property. If this property returns a value of 
true, a LowEdge gate type is supported.

Using a HighEdge Gate Type

A HighEdge external gate type triggers a counter/timer operation on the transition from the 
low edge to the high edge (rising edge). Note that this gate type is used only for one-shot (see 
page 241) and repetitive one-shot (see page 242) operations.

To determine if the subsystem supports a HighEdge external gate input, use the 
CounterTimerSubsystem.SupportsGateHighEdge property. If this property returns a value 
of true, a HighEdge gate type is supported.



Using the OpenLayers.Base Namespace
Using a Level Gate Type

A Level gate type enables a counter/timer operation on the transition from any level on the 
gate input signal. Note that this gate type is used only for the following operations: event 
counting (see page 232) and rate generation (see page 239).

To determine if the subsystem supports a Level external gate input, use the 
CounterTimerSubsystem.SupportsGateLevel property. If this property returns a value of 
true, a Level gate type is supported.

Setting the Pulse Output Type and Pulse Width

The CounterTimerSubsystem class defines the following pulse output types:

• High-to-low transitions – The low portion of the total pulse output period is the active 
portion of the counter/timer clock output signal.

To determine if the subsystem supports high-to-low transitions on the pulse output signal, 
use the CounterTimerSubsystem.SupportsHighToLowPulse property. If this property 
returns a value of True, high-to-low transitions are supported.

• Low-to-high transitions – The high portion of the total pulse output period is the active 
portion of the counter/timer pulse output signal.

To determine if the subsystem supports low-to-high transitions on the pulse output signal, 
use the CounterTimerSubsystem.SupportsLowToHighPulse property. If this property 
returns a value of True, low-to-high transitions are supported.

Specify the pulse output type using the CounterTimerSubsystem.PulseType property.

The pulse width (or duty cycle) indicates the percentage of the total pulse output period that is 
active. A duty cycle of 50, then, indicates that half of the total pulse is low and half of the total 
pulse output is high. 

You can determine whether the pulse width is programmable by using the 
CounterTimerSubsystem.SupportsVariablePulseWidth property. If this property returns a 
value of True, the pulse width is programmable. 

Specify the pulse width, in percentage, using the CounterTimerSubsystem.PulseWidth 
property. The default value is 50%.

Note: In the case of a one-shot or repetitive one-shot operation, the pulse width is 
automatically set to 100%. The value of the PulseWidth property is ignored.

Figure 14 illustrates a low-to-high pulse with a duty cycle of approximately 30%.
247



Chapter 3

248
Figure 14: Example of a Low-to-High Pulse Output Type

Total Pulse Period

Active Pulse Width

low pulse

high pulse



Using the OpenLayers.Base Namespace
Performing Measure Counter Operations
The counter/timer subsystem supports general-purpose user counter/timers and measure 
counters. This section describes the operation of measure counters. Refer to page 232 for 
information on the operation of general-purpose counter/timers.

If your device supports measure counters, set up the CounterTimerSubsystem object for a 
measure operation as follows:

1. Select the signal/edge that is used to start the measure operation using the 
CounterTimerSubsystem.StartEdge property. 

2. Select the signal/edge that is used to stop the measure operation using the 
CounterTimerSubsystem.StopEdge property. 

The internal counter starts incrementing when it detects the selected start edge of the 
specified signal and stops incrementing when it detects the selected stop edge of the 
specified signal. 

To determine which signals and edges are supported for the measure counter, use the 
CounterTimerSubsystem.SupportedEdgeTypes property. This property returns an array 
of the supported signals/edges.

3. Configure the subsystem using the CounterTimerSubsystem.Config method.

4. Read the value of the measure counter in the analog input data stream by specifying the 
measure counter in the analog input channel list and reading the values corresponding to 
that channel from the analog input buffer. Refer to the documentation for your device to 
determine which channel to specify for the measure counter in the analog input channel 
list.

When you read the value of the measure counter as part of the analog input data stream, you 
might see results similar to the following:

Table 72: An Example of Reading the Measure Counter as Part of the Analog Input Data Stream 

Time A/D Value
Measure Counter 

Value Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete 

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete 

70 5004 12373 Operation not complete 

80 5003 14503 Operation complete 

90 5002 14503 Next operation started, but is not complete
249



Chapter 3

250
Using the count that is returned from the measure counter, you can determine the following:

• Frequency of a signal pulse (the number of periods per second). You can calculate the 
frequency as follows:

− Frequency = Frequency of the internal counter/(Number of counts – 1)

For example, if the frequency of the internal counter on the device is 48 MHz and the 
count is 201, the measured frequency is 240 kHz (48 MHz/200).

• Period of a signal pulse. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/Frequency of the internal counter



Using the OpenLayers.Base Namespace
Performing Tachometer Operations
Some devices allow you to connect a tachometer signal to the device to measure the frequency 
or period of the tachometer input signal. 

Once you have a TachSubsystem object, as described on page 146, set up the TachSubsystem 
object for a tachometer operation as follows:

1. Set the edge of the tachometer signal that is used for the measurement using the 
TachSubsystem.EdgeType property. 

In a tachometer operation, the internal counter starts incrementing when it detects the 
first specified edge of the tachometer input and stops incrementing when it detects the 
next specified edge of the tachometer input.

To determine if falling edges of the tachometer signal are supported, use the 
TachSubsystem.SupportsFallingEdge property. To determine if rising edges of the 
tachometer signal are supported, use the TachSubsystem.SupportsRisingEdge property.

2. Specify the value of the stale data flag using the TachSubsystem.StaleDataFlagEnabled 
property. If this flag is True, the most significant bit (MSB) of the value is set to 0 to 
indicate new data; reading the value before the measurement is complete returns an MSB 
of 1. If this flag is False, the MSB is always set to 0. 

To determine if the stale data flag is supported, use the 
TachSubsystem.SupportsStaleDataFlag property. 

3. Configure the subsystem using the TachSubsystem.Config method.

4. Read the tachometer measurement from the analog input data stream using the 
TachSubsystem.Count property or by specifying the tachometer channel in the analog 
input channel list and reading the values corresponding to that channel from the analog 
input buffer. Refer to the documentation for your device to determine which channel to 
specify for the tachometer in the analog input channel list.

5. If desired, convert the returned count to an RPM value by using the 
OlBuffer.GetDataAsRpm method.

When you read the value of the tachometer input as part of the analog input data stream, you 
might see results similar to the following:

Table 73: An Example of Reading the Tachometer Input as Part of the 
Analog Input Data Stream 

Time A/D Value
Tachometer 
Input Value Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete 

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete 
251



Chapter 3

252
Using the count that is returned from the tachometer input, you can determine the following:

• Frequency of a signal pulse (the number of periods per second). You can calculate the 
frequency as follows:

− Frequency = Frequency of the internal counter/(Number of counts – 1)

For example, if the frequency of the internal counter on the device is 12 MHz and the 
count is 21, the measured frequency is 600 kHz (12 MHz/20).

• Period of a signal pulse. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/Frequency of the internal counter

70 5004 12373 Operation not complete 

80 5003 14503 Operation complete 

90 5002 14503 Next operation started, but is not complete

Table 73: An Example of Reading the Tachometer Input as Part of the 
Analog Input Data Stream  (cont.)

Time A/D Value
Tachometer 
Input Value Status of Operation



Using the OpenLayers.Base Namespace
Performing Quadrature Decoder Operations
Some devices support quadrature decoder operations. A quadrature decoder accepts signals 
(A, B, and Index) from a quadrature encoder as inputs and converts these signals into a clock 
output signal whose pulses are counted by the decoder.

To determine whether your subsystem supports quadrature decoder functionality, use the 
QuadratureDecoder.SupportsQuadratureDecoder property. If this property returns a value 
of True, your subsystem supports quadrature decoder functionality.

Once you have a QuadratureDecoderSubsystem object, as described on page 146, set up the 
QuadratureDecoderSubsystem object for a quadrature decoder operation as follows:

1. Set the QuadratureDecoderSubsystem.DataFlow property to Continuous.

2. Set the clock source to External with QuadratureDecoder.Clock.Source. Refer to page 254 
for more information.

3. Set the pre-scale value used to divide the base clock frequency using the 
QuadratureDecoderSubsystem.ClockPreScale property. Refer to page page 254 or more 
information.

4. Set the value of the QuadratureDecoderSubsystem.X4Scaling property to True if you 
want to use X4 mode, or False if you want to use X1 mode. Refer to page 254 for more 
information.

5. Set the value of the QuadratureDecoderSubsystem.IndexMode property to Disabled if 
you do not want to use the Index input signal, Low if the Index input signal is low, or 
High if the Index input signal is high. Refer to page 254 for more information.

6. Configure the subsystem using the QuadratureDecoderSubsystem.Config method.

7. Start the operation using the QuadratureDecoderSubsystem.Start method.

8. Read the current value of the quadrature decoder subsystem using the 
QuadratureDecoderSubsystem.ReadCount method.

The value of the quadrature decoder determines the relative or absolute position and/or 
rotational speed. For example, in an X/Y positioning application, you could use one 
quadrature decoder to determine the position on the X-plane, and another quadrature 
decoder to determine the position on the Y-plane. 

To determine the rotation of a quadrature encoder, use the following formula: 

Rotation degrees = Count x 360 degrees
4 * N

where N is the number of pulses generated by the quadrature encoder per rotation. For 
example, if every rotation of the quadrature encoder generated 10 pulses, and the value read 
from the quadrature decoder is 20, the rotation of the quadrature encoder is 180 degrees 
(20/40 x 360 degrees). 

Refer to the example program ReadCounts to see how to perform a quadrature decoder 
operation.
253



Chapter 3

254
Setting up the Clock

For quadrature decoder operations, the onboard base clock of the hardware device is used to 
sample the A and B inputs. From a software perspective, the software considers the A and B 
inputs as external clock sources, therefore, you must specify the clock source as External using 
the Clock.Source property.

You can filter the sampling frequency of the onboard base clock by using the 
QuadratureDecoderSubsystem.ClockPreScale property to divide down the base frequency. 
Values for this property range from 0 and 255, where 0 corresponds to an actual pre-scale 
value of 1, and 255 corresponds to an actual prescale value of 256. For example, if you are 
using a device with a base clock of 36 MHz and specify a pre-scale value of 0, the resulting 
sampling frequency is 36 MHz (36 MHz/1). Similarly, if you specify a pre-scale value of 255 
when using a device with a 48 MHz base clock, the resulting sampling frequency is 18.75 kHz 
(48 MHz/256).

The filter samples the incoming A and B signals twice, and when it samples a change in the 
state of any of these signals and the change is present for two samples, the change on the 
inputs is valid. A minimum of 4 clock pulses is needed to sample each edge of the A and B 
inputs in one cycle (for a total of 16 clock pulses). In addition, the minimum time between one 
edge and the next edge is 112 ns. So, if you are using a 36 MHz sample frequency, the A and B 
inputs can have a maximum frequency of 2.23 MHz, or a period of 448 ns. 

In general, if the QuadratureDecoder.ClockPreScale value is set too low, the system is more 
susceptible to noise on the inputs. If the QuadratureDecoder.ClockPreScale value is set too 
high, counts may be missed.

Setting the X4Scaling Mode

You can control whether the quadrature decoder operates in X1 or X4 mode (if it is supported 
by the encoder) by using the QuadratureDecoderSubsystem.X4Scaling property.

Setting the QuadratureDecoderSubsystem.X4Scaling property to False selects X1 mode; in 
X1 mode, the decoder generates one clock pulse for every complete cycle of the A and B 
inputs. Setting the QuadratureDecoderSubsystem.X4Scaling property to True selects X4 
mode; in X4 mode, the decoder generates one clock pulse for each edge of the A and B signals 
– four edges for each cycle of the A and B inputs.

Setting the Index

Using the QuadratureDecoderSubsystem.IndexMode property, you can specify how the 
Index input signal affects the operation of the counter. If you set this property to Disabled, 
then the Index input signal has no effect. If you set this property to Low, then the quadrature 
decoder resets its value to 0 whenever it detects a low edge (falling edge) on the Index input 
signal. If you set this property to High, then the quadrature decoder resets its value to 0 
whenever it detects the high edge (rising edge) on the Index input signal.

Note: You must set the IndexMode property to Disabled if you set the X4Scaling property 
to True.



Using the OpenLayers.Base Namespace
Starting Subsystems Simultaneously
If supported, you can set up subsystems to start simultaneously. Note that you cannot 
perform simultaneous startup on subsystems configured for single-value operations unless 
you are using a simultaneous sampling module.

To determine if a subsystem supports simultaneous start, use the SupportsSimultaneousStart 
property inherited from the SubsystemBase class. If this property returns a value of True, the 
subsystem can be simultaneously started.

You can synchronize the triggers of subsystems by specifying the same trigger source for each 
of the subsystems that you want to start simultaneously; ensure that the triggers are wired 
appropriately to the device.

Use the SimultaneousStart.AddSubsystem method to add the subsystems that you want to 
start simultaneously to the start list. If, later, you want to remove a subsystem from the start 
list, use the SimultaneousStart.RemoveSubsystem method.

To return an array of subsystems that were added to the simultaneous start list, use the 
SimultaneousStart.GetSubsystemList method.

Pre-start the subsystems using the SimultaneousStart.PreStart method. Pre-starting a 
subsystem ensures a minimal delay once the subsystems are started. Once you call the 
SimultaneousStart.PreStart method, do not alter the settings of the subsystems on the 
simultaneous start list.

Start the subsystems using the SimultaneousStart.Start method. When started, both 
subsystems are triggered simultaneously.

When you are finished with the operations, call the SimultaneousStart.Clear method to 
remove the subsystems from the simultaneous start list. 
255



Chapter 3

256
Auto-Calibrating a Subsystem
Some devices provide a self-calibrating feature, where a specified subsystem performs an 
auto-zero function. To determine if the specified subsystem supports this capability, use the 
AnalogInputSubsystem.SupportsAutoCalibrate property. If this property returns a value of 
True, the subsystem can be calibrated through software.

To calibrate the subsystem in software, call the AutoCalibrate method. Ensure that the 
subsystem is not running when you call this method, or an error is returned.



Using the OpenLayers.Base Namespace
Handling Events
DT-Open Layers devices notify your application of buffer movement and other system 
activities by raising events.

Delegates, which behave like function pointers, are provided to handle these events. Each 
delegate has a specific signature and holds a reference to a method that matches its signature. 
When an event occurs, the appropriate method (with the matching signature) is called.

The following example shows the declaration for the BufferDoneHandler delegate provided 
by the DT-Open Layers for .NET Class Library:

[C#]
// BufferDoneHandler is the delegate for the BufferDoneEvent event.
// BufferDoneEventArgs is the class that holds event data for 
// BufferDoneEvent.
// It derives from the base class for event data, GeneralEventArgs.

public delegate void BufferDoneHandler(object sender,
BufferDoneEventArgs eventArgs);

[Visual Basic]
' BufferDoneHandler is the delegate for the BufferDoneEvent event.
' BufferDoneEventArgs is the class that holds event data for
' BufferDoneEvent.
' It derives from the base class for event data, GeneralEventArgs.
Public Delegate Sub BufferDoneHandler(sender As Object, 

eventArgs As BufferDoneEventArgs)

As you can see, the syntax of the delegate is similar to that of a method declaration; however, 
the delegate keyword informs the compiler that BufferDoneHandler is a delegate type. By 
convention, event delegates in the .NET Framework have two parameters, the source that 
raised the event and the data for the event.

To handle events, you must define a method that matches the delegate; this is the event 
handling method that is called when the appropriate event is raised. In the following example, 
the event handling method called MyBufferDone matches the signature of the 
BufferDoneHandler delegate and is called when the event BufferDoneEvent is raised:

Visual C#
// MyBufferDone has the same signature as BufferDoneHandler.
public void MyBufferDone (object sender, 

BufferDoneEventArgs eventArgs);
{
//Add you own code here.
}

257



Chapter 3

258
Visual Basic
' MyBufferDone has the same signature as BufferDoneHandler.
   Public Sub MyBufferDone(sender As Object,

eventArgs As BufferDoneEventArgs)
' Add you own code here

End Sub

Note: To ensure that events are handled in the main application, use the InvokeRequired 
method. Refer to your .NET documentation for more information on this method.

Lastly, you must associate the event and event handling method with the appropriate 
subsystem. The following example shows how to associate the event BufferDoneEvent and 
the MyBufferDoneHandler event handler to the analog input subsystem called ainSS:

Visual C#
// Associate the event BufferDoneEvent and the event handling method 
// MyBufferDone with the analog input subsystem ainSS.
ainSS.BufferDoneEvent += new BufferDoneHandler (MyBufferDoneHandler);

Note: In C#, when you want to disable receiving events, use the - = operator instead of the 
+= operator. See your .NET documentation for more information about events and delegates.

Visual Basic
' Associate the event BufferDoneEvent and the event handling method
' MyBufferDone with the analog input subsystem ainSS.
AddHandler ainSS.BufferDoneEvent, Address of MyBufferDoneHandler

Note: In Visual Basic, when you want to disable receiving events, use the RemoveHandler 
statement instead of the AddHandler statement. See your .NET documentation for more 
information about events and delegates.

The following subsections describe the events and delegates that are provided in the DT-Open 
Layers for .NET Class Library. Refer to the examples provided with this software package to 
see how to incorporate event handling code into your program.



Using the OpenLayers.Base Namespace
BufferDoneEvent

For input operations, the event BufferDoneEvent is raised when the internal data buffer of the 
OlBuffer object has been filled with post-trigger data. For output operations, this event is 
raised when all the data in the internal data buffer of the OlBuffer object has been output. 

If you stop an analog I/O operation, the event BufferDoneEvent is generated for the current 
OlBuffer object and for up to eight inprocess OlBuffer objects before a QueueStoppedEvent 
event occurs. 

Use the BufferDoneHandler delegate with BufferDoneEvent. When BufferDoneEvent is 
raised, the subsystem that raised the event, the time stamp of when the event occurred, and 
the completed OlBuffer object are passed in the BufferDoneEventArgs argument of the 
user-defined method that matches the signature of the BufferDoneHandler delegate.

You can add your own code to the event handling method to manage the data in the buffer or 
perform other operations as required by your application. Refer to page 221 for more 
information on handling input buffers; refer to page 224 for more information on handling 
output buffers.

Note: If your program is running under a heavy CPU load, and if the 
AnalogInputSubsystem.SynchronousBufferDone property is set to False (the default 
condition), .NET may call your BufferDoneEvent delegates out of order under some 
circumstances. To avoid this problem, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True, so that all 
BufferDoneEvent events are executed synchronously in a single worker thread instead of 
asynchronously using a separate thread for each event.

The following is an example of an event handling routine called HandleBufferDone that 
handles the event BufferDoneEvent. This event handler converts the data from the internal 
buffer of the OlBuffer object into sensor values and copies the data into a user-dimensioned 
array called buf. The first 10 samples are printed to the form, and the OlBuffer object is put 
back on the queue for the subsystem:

Visual C#
public void HandleBufferDone (object sender, 

BufferDoneEventArgs bufferDoneData)
{ 

if (this.InvokeRequired)
{

this.Invoke( new BufferDoneHandler (HandleBufferDone),
new object[] {sender, bufferDoneData });

}

259



Chapter 3

260
else
{

// Get the data as sensor values
double[] buf = olBuffer.GetDataAsSensor();
//requeue the completed buffer
ainSS.BufferQueue.QueueBuffer (olBuffer);

// Output the first 10 samples to the user form 
for (int i=0; i<10; ++i)
{

OlBufferDataTable.Rows[i][0] = buf[i];
}

}
}

Visual Basic
Public Sub HandleBufferDone(ByVal sender As Object,

ByVal bufferDoneData As BufferDoneEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New BufferDoneHandler(
AddressOf HandleBufferDone), New Object()
 {sender, bufferDoneData})

Else
' Get the data as sensor values
Dim buf As Double() = olBuffer.GetDataAsSensor()
' requeue the completed buffer
ainSS.BufferQueue.QueueBuffer(olBuffer)
End If
' Output the first 10 samples to the user form 
Dim i As Integer
While i < 10

OlBufferDataTable.Rows(i)(0) = buf(i)
i += 1

End While
End If

End Sub 'HandleBufferDone



Using the OpenLayers.Base Namespace
PreTriggerBufferDoneEvent

The event PreTriggerBufferDone is raised when the internal buffer of the OlBuffer object is 
filled with pre-trigger data (for an input operation only). Refer to page 218 for more 
information about buffers.

Use the PreTriggerBufferDoneHandler delegate with PreTriggerBufferDoneEvent. When 
PreTriggerBufferDoneEvent is raised, the subsystem that raised the event, the time stamp of 
when the event occurred, and the completed OlBuffer object are passed in the 
BufferDoneEventArgs argument of the user-defined method that matches the signature of the 
PreTriggerBufferDoneHandler delegate.

You can add your own code to the event handling method to manage the data in the buffer or 
perform other operations as required by your application. Refer to page 221 for more 
information on handling input buffers. 

The following is an example of an event handling routine called HandlePreTriggerBufferDone 
that handles the event PreTriggerBufferDoneEvent. This event handler converts the data from 
the internal buffer of the OlBuffer object into voltage values and copies the data into a 
user-dimensioned array called buf. The first 10 samples are printed to the form, and the 
OlBuffer object is put back on the queue for the subsystem:

Visual C#
public void HandlePreTriggerBufferDone (object

sender, BufferDoneEventArgs bufferDoneData)
{ 

if (this.InvokeRequired)
{

this.Invoke( new PreTriggerBufferDoneHandler (
HandlePreTriggerBufferDone), new object[] { sender,

bufferDoneData});
}
else
{

// Get the data as voltages
double[] buf = olBuffer.GetDataAsVolts();

//requeue the completed buffer
ainSS.BufferQueue.QueueBuffer (olBuffer);

// Output the first 10 samples to the user form 
for (int i=0; i<10; ++i)
{

OlBufferDataTable.Rows[i][0] = buf[i];
}

}
}

261



Chapter 3

262
Visual Basic
Public Sub HandlePreTriggerBufferDone(ByVal sender As Object, 

ByVal bufferDoneData As BufferDoneEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New PreTriggerBufferDoneHandler(
AddressOf HandlePreTriggerBufferDone), 
New Object() {sender, bufferDoneData})

Else
' Get the data as voltages
Dim buf As Double() = olBuffer.GetDataAsVolts()
' requeue the completed buffer
ainSS.BufferQueue.QueueBuffer(olBuffer)
End If
' Output the first 10 samples to the user form 
Dim i As Integer
While i < 10

OlBufferDataTable.Rows(i)(0) = buf(i)
i += 1

End While
End If

End Sub 'HandleBufferDone

QueueStoppedEvent

A QueueStoppedEvent is raised when Stop or Abort is called for a continuous analog input or 
analog output operation. 

Note: The event BufferDoneEvent is generated for the current OlBuffer object and for up to 
eight inprocess OlBuffer objects before a QueueStoppedEvent event occurs. 

Use the QueueStoppedHandler delegate with QueueStoppedEvent. When 
QueueStoppedEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the QueueStoppedHandler delegate.

The following is an example of an event handling routine called HandleQueueStopped that 
handles the event QueueStoppedEvent. This event handler displays a message on the form 
that indicates which subsystem raised the QueueStoppedEvent and at what time the event 
occurred:



Using the OpenLayers.Base Namespace
Visual C#
public void HandleQueueStopped (object sender, 

GeneralEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new QueueStoppedHandler(HandleQueueStopped) 
,new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Queue Stopped received on
subsystem {0} element {1} at time {2}", 
eventData.Subsystem, eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

statusBarPanel.Text = msg;
}

}

Visual Basic
Public Sub HandleQueueStopped(ByVal sender As Object, 

ByVal eventData As GeneralEventArgs)
         If Me.InvokeRequired Then
            Me.Invoke(New QueueStoppedHandler(

AddressOf HandleQueueStopped),
New Object() {sender, eventData})

         Else
            Dim msg As String = String.Format(

"Queue Stopped received on subsystem {0} element {1} 
at time {2}", eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"))

statusBarPanel.Text = msg
         End If
End Sub 'HandleQueueStopped

IOCompleteEvent

For analog input operations that use a reference trigger whose trigger type is something other 
than software (none), the event IOCompleteEvent is raised when the last post-trigger sample 
is copied into the user buffer. This event includes the total number of samples per channel that 
were acquired from the time acquisition was started (with the start trigger) to the last 
post-trigger sample. For example, a value of 100 indicates that a total of 100 samples (samples 
0 to 99) were acquired. In some cases, this message is generated well before the events 
BufferDoneEvent are generated. You can determine when the reference trigger occurred and 
the number of pre-trigger samples that were acquired by subtracting the post trigger scan 
count, described on page 217, from the total number of samples that were acquired. Devices 
that do not support a reference trigger will never receive this event for analog input 
operations.
263



Chapter 3

264
For analog output operations, the event IOCompleteEvent is raised when the last data point 
has been output from an analog output channel. In some cases, this event is raised well after 
the data is transferred from the buffer (and, therefore, well after BufferDoneEvent and 
QueueDoneEvents are raised). Refer to page 218 for more information on buffers.

Use the IOCompleteHandler delegate with IOCompleteEvent. When IOCompleteEvent is 
raised, the subsystem that raised the event and the time stamp of when the event occurred are 
passed in the IOCompleteEventsArgs argument of the user-defined method that matches the 
signature of the IOCompleteHandler delegate.

You can add your own code to the event handling method to deal with this event as needed. 

The following is an example of an event handling routine called HandleIOComplete that 
handles the event IOCompleteEvent. This event handler displays a message on the form that 
indicates which subsystem raised the IOCompleteEvent and at what time the event occurred:

Visual C#
public void HandleIOComplete (object sender,

IOCompleteEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke( new IOCompleteHandler (HandleIOComplete), 
new object[] {sender, eventData });

}

else
{

string msg = String.Format ("IOComplete received on
subsystem {0} at time {1}", eventData.Subsystem, 

eventData.DateTime.ToString("T"));
statusBarPanel.Text = msg;

}
}

Visual Basic
Public Sub HandleIOComplete(ByVal sender As Object,

ByVal eventData As IOCompleteEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New IOCompleteHandler(
AddressOf HandleIOComplete), 
New Object() {sender, eventData})

         Else
Dim msg As String = String.Format(

"IOComplete received on subsystem {0} at time {1}",
 eventData.Subsystem, eventData.DateTime.ToString("T"))

statusBarPanel.Text = msg
         End If
End Sub 'HandleIOComplete



Using the OpenLayers.Base Namespace
QueueDoneEvent

The event QueueDoneEvent is raised when no OlBuffer objects are available on the queue and 
the operation stops. Refer to page 218 for more information.

Use the QueueDoneHandler delegate with QueueDoneEvent. When QueueDoneEvent is 
raised, the subsystem that generated the event and the time stamp of when the event occurred 
are passed in the GeneralEventArgs argument of the user-defined method that matches the 
signature of the QueueDoneHandler delegate.

The following is an example of an event handling routine called HandleQueueDone that 
handles the event QueueDoneEvent. This event handler displays a message on the form that 
indicates which subsystem raised the QueueDoneEvent and at what time the event occurred:

Visual C#
public void HandleQueueDone (object sender, 

GeneralEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new QueueDoneHandler(HandleQueueDone),
new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Queue Done received on {0} 
 element {1} at time {2}", eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

statusBarPanel.Text = msg;
}

}

Visual Basic
Public Sub HandleQueueDone(ByVal sender As Object,

ByVal eventData As GeneralEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New QueueDoneHandler(AddressOf HandleQueueDone), 
 New Object() 
{sender, eventData})

         Else
Dim msg As String = String.Format(
"Queue Done received on {0} element {1} at time {2}",
 eventData.Subsystem, eventData.Subsystem.Element,

eventData.DateTime.ToString("T"))
statusBarPanel.Text = msg

End If
End Sub 'HandleQueueDone
265



Chapter 3

266
DriverRunTimeErrorEvent

The DriverRunTimeErrorEvent occurs when the device driver detects one of the following 
error conditions:

• FifoOverflow – The driver could not read data from the device FIFO (or Windows USB 
FIFO) fast enough, resulting in a FIFO overflow condition. To deal with this error, increase 
the size of the buffers, slow down the sampling rate, or stop other CPU-intensive running 
programs.

Note: By setting the AnalogInputSubsystem.StopOnError property, you can determine 
how the subsystem operates if an overrun occurs. If StopOnError is True, the subsystem 
will automatically stop when an overrun is detected. If StopOnError is False, the 
subsystem will continue running if an overrun is detected.

• FifoUnderflow – The driver could not write data to the device FIFO (or Windows USB 
FIFO) fast enough, resulting in FIFO underflow condition. To deal with this error, increase 
the size of buffers, slow down the sampling rate, or stop other CPU-intensive running 
programs.

Note: By setting the AnalogOutputSubsystem.StopOnError property, you can determine 
how the subsystem operates if an underrun occurs. If StopOnError is True, the subsystem 
will automatically stop when an underrun is detected. If StopOnError is False, the 
subsystem will continue running if an underrun is detected.

• DeviceOverClocked – The A/D clock (usually external clock) is running too fast on the 
device. To deal with this error, slow down the A/D clock.

• TriggerError – The driver detected a trigger on the device but did not act on it.

• DeviceError – Generated by the driver due to a USB bus or hardware problem. To deal 
with this error, stop connecting/disconnecting USB devices while streaming data to them.

Use the DriverRunTimeErrorEventHandler delegate with DriverRunTimeErrorEvent. When 
DriverRunTimeErrorEvent is raised, the subsystem that generated the event, the time stamp 
of when the event occurred, the error code, and the error code descriptor are passed in the 
DriverRunTimeErrorEventArgs argument of the user-defined method that matches the 
signature of the DriverRunTimeErrorEventHandler delegate.

The following is an example of an event handling routine called 
HandleDriverRunTimeErrorEvent that handles the event DriverRunTimeErrorEvent. This 
event handler displays a message on the form that indicates what error occurred, which 
subsystem raised the DriverRunTimeErrorEvent, and at what time the event occurred:



Using the OpenLayers.Base Namespace
Visual C#
public void HandleDriverRunTimeErrorEvent (object sender,

DriverRunTimeErrorEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new 
DriverRunTimeErrorEventHandler( 
HandleDriverRunTimeErrorEvent),
new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Error: {0} 
Occurred on subsystem {1} element {2} at time {3}",
eventData.Message, eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

MessageBox.Show (msg, "Error");
}

}

Visual Basic
Public Sub HandleDriverRunTimeErrorEvent(ByVal sender As Object,

 ByVal eventData As DriverRunTimeErrorEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New DriverRunTimeErrorEventHandler(
AddressOf HandleDriverRunTimeErrorEvent),
New Object() {sender, eventData})

Else
Dim msg As String = String.Format(
"Error: {0} Occurred on subsystem {1}
element {2} at time {3}", eventData.Message,
eventData.Subsystem, eventData.Subsystem.Element, 
eventData.DateTime.ToString("T"))

MessageBox.Show(msg, "Error")
End If

End Sub 'HandleDriverRunTimeErrorEvent
267



Chapter 3

268
InterruptOnChangeEvent

The event InterruptOnChangeEvent is raised by some devices when a digital input line 
changes state.

Use the InterruptOnChangeHandler delegate with InterruptOnChangeEvent. When 
InterruptOnChangeEvent is raised, the subsystem that raised the event, the time stamp of 
when the event occurred, the digital input lines that changed state, and the current state of the 
digital input port are passed in the InterruptOnChangeEventArgs argument of the 
user-defined method that matches the signature of the InterruptOnChangeHandler delegate.

The following is an example of an event handling routine called InterruptHandler that 
handles the event InterruptOnChangeEvent. This event handler displays a message on the 
form that indicates the new value of the digital input port and what digital lines changed 
state:

Visual C#
void InterruptHandler (object sender, 

InterruptOnChangeEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke( new InterruptOnChangeHandler(
InterruptHandler), new object[] { 

sender, eventData });
}
else
{

string sNewVal = String.Format
("0x{0:X}",eventData.NewValue);
newValueTextBox.Text = sNewVal;

sNewVal = String.Format
("0x{0:X}",eventData.ChangedBits);
txtChange.Text = sNewVal;

}
}



Using the OpenLayers.Base Namespace
Visual Basic
Sub InterruptHandler(ByVal sender As Object,

ByVal eventData As InterruptOnChangeEventArgs)

         If Me.InvokeRequired Then
Me.Invoke(New InterruptOnChangeHandler(
AddressOf InterruptHandler), 
New Object() {sender, eventData})

         Else
            Dim sNewVal As String = String.Format("0x{0:X}",

eventData.NewValue)
            newValueTextBox.Text = sNewVal

            sNewVal = String.Format("0x{0:X}",eventData.ChangedBits)
            txtChange.Text = sNewVal
         End If
End Sub 'EventDoneHandler

EventDoneEvent

The event EventDoneEvent is raised by some devices, such as the DT340, when a digital input 
line changes state or when an interval timer operation is complete.

Use the EventDoneHandler delegate with EventDoneEvent. When EventDoneEvent is raised, 
the subsystem that raised the event, the time stamp of when the event occurred, and the data 
associated with that event are passed in the EventDoneEventArgs argument of the 
user-defined method that matches the signature of the EventDoneHandler delegate.

The following is an example of an event handling routine called HandleEventDone that 
handles the event EventDoneEvent. This event handler displays a message on the form that 
indicates the count:

Visual C#
void HandleEventDone (object sender,

EventDoneEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke( new EventDoneHandler (HandleEventDone), 
new object[] {sender, eventData });

}
else
{

txtEventCount.Text = eventData.Data.ToString();
}

}

269



Chapter 3

270
Visual Basic
Sub HandleEventDone(ByVal sender As Object, ByVal

eventData As EventDoneEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New EventDoneHandler(
AddressOf HandleEventDone), New Object()
{sender, eventData})

         Else
            txtEventCount.Text = eventData.Data.ToString()
         End If
End Sub 'HandleEventDone

MeasureDoneEvent

The event MeasureDoneEvent is raised when an edge-to-edge measurement (Measure) 
operation is complete. Refer to page 235 for more information on edge-to-edge measurement 
operations.

Use the MeasureDoneHandler delegate with MeasureDoneEvent. When MeasureDoneEvent 
is raised, the subsystem that raised the event, the time stamp of when the event occurred, and 
the count are passed in the MeasureDoneEventArgs argument of the user-defined method 
that matches the signature of the MeasureDoneHandler delegate.

The following is an example of an event handling routine called HandleMeasureDone that 
handles the event MeasureDoneEvent. This event handler displays a message on the form that 
indicates the count:

Visual C#
void HandleMeasureDone (object sender, 

MeasureDoneEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke( new MeasureDoneHandler(
HandleMeasureDone), new object[] {
sender, eventData });

}
else
{

txtEventCount.Text = eventData.Count.ToString();
}

}

Visual Basic
Sub HandleMeasureDone (ByVal sender As Object,

ByVal eventData As MeasureDoneEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New MeasureDoneHandler(



Using the OpenLayers.Base Namespace
AddressOf HandleMeasureDone), 
New Object() {sender, eventData})

         Else
            txtEventCount.Text = eventData.Count.ToString()
         End If
End Sub 'HandleMeasureDone

GeneralFailureEvent

The event GeneralFailureEvent is raised when a general library failure occurs.

Use the GeneralFailureHandler delegate with GeneralFailureEvent. When 
GeneralFailureEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the GeneralFailureHandler delegate.

You can add your own code to the handler to deal with this event as needed. 

DeviceRemovedEvent

The event DeviceRemovedEvent is raised when a device is removed from your system while 
your application is running. 

Use the DeviceRemovedHandler delegate with DeviceRemovedEvent. When 
DeviceRemovedEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the DeviceRemovedHandler delegate.

You can add your own code to the event handling method to deal with this event as needed. 
271



Chapter 3

272
Handling Errors
Errors are generated by the DT-Open Layers .NET Class Library as OlException objects. Each 
OlException object contains an OlError object, which contains the error code and its 
description. Your program should handle exceptions as they occur, performing the 
appropriate actions to deal with any errors that arise.

Refer to Appendix A for a list of error codes and messages. These values are defined as 
enumerations that are accessible using the OlException.ErrorCode and OlException.Message 
properties. If you want to determine which subsystem generated the error, use the 
OlException.Subsystem property.

The following example shows how to catch exceptions in your program; this example the 
error message is printed to text field on the form:

Visual C#
catch (OlException ex)

{
string err = ex.Message;
statusBarPanel.Text = err;
return;

}

Visual Basic
Catch ex As OlException

Dim err As String = ex.Message
statusBarPanel.Text = err
Return



Using the OpenLayers.Base Namespace
Cleaning Up Operations
When you are finished performing data acquisition operations, clean up the memory and 
resources that were used by the operation by doing the following:

1. Release the simultaneous start list, if used, using the SimultaneousStart.Clear method.

2. Deallocate any buffers, if used. Refer to page 227 for more information.

3. Release the subsystem connection to the device using the Dispose method within the 
appropriate subsystem class.

4. Release the Device object using the Device.Dispose method.
273



Chapter 3

274



4
Using the OpenLayers.DeviceCollection

Namespace
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Importing the Namespace for the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Getting a DeviceMgr Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Getting a Device Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Getting a Subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Determining the Available Channels and Setting up Channel Parameters. . . . . . . . . . . . 282

Performing Analog I/O Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Starting Subsystems Simultaneously  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Auto-Calibrating a Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Handling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Cleaning Up Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
275



Chapter 4

276
Overview
To perform a data acquisition operation, you need to do the following:

1. Import the namespace for the library. 

2. Get a DeviceMgr object to manage DT-Open Layers devices.

3. Get a Device object for each DT-Open Layers device that you want to use. 

4. Get a subsystem of each type that you want to use.

5. Determine what channels are supported on each subsystem, and set up channel 
parameters.

6. Set up and configure the subsystem.

7. Perform the I/O operations. 

8. Start subsystems simultaneously, if supported.

9. Auto-calibrate the subsystem, if supported.

10. Handle events.

11. Handle errors.

12. When finished, clean up the memory and resources used by the operations.

The remaining sections in this chapter describe these steps in detail.



Using the OpenLayers.DeviceCollection Namespace
Importing the Namespace for the Library
To use any of the classes in the OpenLayers.DeviceCollection namespace, you first need to 
import the namespace into your program, as follows:

Visual C#
using OpenLayers.DeviceCollection

Visual Basic
Imports OpenLayers.DeviceCollection
277



Chapter 4

278
Getting a DeviceMgr Object
Before performing any operation using the OpenLayers.DeviceCollection namespace, you 
must first use the DeviceMgr.Get method to return a DeviceMgr object. The DeviceMgr object 
is responsible for managing all DT-Open Layers device collections in your system.

The following examples shows how to get a DeviceMgr object:

Visual C#
DeviceMgr deviceMgr = DeviceMgr.Get();

Visual Basic
deviceMgr As DeviceMgr = DeviceMgr.Get()



Using the OpenLayers.DeviceCollection Namespace
Getting a Device Object
Once you have a DeviceMgr object, use the DeviceMgr.GetDevice method to return a Device 
object for each device collection that you want to use.

Note: If you wish, you can also create a Device object using the Device constructor instead 
of using the GetDevice method.

The following examples shows how to get a Device object for the device collection named 
CollectionName:

Visual C#
Device device = deviceMgr.GetDevice (CollectionName);

Visual Basic
device As Device = deviceMgr.GetDevice(CollectionName)

You can determine if a DT-Open Layers-compatible device collection is plugged into your 
system by using the DeviceMgr.HardwareAvailable method. If this method returns True, at 
least one DT-Open Layers-compatible device collection is plugged into your system.

To determine the names of all DT-Open Layers-compatible device collections plugged into 
your system, use the DeviceMgr.GetDeviceNames method.

You can also use the use the following properties and/or methods to return information about 
the specified Device object:

• Device.CollectionDevices property − Returns an array of Device objects for each device 
in the collection. The array is ordered by the collection device numbers (0 to n) with 
devices 0 and n being at each end of the Sync Bus chain.

• Device.DeviceName property − Returns the user-defined name for the device collection. 
You can modify this name using the DT Device Collection Manager application. 

• Device.MasterIndex property − Returns the index of the master Device object in the 
CollectionDevices array.  

• Device.GetHardwareinfo method − Returns the collection ID, number of devices in the 
collection, and the vendor ID for the specified device collection. See page 138 for more 
information on these fields.
279



Chapter 4

280
Getting a Subsystem
The following subsystem types are defined in the OpenLayers.DeviceCollection namespace:

• AnalogInputSubsystem – This subsystem type represents the analog input channels of 
your device collection. Use this subsystem type if you want to acquire data from the 
analog input channels.

If your device collection supports streaming digital input, counter/timer, and or 
quadrature decoder data through the analog input subsystem, use 
AnalogInputSubsystem to read this data.

• AnalogOutputSubsystem – This subsystem type represents the analog output channels of 
your device collection, if supported. Use this subsystem type if you want to update the 
values of the analog output channels.

Note: The AnalogOutputSubsystem type is supported for the device collection only if the 
analog output subsystem of your device supports expansion through the Sync Bus. Refer 
to the hardware documentation for your device for more information.

If your device supports streaming digital output data through the analog output 
subsystem, use AnalogOutputSubsystem to update the data on the digital output ports.

Your device may support all or a subset of these functions or subsystem types. In addition, 
your device may support multiple instances, called elements, of the same subsystem type. 
Element numbering is zero-based; that is, the first instance of the subsystem is called element 
0, the second instance of the subsystem is called element 1, and so on. 

Once you have a Device object, you need to get a subsystem of the appropriate type for each 
subsystem element that you want to use. While you can do this using the constructor 
provided in each subsystem class, it is recommended that you use one of the following 
methods of the Device class:

• Device.AnalogInputSubsystem method – Returns an analog input subsystem for a 
specified element and Device object. Most DT-Open Layers device collections group all 
the analog input channels into one analog input subsystem element (0). 

The following example shows how to get an AnalogInputSubsystem object for element 0:

Visual C#
AnalogInputSubsystem ainSS = device.AnalogInputSubsystem (0);

Visual Basic
ainSS As AnalogInputSubsystem = device.AnalogInputSubsystem(0)

• Device.AnalogOutputSubsystem method – Returns an analog output subsystem for a 
specified element and Device object. Most DT-Open Layers device collections group all 
the analog output channels into one analog output subsystem element (0). The following 
example shows how to get an AnalogOutputSubsystem object for element 0:

Visual C#
AnalogOutputSubsystem aoutSS = device.AnalogOutputSubsystem (0);

Visual Basic
aoutSS As AnalogOutputSubsystem = device.AnalogOutputSubsystem(0)



Using the OpenLayers.DeviceCollection Namespace
You can determine the type of a specified subsystem by using the SubsystemType property 
within the appropriate subsystem class.

To return the number of elements supported by a specified subsystem type on a specified 
device, use the Device.GetNumSubsystemElements method.

You can determine the state of a subsystem using the State property within the appropriate 
subsystem class. The following states have been defined:

• Initialized – The subsystem has been initialized, but not configured. 

• ConfiguredForSingleValue – The subsystem has been configured for a single-value 
operation.

• ConfiguredForContinuous – The subsystem has been configured for a continuous 
operation.

• Running – The subsystem is running.

Note: You can also use the IsRunning property within the appropriate subsystem class to 
determine if the subsystem is running.

• Stopping – The operation on the subsystem is in the process of stopping.

• Aborting – The operation on the subsystem is in the process of being aborted.

• Prestarted – The subsystem has been prestarted for a continuous simultaneous operation. 

• IOComplete – For analog input subsystems, the final post-trigger samples has been 
copied to the user buffer. For analog output subsystems, the final analog output sample 
has been written from the FIFO on the device; this is a transient state, which may not be 
seen, but does occur.
281



Chapter 4

282
Determining the Available Channels and Setting up 
Channel Parameters

When you get a subsystem of a specified type, the software automatically determines the 
number of available channels for the subsystem and creates a SupportedChannelInfo object 
for each channel. The SupportedChannelInfo object contains the following information:

• physical channel number

• logical channel number

• logical channel word

• channel name

• I/O type

• Information that pertains to voltage input channels:

− sensor gain

− sensor offset

• Information that pertains to accelerometer (IEPE) channels:

− coupling

− excitation current source

− value for the internal excitation current source

To get a collection of SupportedChannelInfo objects, use the SupportedChannels class. 

You can get the SupportedChannelInfo object for a specific channel using the 
SupportedChannels.GetChannelInfo method and any one of the following arguments:

• The physical channel number.

• The user-defined name of the channel.

• The subsystem type and logical channel number.

• The subsystem type, logical channel number, and logical channel word.

You can also use the SupportedChannels.Item ([]) property to return the 
SupportedChannelsInfo object at a specific index.

The following subsections describe the elements of the SupportedChannelsInfo class in more 
detail.



Using the OpenLayers.DeviceCollection Namespace
Physical and Logical Channels

The logical channel number, which is zero-based, maps the physical channel to the channel’s 
subsystem type. For example, Table 74 lists the SupportedChannels object for the analog input 
subsystem of a VIBbox-64 system. The VIBbox-64 collection consists of four DT9857E modules 
(0 to 3) and contains 64 analog input channels, four tachometers, 12 counter/timers (4 
general-purpose counter/timers and 8 measure counters), and four digital input ports. 

As you can see, physical channels 0 to 63 map to logical channels 0 to 15 of the analog input 
subsystem for each DT9857E module in the device collection. Physical channels 64 to 68 map 
to the extended channels (tachometer, counter/timers, and digital input port for device 0 in 
the device collection, physical channels 69 to 73 map to the extended channels for device 1 in 
the device collection, and physical channels 74 to 78 map to the extended channels for device 2 
in the device collection, and physical channels 79 to 83 map to the extended channels for 
device 3 in the device collection.

Table 74: Example of Logical and Physical Channels in a SupportedChannels Object 
for an Analog Input Subsystem 

Subsystem Type Device in Collection
Logical Channel 

Number
Physical Channel 

Number

Analog Input 0 0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15
283



Chapter 4

284
Analog Input 1 0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

2 0 32

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

10 42

11 43

12 44

13 45

14 46

Table 74: Example of Logical and Physical Channels in a SupportedChannels Object 
for an Analog Input Subsystem  (cont.)

Subsystem Type Device in Collection
Logical Channel 

Number
Physical Channel 

Number



Using the OpenLayers.DeviceCollection Namespace
Analog Input 2 15 47

3 0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

10 58

11 59

12 60

13 61

14 62

15 63

Tachometer 0 0 64

Counter/Timer 0 0 65

1 66

2 67

Digital Input 0 0 68

Tachometer 1 0 69

Counter/Timer 1 0 70

1 71

2 72

Digital Input 1 0 73

Tachometer 2 0 74

Counter/Timer 2 0 75

1 76

2 77

Table 74: Example of Logical and Physical Channels in a SupportedChannels Object 
for an Analog Input Subsystem  (cont.)

Subsystem Type Device in Collection
Logical Channel 

Number
Physical Channel 

Number
285



Chapter 4

286
You can determine the number of a physical channel for a given subsystem using the 
SupportedChannelInfo.PhysicalChannelNumber property.

You can determine the number of a logical channels for a given subsystem using the 
SupportedChannelInfo.LogicalChannelNumber property.

To reference a channel by number, specify either the physical channel number or the 
subsystem type and logical channel number.

Logical Channel Word

Some channels, such as 32-bit counter/timers on some devices, return multi-word data. The 
logical channel word, which is zero-based, maps the physical channel to the data word that it 
returns. For example, if a 32-bit counter/timer corresponds use two physical channels, the 
first physical channel corresponds to logical channel word 0 (the first 16-bits of data), and the 
second physical channel corresponds to logical channel word 1 (the second 16-bits of data).

For channels that do not return multi-word data, the value of the logical channel word is -1. 

Table 75 shows an example of the logical channel words.

Digital Input 2 0 78

Tachometer 3 0 79

Counter/Timer 3 0 80

1 81

2 82

Digital Input 3 0 83

Table 74: Example of Logical and Physical Channels in a SupportedChannels Object 
for an Analog Input Subsystem  (cont.)

Subsystem Type Device in Collection
Logical Channel 

Number
Physical Channel 

Number



Using the OpenLayers.DeviceCollection Namespace
You can determine the value of the logical channel word for a given channel using the 
SupportedChannelInfo.LogicalChannelWord property.

To reference a channel by logical channel word, specify the subsystem type, logical channel 
number, and logical channel word.

Channel Name

By default, each channel that is listed in the SupportedChannelInfo class has a name that 
describes the subsystem type and includes the logical channel number and logical channel 
word, if applicable. Examples of default names include Ain0 for analog input channel 0, 
Aout1 for analog output channel 1, Din0 for digital input channel 0, Dout2 for digital output 
channel 2, CT0 Word 1 for counter/timer channel 0 (word 1), and Quad1 Word 0 for 
quadrature decoder channel 1 (word 0).

You can specify your own name for a channel using the SupportedChannelInfo.Name 
property. 

To reference a channel by name, specify the name of the channel.

Table 75: Example of Logical Channel Words in a SupportedChannels Object 
for an Analog Input Subsystem 

Subsystem Type
Logical Channel 

Number
Physical Channel 

Number
Logical Channel 

Word

Analog Input 0 0 –1

1 1 –1

2 2 –1

3 3 –1

4 4 –1

5 5 –1

6 6 –1

7 7 –1

Counter/Timer 0 8 0

0 9 1

1 10 0

1 11 1
287



Chapter 4

288
IOType

You can determine what kind of I/O operation is supported for a particular channel of a given 
subsystem using the SupportedChannelInfo.IOType property.

This property returns one of the following I/O types:

• VoltageIn

• VoltageOut

• DigitalInput

• DigitalOutput

• QuadratureDecoder

• CounterTimer

• Tachometer

• Current 

• Thermocouple 

• Rtd

• StrainGage

• Accelerometer

• Bridge 

• Thermistor 

• Resistance 

• MultiSensor

Note: Currently, device collections support only VoltageIn and Accelerometer I/O types.

Setting Up Voltage Input Channels

To determine whether a specific channel of a device collection supports voltage inputs, use the 
SupportedChannelInfo.IOType property. 

You can read a single voltage value from one channel using the AnalogInputSubsystem. 
GetSingleValueAsVolts method. Refer to page 292 for more information. 

If you are acquiring data to a buffer, you can read the voltage value from the specified 
channels using the OlBuffer.GetDataAsVolts method. Refer to page 325 for more 
information.



Using the OpenLayers.DeviceCollection Namespace
Sensor Gain and Offset

If you want to read a value from a channel in engineering units, like pressure, and your 
channel supports voltage measurements only, you can specify the gain and offset for the 
sensor using the SupportedChannelInfo.SensorGain and 
SupportedChannelInfo.SensorOffset properties.

The sensor gain and offset are used to scale a sample from raw counts to a sensor format. The 
scaling occurs in two steps. First, the raw count value is converted to prescaled voltage using 
the gain applied to the input signal. Then, the prescaled voltage is scaled using the following 
equation:

y = mx + b

where y is the scaled sensor value, m is the sensor gain, x is the prescaled value in voltage, and 
b is the sensor offset. 

The following example shows how to set the sensor gain and offset of channel 0 of the analog 
input subsystem using the SupportedChannels object:

Visual C#
SupportedChannelInfo Ch0Info =

ainSS.SupportedChannels.GetChannelInfo(
SubsystemType.AnalogInput,0);

.

.
// Set the sensor gain and offset
Ch0Info.SensorGain = 2;
Ch0Info.SensorOffset = 10;

Visual Basic
Dim Ch0Info As SupportedChannelInfo =

ainSS.SupportedChannels.GetChannelInfo(
SubsystemType.AnalogInput, 0)

.

.
' Set the sensor gain and offset
Ch0Info.SensorGain = 2
Ch0Info.SensorOffset = 10

Setting Up Accelerometer (IEPE) Input Channels

To determine if the analog input subsystem supports IEPE inputs, use the 
AnalogInputSubsystem.SupportsIepe property.

For channels that support accelerometers (IEPE inputs), you can set the following properties:

• Coupling

• Excitation current source
289



Chapter 4

290
Coupling

To determine if the analog input subsystem supports DC coupling (where DC offset is 
included), use the AnalogInputSubsystem.SupportsDCCoupling property. To determine if 
the analog input subsystem supports AC coupling (where the DC offset is removed), use the 
AnalogInputSubsystem.SupportsACCoupling property. 

You can specify one of the coupling type using the SupportedChannelInfo.Coupling 
property. By default, DC coupling is used.

Excitation Current Source Values

To determine if the analog input subsystem supports an internal excitation current source, use 
the AnalogInputSubsystem.SupportsInternalExcitationCurrentSrc property. To determine if 
the analog input subsystem supports an external excitation current source, use the 
AnalogInputSubsystem.SupportsExternalExcitationCurrentSrc property. 

You can specify the excitation current source (Internal, External, or Disabled) using the 
SupportedChannelInfo.ExcitationCurrentSource property. By default, the excitation current 
source is disabled.

If you set the excitation current source to Internal, you can also set the value of the excitation 
current source using the SupportedChannelInfo.ExcitationCurrentValue property. To 
determine what current source values are supported by the subsystem, use the 
AnalogInputSubsystem.SupportedExcitationCurrentValues property. By default, the first 
value in the list of supported values is used.



Using the OpenLayers.DeviceCollection Namespace
Setting Up and Configuring a Subsystem
Once you have gotten a subsystem and know about its supported channels, you can set up the 
subsystem for the I/O operation that you want to perform, and then configure it.

The way you set up the subsystem depends on the operation that you want to perform. Refer 
to the following sections for specific information on setting up I/O operations:

• For analog I/O operations, refer to page 292.

• For simultaneous operations, refer to page 330.

Call the Config method within the appropriate subsystem class to configure the subsystem 
before performing the I/O operation.
291



Chapter 4

292
Performing Analog I/O Operations
Using the OpenLayers.DeviceCollection namespace in the DT-Open Layers for .NET Class 
Library, you can perform the following types of analog I/O operations.

• Single value analog input, described below

• Single value analog output, described on page 293

• Continuous pre- and post-trigger analog input using a start and reference trigger, 
described on page 298

• Continuous post-trigger analog input, described on page 300

• Continuously paced analog output, described on page 303

• Continuous waveform generation analog output, described on page 305

Note: On some devices, an AnalogOutputSubsystem element is used to set an analog 
threshold trigger; these elements support single-value analog output operations only.

Single-Value Analog Input Operations

Single-value operations are the simplest to use but offer the least flexibility and efficiency. In a 
single-value analog input operation, a single data value is read from a single channel. The 
operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
AnalogInputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an AnalogInputSubsystem object, as described on page 280, and set up the 
channels as described on page 288, set up the AnalogInputSubsystem object for a single value 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.



Using the OpenLayers.DeviceCollection Namespace
5. (Optional) For measurements that require an excitation source (such as IEPE inputs), set 
the excitation voltage source for the subsystem using the 
AnalogInputSubsystem.ExcitationVoltageSource property, and if using an internal 
excitation source, set the value of the internal excitation voltage source using the 
AnalogInputSubsystem.ExcitationVoltageValue property. See page 309 for more 
information on excitation voltage sources.

6. Configure the subsystem using the AnalogInputSubsystem.Config method.

7. Acquire a single value using one of the following methods:

− AnalogInputSubsystem.GetSingleValueAsRaw – Acquires a single value from a 
specified analog input channel using a specified gain, and returns the value as a raw 
count.

− AnalogInputSubsystem.GetSingleValueAsVolts – Acquires a single value from a 
specified analog input channel using a specified gain, and returns the data as a voltage.

− AnalogInputSubsystem.GetSingleValueAsSensor – Acquires a single value from a 
specified analog input channel at a specified gain, and returns the data as a sensor 
value.

Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Refer to the example programs ReadSingleValueAsRaw, ReadSingleValueAsVolts, and 
ReadSingleValueAsSensor to see how to perform a single-value analog input operation.

Note: After the acquisition is complete, you can convert a raw count value to voltage using 
the AnalogInputSubsystem.RawValueToVolts method or to a sensor value using the 
AnalogInputSubsystem.RawToSensorValues method. If you want to convert voltage to raw 
counts, you can use the AnalogInputSubsystem.VoltsToRawValue method.

Single-Value Analog Output Operations

In a single-value analog output operation, a single data value is output from a single analog 
output channel. The operation occurs immediately.

To determine if the subsystem supports single-value operations, use the 
AnalogOutputSubsystem.SupportsSingleValue property. If this property returns a value of 
True, the subsystem supports single-value operations.

Once you have an AnalogOutputSubsystem object, as described on page 280, set up the 
AnalogOutputSubsystem object for a single value operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to SingleValue.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 308 for more information on 
channel types.
293



Chapter 4

294
3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. Configure the subsystem using the AnalogOutputSubsystem.Config method.

6. Output a single value using one of the following methods:

For Devices with Multiplexed D/A architectures:

− AnalogOutputSubsystem.SetSingleValueAsRaw – Outputs a single raw count on the 
specified analog output channel.

− AnalogOutputSubsystem.SetSingleValueAsVolts – Outputs a single voltage value on 
a specified analog output channel.

For Devices with Simultaneous D/A architectures (SupportsSetSingleValues is True):

− AnalogOutputSubsystem.SetSingleValuesAsRaw – Outputs a single raw count on 
each specified analog output channel. If an analog output channel is not specified, the 
value of the output channel will not change; the output channel maintains the last 
value that was written to it. 

− AnalogOutputSubsystem.SetSingleValuesAsVolts – Outputs a single voltage value 
on each specified analog output channel. If an analog output channel is not specified, 
the value of the output channel will not change; the output channel maintains the last 
value that was written to it.

Note: You can convert a raw count value to voltage using the 
AnalogOutputSubsystem.RawValueToVolts method. If you want to convert voltage to 
raw counts, you can use the AnalogOutputSubsystem.VoltsToRawValue method.

Single-value operations stop automatically when finished; you cannot stop a single-value 
operation in software.

Refer to the example programs WriteSingleValueAsRaw, WriteSingleValueAsVolts, and 
WriteSingleValueAsRawProgRanges to see how to perform a single-value analog output 
operation.



Using the OpenLayers.DeviceCollection Namespace
Continuous, Pre- and Post-Trigger Analog Input Operations Using a 
Start and Reference Trigger

Note: This mode requires use of an AnalogInputSubsystem.Trigger object and 
AnalogInputSubsystem.ReferenceTrigger object. Some devices may not support this mode.

Use this mode when you want to acquire pre-trigger data from multiple analog input channels 
continuously when a specified trigger occurs and, when a reference trigger occurs, acquire a 
specified number of post-trigger samples.

Once you have an AnalogInputSubsystem object, as described on page 280, and set up the 
channels as described on page 288, set up the AnalogInputSubsystem object for a continuous 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as IEPE inputs), set 
the excitation voltage source for the subsystem using the 
AnalogInputSubsystem.ExcitationVoltageSource property, and if using an internal 
excitation source, set the value of the internal excitation voltage source using the 
AnalogInputSubsystem.ExcitationVoltageValue property. See page 309 for more 
information on excitation voltage sources.

6. Set up the channel list (including setting the gain and inhibit value for each entry), as 
described on page 310. The channel list must include at least one channel from the master 
device in the device collection.

Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must configure the digital input 
subsystem for a single-value operation before starting the analog input operation. To 
configure these subsystems, use the OpenLayers.Base namespace. Refer to page 229 for 
information on continuous digital input operations, page 232 for information on 
continuous counter/timer operations, page 251 for information on tachometer operations, 
and page 253 for information on quadrature decoder operations.
295



Chapter 4

296
7. Set up the clock, as described on page 317.

8. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the trigger type 
that starts pre-trigger acquisition. Refer to page 318 for more information on supported 
trigger sources.

9. Use the AnalogInputSubsystem.ReferenceTrigger.TriggerType property to specify the 
trigger type that stops pre-trigger acquisition and starts post-trigger acquisition. Refer to 
page 318 for more information on supported trigger sources.

10. If the start or reference trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel or 
AnalogInputSubsystem.ReferenceTrigger.ThresholdTriggerChannel property. 
Refer to page 320 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level or 
AnalogInputSubsystem.ReferenceTrigger.Level property. Refer to page 320 for more 
information.

11. Specify the number of samples to acquire after the reference trigger occurs using the 
AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount property. Refer to 
page 322 for more information on the post-trigger scan count.

12. Set up the input buffers, as described on page 322.

13. If your program is running under a heavy CPU load, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True for synchronous 
execution of each BufferDoneEvent event in a single worker thread.

14. Configure the subsystem using the AnalogInputSubsystem.Config method.

15. Call the AnalogInputSubsystem.Start method to start the operation. 

Pre-trigger acquisition begins when the start trigger is detected. When the reference trigger 
occurs, pre-trigger acquisition stops and post-trigger acquisition begins at the next sample. 
The sampled data is placed in the allocated buffer(s). The operation continues until the 
number of scans that you specify for PostTriggerScanCount has been acquired. At the point, 
you will get the last buffer that has valid samples; the remainder of the buffers are cancelled.



Using the OpenLayers.DeviceCollection Namespace
Figure 15 illustrates continuous pre- and post-trigger mode (using a start and reference 
trigger) with a channel list of three entries: channel 0 through channel 2. In this example, 
pre-trigger analog input data is acquired when the start trigger is detected. When the 
reference trigger occurs, the specified number of post-trigger samples (three, in this example) 
are acquired.

Figure 15: Continuous Pre- and Post-Trigger Operations Using a Start and Reference Trigger

If desired, you can also stop a continuous pre- and post-trigger operation using one of the 
following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. The driver raises a BufferDoneEvent event for the completed buffer and sets the 
OlBuffer.ValidSamples property to the number of samples in the completed buffer. It 
then raises a BufferDoneEvent event for up to eight inprocess buffers, setting the 
OlBuffer.ValidSamples property to 0, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 322 for more information on 
buffers, and to page 332 for information on dealing with events.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. The driver raises a BufferDoneEvent event for up to eight inprocess 
buffers, setting the OlBuffer.ValidSamples property to 0, and then raises a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Chan 0

Chan 1

Chan 2

Input 
Sample 
Clock

Chan 0

Chan 1

Chan 2

Chan 0

Chan 1

Chan 2

Chan 0

Chan 1

Chan 2

Start Trigger occurs Reference Trigger occurs

3 Post-trigger samples acquiredPre-trigger data acquired

Chan 0

Chan 1

Chan 2

Post-Trigger Scan Count = 3

Chan 0

Chan 1

Chan 2

Trigger Sample is not counted 
as post-trigger sample
297



Chapter 4

298
Note: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to fill). If 
you try to perform another operation while the stop is in progress, an exception is raised with 
the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Continuous Post-Trigger Analog Input Operations Using One 
Channel and One Buffer

Use this mode when you want to acquire one buffer of post-trigger data from one analog 
input channel.

Once you have an AnalogInputSubsystem object, as described on page 280, and set up the 
channels as described on page 288, perform the following steps:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as IEPE inputs), set 
the excitation voltage source for the subsystem using the 
AnalogInputSubsystem.ExcitationVoltageSource property, and if using an internal 
excitation source, set the value of the internal excitation voltage source using the 
AnalogInputSubsystem.ExcitationVoltageValue property. See page 309 for more 
information on excitation voltage sources.

6. Set up the channel list (including setting the gain and inhibit value for the channel, and 
adding the channel to the channel list), as described on page 310.

7. Set up the clock, as described on page 317.

8. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the post-trigger 
source that starts the operation. Refer to page 318 for more information on supported 
trigger sources.



Using the OpenLayers.DeviceCollection Namespace
9. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
320 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 320 for more 
information.

10. Call the AnalogInputSubsystem.GetOneBuffer method to acquire one buffer of 
post-trigger data from the specified channel in the channel list. You specify the number of 
samples to acquire in the call.

This method is synchronous and returns only after the requested data has been acquired 
or the specified timeout value, in milliseconds, has been exceeded. If the buffer is not 
filled before the specified timeout value is exceeded, AnalogInputSubsystem.Abort is 
called and a TimeoutException is raised. If a GeneralFailureEvent or 
DriverRuntimeErrorEvent occurs during acquisition, an OlException with the appropriate 
error code is raised. 

11. Handle the input buffer, as described on page 325.

When the trigger occurs, post-trigger acquisition begins. When the number of samples have 
been acquired or the specified timeout value is exceeded, the OlBuffer object is returned.

Refer to the example program GetOneBuffer to see how to perform a continuous (post-trigger) 
analog input operation using one buffer.
299



Chapter 4

300
Continuous, Post-Trigger Analog Input Operations Using Multiple 
Buffers

Note: This mode does not support use of the AnalogInputSubsystem.ReferenceTrigger 
object. To use a ReferenceTrigger object, refer to page 298.

Use continuous post-trigger mode when you want to acquire data from multiple analog input 
channel continuously when a specified start trigger occurs.

To determine if the subsystem supports continuous, post-trigger analog input operations, use 
the AnalogInputSubsystem.SupportsContinuous property. If this property returns a value of 
True, the subsystem supports continuous post-trigger analog input operations.

Once you have an AnalogInputSubsystem object, as described on page 280, and set up the 
channels as described on page 288, set up the AnalogInputSubsystem object for a continuous 
operation as follows:

1. Set the AnalogInputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogInputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogInputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogInputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. (Optional) For measurements that require an excitation source (such as IEPE inputs), set 
the excitation voltage source for the subsystem using the 
AnalogInputSubsystem.ExcitationVoltageSource property, and if using an internal 
excitation source, set the value of the internal excitation voltage source using the 
AnalogInputSubsystem.ExcitationVoltageValue property. See page 309 for more 
information on excitation voltage sources.

6. Set up the channel list (including setting the gain and inhibit value for each entry), as 
described on page 310. The channel list must include at least one channel from the master 
device in the device collection.



Using the OpenLayers.DeviceCollection Namespace
Note: If you want to continuously acquire data from the digital input, counter/timer, 
tachometer, and/or quadrature decoder channels as part of the analog input stream, you 
must set up the channel list to include these channels. For counter/timer and quadrature 
decoder channels, you must also configure and start these subsystems before starting the 
analog input operation. For digital input ports, you must configure the digital input 
subsystem for a single-value operation before starting the analog input operation. To 
configure these subsystems, use the OpenLayers.Base namespace. Refer to page 229 for 
information on continuous digital input operations, page 232 for information on 
continuous counter/timer operations, page 251 for information on tachometer operations, 
and page 253 for information on quadrature decoder operations.

7. Set up the clock, as described on page 317.

8. Use the AnalogInputSubsystem.Trigger.TriggerType property to specify the post-trigger 
source that starts the operation. Refer to page 318 for more information on supported 
trigger sources.

9. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogInputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
320 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogInputSubsystem.Trigger.Level property. Refer to page 320 for more 
information.

10. Set up the input buffers, as described on page 322.

11. If your program is running under a heavy CPU load, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True for synchronous 
execution of each BufferDoneEvent event in a single worker thread.

12. Configure the subsystem using the AnalogInputSubsystem.Config method.

13. Call the AnalogInputSubsystem.Start method to start the continuous post-trigger 
operation. 

When the post-trigger is detected, the device cycles through the channel list, acquiring the 
value for each ChannelListEntry object in the channel list; this process is defined as a scan. The 
device then wraps to the start of the channel list and repeats the process continuously until 
either the allocated buffers are filled or you stop the operation. The event BufferDoneEvent is 
generated as each buffer is filled with analog input data; refer to page 332 for information on 
dealing with events and reading the data in the buffer.

Figure 16 illustrates continuous post-trigger mode using a channel list of three entries: channel 
0, channel 1, and channel 2. In this example, post-trigger analog input data is acquired on each 
clock pulse of the A/D sample clock. The device wraps to the beginning of the channel list and 
repeats continuously.
301



Chapter 4

302
Figure 16: Continuous Post-Trigger Mode

To stop a continuous post-trigger operation, use one of the following methods:

• AnalogInputSubsystem.Stop – Stops the operation after the current buffer has been 
filled. The driver raises a BufferDoneEvent event for the completed buffer and sets the 
OlBuffer.ValidSamples property to the number of samples in the completed buffer. It 
then raises a BufferDoneEvent event for up to eight inprocess buffers, setting the 
OlBuffer.ValidSamples property to 0, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 322 for more information on 
buffers, and to page 332 for information on dealing with events.

• AnalogInputSubsystem.Abort – Stops the operation immediately without waiting for the 
current buffer to be filled and sets the OlBuffer.ValidSamples property to the number of 
samples in the buffer. The driver raises a BufferDoneEvent event for up to eight inprocess 
buffers, setting the OlBuffer.ValidSamples property to 0, and then raises a 
QueueStoppedEvent event. All subsequent triggers or retriggers are ignored.

• AnalogInputSubsystem.Reset – Stops the operation immediately without waiting for the 
current buffer to be filled, and reinitializes the subsystem to the default configuration. 

Notes: If you set the AnalogInputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to fill). If 
you try to perform another operation while the stop is in progress, an exception is raised with 
the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Refer to the example programs ReadBufferedDataAsRaw, 
ReadBufferedDataAsRawDigTrigger, ReadBufferedDataAsVolts, ReadBufferedDataAsSensor, 
and ReadBufferedDataIntoOscilloscope to see how to perform a continuous (post-trigger) 
analog input operation.

Post-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D Sample 
Clock

Post-trigger data acquired 
continuously



Using the OpenLayers.DeviceCollection Namespace
Continuously Paced Analog Output Operations

Use continuously paced output mode if you want to accurately control the period between 
conversions of individual analog output channels in the channel list. 

To determine if the subsystem supports continuous analog output operations, use the 
AnalogOutputSubsystem.SupportsContinuous property. If this property returns a value of 
True, the subsystem supports continuously paced analog output operations.

Once you have an AnalogOutputSubsystem object, as described on page 280, set up the 
AnalogOutputSubsystem object for a continuous operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 308 for more information on 
data encoding.

4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. Set up the channel list, as described on page 310. The channel list must include at least one 
channel from the master device in the device collection.

Note: If you want to continuously update the digital output channels as part of the analog 
output stream, you must set up the channel list to include the digital output port. In 
addition, you must configure the digital output subsystem for a single-value operation 
using the OpenLayers.Base namespace before starting the analog output operation. Refer 
to page 229 for information on configuring the digital output subsystem.

6. (Optional) Set up the clock, as described on page 317.

7. (Optional) Use the AnalogOutputSubsystem.Trigger.TriggerType property to specify the 
trigger source that starts the operation. Refer to page 318 for more information on 
supported trigger sources.

8. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogOutputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
320 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogOutputSubsystem.Trigger.Level property. Refer to page 320 for more 
information.

9. Set the AnalogOutputSubsystem.WrapSingleBuffer property to False (the default value) 
to specify a buffer wrap mode of none. In this mode, the operation continues indefinitely 
as long as you process the buffers ad put them back on the queue in a timely manner. 
303



Chapter 4

304
10. Use software to fill the output buffer with the values that you want to write to the analog 
output channels and to the digital output port, if applicable. Refer to page 322 for more 
information on output buffers.

11. Configure the subsystem using the AnalogOutputSubsystem.Config method.

12. Call the AnalogOutputSubsystem.Start method to start the continuous analog output 
operation. 

When it detects the appropriate trigger, the device starts writing output values to the 
channels, as determined by the channel list. The operation repeats continuously until either all 
the data is output from the buffers or you stop the operation. The event BufferDoneEvent 
occurs as each OlBuffer object is completed. If no buffers are available on the queue, the 
operation stops, and the event QueueDoneEvent is raised. Refer to page 322 for more 
information about buffers.

Make sure that the host computer transfers data to the output channel list fast enough so that 
the list always has data to output; otherwise, the event DriverRunTimeErrorEvent is raised. 
Refer to page 341 for more information on this event.

If your device supports it, you can mute the output, which attenuates the output voltage to 
0 V by calling AnalogOutputSubsystem.Mute. This does not stop the analog output 
operation; instead, the analog output voltage is reduced to 0 V over a hardware-dependent 
number of samples. You can unmute the output voltage to its current level by calling 
AnalogOutputSubsystem.UnMute. To determine if muting and unmuting are supported by 
your device, read the value of the AnalogOutputSubsystem.SupportsMute property. If this 
value is True, muting and unmuting are supported.

To stop a continuous analog output operation, do not send new data to the device or use one 
of the following methods:

• AnalogOutputSubsystem.Stop – Stops the operation after all the data in the current 
buffer has been output. The driver raises a BufferDoneEvent event for the completed 
buffer and up to eight inprocess buffers, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 322 for more information on 
buffers.

• AnalogOutputSubsystem.Abort – Stops the operation immediately without waiting for 
the data in the current buffer to be output. The driver raises a BufferDoneEvent event for 
the partially completed buffer and up to eight inprocess buffers, before raising a 
QueueStoppedEvent event. All subsequent triggers are ignored.

• AnalogOutputSubsystem.Reset – Stops the operation immediately without waiting for 
the data in the current buffer to be output, and reinitializes the subsystem to the default 
configuration. 



Using the OpenLayers.DeviceCollection Namespace
Notes: If you set the AnalogOutputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to be 
output).

If you try to perform another operation while the stop is in progress, an exception is raised 
with the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".

Refer to the example program WriteBufferedDataAsVolts to see how to perform a 
continuously paced analog output operation.

Continuous Waveform Generation Operations

Use waveform generation mode if you want to output a waveform repetitively to analog 
output channels and, if supported, digital output ports, as specified in the ChannelList object.

To determine if the subsystem supports waveform generation operations, use the following 
properties:

• AnalogOutputSubsystem.SupportsContinuous property – If this property returns a 
value of True, continuous output operations are supported. This is a requirement for 
waveform generation operations.

• AnalogOutputSubsystem.SupportsWrapSingle property – If this property returns a 
value of True, the device driver will output data continuously from the first buffer queued 
to the analog output subsystem. This is a requirement for waveform generation 
operations. Refer to page 322 for more information on buffers.

• AnalogOutputSubsystem.SupportsWaveformModeOnly property – If this property 
returns a value of True, the device driver will output a waveform continuously from the 
onboard FIFO only. Set the AnalogOutputSubsystem.WrapSingleBuffer property to 
True. In addition, set the buffer size to be less than or equal to the FIFO size specified by 
the AnalogOutputSubsystem.FifoSize property. Refer to page 322 for more information 
on buffers.

Once you have an AnalogOutputSubsystem object, as described on page 280, set up the 
AnalogOutputSubsystem object for a continuous operation as follows:

1. Set the AnalogOutputSubsystem.DataFlow property to Continuous.

2. (Optional) Set the channel type of the subsystem to SingleEnded or Differential using the 
AnalogOutputSubsystem.ChannelType property. See page 308 for more information on 
channel types.

3. (Optional) Set the data encoding of the subsystem to Binary or TwosComplement using 
the AnalogOutputSubsystem.Encoding property. See page 308 for more information on 
data encoding.
305



Chapter 4

306
4. (Optional) Set the voltage range of the subsystem using the 
AnalogOutputSubsystem.VoltageRange property. See page 309 for more information on 
voltage ranges.

5. Set up the channel list, as described on page 310. The channel list must include at least one 
channel from the master device in the device collection.

Note: If you want to continuously update the digital output channels as part of the analog 
output stream, you must set up the channel list to include the digital output port. In 
addition, you must configure the digital output subsystem for a single-value operation 
using the OpenLayers.Base namespace before starting the analog output operation. Refer 
to page 229 for information on configuring the digital output subsystem.

6. (Optional) Set up the clock, as described on page 317.

7. (Optional) Use the AnalogOutputSubsystem.Trigger.TriggerType property to specify the 
trigger source that starts the operation. Refer to page 318 for more information on 
supported trigger sources.

8. If the trigger type is a threshold trigger, do the following:

a. Specify the channel to use for the threshold trigger using the 
AnalogOutputSubsystem.Trigger.ThresholdTriggerChannel property. Refer to page 
320 for more information.

b. Specify a voltage value for the threshold level using the 
AnalogOutputSubsystem.Trigger.Level property. Refer to page 320 for more 
information.

9. Set the AnalogOutputSubsystem.WrapSingleBuffer property to True, so that a single 
buffer is reused.

10. Use software to fill the output buffer with the values that you want to write to the analog 
output channels and to the digital output port, if applicable. Refer to your device 
documentation for details on the waveform pattern that you can specify and to page 322 
for more information on output buffers.

Note: For devices that have a FIFO onboard for waveform generation operations, the 
device driver downloads the buffer into the FIFO on the device if the size of the buffer is 
less than or equal to the FIFO size. The driver (or device) outputs the data starting from 
the first location in the FIFO. When it reaches the end of the FIFO, the driver (or device) 
continues outputting data from the first location of the FIFO and the process continues 
indefinitely until you stop it. 

You can determine the size of the FIFO on the device using the 
AnalogOutputSubsystem.FifoSize property. This property returns the actual FIFO size in 
kilobytes.

11. Configure the subsystem using the AnalogOutputSubsystem.Config method.

12. Call the AnalogOutputSubsystem.Start method to start the continuous analog output 
operation. 



Using the OpenLayers.DeviceCollection Namespace
When it detects a trigger, the host computer writes the pattern in the buffer to specified output 
channels, as determined by the channel list. 

If your device supports it, you can mute the output, which attenuates the output voltage to 
0 V by calling AnalogOutputSubsystem.Mute. This does not stop the analog output 
operation; instead, the analog output voltage is reduced to 0 V over a hardware-dependent 
number of samples. You can unmute the output voltage to its current level by calling 
AnalogOutputSubsystem.UnMute. To determine if muting and unmuting are supported by 
your device, read the value of the AnalogOutputSubsystem.SupportsMute property. If this 
value is True, muting and unmuting are supported.

To stop a continuous analog output operation, do not send new data to the device or use one 
of the following methods:

• AnalogOutputSubsystem.Stop – Stops the operation after all the data in the current 
buffer has been output. The driver raises a BufferDoneEvent event for the completed 
buffer and up to eight inprocess buffers, before raising a QueueStoppedEvent event. All 
subsequent triggers or retriggers are ignored. Refer to page 322 for more information on 
buffers.

• AnalogOutputSubsystem.Abort – Stops the operation immediately without waiting for 
the data in the current buffer to be output. The driver raises a BufferDoneEvent event for 
the partially completed buffer and up to eight inprocess buffers, before raising a 
QueueStoppedEvent event. All subsequent triggers are ignored.

• AnalogOutputSubsystem.Reset – Stops the operation immediately without waiting for 
the data in the current buffer to be output, and reinitializes the subsystem to the default 
configuration. 

Notes: If you set the AnalogOutputSubsystem.AsynchronousStop property to True, control 
returns to your program after Stop is called. If you set the AsynchronousStop property to 
False (the default setting) control does not return to your program after Stop is called until 
the buffer completes or 20 seconds elapses (if the buffer takes longer than 20 seconds to be 
output).

If you try to perform another operation while the stop is in progress, an exception is raised 
with the error code "SubsystemStopping" and the exception message "The subsystem is in the 
process of stopping or aborting".
307



Chapter 4

308
Setting the Channel Type

The DT-Open Layers for .NET Class Library supports the following channel types for a 
specified analog I/O subsystem:

• SingleEnded – Use this configuration when you want to measure high-level signals, noise 
is insignificant, the source of the input is close to the device, and all the input signals are 
referred to the same common ground.

To determine if the subsystem supports the single-ended channel type, use the 
SupportsSingleEnded property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports single-ended inputs.

To determine how many single-ended channels are supported by the subsystem, use the 
MaxSingleEndedChannels property of the appropriate subsystem.

• Differential – Use this configuration when you want to measure low-level signals (less 
than 1 V), you are using an A/D converter with high resolution (greater than 12 bits), 
noise is a significant part of the signal, or common-mode voltage exists.

To determine if the subsystem supports the differential channel type, use the 
SupportsDifferential property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports differential inputs.

To determine how many differential channels are supported by the subsystem, use the 
MaxDifferentialChannels property of the appropriate subsystem.

Set and/or return the channel type using the ChannelType property of the appropriate 
subsystem.

Note: For pseudo-differential analog inputs, specify the single-ended channel type; in this 
case, how you wire these signals determines the configuration. This option provides less 
noise rejection than the differential configuration, but twice as many analog input channels.

For older model devices, this setting is jumper-selectable and must be specified in the driver 
configuration dialog.

Setting the Data Encoding

Two data encoding types are available: binary and twos complement.

To determine if your subsystem supports binary data encoding, use the 
SupportsBinaryEncoding property of the appropriate subsystem. If this property returns a 
value of True, the subsystem supports binary data encoding.

To determine if your subsystem supports twos complement data encoding, use the 
SupportsTwosCompEncoding property of the appropriate subsystem. If this property returns 
a value of True, the subsystem supports twos complement data encoding.

Use the Encoding property of the appropriate subsystem to specify the data encoding type.



Using the OpenLayers.DeviceCollection Namespace
Setting the Voltage Range

To determine how many ranges the subsystem supports, use the NumberOfRanges property 
of the appropriate subsystem.

To determine all the available voltage ranges for your subsystem, use the 
SupportedVoltageRanges property of the appropriate subsystem. 

Some analog output subsystems support both voltage and current output channels. To 
determine if the subsystem supports current outputs, use the 
AnalogOutputSubsystem.SupportsCurrentOutput property. 

Use the VoltageRange property of the appropriate subsystem to set or return the voltage 
range for the subsystem. 

Note: If you are using a current output channel, determine how the voltage range maps to 
your current output range and write the appropriate voltage to the output channel.

The following example shows how to set the voltage range for an analog input subsystem to 
the first range in the list of supported voltage ranges:

Visual C#
ainSS.VoltageRange = ainSS.SupportedVoltageRanges[0];

Visual Basic
ainSS.VoltageRange = ainSS.SupportedVoltageRanges(0)

Setting the Excitation Voltage Source and Value

To determine if the analog input subsystem supports an internal excitation voltage source, use 
the AnalogInputSubsystem.SupportsInternalExcitationVoltageSrc property. To determine if 
the analog input subsystem supports an external excitation voltage source, use the 
AnalogInputSubsystem.SupportsExternalExcitationVoltageSrc property. 

You specify the excitation voltage source to use (Internal, External, or Disabled) for the 
subsystem using the AnalogInputSubsystem.ExcitationVoltageSource property. By default, 
the excitation voltage source is disabled.

If you set the excitation voltage source to Internal, you can also set the value of the excitation 
voltage source using the SupportedChannelInfo.ExcitationVoltageValue property. 

You can determine the minimum allowable value for the internal excitation voltage source 
using the AnalogInputSubsystem.MinExcitationVoltageValue property. Similarly, you can 
determine the maximum allowable value for the internal excitation voltage source using the 
AnalogInputSubsystem.MaxExcitationVoltageValue property. 
309



Chapter 4

310
Setting up the Channel List

Note: Single-value operations do not use a channel list.

If you want to acquire data from or update multiple channels, you need to use a continuous 
operation mode and specify the channels that you want to sample (and the order in which to 
sample them) in a ChannelList object. 

Channels are sampled or updated in order from the first entry to the last entry in the 
ChannelList object. Channel numbering is zero-based; that is, the first entry in the ChannelList 
is at index 0, the second entry is at index 1, and so on.

The ChannelList property is accessible using any subsystem class whose 
SupportsContinuous property is True. Typically, a ChannelList is used with the 
AnalogInputSubsystem and AnalogOutputSubsystem classes. 

For an analog input subsystem, you can specify analog input channels, as well as digital 
inputs, counter/timers, and/or quadrature decoders in the ChannelList object, if your device 
supports it. Similarly, for an analog output subsystem, you can specify analog output channels 
as well as digital outputs in the ChannelList object, if your device supports it. Refer to page 
282 for more information on available channels. 

Note: For a device collection, the channel list must include at least one channel from the 
master device in the device collection.

You can add sequential channels (such as channels 0, 1, 2, 3) or random channels (such as 
channels 2, 9, 7) to the ChannelList object, and can specify a channel more than once in the list 
(such as channels 1, 2, 1), if your device supports it.

Other devices may limit the order in which you can enter a channel in the channel list. See the 
user’s manual for your device to determine any channel ordering limitations.

The following example shows a ChannelList that contains four channels. Channel 1 is 
sampled first, followed by channel 2, channel 1 again, and then channel 0:

Table 76: Example of a ChannelList Object

Channel-List Index Channel Description

0 1 Sample channel 1.

1 2 Sample channel 2.

2 1 Sample channel 1 again.

3 0 Sample channel 0.



Using the OpenLayers.DeviceCollection Namespace
Adding Channels to a Channel List

The ChannelList.Add method adds a channel to the end of the ChannelList object, and 
returns the index of the added channel. You can specify the channel to add in one of the 
following ways:

• By physical channel number

• By channel name

• By ChannelListEntry object

The following sections describe these methods.

Adding Channels By Physical Channel Number 

This method is the simplest way to add channels into the ChannelList object, particularly if 
you are adding channels that are native to the subsystem type (such as analog input channels 
on an analog input subsystem).

For native channels, the physical channel number always equals the logical channel number. 
While non-native channels, such as digital inputs that are streamed through the analog input 
subsystem, can also be added this way, the physical channel number is not the same as the 
logical channel number, so you may find it easier to add the channel by name or by 
ChannelListEntry object instead.

A new ChannelListEntry object is returned for each physical channel that is added this way. 
Refer to page 314 for more information on ChannelListEntry objects.

The following example shows how to use the Add method to add physical channel 0 to the 
end of a ChannelList for an analog input subsystem:

Visual C#
ch = AinSS.ChannelList.Add(0);

Visual Basic
ch = AinSS.ChannelList.Add(0)

Adding Channels By Channel Name

The channel name is the name that you assigned to the channel using the 
SupportedChannelInfo class, described on page 282. A new ChannelListEntry object is 
returned for each channel that is added this way. Refer to page 314 for more information on 
ChannelListEntry objects.

The following example shows how to use the Add method to add a channel named Sensor to 
the end of a ChannelList for an analog input subsystem:
311



Chapter 4

312
Visual C#
//Specify the name Sensor for the first
//analog input channel.
ainSS.SupportedChannels[0].Name = "Sensor";
//Add the channel named Sensor to the ChannelList
ch = ainSS.ChannelList.Add("Sensor");

Visual Basic
'Specify the name Sensor for the first
'analog input channel.
ainSS.SupportedChannels(0).Name = "Sensor"
ch = AinSS.ChannelList.Add("Sensor")

Adding Channels By ChannelListEntry Object

This method is useful if you want a more generic approach to adding channels. This approach 
frees you from keeping track of physical channel numbers and their names.

To get a ChannelListEntry object, use the ChannelListEntry constructor within the 
ChannelListEntry class, specifying the SupportedChannelInfo object for the channel that you 
want to sample or update. See page 282 for more information on SupportedChannelInfo 
objects.

This example creates a ChannelListEntry called Ch0 for physical channel 0 of the analog input 
subsystem, using all the information contained in SupportedChannelInfo for that channel.

Visual C#
ChannelListEntry Ch0 = new ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 0 ));

Visual Basic
Dim Ch0 As New ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 0 ))

Note: It is recommended that you set the gain (see page 315) and inhibition value (page 316) 
for each ChannelListEntry object after you create it. However, it is possible to set or change 
these values after the ChannelListEntry object is added to the ChannelList.

The following example shows how to use the Add method to add ChannelListEntry object 
Ch0 to the end of a ChannelList:

Visual C#
AinSS.ChannelList.Add(Ch0);

Visual Basic
AinSS.ChannelList.Add(Ch0)



Using the OpenLayers.DeviceCollection Namespace
Inserting Channels in the Channel List

The ChannelList.Insert method inserts a channel at the specified index of a ChannelList 
object, incrementing all higher index entries by 1, and returns the index of the added channel. 
You can specify the channel to insert in one of the following ways:

• By physical channel number

• By channel name

• By ChannelListEntry object

The following sections describe these methods.

Inserting a Channel By Physical Channel Number

This method is the simplest way to insert channels into the ChannelList object, particularly if 
you are inserting channels that are native to the subsystem type (such as analog input 
channels on an analog input subsystem). 

For native channels, the physical channel number always equals the logical channel number. 
While non-native channels, such as digital inputs that are streamed through the analog input 
subsystem, can also be inserted this way, the physical channel number is not the same as the 
logical channel number, so you may find it easier to insert the channel by name or by 
ChannelListEntry object instead.

A new ChannelListEntry object is returned for each physical channel that is inserted this way. 
Refer to page 314 for more information on ChannelListEntry objects.

The following example shows how to use the Insert method to insert physical channel 3 at 
index 0 of the ChannelList for an analog input subsystem. The channel that was formally at 
index 0 is now at index 1.

Visual C#
ch = AinSS.ChannelList.Insert(0, 3);

Visual Basic
ch = AinSS.ChannelList.Insert(0, 3)

Inserting a Channel By Channel Name

The channel name is the name that you assigned to the channel using the 
SupportedChannelInfo class, described on page 282. A new ChannelListEntry object is 
returned for each channel that is inserted this way. Refer to page 314 for more information on 
ChannelListEntry objects.

The following example shows how to use the Insert method to insert a channel named Ain3 at 
index 0 of the ChannelList for an analog input subsystem. The channel that was formally at 
index 0 is now at index 1.

Visual C#
ch = AinSS.ChannelList.Insert(0, "Ain3");
313



Chapter 4

314
Visual Basic
ch = AinSS.ChannelList.Insert(0, "Ain3")

Inserting a Channel By ChannelListEntry Object

This method is useful if you want a more generic approach to inserting channels. This 
approach frees you from keeping track of physical channel numbers and their names.

To get a ChannelListEntry object, use the ChannelListEntry constructor within the 
ChannelListEntry class, specifying the SupportedChannelInfo object for each channel that you 
want to sample or update. See page 282 for more information on SupportedChannelInfo 
objects.

This example creates a ChannelListEntry called Ch3 for physical channel 3 of the analog input 
subsystem, using all the information contained in SupportedChannelInfo for that channel.

Visual C#
ChannelListEntry Ch3 = new ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 3 ));

Visual Basic
Dim Ch3 As New ChannelListEntry (

ainSS.SupportedChannels.GetChannelInfo
(SubsystemType.AnalogInput, 3 ))

Note: It is recommended that you set the gain (see page 315) and inhibition value (page 316) 
for each ChannelListEntry object after you create it. However, it is possible to set or change 
these values after the ChannelListEntry object is added to the ChannelList.

The following example shows how to use the Insert method to insert ChannelListEntry object 
Ch3 at index 0 of the ChannelList. The channel that was formally at index 0 is now at index 1.

Visual C#
AinSS.ChannelList.Insert(0, Ch3);

Visual Basic
AinSS.ChannelList.Insert(0, Ch3)

Replacing Channels in the ChannelList

The ChannelList.Item ([]) property replaces a ChannelListEntry object at the specified index of 
the ChannelList. An exception is raised if an entry does not exist at the specified index.

The following example shows how to use the Item ([]) property to replace the 
ChannelListEntry object at index 1 of the ChannelList with ChannelListEntry object Ch3:

Visual C#
AinSS.ChannelList[1] = Ch3;



Using the OpenLayers.DeviceCollection Namespace
Visual Basic
AinSS.ChannelList(1) = Ch3

Removing Channels from the Channel List

To remove a ChannelListEntry from the ChannelList object, use the ChannelList.Remove 
method. This method removes the first instance of the specified ChannelListEntry object from 
the ChannelList object, decrementing all higher index entries by 1. 

The following example shows how to remove the first instance of ChannelListEntry object 
Ch0 from the ChannelList object using the Remove method:

Visual C#
AinSS.ChannelList.Remove(Ch0);

Visual Basic
AinSS.ChannelList.Remove(Ch0)

Setting the Gain of a ChannelListEntry

The voltage range divided by the gain determines the effective range for a channel. For 
example, if your device provides a voltage range of ±10 V and you want to measure a ±1.5 V 
signal, specify a range of ±10 V and a gain of 4; the effective input range for this channel is 
then ±2.5 V (±10/4), which provides the best sampling accuracy for that channel.

To determine if the subsystem supports programmable gain, use the 
SupportsProgrammableGain property of the appropriate subsystem. If this property returns 
a value of True, programmable gain is supported.

To determine the number of gains the subsystem supports, use the 
NumberofSupportedGains property of the appropriate subsystem. To list all of the gain 
values supported by the subsystem, use the SupportedGains property.

The simplest way to specify the gain for a channel is by using a single-value operation. (In this 
case, a ChannelListEntry object is not used.) Refer to page 292 for more information on 
single-value analog input operations; refer to page 293 for more information on single-value 
analog output operations.

If you are using a ChannelListEntry object, specify or return the gain for each 
ChannelListEntry object using the ChannelListEntry.Gain property.

This example shows how to apply a gain of 2 to a ChannelListEntry called Ch0.

Visual C#
Ch0.Gain = 2;

Visual Basic
Ch0.Gain = 2
315



Chapter 4

316
You can also apply gain to a ChannelListEntry in the ChannelList, as shown below; this 
example applies a gain of 2 to the ChannelListEntry at index 0 of the ChannelList:

Visual C#
AinSS.ChannelList[0].Gain = 2;

Visual Basic
AinSS.ChannelList(0).Gain = 2

Note: The driver sets the actual gain as closely as possible to the number specified. You can 
read back the exact gain after configuring the subsystem using the Gain property. If your 
subsystem does not support programmable gain, enter a value of 1 (the default value) for the 
gain.

Inhibiting Channels in a Channel List

If supported by your subsystem, you can inhibit data from being returned by the 
ChannelListEntry object. This feature is useful if you want to discard values that are acquired 
by specific channels. 

To determine if a subsystem supports inhibition, use the SupportsChannelListInhibit 
property inherited from the SubsystemBase class. If this property returns a value of True, the 
subsystem supports channel inhibition.

Using the Inhibit property of the ChannelListEntry class, you can enable or disable inhibition 
for each ChannelListEntry object. If you set this property to True, the acquired value is 
discarded after the channel entry is sampled. If you set this property to False (the default 
value), the acquired value is stored after the channel entry is sampled. 

This example shows how to set the channel inhibit value of the ChannelListEntry called Ch0 
to True:

Visual C#
Ch0.Inhibit = 1;

Visual Basic
Ch0.Inhibit = 1

You can also set the inhibit value of a ChannelListEntry in the ChannelList, as shown below; 
this example sets the inhibit value to True for the ChannelListEntry at index 3 of the 
ChannelList:

Visual C#
AinSS.ChannelList[3].Inhibit = 1; 

Visual Basic
AinSS.ChannelList(3).Inhibit = 1



Using the OpenLayers.DeviceCollection Namespace
Getting Information about Channels in the ChannelList Object

You can get information about the contents of a ChannelList object using the following 
methods:

• ChannelList.Contains method – Determines whether a specified ChannelListEntry object 
is contained in the ChannelList.

• ChannelList.IndexOf method – Searches for a specified channel (specified by physical 
channel or ChannelListEntry object) in the ChannelList and returns the zero-based index 
of the first occurrence within the ChannelList.

• ChannelList.CGLDepth property – Returns the maximum number of channels or 
ChannelListEntry objects that the ChannelList can contain.

Setting up a Clock Source

The OpenLayers.DeviceCollection namespace defines internal and external clock sources, 
described in the following subsections. Note that single-value operations do not use clocks.

Note: Some subsystems allow you to read or update multiple channels on a single clock 
pulse. You can determine whether multiple channels are read or updated on a single clock 
pulse by using the Clock.SupportsSimultaneousClocking property.

Internal Clock Source

The internal clock is the clock source on the device that paces data acquisition or output for 
each ChannelListEntry object in the channel list.

To determine if the subsystem supports an internal clock, use the 
Clock.SupportsInternalClock property. If this property returns a value of True, an internal 
clock is supported.

To determine the maximum frequency supported by the internal clock, use the 
Clock.MaxFrequency property. To determine the minimum frequency supported by the 
internal clock, use the Clock.MinFrequency property.

Specify the clock source as internal using the Clock.Source property. Then, use the 
Clock.Frequency property to specify the frequency at which to pace the operation.
317



Chapter 4

318
Note: According to sampling theory (Nyquist Theorem), you should specify a frequency for 
an A/D signal that is at least twice as fast as the input’s highest frequency component. For 
example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 
40 kHz. Doing so avoids an error condition called aliasing, in which high frequency input 
components erroneously appear as lower frequencies after sampling.

The driver sets the frequency of the internal clock as close as possible to the value that you 
specified in the Frequency property. You can determine the actual frequency that was set on 
the hardware by reading the value of the Frequency property after the subsystem has been 
configured (using the Config method).

External Clock Source

The external clock is a clock source attached to the device that paces data acquisition or output 
for each channel in the channel list. This clock source is useful when you want to pace at rates 
not available with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the 
Clock.SupportsExternalClock property. If this property returns a value of True, an external 
clock is supported.

To determine the maximum external clock divider that the subsystem supports, use the 
Clock.MaxExtClockDivider property. To determine the minimum external clock divider that 
the subsystem supports, use the Clock.MinExtClockDivider property.

Specify the clock source as external using the Clock.Source property. Then, use the 
Clock.ExtClockDivider property to set or get the clock divider that is used to determine the 
frequency of the external clock source. The frequency of the external clock input divided by 
the external clock divider determines the frequency at which to pace the operation.

Setting Up a Trigger Type

Note: Single-value operations do not use triggers.

The OpenLayers.DeviceCollection namespace provides the Trigger class that can be used to 
set up a start trigger, and the ReferenceTrigger class that can be used to set up a reference 
trigger, if supported by your device. The following trigger types are available for the start and 
reference triggers:

• Software

• TTLPos

• TTLNeg 

• ThresholdPos



Using the OpenLayers.DeviceCollection Namespace
• ThresholdNeg

• DigitalEvent

For devices that support a start trigger and reference trigger for performing continuous 
pre-and post-trigger analog input operations, specify the start trigger type using the 
AnalogInputSubsystem.Trigger.TriggerType property and specify the reference trigger type 
using the AnalogInputSubsystem.ReferenceTrigger.TriggerType property; refer to page 298 
for more information on pre- and post-trigger operations using a start and reference trigger.

For devices that support continuous post-trigger operations without using a reference trigger, 
specify the post-trigger source using the AnalogInputSubsystem.Trigger.TriggerType 
property; refer to page 300 for more information on post-trigger operations.

The following subsections describe these trigger sources. Note that you cannot specify a 
trigger source for single-value operations.

Software Trigger Source

A software trigger occurs when you start the operation; internally, the computer writes to the 
device to begin the operation.

To determine if the subsystem supports a software trigger for the start trigger, use the 
Trigger.SupportsSoftwareTrigger property. If this property returns a value of True, a software 
trigger is supported.

To determine if the subsystem supports a software trigger for the reference trigger, use the 
ReferenceTrigger.SupportsSoftwareTrigger property. If this property returns a value of True, 
a software trigger is supported.

TTLPos Trigger Source

The TTLPos trigger source is an external digital (TTL) signal attached to the device. The 
trigger occurs when the device detects a transition on the rising edge of the digital TTL signal.

To determine if the subsystem supports a TTLPos trigger for a start trigger, use the 
Trigger.SupportsPosExternalTTLTrigger property. If this property returns a value of True, a 
TTLPos trigger is supported.

To determine if the subsystem supports a TTLPos trigger for a reference trigger, use the 
ReferenceTrigger.SupportsPosExternalTTLTrigger property. If this property returns a value 
of True, a TTLPos trigger is supported.

To determine if the subsystem supports a TTLPos trigger for a single-value operation, use the 
Trigger.SupportsSvPosExternalTTLTrigger property. If this property returns a value of True, 
a TTLPos trigger is supported.
319



Chapter 4

320
TTLNeg Trigger Source

The TTLNeg trigger source is an external digital (TTL) signal attached to the device. The 
trigger occurs when the device detects a transition on the falling edge of the digital TTL signal.

To determine if the subsystem supports a TTLNeg trigger for a start trigger, use the 
Trigger.SupportsNegExternalTTLTrigger property. If this property returns a value of True, a 
TTLNeg trigger is supported.

To determine if the subsystem supports a TTLNeg trigger for a reference trigger, use the 
ReferenceTrigger.SupportsNegExternalTTLTrigger property. If this property returns a value 
of True, a TTLNeg trigger is supported.

To determine if the subsystem supports a TTLNeg trigger for a single-value operation, use the 
Trigger.SupportsSvNegExternalTTLTrigger property. If this property returns a value of True, 
a TTLNeg trigger is supported.

ThresholdPos Trigger Source

A threshold trigger is generally either an analog signal from an analog input channel or an 
external analog signal attached to the device. A positive analog threshold (ThresholdPos) 
trigger occurs when the device detects a positive-going signal that crosses a threshold value. 

To determine if the subsystem supports a ThresholdPos trigger for the start trigger, use the 
Trigger.SupportsPosThresholdTrigger property. If this property returns a value of True, a 
ThresholdPos trigger is supported.

To determine if the subsystem supports a ThresholdPos trigger for the reference trigger, use 
the ReferenceTrigger.SupportsPosThresholdTrigger property. If this property returns a value 
of True, a ThresholdPos trigger is supported.

To determine which channels support a threshold trigger for the start trigger, use the 
Trigger.SupportedThresholdTriggerChannels property. To set the channel that you want to 
use for the threshold start trigger, use the Trigger.ThresholdTriggerChannel property. 

To determine which channels support a threshold trigger for the reference trigger, use the 
ReferenceTrigger.SupportedThresholdTriggerChannels property. To set the channel that you 
want to use for the threshold reference trigger, use the 
ReferenceTrigger.ThresholdTriggerChannel property. 

On some devices, the threshold level is set using an analog output subsystem on the device. 
On other devices, you set the threshold level using the Trigger.Level property (for the start 
trigger) or ReferenceTrigger.Level property (for the reference trigger). By default, the trigger 
threshold value is in voltage unless specified otherwise for the device; see the user’s manual 
for your device for valid threshold value settings.



Using the OpenLayers.DeviceCollection Namespace
Note: The threshold level set by the Trigger.Level or ReferenceTrigger.Level property 
depends on the voltage range and gain of the subsystem. For example, if the voltage range of 
the analog input subsystem is ±10 V, and the specified gain is 1, specify a threshold voltage 
level within ±10 V. Likewise, if the voltage range of the analog input subsystem is ±10 V, and 
the specified gain is 10, specify a threshold voltage level within ±1 V. Refer to your device 
documentation for details on how to specify the threshold value for your device.

ThresholdNeg Trigger Source

A threshold trigger is generally either an analog signal from an analog input channel or an 
external analog signal attached to the device. A negative analog threshold trigger 
(ThresholdNeg) occurs when the device detects a negative-going signal that crosses a 
threshold value. 

To determine if the subsystem supports a ThresholdNeg trigger for the start trigger, use the 
Trigger.SupportsNegThresholdTrigger property. If this property returns a value of True, a 
ThresholdNeg trigger is supported.

To determine if the subsystem supports a ThresholdNeg trigger for the reference trigger, use 
the ReferenceTrigger.SupportsNegThresholdTrigger property. If this property returns a 
value of True, a ThresholdNeg trigger is supported.

To determine which channels support a threshold trigger for the start trigger, use the 
Trigger.SupportedThresholdTriggerChannels property. To set the channel that you want to 
use for the threshold start trigger, use the Trigger.ThresholdTriggerChannel property. 

To determine which channels support a threshold trigger for the reference trigger, use the 
ReferenceTrigger.SupportedThresholdTriggerChannels property. To set the channel that you 
want to use for the threshold reference trigger, use the 
ReferenceTrigger.ThresholdTriggerChannel property. 

On some devices, the threshold level is set using an analog output subsystem on the device. 
On other devices, you set the threshold level using the Trigger.Level property (for the start 
trigger) or the ReferenceTrigger.Level property (for the reference trigger). By default, the 
trigger threshold value is in voltage unless specified otherwise for the device; see the user’s 
manual for your device for valid threshold value settings.

Note: The threshold level set by the Trigger.Level or ReferenceTrigger.Level property 
depends on the voltage range and gain of the subsystem. For example, if the voltage range of 
the analog input subsystem is ±10 V, and the specified gain is 1, specify a threshold voltage 
level within ±10 V. Likewise, if the voltage range of the analog input subsystem is ±10 V, and 
the specified gain is 10, specify a threshold voltage level within ±1 V. Refer to your device 
documentation for details on how to specify the threshold value for your device.
321



Chapter 4

322
DigitalEvent Trigger Source

For a DigitalEvent trigger source, a trigger is generated when an external digital event occurs. 

To determine if the subsystem supports a DigitalEvent trigger for the start trigger, use the 
Trigger.SupportsDigitalEventTrigger property. If this property returns a value of True, a 
DigitalEvent trigger is supported.

To determine if the subsystem supports a DigitalEvent trigger for the reference trigger, use the 
ReferenceTrigger.SupportsDigitalEventTrigger property. If this property returns a value of 
True, a DigitalEvent trigger is supported.

Setting up a Post-Trigger Scan Count

On devices that support a reference trigger for performing continuous pre- and post-trigger 
analog input operations, you can specify how many samples to acquire after the reference 
trigger occurs using the AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount 
property.

To determine if your device supports the ability to specify the number of post-trigger samples 
to acquire, use the AnalogInputSubsystem.ReferenceTrigger.
SupportsPostTriggerScanCount property.

Setting up Buffers

Note: Single-value operations do not use buffers.

Continuous analog input and analog output operations require buffers in which to store data. 
For input operations, a queue exists to hold the buffers that are empty and ready for input. For 
output operations, the queue holds buffers that you have filled with data and are ready for 
output.

To determine if the subsystem supports buffering, use the SupportsBuffering property within 
the appropriate subsystem class. If this property returns a value of True, buffering is 
supported.

If you want to acquire one buffer of data from one channel using a continuous analog input 
operation, use the AnalogInputSubsystem.GetOneBuffer method; this method allocates an 
OlBuffer object of the size you specify and acquires one buffer of data for you.

For all other operations, use the OlBuffer constructor within the OlBuffer class to create an 
OlBuffer object for use with an analog input or analog output subsystem. The library 
automatically allocates an internal data buffer, which is encapsulated by the OlBuffer object. 
You specify the subsystem with which to associate the OlBuffer object as well the size (in 
samples) of the internal buffer to allocate.



Using the OpenLayers.DeviceCollection Namespace
If desired, you can use the OlBuffer.Tag property, if desired, to name the buffer with the 
contents that are contained in the buffer.

Note: If you set the size of the internal buffer that is encapsulated by an OlBuffer object and 
later you want to change the size, call the OlBuffer.Reallocate method. This method 
reallocates the internal buffer to the specified number of samples; the initial internal buffer is 
deallocated and any data that it contained is lost. 

The AnalogInputSubsystem.GetOneBuffer method uses one buffer. Other continuous 
analog input operations require a minimum of two OlBuffer objects. Continuous analog 
output operations require a minimum of two OlBuffer objects if WrapSingleBuffer is False; if 
WrapSingleBuffer is True, one OlBuffer object is required. 

Once you have created the OlBuffer objects for multiple buffer operations (and, for output 
operations, filled the corresponding internal buffers with data), put the OlBuffer objects on the 
queue using the BufferQueue.QueueBuffer method of the appropriate subsystem.

The following example shows how to create multiple OlBuffer objects for a continuous analog 
input operation and put them on the queue for the analog input subsystem. In this example, 
an internal buffer of 1024 samples is allocated when the OlBuffer object is created:

Visual C#
// Create the buffers
for (int i=0; i<4; ++i)
{

AinBuffer[i] = new OlBuffer (1024, ainSS);
// Put the buffers on the queue
ainSS.BufferQueue.QueueBuffer (AinBuffer[i]);

}

Visual Basic
While i < 4

' Create the buffers
AinBuffers(i) = New OlBuffer(1024, ainSS)
' Put the buffers on the queue
ainSS.BufferQueue.QueueBuffer(AinBuffers(i))
i += 1

End While

When you start a continuous operation, the device takes up to eight OlBuffer objects from the 
subsystem queue and begins filling them (for input operations) or outputting data from them 
(for output operations) at the specified clock rate. The state of these objects changes from 
queued to inprocess. 
323



Chapter 4

324
About QueuedCount and InProcessCount

You can determine the number of OlBuffer objects that are on the subsystem queue by using 
the BufferQueue.QueuedCount property. You can determine the number of OlBuffer objects 
that are inprocess by using the BufferQueue.InProcessCount property.

Every time an OlBuffer object transitions from the queued state to the inprocess state, the 
value of the QueuedCount property decreases by 1 and the value of the InProcessCount 
property increases by 1. For example, assume that you call QueueBuffer for 10 OlBuffer 
objects; the QueuedCount is 10 and the InProcessCount is 0. Once you call Start for the 
subsystem, up to 8 OlBuffer objects are moved from the queued state to the inprocess state. 
QueuedCount is now 2 and InProcessCount is 8. 

If you do not put the OlBuffer objects back on the queue as they are completed, the 
QueuedCount decreases while the InProcessCount remains the same (as a new inprocess 
buffer replaces a completed buffer) until the QueuedCount gets to 0, then the InProcessCount 
starts decreasing until all the OlBuffer objects are completed, as shown below: 

Table 77: InProcessCount Example 

Completed Buffers QueueCount InProcessCount

0 10 0

0 2 8

1 1 8

2 0 8

3 0 7

4 0 6

5 0 5

6 0 4

7 0 3

8 0 2

9 0 1

10 0 0



Using the OpenLayers.DeviceCollection Namespace
Buffer Completion Events

Note: Buffer completion events are not generated if you use the 
AnalogInputSubsystem.GetOneBuffer method. This is a synchronous method that does not 
return until the buffer has been acquired or the timeout value has expired. 

One or more of the following events is generated when a buffer is completed:

• BufferDoneEvent – For input operations, this event is generated when the internal buffer 
of the OlBuffer object has been filled with post-trigger data. For output operations, this 
event is generated when all the data in the internal buffer of the OlBuffer object has been 
output. Refer to page 334 for more information on this event.

• PreTriggerBufferDoneEvent – For input operations only, this event is generated when the 
internal buffer of the OlBuffer object has been filled with pre-trigger data. Refer to page 
336 for more information on this event.

• QueueStoppedEvent – This event occurs when you stop a continuous analog I/O 
operation with Stop or Abort. Refer to page 337 for more information on this event.

• IOCompleteEvent – For analog input operations that use a reference trigger whose 
trigger type is something other than software (none), this event occurs when the last 
post-trigger sample is copied into the user buffer; devices that do not support a reference 
trigger will never receive this event for analog input operations.

For analog output operations, this event is generated when the last data point has been 
output from the analog output channel. Refer to page 338 for more information on this 
event.

• QueueDoneEvent – This event is generated when no OlBuffer objects are available on the 
queue and the operation stops. Refer to page 340 for more information on this event.

Handling Input Buffers

Each time a BufferDoneEvent or PreTriggerBufferDoneEvent event is raised, your application 
program must handle the event or you will lose the data in the internal buffer of the OlBuffer 
object. Refer to page 332 for more information about handling events and buffers.

You can post-process OlBuffer objects, if you wish. One technique for doing this is to allocate 
an array that will hold the OlBuffer objects as they are completed. When the BufferDoneEvent 
or PreTriggerBufferDoneEvent event occurs, move the OlBuffer object into a array. When the 
operation is complete, process the OlBuffer objects in your array.

For continuous analog input operations, use one of the following methods to copy the data 
from the internal buffer of an OlBuffer object into a user-declared array/variable (the data 
type of this array/variable is dictated by the method/property you choose):

Note: For ease of use, all of these methods allocate the returned array to the correct size. 
Simply declare an array of the appropriate type for use with one these methods.
325



Chapter 4

326
• OlBuffer.GetDataAsRawByte – Copies the data, as raw counts, from the internal buffer 
of the OlBuffer object into a user-declared array of bytes. You can copy all the data from 
the buffer or only the data for a specific ChannelListEntry in the buffer. Note that if the 
ChannelListEntry occurs more than once in the buffer, the data for each occurrence of the 
ChannelListEntry is copied.

To use this method, first declare an array of bytes.

Note: This method is useful when writing binary data to a file. Since each sample takes 
more than one array entry, other uses may be limited.

• OlBuffer.GetDataAsRawInt16 – Used when the resolution of the subsystem is 16 bits or 
less and when the data encoding is twos complement, copies the data, as raw counts, from 
the internal buffer of the OlBuffer object into a user-declared array of signed, 16-bit 
integers (short). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of signed, 16-bit integers (short).

• OlBuffer.GetDataAsRawUInt16 – Used when the resolution of the subsystem is 16 bits or 
less and when the data encoding is binary, copies the data, as raw counts, from the 
internal buffer of the OlBuffer object into a user-declared array of unsigned, 16-bit integers 
(ushort). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of unsigned, 16-bit integers (ushort).

• OlBuffer.GetDataAsRawUInt32 – Used when the resolution of the subsystem is greater 
than 16 bits, copies the data, as raw counts, from the internal buffer of the OlBuffer object 
into a user-declared array of unsigned 32-bit integers (uint). You can copy all the data 
from the buffer or only the data for a specific ChannelListEntry in the buffer. Note that if 
the ChannelListEntry occurs more than once in the buffer, the data for each occurrence of 
the ChannelListEntry is copied.

To use this method, first declare an array of unsigned, 32-bit integers (uint).

• OlBuffer.GetDataAsSensor – Converts the data from the internal buffer of the OlBuffer 
object into sensor values using the specified sensor gain and offset (described on page 
289), and copies this data into a user-declared array of 64-bit floating-point values 
(double). You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.GetDataAsVolts – Converts the data from the internal buffer of the OlBuffer 
object into voltages, and copies this data into a user-declared array of 64-bit floating-point 
(double) values. You can copy all the data from the buffer or only the data for a specific 
ChannelListEntry in the buffer. Note that if the ChannelListEntry occurs more than once 
in the buffer, the data for each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.



Using the OpenLayers.DeviceCollection Namespace
• OlBuffer.GetDataAsVoltsByte – For a specified ChannelListEntry, converts the data from 
the internal buffer of an OlBuffer object into voltage values, and then copies these voltage 
values into a user-declared array of bytes. Each temperature value is stored as an Int32, 
and takes 4 bytes. 

To use this method, first declare an array of bytes.

• OlBuffer.GetDataAsRpm – For a specified ChannelListEntry, converts the tachometer 
data from the internal buffer of an OlBuffer object into RPM (rotations per minute) values, 
and then copies these values into a user-declared array of 64-bit floating-point (double) 
values. Note that if the ChannelListEntry occurs more than once in the buffer, the data for 
each occurrence of the ChannelListEntry is copied.

To use this method, first declare an array of 64-bit floating-point (double) values.

• OlBuffer.Item property ([]) – Copies the raw count value at the specified index of the 
buffer specified by the OlBuffer object into a user-declared signed, 32-bit integer variable 
(int).

When you have finished copying the data from the internal buffer of the OlBuffer object, you 
can put the OlBuffer object back on the queue for the analog input subsystem using the 
AnalogInputSubsystem.BufferQueue.QueueBuffer method.

See the example for the event BufferDoneEvent starting on page 334 for an example of using 
the GetDataAsSensor method to handle input buffers.

Handling Output Buffers

For continuous analog output operations, you need to create an array and fill it with data, 
then copy this data from the array to the internal buffer of the OlBuffer object using one of the 
following methods:

• OlBuffer.PutDataAsRaw – Copies raw counts from a user-specified array into the 
internal buffer of the OlBuffer object. This is an overloaded method that allows you to 
copy all the data from the array into the buffer or only the data for a specific 
ChannelListEntry in the array into the buffer. Note that if the ChannelListEntry occurs 
more than once in the array, the data for each occurrence of the ChannelListEntry is 
copied.

If your subsystem supports a resolution of 16-bits or less, declare an array of unsigned, 
16-bit integers (ushort) for use with this method.

If your subsystem supports a resolution greater than 16 bits, declare an array of unsigned, 
32-bit integers (uint) for use with this method.

• OlBuffer.PutDataAsVolts – Copies voltages from a user-specified array into the internal 
buffer of the OlBuffer object. This is an overloaded method that allows you to copy all the 
data from the array into the buffer or only the data for a specific ChannelListEntry in the 
array into the buffer. Note that if the ChannelListEntry occurs more than once in the array, 
the data for each occurrence of the ChannelListEntry is copied.

Declare an array of 64-bit floating-point values (double) for use with this method.

When you have finished copying the data into the internal buffer of the OlBuffer object, put 
the OlBuffer object back on the queue for the analog output subsystem using the 
AnalogOutputSubsystem.BufferQueue.QueueBuffer method. 
327



Chapter 4

328
The following example shows how to create an OlBuffer object, fill the internal buffer of this 
OlBuffer object with 100 samples, and put the OlBuffer object on the analog output subsystem 
queue:

Visual C#
// Allocate a buffer of 100 samples
DacBuffer = new OlBuffer (100, aoutSS);
//Create an array of data
for (int i = 0; i < 100; i++)

{
data[i] = i;

}
// Copy the raw data to the buffer
DacBuffer.PutDataAsRaw (data);
// Queue the buffer for output
aoutSS.BufferQueue.QueueBuffer (DacBuffer);

Visual Basic
' Allocate a buffer of 100 samples
DacBuffer = New OlBuffer(100, aoutSS)
' Create an array of data
Dim i As Integer

For i = 0 To 99
data(i) = i

Next i
' Copy the raw data to the buffer
DacBuffer.PutDataAsRaw(data)
' Queue the buffer for output
aoutSS.BufferQueue.QueueBuffer(DacBuffer)

Getting Information about a Buffer

The DT-Open Layers for .NET Class Library provides the following additional properties for 
getting information about buffers:

• OlBuffer.BufferSizeInBytes – Returns the size, in bytes, of the internal data buffer that is 
encapsulated by the OlBuffer object.

• OlBuffer.BufferSizeInSamples – Returns the size, in samples, of the internal data buffer 
that is encapsulated by the OlBuffer object.

• OlBuffer.ChannelListOffset – Returns the index into the ChannelList that corresponds to 
the first sample in the internal buffer of the OlBuffer object.

• OlBuffer.Encoding – Returns the data encoding for the raw data (binary or twos 
complement) in the internal buffer of the OlBuffer object.

• OlBuffer.RawDataFormat – Returns the format of the raw data (Int16, Uint16, Int32, Float 
(32-bit float), or Double (64-bit float)) in the internal buffer of the OlBuffer object.

• OlBuffer.Resolution – Returns the resolution of the subsystem that is associated with the 
OlBuffer object.

• OlBuffer.SampleSizeInBytes – Returns the size of a sample, in bytes. Typically, each 
sample requires 2 bytes.



Using the OpenLayers.DeviceCollection Namespace
• OlBuffer.State property – Returns the state of the OlBuffer object. Valid states are as 
follows:

− Idle – The OlBuffer object has been created, but has not been queued to a subsystem.

− Queued – The OlBuffer object has been queued to a subsystem with 
OlBuffer.QueueBuffer.

− InProcess – The OlBuffer object has been sent to the device driver for processing. A 
maximum of eight OlBuffer objects can be inprocess at one time.

− Completed – For an input operation, the internal buffer of the OlBuffer object has been 
filled, and the OlBuffer object has not been put back on queue for the subsystem. For 
an output operation, all the data in the internal buffer of the OlBuffer object has been 
output, and the OlBuffer object has not been put back on the queue for the subsystem.

− Released – The internal data buffer of the OlBuffer object has been deallocated by 
calling OlBuffer.Dispose.

• OlBuffer.ValidSamples – Returns the number of valid samples in the internal buffer of 
the OlBuffer object. 

For analog input operations, the ValidSamples property is set to the number of samples in 
the completed buffer under normal circumstances. However, in some cases, like if Abort 
is called in the middle of an operation, ValidSamples reflects the number of samples in 
the buffer when Abort was called. In addition, if Abort or Stop is called, any OlBuffer 
object whose state is Inprocess will have a ValidSamples of 0.

For analog output operations, ValidSamples is always equal to the maximum number of 
samples that the buffer was allocated to hold.

• OlBuffer.VoltageRange – Returns the upper limit and lower limit of the voltage range for 
the associated subsystem.

Cleaning up Buffers

When you are finished performing continuous analog I/O operations, use can use one of the 
following methods to clean up the OlBuffer objects:

• BufferQueue.DequeueBuffer – Removes and returns the OlBuffer object at the front of 
the queue.

• BufferQueue.FreeAllQueuedBuffers – Removes all OlBuffer objects from the queue and 
deallocates the internal data buffers that are encapsulated by them.
329



Chapter 4

330
Starting Subsystems Simultaneously
If supported, you can set up subsystems to start simultaneously. Note that you cannot 
perform simultaneous startup on subsystems configured for single-value operations unless 
you are using a simultaneous sampling module.

To determine if a subsystem supports simultaneous start, use the SupportsSimultaneousStart 
property inherited from the SubsystemBase class. If this property returns a value of True, the 
subsystem can be simultaneously started.

You can synchronize the triggers of subsystems by specifying the same trigger source for each 
of the subsystems that you want to start simultaneously; ensure that the triggers are wired 
appropriately to the device.

Use the SimultaneousStart.AddSubsystem method to add the subsystems that you want to 
start simultaneously to the start list. If, later, you want to remove a subsystem from the start 
list, use the SimultaneousStart.RemoveSubsystem method.

To return an array of subsystems that were added to the simultaneous start list, use the 
SimultaneousStart.GetSubsystemList method.

Pre-start the subsystems using the SimultaneousStart.PreStart method. Pre-starting a 
subsystem ensures a minimal delay once the subsystems are started. Once you call the 
SimultaneousStart.PreStart method, do not alter the settings of the subsystems on the 
simultaneous start list.

Start the subsystems using the SimultaneousStart.Start method. When started, both 
subsystems are triggered simultaneously.

When you are finished with the operations, call the SimultaneousStart.Clear method to 
remove the subsystems from the simultaneous start list. 



Using the OpenLayers.DeviceCollection Namespace
Auto-Calibrating a Subsystem
Some devices provide a self-calibrating feature, where a specified subsystem performs an 
auto-zero function. To determine if the specified subsystem supports this capability, use the 
AnalogInputSubsystem.SupportsAutoCalibrate property. If this property returns a value of 
True, the subsystem can be calibrated through software.

To calibrate the subsystem in software, call the AutoCalibrate method. Ensure that the 
subsystem is not running when you call this method, or an error is returned.
331



Chapter 4

332
Handling Events
DT-Open Layers devices notify your application of buffer movement and other system 
activities by raising events.

Delegates, which behave like function pointers, are provided to handle these events. Each 
delegate has a specific signature and holds a reference to a method that matches its signature. 
When an event occurs, the appropriate method (with the matching signature) is called.

The following example shows the declaration for the BufferDoneHandler delegate provided 
by the DT-Open Layers for .NET Class Library:

[C#]
// BufferDoneHandler is the delegate for the BufferDoneEvent event.
// BufferDoneEventArgs is the class that holds event data for 
// BufferDoneEvent.
// It derives from the base class for event data, GeneralEventArgs.

public delegate void BufferDoneHandler(object sender,
BufferDoneEventArgs eventArgs);

[Visual Basic]
' BufferDoneHandler is the delegate for the BufferDoneEvent event.
' BufferDoneEventArgs is the class that holds event data for
' BufferDoneEvent.
' It derives from the base class for event data, GeneralEventArgs.
Public Delegate Sub BufferDoneHandler(sender As Object, 

eventArgs As BufferDoneEventArgs)

As you can see, the syntax of the delegate is similar to that of a method declaration; however, 
the delegate keyword informs the compiler that BufferDoneHandler is a delegate type. By 
convention, event delegates in the .NET Framework have two parameters, the source that 
raised the event and the data for the event.

To handle events, you must define a method that matches the delegate; this is the event 
handling method that is called when the appropriate event is raised. In the following example, 
the event handling method called MyBufferDone matches the signature of the 
BufferDoneHandler delegate and is called when the event BufferDoneEvent is raised:

Visual C#
// MyBufferDone has the same signature as BufferDoneHandler.
public void MyBufferDone (object sender, 

BufferDoneEventArgs eventArgs);
{
//Add you own code here.
}



Using the OpenLayers.DeviceCollection Namespace
Visual Basic
' MyBufferDone has the same signature as BufferDoneHandler.
   Public Sub MyBufferDone(sender As Object,

eventArgs As BufferDoneEventArgs)
' Add you own code here

End Sub

Note: To ensure that events are handled in the main application, use the InvokeRequired 
method. Refer to your .NET documentation for more information on this method.

Lastly, you must associate the event and event handling method with the appropriate 
subsystem. The following example shows how to associate the event BufferDoneEvent and 
the MyBufferDoneHandler event handler to the analog input subsystem called ainSS:

Visual C#
// Associate the event BufferDoneEvent and the event handling method 
// MyBufferDone with the analog input subsystem ainSS.
ainSS.BufferDoneEvent += new BufferDoneHandler (MyBufferDoneHandler);

Note: In C#, when you want to disable receiving events, use the - = operator instead of the 
+= operator. See your .NET documentation for more information about events and delegates.

Visual Basic
' Associate the event BufferDoneEvent and the event handling method
' MyBufferDone with the analog input subsystem ainSS.
AddHandler ainSS.BufferDoneEvent, Address of MyBufferDoneHandler

Note: In Visual Basic, when you want to disable receiving events, use the RemoveHandler 
statement instead of the AddHandler statement. See your .NET documentation for more 
information about events and delegates.

The following subsections describe the events and delegates that are provided in the DT-Open 
Layers for .NET Class Library. Refer to the examples provided with this software package to 
see how to incorporate event handling code into your program.
333



Chapter 4

334
BufferDoneEvent

For input operations, the event BufferDoneEvent is raised when the internal data buffer of the 
OlBuffer object has been filled with post-trigger data. For output operations, this event is 
raised when all the data in the internal data buffer of the OlBuffer object has been output. 

If you stop an analog I/O operation, the event BufferDoneEvent is generated for the current 
OlBuffer object and for up to eight inprocess OlBuffer objects before a QueueStoppedEvent 
event occurs. 

Use the BufferDoneHandler delegate with BufferDoneEvent. When BufferDoneEvent is 
raised, the subsystem that raised the event, the time stamp of when the event occurred, and 
the completed OlBuffer object are passed in the BufferDoneEventArgs argument of the 
user-defined method that matches the signature of the BufferDoneHandler delegate.

You can add your own code to the event handling method to manage the data in the buffer or 
perform other operations as required by your application. Refer to page 325 for more 
information on handling input buffers; refer to page 327 for more information on handling 
output buffers.

Note: If your program is running under a heavy CPU load, and if the 
AnalogInputSubsystem.SynchronousBufferDone property is set to False (the default 
condition), .NET may call your BufferDoneEvent delegates out of order under some 
circumstances. To avoid this problem, it is recommended that you set the 
AnalogInputSubsystem.SynchronousBufferDone property to True, so that all 
BufferDoneEvent events are executed synchronously in a single worker thread instead of 
asynchronously using a separate thread for each event.

The following is an example of an event handling routine called HandleBufferDone that 
handles the event BufferDoneEvent. This event handler converts the data from the internal 
buffer of the OlBuffer object into sensor values and copies the data into a user-dimensioned 
array called buf. The first 10 samples are printed to the form, and the OlBuffer object is put 
back on the queue for the subsystem:

Visual C#
public void HandleBufferDone (object sender, 

BufferDoneEventArgs bufferDoneData)
{ 

if (this.InvokeRequired)
{

this.Invoke( new BufferDoneHandler (HandleBufferDone),
new object[] {sender, bufferDoneData });

}



Using the OpenLayers.DeviceCollection Namespace
else
{

// Get the data as sensor values
double[] buf = olBuffer.GetDataAsSensor();
//requeue the completed buffer
ainSS.BufferQueue.QueueBuffer (olBuffer);

// Output the first 10 samples to the user form 
for (int i=0; i<10; ++i)
{

OlBufferDataTable.Rows[i][0] = buf[i];
}

}
}

Visual Basic
Public Sub HandleBufferDone(ByVal sender As Object,

ByVal bufferDoneData As BufferDoneEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New BufferDoneHandler(
AddressOf HandleBufferDone), New Object()
 {sender, bufferDoneData})

Else
' Get the data as sensor values
Dim buf As Double() = olBuffer.GetDataAsSensor()
' requeue the completed buffer
ainSS.BufferQueue.QueueBuffer(olBuffer)
End If
' Output the first 10 samples to the user form 
Dim i As Integer
While i < 10

OlBufferDataTable.Rows(i)(0) = buf(i)
i += 1

End While
End If

End Sub 'HandleBufferDone
335



Chapter 4

336
PreTriggerBufferDoneEvent

The event PreTriggerBufferDone is raised when the internal buffer of the OlBuffer object is 
filled with pre-trigger data (for an input operation only). Refer to page 322 for more 
information about buffers.

Use the PreTriggerBufferDoneHandler delegate with PreTriggerBufferDoneEvent. When 
PreTriggerBufferDoneEvent is raised, the subsystem that raised the event, the time stamp of 
when the event occurred, and the completed OlBuffer object are passed in the 
BufferDoneEventArgs argument of the user-defined method that matches the signature of the 
PreTriggerBufferDoneHandler delegate.

You can add your own code to the event handling method to manage the data in the buffer or 
perform other operations as required by your application. Refer to page 325 for more 
information on handling input buffers. 

The following is an example of an event handling routine called HandlePreTriggerBufferDone 
that handles the event PreTriggerBufferDoneEvent. This event handler converts the data from 
the internal buffer of the OlBuffer object into voltage values and copies the data into a 
user-dimensioned array called buf. The first 10 samples are printed to the form, and the 
OlBuffer object is put back on the queue for the subsystem:

Visual C#
public void HandlePreTriggerBufferDone (object

sender, BufferDoneEventArgs bufferDoneData)
{ 

if (this.InvokeRequired)
{

this.Invoke( new PreTriggerBufferDoneHandler (
HandlePreTriggerBufferDone), new object[] { sender,

bufferDoneData});
}
else
{

// Get the data as voltages
double[] buf = olBuffer.GetDataAsVolts();

//requeue the completed buffer
ainSS.BufferQueue.QueueBuffer (olBuffer);

// Output the first 10 samples to the user form 
for (int i=0; i<10; ++i)
{

OlBufferDataTable.Rows[i][0] = buf[i];
}

}
}



Using the OpenLayers.DeviceCollection Namespace
Visual Basic
Public Sub HandlePreTriggerBufferDone(ByVal sender As Object, 

ByVal bufferDoneData As BufferDoneEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New PreTriggerBufferDoneHandler(
AddressOf HandlePreTriggerBufferDone), 
New Object() {sender, bufferDoneData})

Else
' Get the data as voltages
Dim buf As Double() = olBuffer.GetDataAsVolts()
' requeue the completed buffer
ainSS.BufferQueue.QueueBuffer(olBuffer)
End If
' Output the first 10 samples to the user form 
Dim i As Integer
While i < 10

OlBufferDataTable.Rows(i)(0) = buf(i)
i += 1

End While
End If

End Sub 'HandleBufferDone

QueueStoppedEvent

A QueueStoppedEvent is raised when Stop or Abort is called for a continuous analog input or 
analog output operation. 

Note: The event BufferDoneEvent is generated for the current OlBuffer object and for up to 
eight inprocess OlBuffer objects before a QueueStoppedEvent event occurs. 

Use the QueueStoppedHandler delegate with QueueStoppedEvent. When 
QueueStoppedEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the QueueStoppedHandler delegate.

The following is an example of an event handling routine called HandleQueueStopped that 
handles the event QueueStoppedEvent. This event handler displays a message on the form 
that indicates which subsystem raised the QueueStoppedEvent and at what time the event 
occurred:
337



Chapter 4

338
Visual C#
public void HandleQueueStopped (object sender, 

GeneralEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new QueueStoppedHandler(HandleQueueStopped) 
,new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Queue Stopped received on
subsystem {0} element {1} at time {2}", 
eventData.Subsystem, eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

statusBarPanel.Text = msg;
}

}

Visual Basic
Public Sub HandleQueueStopped(ByVal sender As Object, 

ByVal eventData As GeneralEventArgs)
         If Me.InvokeRequired Then
            Me.Invoke(New QueueStoppedHandler(

AddressOf HandleQueueStopped),
New Object() {sender, eventData})

         Else
            Dim msg As String = String.Format(

"Queue Stopped received on subsystem {0} element {1} 
at time {2}", eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"))

statusBarPanel.Text = msg
         End If
End Sub 'HandleQueueStopped

IOCompleteEvent

For analog input operations that use a reference trigger whose trigger type is something other 
than software (none), the event IOCompleteEvent is raised when the last post-trigger sample 
is copied into the user buffer. This event includes the total number of samples per channel that 
were acquired from the time acquisition was started (with the start trigger) to the last 
post-trigger sample. For example, a value of 100 indicates that a total of 100 samples (samples 
0 to 99) were acquired. In some cases, this message is generated well before the events 
BufferDoneEvent are generated. You can determine when the reference trigger occurred and 
the number of pre-trigger samples that were acquired by subtracting the post trigger scan 
count, described on page 322, from the total number of samples that were acquired. Devices 
that do not support a reference trigger will never receive this event for analog input 
operations.



Using the OpenLayers.DeviceCollection Namespace
For analog output operations, the event IOCompleteEvent is raised when the last data point 
has been output from an analog output channel. In some cases, this event is raised well after 
the data is transferred from the buffer (and, therefore, well after BufferDoneEvent and 
QueueDoneEvents are raised). Refer to page 322 for more information on buffers.

Use the IOCompleteHandler delegate with IOCompleteEvent. When IOCompleteEvent is 
raised, the subsystem that raised the event and the time stamp of when the event occurred are 
passed in the IOCompleteEventsArgs argument of the user-defined method that matches the 
signature of the IOCompleteHandler delegate.

You can add your own code to the event handling method to deal with this event as needed. 

The following is an example of an event handling routine called HandleIOComplete that 
handles the event IOCompleteEvent. This event handler displays a message on the form that 
indicates which subsystem raised the IOCompleteEvent and at what time the event occurred:

Visual C#
public void HandleIOComplete (object sender,

IOCompleteEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke( new IOCompleteHandler (HandleIOComplete), 
new object[] {sender, eventData });

}

else
{

string msg = String.Format ("IOComplete received on
subsystem {0} at time {1}", eventData.Subsystem, 

eventData.DateTime.ToString("T"));
statusBarPanel.Text = msg;

}
}

Visual Basic
Public Sub HandleIOComplete(ByVal sender As Object,

ByVal eventData As IOCompleteEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New IOCompleteHandler(
AddressOf HandleIOComplete), 
New Object() {sender, eventData})

         Else
Dim msg As String = String.Format(

"IOComplete received on subsystem {0} at time {1}",
 eventData.Subsystem, eventData.DateTime.ToString("T"))

statusBarPanel.Text = msg
         End If
End Sub 'HandleIOComplete
339



Chapter 4

340
QueueDoneEvent

The event QueueDoneEvent is raised when no OlBuffer objects are available on the queue and 
the operation stops. Refer to page 322 for more information.

Use the QueueDoneHandler delegate with QueueDoneEvent. When QueueDoneEvent is 
raised, the subsystem that generated the event and the time stamp of when the event occurred 
are passed in the GeneralEventArgs argument of the user-defined method that matches the 
signature of the QueueDoneHandler delegate.

The following is an example of an event handling routine called HandleQueueDone that 
handles the event QueueDoneEvent. This event handler displays a message on the form that 
indicates which subsystem raised the QueueDoneEvent and at what time the event occurred:

Visual C#
public void HandleQueueDone (object sender, 

GeneralEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new QueueDoneHandler(HandleQueueDone),
new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Queue Done received on {0} 
 element {1} at time {2}", eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

statusBarPanel.Text = msg;
}

}

Visual Basic
Public Sub HandleQueueDone(ByVal sender As Object,

ByVal eventData As GeneralEventArgs)
         If Me.InvokeRequired Then

Me.Invoke(New QueueDoneHandler(AddressOf HandleQueueDone), 
 New Object() 
{sender, eventData})

         Else
Dim msg As String = String.Format(
"Queue Done received on {0} element {1} at time {2}",
 eventData.Subsystem, eventData.Subsystem.Element,

eventData.DateTime.ToString("T"))
statusBarPanel.Text = msg

End If
End Sub 'HandleQueueDone



Using the OpenLayers.DeviceCollection Namespace
DriverRunTimeErrorEvent

The DriverRunTimeErrorEvent occurs when the device driver detects one of the following 
error conditions:

• FifoOverflow – The driver could not read data from the device FIFO (or Windows USB 
FIFO) fast enough, resulting in a FIFO overflow condition. To deal with this error, increase 
the size of the buffers, slow down the sampling rate, or stop other CPU-intensive running 
programs.

Note: By setting the AnalogInputSubsystem.StopOnError property, you can determine 
how the subsystem operates if an overrun occurs. If StopOnError is True, the subsystem 
will automatically stop when an overrun is detected. If StopOnError is False, the 
subsystem will continue running if an overrun is detected.

• FifoUnderflow – The driver could not write data to the device FIFO (or Windows USB 
FIFO) fast enough, resulting in FIFO underflow condition. To deal with this error, increase 
the size of buffers, slow down the sampling rate, or stop other CPU-intensive running 
programs.

Note: By setting the AnalogOutputSubsystem.StopOnError property, you can determine 
how the subsystem operates if an underrun occurs. If StopOnError is True, the subsystem 
will automatically stop when an underrun is detected. If StopOnError is False, the 
subsystem will continue running if an underrun is detected.

• DeviceOverClocked – The A/D clock (usually external clock) is running too fast on the 
device. To deal with this error, slow down the A/D clock.

• TriggerError – The driver detected a trigger on the device but did not act on it.

• DeviceError – Generated by the driver due to a USB bus or hardware problem. To deal 
with this error, stop connecting/disconnecting USB devices while streaming data to them.

Use the DriverRunTimeErrorEventHandler delegate with DriverRunTimeErrorEvent. When 
DriverRunTimeErrorEvent is raised, the subsystem that generated the event, the time stamp 
of when the event occurred, the error code, and the error code descriptor are passed in the 
DriverRunTimeErrorEventArgs argument of the user-defined method that matches the 
signature of the DriverRunTimeErrorEventHandler delegate.

The following is an example of an event handling routine called 
HandleDriverRunTimeErrorEvent that handles the event DriverRunTimeErrorEvent. This 
event handler displays a message on the form that indicates what error occurred, which 
subsystem raised the DriverRunTimeErrorEvent, and at what time the event occurred:
341



Chapter 4

342
Visual C#
public void HandleDriverRunTimeErrorEvent (object sender,

DriverRunTimeErrorEventArgs eventData)
{

if (this.InvokeRequired)
{

this.Invoke(new 
DriverRunTimeErrorEventHandler( 
HandleDriverRunTimeErrorEvent),
new object[] { sender, eventData });

}
else
{

string msg = String.Format ("Error: {0} 
Occurred on subsystem {1} element {2} at time {3}",
eventData.Message, eventData.Subsystem, 
eventData.Subsystem.Element,
eventData.DateTime.ToString("T"));

MessageBox.Show (msg, "Error");
}

}

Visual Basic
Public Sub HandleDriverRunTimeErrorEvent(ByVal sender As Object,

 ByVal eventData As DriverRunTimeErrorEventArgs)
If Me.InvokeRequired Then

Me.Invoke(New DriverRunTimeErrorEventHandler(
AddressOf HandleDriverRunTimeErrorEvent),
New Object() {sender, eventData})

Else
Dim msg As String = String.Format(
"Error: {0} Occurred on subsystem {1}
element {2} at time {3}", eventData.Message,
eventData.Subsystem, eventData.Subsystem.Element, 
eventData.DateTime.ToString("T"))

MessageBox.Show(msg, "Error")
End If

End Sub 'HandleDriverRunTimeErrorEvent

GeneralFailureEvent

The event GeneralFailureEvent is raised when a general library failure occurs.

Use the GeneralFailureHandler delegate with GeneralFailureEvent. When 
GeneralFailureEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the GeneralFailureHandler delegate.

You can add your own code to the handler to deal with this event as needed. 



Using the OpenLayers.DeviceCollection Namespace
DeviceRemovedEvent

The event DeviceRemovedEvent is raised when a device is removed from your system while 
your application is running. 

Use the DeviceRemovedHandler delegate with DeviceRemovedEvent. When 
DeviceRemovedEvent is raised, the subsystem that raised the event and the time stamp of 
when the event occurred are passed in the GeneralEventArgs argument of the user-defined 
method that matches the signature of the DeviceRemovedHandler delegate.

You can add your own code to the event handling method to deal with this event as needed. 
343



Chapter 4

344
Handling Errors
Errors are generated by the DT-Open Layers .NET Class Library as OlException objects. Each 
OlException object contains an OlError object, which contains the error code and its 
description. Your program should handle exceptions as they occur, performing the 
appropriate actions to deal with any errors that arise.

Refer to Appendix A for a list of error codes and messages. These values are defined as 
enumerations that are accessible using the OlException.ErrorCode and OlException.Message 
properties. If you want to determine which subsystem generated the error, use the 
OlException.Subsystem property.

The following example shows how to catch exceptions in your program; this example the 
error message is printed to text field on the form:

Visual C#
catch (OlException ex)

{
string err = ex.Message;
statusBarPanel.Text = err;
return;

}

Visual Basic
Catch ex As OlException

Dim err As String = ex.Message
statusBarPanel.Text = err
Return



Using the OpenLayers.DeviceCollection Namespace
Cleaning Up Operations
When you are finished performing data acquisition operations, clean up the memory and 
resources that were used by the operation by doing the following:

1. Release the simultaneous start list, if used, using the SimultaneousStart.Clear method.

2. Deallocate any buffers, if used. Refer to page 329 for more information.

3. Release the subsystem connection to the device using the Dispose method within the 
appropriate subsystem class.

4. Release the Device object using the Device.Dispose method.
345



Chapter 4

346



5
Programming Flowcharts for the

OpenLayers.Base Namespace
Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Single-Value Analog Output Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Single-Value Digital Input Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Single-Value Digital Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Continuous Analog Input Operations - One Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Continuous Analog Input Operations - Multiple Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Continuous Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Continuous, Interrupt-On-Change Digital Input Operations . . . . . . . . . . . . . . . . . . . . . . . 358

Event Counting Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Up/Down Counting Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Edge-to-Edge Measurement Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Continuous Edge-to-Edge Measurement Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Pulse Output Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Measure Counter Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Tachometer Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Quadrature Decoder Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Simultaneously Starting Subsystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
347



Chapter 5

348
The flowcharts presented in the remainder of this chapter show how to perform typical 
input/output operations. 

Note: Depending on your device, some of the settings may not be programmable. Refer to 
your device documentation for details.

Although the flowcharts do not show error checking, it is recommended that you add 
exception handling to your program.

Some steps represent several substeps; if you are unfamiliar with the detailed operations 
involved with any one step, refer to the indicated page for detailed information. 



Programming Flowcharts for the OpenLayers.Base Namespace
Single-Value Analog Input Operations

Set the data flow mode to SingleValue using the 
AnalogInputSubsystem.DataFlow property.

Get an object for each element of the subsystem 
that you want to use using the 

Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of 
type DeviceMgr using the DeviceMgr.Get method.

Go to the next page.

If you haven’t already done so, get an object of type 
Device for the specified hardware device using the 

DeviceMgr.GetDevice method.

Set up the analog input channel (see page 376).

Configure the subsystem using the 
AnalogInputSubsystem.Config method.

Set up the common subsystem parameters 
(see page 382).
349



Chapter 5

350
Acquire 
another 
value?

Does 
subsystem 

support 
simultaneous 
acquisition?

Yes

No

Acquire a single value using one of the following methods: 
AnalogInputSubsystem.GetSingleValueAsRaw 

(for a raw count),
AnalogInputSubsystem.GetSingleValueAsVolts 

(for a voltage value),
AnalogInputSubsystem.GetSingleValueAsSensor 

(for a sensor value), 
AnalogInputSubsystem.GetSingleValueAsTemperature 

(for a temperature value), 
AnalogInputSubsystem.GetSingleCjcValueAsTemperature 

(for a CJC temperature),
AnalogInputSubsystem.GetSingleValueAsResistance 

(for a resistance value),
AnalogInputSubsystem.GetSingleValueAsCurrent 

(for a current value),
AnalogInputSubsystem.GetSingleValueAsStrain 

(for a microstrain value), 
AnalogInputSubsystem.GetSingleValueAsBridgeBasedSensor 

(for a value in the native engineering units of the full-bridge-based sensor).
AnalogInputSubsystem.GetSingleValueAsNormalizedBridgeOutput 

(for a value in volts).

Continued from previous page.

Acquire a single value from all input channels simultaneously using one of the 
following methods:

AnalogInputSubsystem.GetSingleValuesAsRaw 
(for raw count values),

AnalogInputSubsystem.GetSingleValuesAsVolts 
(for voltage values),

AnalogInputSubsystem.GetSingleValuesAsSensor 
(for sensor values),

AnalogInputSubsystem.GetSingleValuesAsTemperature 
(for temperature values), 

AnalogInputSubsystem.GetSingleCjcValuesAsTemperature 
(for CJC temperatures), 

AnalogInputSubsystem.GetSingleValuesAsStrain 
(for microstrain values), or

AnalogInputSubsystem.GetSingleValuesAsBridgeBasedSensor 
(for values in the native engineering units of the full-bridge-based sensors).

When done with your program, clean up 
the subsystem (see page 398).

No

Yes



Programming Flowcharts for the OpenLayers.Base Namespace
Single-Value Analog Output Operations

Set the data flow mode to SingleValue using the 
AnalogOutputSubsystem.DataFlow property.

Get an object for each element of the subsystem 
that you want to use using the 

Device.AnalogOutputSubsystem method.

If you haven’t already done so, get an object of 
type DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type 
Device for the specified hardware device using the 

DeviceMgr.GetDevice method.

Configure the subsystem using the 
AnalogOutputSubsystem.Config method.

Set the common subsystem parameters 
(see page 382).

Does 
subsystem 

support 
simultaneous 

output?

Output
another 
value?

No

YesOutput a single value using one of the following 
methods:

AnalogOutputSubsystem.SetSingleValueAsRaw 
(to output a raw count) or

AnalogOutputSubsystem.SetSingleValueAsVolts (to 
output a voltage).

When done with your program, clean up 
the subsystem (see page 398).

Yes

No

Output a single value to each output channel using one of the 
following methods: 

AnalogOutputSubsystem.SetSingleValuesAsRaw 
(to output raw counts) or 

AnalogOutputSubsystem.SetSingleValuesAsVolts
(to output voltages).
351



Chapter 5

352
Single-Value Digital Input Operations

Set the data flow mode to SingleValue using the 
DigitalInputSubsystem.DataFlow property.

Get an object for each element of the subsystem 
that you want to use using the 

Device.DigitaInputSubsystem method.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

Configure the subsystem using the 
DigitalInputSubsystem.Config method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Set the resolution of the subsystem using the 
DigitalInputSubsystem.Resolution property.

Acquire 
another 
value?

Acquire a single value using the 
DigitalInputSubsystem.GetSingleValue method.

No

Yes

When done with your program, clean up 
the subsystem (see page 398).



Programming Flowcharts for the OpenLayers.Base Namespace
Single-Value Digital Output Operations

Set the data flow mode to SingleValue using the 
DigitalOutputSubsystem.DataFlow property.

Get an object for each element of the subsystem 
that you want to use using the 

Device.DigitalOutputSubsystem method.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

Configure the subsystem using the 
DigitalOutputSubsystem.Config method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Set the resolution of the subsystem using the 
DigitalOutputSubsystem.Resolution property.

Output
another 
value?

No

Yes

Output a single value using the 
DigitalOutputSubsystem.SetSingleValue 

method.

When done with your program, clean up 
the subsystem (see page 398).
353



Chapter 5

354
Continuous Analog Input Operations - One Buffer

Set up common subsystem parameters (see page 382).

Get an object for the element of the analog input subsystem that you want to use 
using the Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of type DeviceMgr using the 
DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device for the specified 
hardware device using the DeviceMgr.GetDevice method.

Set up the clocks (see page 383).

Set up the triggers (see page 384). Note that reference triggers are not supported 
for this operation type.

Set up the analog input channel (see page 376).

Add a single channel to the ChannelList (see page 380).

Use the AnalogInputSubsystem.DataFlow property to set the data flow mode to 
Continuous.

Configure the subsystem using the AnalogInputSubsystem.Config method.

Call the AnalogInputSubsystem.GetOneBuffer method to acquire one buffer of 
data from the specified analog input channel.

Go to the next page.



Programming Flowcharts for the OpenLayers.Base Namespace
When done with your program, clean up the subsystem 
(see page 398).

Continued from previous page.

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 

OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the resolution is 16 bits 
or less and copies into an array of signed, 16-bit integers),

OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 16 bits or less 
and copies into an array of unsigned 16-bit integers), 

OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 16-bits and copies 
into an array of unsigned 32-bit integers), 

OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 
OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),

OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of floating-point values), 
OlBuffer.GetDataAsResistance (converts to ohms and copies into an array of floating-point values),
OlBuffer.GetDataAsCurrent (converts to amperes and copies into an array of floating-point values),
OlBuffer.GetDataAsTemperatureByte (converts to temperature and copies into an array of bytes), 

OlBuffer.GetDataAsTemperatureDouble (converts to temperature and copies into an array of floating-point 
values), 

OlBuffer.GetDataAsRpm (converts to RPM values and copies into an array of floating-point values), 
OlBuffer.GetDataAsStrain (converts to microstrain values and copies into an array of floating-point values), 

OlBuffer.GetDataAsBridgeBasedSensor (converts to the engineering values of the full-bridge-based 
sensor and copies into an array of floating-point values), or 

OlBuffer.GetDataAsNormalizedBridgeOutput (converts to mV/Vexe and copies into an array of 
floating-point values).
355



Chapter 5

356
Continuous Analog Input Operations - Multiple Buffers

Set up the ChannelList (see page 380).

Go to the next page.

Use the AnalogInputSubsystem.DataFlow property to set 
one of the following data flow modes: Continuous for 

post-trigger operations, ContinuousPreTrigger for continuous 
pre-trigger operations, or ContinuousPrePostTrigger for 

continuous about-trigger operations.

Get an object for the element of the analog input subsystem 
that you want to use using the 

Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device 
for the specified hardware device using the 

DeviceMgr.GetDevice method.

Set up the clocks (see page 383).

If you want to use triggered scan mode, set 
up the scan (see page 387.)

Set up buffering (see page 388).

Configure the subsystem using the 
AnalogInputSubsystem.Config method.

Set up the triggers (see page 384).

Set up the analog input channels (see page 376).

Set up common subsystem parameters.
(see page 382).



Programming Flowcharts for the OpenLayers.Base Namespace
 

Deal with events and buffers 
(see page 390).

Stop the operation (see page 397).

Start the operation with the
AnalogInputSubsystem.Start method.

When done with your program, clean up 
the subsystem (see page 398).

Continued from previous page.

Configure the subsystem to execute BufferDoneEvent 
events synchronously in a single thread using the 

AnalogInputSubsystem.SynchronousBufferDone property.
357



Chapter 5

358
Continuous Analog Output Operations

Set up the channel list (see page 380).

Set up common subsystem parameters (see page 382).

Get an object for the element of the analog output subsystem that you want to 
use using the Device.AnalogOutputSubsystem method.

Set up buffering (see page 389).

Set up the clocks (see page 383).

If you haven’t already done so, get an object of type DeviceMgr using the 
DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device for the specified 
hardware device using the DeviceMgr.GetDevice method.

Set the data flow mode to Continuous using the 
AnalogOutputSubsystem.DataFlow property.

Deal with events and buffers (see page 394).

Stop the operation (see page 397).

When done with your program, clean up the subsystem (see page 398).

Configure the subsystem using the AnalogOutputSubsystem.Config 
method.

Start the operation with the AnalogOutputSubsystem.Start method.

Set up the triggers (see page 384).

If desired, mute the output using the AnalogOutputSubsystem.Mute method.



Programming Flowcharts for the OpenLayers.Base Namespace
Continuous, Interrupt-On-Change Digital Input 
Operations

Go to the next page.

Set the data flow mode to Continuous using the 
DigitalInputSubsystem.DataFlow property.

Get an object for the element of the digital input 
subsystem that you want to use using the 
Device.DigitalInputSubsystem method.

Select the digital input lines that you want to 
monitor for change of state using the 

DigitalInputSubsystem.
WriteInterruptOnChangeMask method.

Set the resolution of the subsystem using the 
DigitalInputSubsystem.Resolution property.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Configure the subsystem using the 
DigitalInputSubsystem.Config method.

Start the operation with the 
DigitalInputSubsystem.Start method.
359



Chapter 5

360
Stop the operation (see page 397).

When done with your program, clean up 
the subsystem (see page 398).

Continued from previous page.

The InterruptOnChangeEventArgs class contains the 
subsystem that raised the event, the time stamp of when 
the event occurred, the digital input lines that changed 
state, and the current state of the digital input port.

Interrupt
OnChange

Event 
raised?

Yes

No

Use the InterruptOnChangeHandler 
delegate to return the value of 

InterruptOnChangeEventArgs argument 
and to handle the event.

Wait for 
another 

interrupt?

No

Yes



Programming Flowcharts for the OpenLayers.Base Namespace
Event Counting Operations
 

Set up the clocks and gates
(see page 396).

Set the cascade mode of the counter/timer 
subsystem to either Cascade for cascaded 
counter/timers or Single for non-cascaded 

counter/timers using the 
CounterTimerSubsystem.CascadeMode.

Specify the counter/timer mode as Count using 
the CounterTimerSubsystem.CounterMode 

property.

Go to the next page.

Get an object for the element of the 
counter/timer subsystem that you want to use 
using the Device.CounterTimerSubsystem 

method.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Specify the data flow mode to Continuous using 
the CounterTimerSubsystem.DataFlow 

property.

Start the operation using the 
CounterTimerSubsystem.Start method.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.
361



Chapter 5

362
Read the current value of the counter/timer 
using the CounterTimerSubsystem.

ReadCount method.

Stop the operation (see page 397).

When done with your program, clean up 
the subsystem (see page 399).

Continued from previous page.

Get update 
of events 

total?

Yes

No



Programming Flowcharts for the OpenLayers.Base Namespace
Up/Down Counting Operations

Go to the next page.

Get an object for the element of the 
counter/timer subsystem that you want to use 
using the Device.CounterTimerSubsystem 

method.

Set the clock source to External using the 
Clock.Source property.

The driver sets the actual clock divider as closely as 
possible to the number specified. You can read back the 
exact clock divider value after configuring the subsystem 
using the ExtClockDivider property.

Specify a clock divider to apply to the external 
clock source using the Clock.ExtClockDivider 

property.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Specify the data flow mode to Continuous using 
the CounterTimerSubsystem.DataFlow 

property.

Specify the counter/timer mode as UpDown 
using the CounterTimerSubsystem.

CounterMode property.

Start the operation using the 
CounterTimerSubsystem.Start method.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.
363



Chapter 5

364
Continued from previous page.

Get update 
of events 

total?

Yes

No

Read the current value of the counter/timer using 
the CounterTimerSubsystem.ReadCount 

method.

Stop the operation (see page 397).

When done with your program, clean up the 
subsystem (see page 399).



Programming Flowcharts for the OpenLayers.Base Namespace
Edge-to-Edge Measurement Operations

Go to the next page.

Specify the start edge using the 
CounterTimerSubsystem.StartEdge property. To determine which edges are supported for the 

StartEdge and StopEdge properties, read the 
CounterTimerSubsystem.SupportedEdgeTypes 
property. This property returns an array of the 
supported signals/edges. 

Get an object for the element of the counter/timer 
subsystem that you want to use using the 

Device.CounterTimerSubsystem method.

Set the clock source to Internal using the 
Clock.Source property.

Specify the stop edge using the 
CounterTimerSubsystem.StopEdge property.

Specify the counter/timer mode as Measure 
using the CounterTimerSubsystem.

CounterMode property.

If you haven’t already done so, get an object 
of type DeviceMgr using the DeviceMgr.Get 

method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Specify the data flow mode to Continuous using 
the CounterTimerSubsystem.DataFlow 

property.

Start the operation using the 
CounterTimerSubsystem.Start method.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.

Note that if you want to perform another 
edge-to-edge measurement, you can call Start 
again.
365



Chapter 5

366
Continued from previous page.

Measure
Done 
Event 

raised?

Yes

No

The MeasureDoneEventArgs class contains 
the subsystem that raised the event, the time 
stamp of when the event occurred, and the 
value of the counter. 

Use the MeasureDoneHandler delegate 
to receive the MeasureDoneEventArgs 

argument and to handle the event.

When done with your program, clean up 
the subsystem 
(see page 399).



Programming Flowcharts for the OpenLayers.Base Namespace
Continuous Edge-to-Edge Measurement Operations

Go to the next page.

Get an object for the element of the counter/timer 
subsystem that you want to use using the 

Device.CounterTimerSubsystem method.

Specify the counter/timer mode as 
ContinuousMeasure using the 

CounterTimerSubsystem.CounterMode property.

Specify the start edge using the 
CounterTimerSubsystem.StartEdge property. To determine which edges are supported for the 

StartEdge and StopEdge properties, read the 
CounterTimerSubsystem.SupportedEdgeTy
pes property. This property returns an array of 
the supported signals/edges. 

Set the clock source to Internal using the 
Clock.Source property.

Specify the stop edge using the 
CounterTimerSubsystem.StopEdge property.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of 
type Device for the specified hardware device 

using the DeviceMgr.GetDevice method.

Specify the data flow mode to Continuous using the 
CounterTimerSubsystem.DataFlow property.

Start the operation using the 
CounterTimerSubsystem.Start method.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.
367



Chapter 5

368
Read the value of the counter/timer using the 
CounterTimerSubsystem.ReadCount method or 

through the channel list of the 
AnalogInputSubsystem class.

No

Yes

Stop the operation (see page 397).

When done with your program, clean up the 
subsystem (see page 399).

Read value 
of counter 

again?

On each read of the counter/timer, the current value of the 
counter/timer channel is returned and the next 
edge-to-edge measurement mode operation starts. If the 
current edge-to-edge measurement operation is still in 
progress, 0 is returned.

Continued from previous page.



Programming Flowcharts for the OpenLayers.Base Namespace
Pulse Output Operations

Set up the clocks and gates
(see page 396).

Get an object for the element of the counter/timer 
subsystem that you want to use using the 

Device.CounterTimerSubsystem method.

Specify the counter/timer mode as one of the 
following values using the 

CounterTimerSubsystem.CounterMode property: 
RateGenerator for continuous output pulses, OneShot 

for a single output pulse, or OneShotRepeat for 
repetitive single output pulses.

Set the cascade mode of the counter/timer 
subsystem to either Cascade for cascaded 
counter/timers or Single for non-cascaded 

counter/timers using the 
CounterTimerSubsystem.CascadeMode property.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type 
Device for the specified hardware device using the 

DeviceMgr.GetDevice method.

Specify the data flow mode to Continuous using the 
CounterTimerSubsystem.DataFlow property.

Specify the output pulse type using the 
CounterTimerSubsystem.PulseType property.

Specify the duty cycle of the output pulse using 
the CounterTimerSubsystem.PulseWidth 

property.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.

Go to the next page.
369



Chapter 5

370
Stop the operation (see page 397).

This step is not needed for 
single one-shot operations.

When done with your program, clean up the 
subsystem (see page 399).

Continued from previous page.

Start the operation using the 
CounterTimerSubsystem.Start method.



Programming Flowcharts for the OpenLayers.Base Namespace
Measure Counter Operations

Get an object for the element of the counter/timer 
subsystem that you want to use using the 

Device.CounterTimerSubsystem method.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device 
for the specified hardware device using the 

DeviceMgr.GetDevice method.

When done with your program, clean up the subsystem 
(see page 399).

Specify the start edge using the 
CounterTimerSubsystem.StartEdge property.

To determine which edges are supported for the 
StartEdge and StopEdge properties, read the 
CounterTimerSubsystem.SupportedEdgeTyp
es property. This property returns an array of the 
supported signals/edges. Specify the stop edge using the 

CounterTimerSubsystem.StopEdge property.

Configure the subsystem using the 
CounterTimerSubsystem.Config method.

Read the value of the counter/timer using the 
CounterTimerSubsystem.ReadCount method or through 

the channel list of the AnalogInputSubsystem class.
371



Chapter 5

372
Tachometer Operations

Get an object for the element of the tachometer subsystem 
that you want to use using the Device.TachSubsystem 

method.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device 
for the specified hardware device using the 

DeviceMgr.GetDevice method.

Use the TachSubsystem.EdgeType property to specify a 
rising or falling edge for the tachometer operation.

Use the TachSubsystem.StaleDataFlagEnabled property to 
specify the value of the stale data flag. If this flag is True, the 
most significant bit (MSB) of the value is set to 0 to indicate 

new data; reading the value before the measurement is 
complete returns an MSB of 1. If this flag is False, the MSB is 

always set to 0. 

Read the value of the tachometer using the 
TachSubsystem.Count property or from the analog input 

stream by adding the tachometer in the analog input 
channel list. Follow the steps for continuous analog input 

operations, on page 356.

Configure the subsystem using the 
TachSubsystem.Config method.

When done with your program, clean up the subsystem 
(see page 399).

If desired, use OlBuffer.GetDataAsRpm to convert the 
data to RPM values and copy the data as an array of 64-bit 

floating-point values. 



Programming Flowcharts for the OpenLayers.Base Namespace
Quadrature Decoder Operations

Get an object for the element of the counter/timer 
subsystem that you want to use using the 

Device.QuadratureDecoderSubsystem method.

Go to the next page.

Set the pre-scale value used to divide the base clock 
frequency using the QuadratureDecoderSubsystem.

ClockPreScale property.

Set the value of the 
QuadratureDecoderSubsystem.X4Scaling property 

to True if you want to use X4 mode, or False if you want 
to use X1 mode.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type 
Device for the specified hardware device using the 

DeviceMgr.GetDevice method.

Set the clock source to External using the 
QuadratureDecoderSubsystem.Clock.Source 

property.

Specify the data flow mode to Continuous using the 
QuadratureDecoderSubsystem.DataFlow property.

Start the operation using the 
QuadratureDecoderSubsystem.Start method.

Configure the subsystem using the 
QuadratureDecoderSubsystem.Config method.

Set the value of the 
QuadratureDecoderSubsystem.IndexMode 

property to Disabled if you do not want to use the Index 
input signal, Low if the Index input signal is low, or High 

if the Index input signal is high.
373



Chapter 5

374
Continued from previous page.

Get update 
of events 

total?

Yes

No

Read the current value of the quadrature decoder 
using the QuadratureDecoderSubsystem.

ReadCount method.

Stop the operation (see page 397).

When done with your program, clean up the 
subsystem (see page 399).



Programming Flowcharts for the OpenLayers.Base Namespace
Simultaneously Starting Subsystems

Configure the subsystem that you want to run 
simultaneously.

Prestart the subsystems on the simultaneous start 
list using the SimultaneousStart.PreStart 

method.

See the previous flow diagrams 
in this chapter; you cannot 
perform single-value operations 
simultaneously on multiplexed 
A/D modules.

Start the subsystems on the simultaneous start 
list using the SimultaneousStart.Start method.

Add the specified subsystem to the list of 
subsystems to simultaneous start using the 

SimultaneousStart.AddSubsystem method.

Deal with events (see page 390 for analog input 
operations; see page 394 for analog output 

operations).

Stop the operation (see page 397).

When done with your program, clean up the 
subsystem (see page 398 for analog I/O 

operations).
375



Chapter 5

376
Set Up Analog Input Channels

Set up the 
channel 
name?

Yes

No

Use the SupportedChannelInfo.Name property to set 
the channel name.

No

Go to next page.

Yes
Use the SupportedChannelInfo.ThermocoupleType 

property to set the thermocouple type.

No

RTD 
channel?

Yes Use the SupportedChannelInfo.RTDType property to set 
the RTD type.

No

If the RTD type is Pt3850 or Custom, use the 
SupportedChannelInfo.RtdR0 property to set the 

resistance value of the RTD.

If the RTD type is Custom, use the 
SupportedChannelInfo.RtdACoefficient, 

RtdBCoefficient, and RtdCCoefficient properties to set 
the Callendar-Van Dusen coefficients for the RTD type.

Thermo-
couple 

channel?

Use the 
SupportedChannelInfo.SensorWiringConfiguration 
property to indicate whether the RTD uses a two-wire, 

three-wire, or four-wire configuration.

Is IOType 
MultiSensor?

Yes
Use the SupportedChannelInfo.MultiSensorType 

property to set the sensor type for each channel.

Voltage 
Input 

Channel?

No

Yes

If supported, use the 
SupportedChannelInfo.InputTerminationEnabled property 
to enable or disable use of the bias return termination resistor 

based on the channel wiring.

If desired, use the SupportedChannelInfo.SensorGain and 
SupportedChannelInfo.SensorOffset properties to set the 

gain and offset for the sensor connected to the channel.



Programming Flowcharts for the OpenLayers.Base Namespace
Accelerometer
channel?

Yes Use the SupportedChannelInfo.Coupling property to set 
the coupling type to AC or DC.

Use the SupportedChannelInfo.ExcitationCurrentSource 
property to set the excitation current source to Internal, External, 

or Disabled.

Use the SupportedChannelInfo.Excitation
CurrentValue property to set the value of the 

internal excitation current source.Excitation 
internal?

Yes

Go to next page.

Thermistor 
channel?

Yes

No

Use the SupportedChannelInfo.ThermistorACoefficient, 
ThermistorBCoefficient, and ThermistorCCoefficient properties to 

set the Steinhart-Hart coefficients for the thermistor.

Resistance 
channel?

Yes

No

Use the SupportedChannelInfo.SensorWiringConfiguration 
property to indicate whether the resistance measurement uses a 

two-wire, three-wire, or four-wire configuration.

Use the SupportedChannelInfo.SensorWiringConfiguration 
property to indicate whether the thermistor uses a two-wire, three-wire, 

or four-wire configuration.

Continued from previous page.

Use the SupportedChannelInfo.ExcitationCurrentSource property 
to set the excitation current source to Internal, External, or Disabled.

Use the SupportedChannelInfo.Excitation
CurrentValue property to set the value of 

the internal excitation current source based 
on the resistor that is used.

Excitation 
internal?

Yes

No

No

Current
channel?

Yes
If supported, use the 

SupportedChannelInfo.InputTerminationEnabled property to enable 
or disable use of the bias return termination resistor based on the 

channel wiring.
377



Chapter 5

378
Use the SupportedChannelInfo.StrainGageBridgeConfiguration property to 
set the strain gage configuration.

 Strain Gage 
channel?

Yes

Continued from previous page.

Use the SupportedChannelInfo.StrainGagePoissonRatio property to set the 
Poisson ratio for bridge configurations that measure the Poisson effect.

Use the SupportedChannelInfo.StrainGageLeadWireResistance property to set 
the lead wire resistance if remote sensing is not used.

Use the SupportedChannelInfo.StrainGageNominalResistance property to 
set the nominal resistance for the strain gage.

Perform 
offset 

nulling?

Yes
Read the value of the bridge in an unstrained condition using 

the AnalogInputSubsystem.GetSingleValueAsVolts 
method.

Specify the value that you read using the 
SupportedChannelInfo.StrainGageOffsetNullingValue

InVolts property. 

No

Perform 
shunt 

calibration?

Yes

To use an internal shunt calibration resistor, if supported, 
enable the resistor by setting the  

SupportedChannelInfo.StrainGageShuntCalibration
ResistorEnabled property to True.

Read the value of the bridge using the 
AnalogInputSubsystem.GetSingleValueAsStrain method.

Divide the expected value of the bridge by the actual value 
that you read, and specify the result, in microstrain, using the 

SupportedChannelInfo.StrainGageShunt
CalibrationValue property.

Use the SupportedChannelInfo.StrainGageGageFactor property to set the 
gage factor for the strain gage.

If using an internal shunt resistor, disable the shunt resistor by 
setting the  

SupportedChannelInfo.StrainGageShuntCalibration
ResistorEnabled property to False.

No

No

Go to next page.



Programming Flowcharts for the OpenLayers.Base Namespace
For full-bridge based sensors, such as load cells, use the 
SupportedChannelInfo.TransducerCapacity property to set the full-scale range of the 

transducer in its native engineering units and use the 
SupportedChannelInfo.TransducerRatedOutputinMv property to set the rated output of the 

transducer in terms of mV/V excitation. 

Bridge
channel?

Continued from previous page.

Use the SupportedChannelInfo.StrainGageLeadWireResistance 
property to set the lead wire resistance.

Use the SupportedChannelInfo.StrainGageNominalResistance 
property to set the nominal resistance.

Perform 
offset 

nulling?

Yes Read the value of the bridge in an unstrained condition using the 
AnalogInputSubsystem.GetSingleValueAsStrain method.

Specify the value that you read using the 
SupportedChannelInfo.StrainGageOffsetNullingValueInVolts property. 

No

Perform 
shunt 

calibration?

Yes

To use an internal shunt calibration resistor, if supported, enable the resistor 
using the  SupportedChannelInfo.StrainGageShuntCalibration

ResistorEnabled property.

Read the value of the bridge using the 
AnalogInputSubsystem.GetSingleValueAsStrain method.

Divide the expected value of the bridge by the actual value that you read, 
and specify the result, in microstrain, using the 

SupportedChannelInfo.StrainGageShuntCalibrationValue property.

Is
Remote 
Sensing 
Used?

No

Yes

Use the AnalogInputSubsystem.ExcitationVoltageSource property to specify the excitation 
voltage source as internal, external, or disabled.

If the internal excitation voltage source is used, use the 
AnalogInputSubsystem.ExcitationVoltageValue property to set the excitation voltage value.

Yes Using 
TEDS?

Yes

Read the TEDS data from the sensor using the 
SupportedChannelInfo.BridgeSensorTeds.

ReadHardwareTeds method, or from a TEDS data file using 
the SupportedChannelInfo.BridgeSensorTeds.

ReadVirtualTeds method.

No

Use the SupportedChannelInfo.BridgeConfiguration property to set the bridge configuration.

If using an internal shunt resistor, disable the shunt resistor by setting the  
SupportedChannelInfo.StrainGageShuntCalibration ResistorEnabled 

property to False.
379



Chapter 5

380
Set Up the ChannelList

Add a channel by physical channel number or 
name to the ChannelList using the 

ChannelList.Add method.

The channel is appended to the end of the 
channel list. A ChannelListEntry object is 
returned.

Add 
another 

channel to 
the list?

Yes

If inhibited, the values for the specified 
channel object are acquired, and then 
discarded.

Set the gain of the specified ChannelListEntry 
object using the ChannelListEntry.Gain property.

Specify whether to inhibit returning data for the 
specified ChannelListEntry object using the 

ChannelListEntry.Inhibit property.

Add a
channel by 

ChannelListEntry
?

No

Yes
Go to the top of page 381.

The driver sets the actual gain as closely as 
possible to the number specified. You can 
read back the exact gain after configuring 
the subsystem using the Gain property. 

Set up the channel to read (see page 376).



Programming Flowcharts for the OpenLayers.Base Namespace
Add a Channel by ChannelListyEntry 

If inhibited, the values for the specified 
channel object are acquired, and then 
discarded.

Use the ChannelListEntry constructor within the 
ChannelListEntry class to create and return a 

ChannelListEntry object that is associated with a 
SupportedChannelInfo object for the specified 

subsystem and Device object.

Set the gain of the specified ChannelListEntry 
object using the ChannelListEntry.Gain property.

Specify whether to inhibit returning data for the 
specified ChannelListEntry object using the 

ChannelListEntry.Inhibit property.

Add the ChannelListEntry to the ChannelList 
using the ChannelList.Add method.

The channel is appended to the end of 
the channel list. 

Define 
another 

channel?

Yes

No

Add 
another 

channel to 
the list?

Yes

The driver sets the actual gain as 
closely as possible to the number 
specified. You can read back the exact 
gain after configuring the subsystem 
using the Gain property. 
381



Chapter 5

382
Set up Common Subsystem Parameters

Specify SingleEnded if you are using 
pseudo-differential channels.

Set the channel type of the subsystem to 
SingleEnded or Differential using the 

ChannelType property within the appropriate 
subsystem class.

Set the data encoding of the subsystem to Binary or 
TwosComplement using the Encoding property 

within the appropriate subsystem class.

Set the voltage range of the subsystem using the 
VoltageRange property within the appropriate 

subsystem class.

Set the synchronization mode of the subsystem 
to None, Master, or Slave using the 
SynchronizationMode property.

Set the filter type of the subsystem to Raw or 
MovingAverage using the 

AnalogInputSubsystem. DataFilterType 
property.

Set the excitation voltage source using the 
AnalogInputSubsystem.ExcitationVoltage

Source property.

Set the value of the internal excitation 
voltage source using the 

AnalogInputSubsystem.Excitation
VoltageValue property.

Is 
excitation 

source 
Internal?

Yes

Does 
subsystem 

support strain 
gages or 
bridges?

Yes

No

Does 
subsystem 

support
synchronization

through the
Sync Bus?

Yes

No

Does 
subsystem 

support
filters?

Yes



Programming Flowcharts for the OpenLayers.Base Namespace
Set Up Clocks 

Using an
internal
clock?

The driver sets the actual frequency as closely 
as possible to the number specified. You can 
read back the exact frequency after 
configuring the subsystem using the 
Frequency property.

Yes

No

The driver sets the actual clock divider as 
closely as possible to the number specified. 
You can read back the exact clock divider 
value after configuring the subsystem using 
the ExtClockDivider property.

Set the clock source to Internal using the 
Clock.Source property.

Set the frequency of the internal clock using the 
Clock.Frequency property.

Set the clock source to External using the 
Clock.Source property.

Specify a clock divider to apply to the 
external clock source using the 

Clock.ExtClockDivider property.
383



Chapter 5

384
Set Up Triggers

Set the reference trigger source to one of the following values using the 
AnalogInputSubsystem.ReferenceTrigger.TriggerType property: Software 

for a software (internal) trigger, TTLPos for an external TTL low-to-high trigger, 
DigitalEvent for a digital event trigger, TTLNeg for an external TTL high-to-low 
trigger, ThresholdPos for a positive-going threshold trigger, ThresholdNeg for a 
negative-going threshold trigger, or Sync Bus for a Sync Bus trigger. This trigger 

source stops pre-trigger acquisition, if in progress, and starts 
post-trigger acquisition.

Using a
start trigger and 
reference trigger 
for pre-trigger/ 

post-trigger 
operations?

Yes

No

Set the start trigger type to one of the following values (if supported by your 
device) using the AnalogInputSubsystem.Trigger.TriggerType property: 

Software for a software (internal) trigger, TTLPos for an external TTL low-to-high 
trigger, DigitalEvent for a digital event trigger, TTLNeg for an external TTL 
high-to-low trigger, ThresholdPos for a positive-going threshold trigger, or 

ThresholdNeg for a negative-going threshold trigger. 

Using 
threshold 
trigger for 
the start 
trigger?

Yes

Set the channel to use for the threshold trigger using 
the AnalogInputSubsystem.Trigger.
ThresholdTriggerChannel property.

Set the level of the threshold trigger using the 
AnalogInputSubsystem.Trigger.Level property.

Using 
threshold 

trigger for the 
reference 
trigger?

Yes
Set the channel to use for the threshold trigger using 

the AnalogInputSubsystem.ReferenceTrigger.
ThresholdTriggerChannel property.

Set the level of the threshold trigger using the 
AnalogInputSubsystem.ReferenceTrigger.Level 

property.

Specify the number of samples to acquire after the reference trigger using the 
AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount 

property.

Go to next page.

No

No



Programming Flowcharts for the OpenLayers.Base Namespace
Set the post-trigger source to one of the following values (if supported by your 
device) using the AnalogInputSubsystem.Trigger.TriggerType property: 

Software for a software (internal) trigger, TTLPos for an external TTL low-to-high 
trigger, DigitalEvent for a digital event trigger, TTLNeg for an external TTL 
high-to-low trigger, ThresholdPos for a positive-going threshold trigger, or 

ThresholdNeg for a negative-going threshold trigger. This trigger source stops 
pre-trigger acquisition, if in progress, and starts post-trigger acquisition.

Using 
pre-trigger or 
about-trigger
mode without 
a reference 

trigger (legacy 
device)?

Yes
Set the pre-trigger type to one of the following values (if supported by your 

device) using AnalogInputSubsystem.Trigger.PreTriggerSource property: 
Software for a software (internal) trigger, TTLPos for an external TTL 

low-to-high trigger, DigitalEvent for a digital event trigger, TTLNeg for an 
external TTL high-to-low trigger, ThresholdPos for a positive-going threshold 

trigger, or ThresholdNeg for a negative-going threshold trigger.

Using 
post-trigger or 
about-trigger 

mode without a 
reference 
trigger?

Yes

Using 
threshold 
trigger?

Yes
If supported by your device, set the channel to use for 

the threshold trigger using the 
AnalogInputSubsystem.Trigger.

ThresholdTriggerChannel property.

If supported by your device, set the level of the 
threshold trigger using the 

AnalogInputSubsystem.Trigger.Level property.

Using 
threshold 
trigger?

Yes If supported by your device, set the channel to use for 
the threshold trigger using the 

AnalogInputSubsystem.Trigger.
ThresholdTriggerChannel property.

If supported by your device, set the level of the 
threshold trigger using the 

AnalogInputSubsystem.Trigger.Level property.

No

No

No

Go to next page.

Continued from previous page.
385



Chapter 5

386
Set the trigger source to one of the following values (if supported by your device) 
using the AnalogOutputSubsystem.Trigger.TriggerType property: Software 
for a software (internal) trigger, TTLPos for an external TTL low-to-high trigger, 
DigitalEvent for a digital event trigger, TTLNeg for an external TTL high-to-low 

trigger, ThresholdPos for a positive-going threshold trigger, or ThresholdNeg for 
a negative-going threshold trigger. 

Yes

Using 
threshold 
trigger?

Yes If supported by your device, set the channel to use for 
the threshold trigger using the 

AnalogOutputSubsystem.Trigger.
ThresholdTriggerChannel property.

If supported by your device, set the level of the 
threshold trigger using the 

AnalogOutputSubsystem.Trigger.Level property.

Continued from previous page.

Using a 
trigger to start 
analog output 
operations?



Programming Flowcharts for the OpenLayers.Base Namespace
Set Up Triggered Scan

The channel is retriggered at the frequency of the 
retrigger clock.

Enable triggered scan mode using the 
TriggeredScan.Enabled property.

Set the retrigger source to one of the following 
values using the TriggeredScan.RetriggerSource 
property: Software for a software (internal) trigger, 

TTLPos for an external TTL low-to-high trigger, 
DigitalEvent for a digital event trigger, TTLNeg for an 
external TTL high-to-low trigger, ThresholdPos for a 
positive-going threshold trigger, or ThresholdNeg for 

a negative-going threshold trigger. 

Set the frequency of the retrigger clock using the 
TriggeredScan.RetriggerFrequency property.

The driver sets the actual frequency as closely as 
possible to the number specified. You can read 
back the exact frequency after configuring the 
subsystem using the RetriggerFrequency 
property.

Specify the number of times to scan the channel 
list per retrigger using the 

TriggeredScan.MultiScanCount property.
387



Chapter 5

388
Set Up Input Buffering

Allocate 
another 
buffer?

Yes
Continuous input operations require a 
minimum of two OlBuffer objects.

Use the OlBuffer constructor within the OlBuffer 
class to create an OlBuffer object and allocate 
an internal data buffer for use with an analog 

input subsystem,

During this step, you also determine the size 
of the internal data buffer by specifying the 
number of samples in the buffer (each sample 
typically requires 2 bytes).

Use the AnalogInputSubsystem.BufferQueue.
QueueBuffer method to add the OlBuffer object 

to the queue for the analog input subsystem.



Programming Flowcharts for the OpenLayers.Base Namespace
Set Up Output Buffering

Allocate 
another 
buffer?

Yes

Continuous output operations require two 
OlBuffer objects if WrapSingleBuffer is False 
(one if WrapSingleBuffer is True).

Use the OlBuffer constructor within the OlBuffer 
class to create an OlBuffer object and allocate 
an internal data buffer for use with an analog 

output subsystem.

During this step, you also determine the size 
of the internal buffer by specifying the number 
of samples in the buffer (each sample 
typically requires 2 bytes).

Set the buffer wrap mode of the analog output 
subsystem to True or False using the 

AnalogOutputSubsystem.WrapSingleBuffer 
property.

No

Copy data from the user-specified array into the 
internal buffer of the OlBuffer object using one of 
the following methods: OlBuffer.PutDataAsRaw 

(to output raw counts) or 
OlBuffer.PutDataAsVolts (to output voltages).

By default, WrapSingleBuffer is False. In this 
state, data is written from the allocated buffers 
continuously. As each buffer is emptied, a 
BufferDone event occurs. If no more buffers are 
available and queued to the subsystem, the 
operation stops. 

If you set WrapSingleBuffer to True, the device 
driver continuously reuses the first buffer queued to 
the analog output subsystem. Data from a single 
output buffer is downloaded to the FIFO of the 
device (if supported by the device) and is written 
out starting from the first location of the buffer; 
when the end of the buffer is reached, the device 
starts outputting data from the first location of the 
buffer, and the process repeats.

Add the OlBuffer object to the queue for the 
analog output subsystem using the 

AnalogOutputSubsystem.BufferQueue.
QueueBuffer method.

Create a user-specified array with the data 
to output.
389



Chapter 5

390
Deal with Events and Buffers for Input Operations

PreTrigger
BufferDoneEvent 

raised?

Yes Use the PreTriggerBufferDoneHandler delegate to receive the 
BufferDoneEventArgs argument and handle the buffer.

Process the data in your program.

Add the OlBuffer object to the queue for the analog input subsystem using the 
BufferQueue.QueueBuffer method.

Go to the next page.

Declare a user-specified array of the appropriate type (determined 
by the method used next).

No

OlBuffer.
ValidSamples 

> 0?

No

Yes

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 

OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the resolution is 16 bits 
or less and copies into an array of signed, 16-bit integers),

OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 16 bits or less 
and copies into an array of unsigned 16-bit integers), 

OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 16-bits and copies 
into an array of unsigned 32-bit integers), 

OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 
OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),

OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of floating-point values), 
OlBuffer.GetDataAsResistance (converts to ohms and copies into an array of floating-point values),
OlBuffer.GetDataAsCurrent (converts to amperes and copies into an array of floating-point values),
OlBuffer.GetDataAsTemperatureByte (converts to temperature and copies into an array of bytes), 

OlBuffer.GetDataAsTemperatureDouble (converts to temperature and copies into an array of floating-point 
values), 

OlBuffer.GetDataAsRpm (converts to RPM values and copies into an array of floating-point values), 
OlBuffer.GetDataAsStrain (converts to microstrain values and copies into an array of floating-point values), 

OlBuffer.GetDataAsBridgeBasedSensor (converts to the engineering values of the full-bridge-based 
sensor and copies into an array of floating-point values), or 

OlBuffer.GetDataAsNormalizedBridgeOutput (converts to mV/Vexe and copies into an array of 
floating-point values).



Programming Flowcharts for the OpenLayers.Base Namespace

B
ufferDoneEvent 
raised?

Yes

No

Use the BufferDoneHandler delegate to receive the 
BufferDoneEventArgs argument and handle the buffer.

OlBuffer.
ValidSamples 

> 0?

No

Yes Declare a user-specified array of the appropriate type 
(determined by the method used next).

Process the data in your program.

Add the OlBuffer object to the queue for the analog input subsystem using the 
AnalogInputSubsystem.BufferQueue.QueueBuffer method.

Go to the next page.

Continued from previous page.

No

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 

OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the resolution is 16 bits 
or less and copies into an array of signed, 16-bit integers),

OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 16 bits or less 
and copies into an array of unsigned 16-bit integers), 

OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 16-bits and copies 
into an array of unsigned 32-bit integers), 

OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 
OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),

OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of floating-point values), 
OlBuffer.GetDataAsResistance (converts to ohms and copies into an array of floating-point values),
OlBuffer.GetDataAsCurrent (converts to amperes and copies into an array of floating-point values),
OlBuffer.GetDataAsTemperatureByte (converts to temperature and copies into an array of bytes), 

OlBuffer.GetDataAsTemperatureDouble (converts to temperature and copies into an array of floating-point 
values), 

OlBuffer.GetDataAsRpm (converts to RPMs and copies into an array of floating-point values), 
OlBuffer.GetDataAsStrain (converts to microstrains and copies into an array of floating-point values), 
OlBuffer.GetDataAsBridgeBasedSensor (converts to the engineering values of the full-bridge-based 

sensor and copies into an array of floating-point values), or 
OlBuffer.GetDataAsNormalizedBridgeOutput (converts to mV/Vexe and copies into an array of 

floating-point values).
391



Chapter 5

392
QueueDoneEvent 
raised?

Yes

No

Use the QueueDoneHandler delegate to receive the 
GeneralEventArgs argument and handle the event.

Continued from previous page.

QueueStopped
Event raised?

Yes

No

Use the QueueStoppedHandler delegate to receive 
the GeneralEventArgs argument and handle the event.

DriverRunTime
ErrorEvent 

raised?

Yes

No

Use the DriverRunTimeErrorEventHandler delegate 
to receive the DriverRunTimeErrorEventArgs argument 

and handle the event.

Return to the top of page 390.

Yes
Use the IOCompleteHandler delegate to receive the 

IOCompleteEventArgs argument and handle the event.

IOComplete 
Event 

raised?



Programming Flowcharts for the OpenLayers.Base Namespace
Transfer Data from an Inprocess Buffer

A BufferDoneEvent is generated when 
the operation completes.

Move the data from the internal buffer of the 
OlBuffer object that is currently being filled to 

the internal buffer of a new OlBuffer object 
using the AnalogInputSubsystem.

MoveFromBufferInprocess method.

See page 390 to deal with the buffers and 
events.

Is OlBuffer 
Inprocess?

Yes

Check the state of the OlBuffer object that is 
being filled using the OlBuffer.State 

property.

No

Create an OlBuffer object to hold the data 
that you want to move using the OlBuffer 

constructor.
393



Chapter 5

394
Deal with Events and Buffers for Output Operations

BufferDoneEvent 
raised?

Yes

No

Use the BufferDoneHandler delegate to 
receive the BufferDoneEventArgs argument 

and handle the buffer.

Go to the next page.

No

Yes
Refill 

buffers?

Set the AnalogOutputSubsystem.
WrapSingleBuffer property to True if you want 
the device driver to continuously reuse the first 

OlBuffer object queued to the subsystem.

Add the OlBuffer object to the queue for 
the analog output subsystem using the 

AnalogOutputSubsystem.BufferQueue.
QueueBuffer method.

Copy data from a user-specified array into 
the internal buffer of the OlBuffer object 

using one of the following methods: 
OlBuffer.PutDataAsRaw (to output raw 
counts) or OlBuffer.PutDataAsVolts (to 

output voltages).

Create a user-specified array of the 
appropriate type with the data to output 
(determined by the method used next).



Programming Flowcharts for the OpenLayers.Base Namespace
QueueDoneEvent 
raised?

Yes

No

Use the QueueDoneHandler delegate to receive the 
GeneralEventArgs argument and handle the event.

Continued from previous page.

QueueStopped
Event raised?

Yes

No

Use the QueueStoppedHandler delegate to receive 
the GeneralEventArgs argument and handle the event.

DriverRunTime
ErrorEvent 

raised?

Yes

No

Use the DriverRunTimeErrorEventHandler delegate 
to receive the DriverRunTimeErrorEventArgs argument 

and handle the event.

Return to the top of page 394.

Yes

No

Use the IOCompleteHandler delegate to receive the 
IOCompleteEventArgs argument and handle the event.

IOComplete 
Event 

raised?

Note that in some cases, this event is raised well after the 
data is transferred from the buffer to the device (when 
BufferDoneEvent and QueueDoneEvent are raised). 
395



Chapter 5

396
Set Clocks and Gates for Counter/Timer Operations

Using an
internal
clock?

The driver sets the actual frequency as closely as 
possible to the number specified. You can read 
back the exact frequency after configuring the 
subsystem using the Frequency property.

Yes

No

The driver sets the actual clock divider as closely 
as possible to the number specified. You can read 
back the exact clock divider value after configuring 
the subsystem using the ExtClockDivider 
property.

Set the clock source to Internal using the 
Clock.Source property.

Set the frequency of the output pulse from the 
internal clock using the Clock.Frequency 

property.

Set the clock source to External using the 
Clock.Source property.

Specify a clock divider to apply to the 
external clock source using the 

Clock.ExtClockDivider property. This 
sets the frequency of the output pulse.

Set the gate type to one of the following 
values using the 

CounterTimerSubsystem.
GateType property: None for a software 

gate, HighLevel for a high-level gate, 
LowLevel for a low-level gate, HighEdge for 
a high-edge gate, LowEdge for a low-edge 

gate, or Level for any level gate.



Programming Flowcharts for the OpenLayers.Base Namespace
Stop the Operation

Stop in an 
orderly 
way?

The driver posts at least one BufferDoneEvent and 
QueueStoppedEvent events. 

Yes

No

Reinitialize 
subsystem?

Yes

No

Use the Stop method within the appropriate 
subsystem class to stop the operation after the 

current buffer has been completed.

Use the Reset method within the appropriate 
subsystem class to stop the operation immediately 

without waiting for the current buffer 
to be completed, and reinitialize the subsystem to 

the default configuration.

Use the Abort method within the appropriate 
subsystem class to stop the operation immediately 

without waiting for the current buffer 
to be completed.
397



Chapter 5

398
Clean Up Single-Value I/O Operations

Clean Up Buffered I/O Operations

Clean Up Digital I/O Operations

Release the device using the
Device.Dispose method.

Release the subsystem connection to the hardware 
device using the Dispose method within the 

appropriate subsystem class.

Release the device using the
Device.Dispose method.

For simultaneous operations only, clear the 
simultaneous start list using the 

SimultaneousStart.Clear method.

Remove all OlBuffer objects queued to the 
subsystem and deallocate the associated internal 

buffers using the 
BufferQueue.FreeAllQueueBuffers method.

Release the subsystem connection to the hardware 
device using the Dispose method within the 

appropriate subsystem class.

Release the subsystem connection to the hardware 
device using the DigitalInputSubsystem.Dispose 

or DigitalOutputSubsystem.Dispose method.

Release the device using the
Device.Dispose method.

For simultaneous operations only, clear the 
simultaneous start list using the 

SimultaneousStart.Clear method.



Programming Flowcharts for the OpenLayers.Base Namespace
Clean Up Counter/Timer Operations

Clean Up Quadrature Decoder Operations

Clean Up Tachometer Operations

Release the subsystem connection to the hardware 
device using the CounterTimerSubsystem.Dispose 

method.

For simultaneous operations only, clear the 
simultaneous start list using the 

SimultaneousStart.Clear method.

Release the device using the
Device.Dispose method.

Release the subsystem connection to the hardware 
device using the 

QuadratureDecoderSubsystem.Dispose method.

For simultaneous operations only, clear the 
simultaneous start list using the 

SimultaneousStart.Clear method.

Release the device using the
Device.Dispose method.

Release the subsystem connection to the hardware 
device using the TachSubsystem.Dispose method.

Release the device using the
Device.Dispose method.
399



Chapter 5

400



6
Programming Flowcharts for the

OpenLayers.DeviceCollection
Namespace

Single-Value Analog Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Single-Value Analog Output Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Continuous Analog Input Operations - One Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Continuous Analog Input Operations - Multiple Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Continuous Analog Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Simultaneously Starting Subsystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
401



Chapter 6

402
The flowcharts presented in the remainder of this chapter show how to perform typical 
input/output operations using the OpenLayers.DeviceCollection namespace.

Note: Depending on your device, some of the settings may not be programmable. Refer to 
your device documentation for details.

Although the flowcharts do not show error checking, it is recommended that you add 
exception handling to your program.

Some steps represent several substeps; if you are unfamiliar with the detailed operations 
involved with any one step, refer to the indicated page for detailed information. 



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Single-Value Analog Input Operations

Set the data flow mode to SingleValue using the 
AnalogInputSubsystem.DataFlow property.

Get an object for each element of the subsystem that you want 
to use using the Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device for 
the specified device collection using the 

DeviceMgr.GetDevice method.

Set up the analog input channel (see page 411).

Configure the subsystem using the 
AnalogInputSubsystem.Config method.

Set up the common subsystem parameters 
(see page 414).

Acquire 
another 
value?

Acquire a single value using one of the following methods: 
AnalogInputSubsystem.GetSingleValueAsRaw 

(for a raw count),
AnalogInputSubsystem.GetSingleValueAsVolts 

(for a voltage value),
AnalogInputSubsystem.GetSingleValueAsSensor 

(for a sensor value).

When done with your program, clean up the subsystem 
(see page 426).

No

Yes
403



Chapter 6

404
Single-Value Analog Output Operations

Set the data flow mode to SingleValue using the 
AnalogOutputSubsystem.DataFlow property.

Get an object for each element of the subsystem 
that you want to use using the 

Device.AnalogOutputSubsystem method.

If you haven’t already done so, get an object of 
type DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of 
type Device for the specified device collection 

using the DeviceMgr.GetDevice method.

Configure the subsystem using the 
AnalogOutputSubsystem.Config method.

Set the common subsystem parameters 
(see page 414).

Does 
subsystem 

support 
simultaneous 

output?

Output
another 
value?

No

YesOutput a single value using one of the following 
methods:

AnalogOutputSubsystem.SetSingleValueAsRaw 
(to output a raw count) or

AnalogOutputSubsystem.SetSingleValueAsVolts (to 
output a voltage).

When done with your program, clean up 
the subsystem (see page 426).

Yes

No

Output a single value to each output channel using one of the 
following methods: 

AnalogOutputSubsystem.SetSingleValuesAsRaw 
(to output raw counts) or 

AnalogOutputSubsystem.SetSingleValuesAsVolts
(to output voltages).



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Continuous Analog Input Operations - One Buffer

Set up common subsystem parameters (see page 414).

Get an object for the element of the analog input subsystem that you want 
to use using the Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of type DeviceMgr using the 
DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device for the 
specified device collection using the DeviceMgr.GetDevice method.

Set up the clocks (see page 415).

Set up the triggers (see page 416). Note that reference triggers are 
not supported for this operation type.

Set up the analog input channel (see page 411).

Add a single channel to the ChannelList (see page 412).

Use the AnalogInputSubsystem.DataFlow property to set the data 
flow mode to Continuous.

Configure the subsystem using the AnalogInputSubsystem.Config 
method.

Call the AnalogInputSubsystem.GetOneBuffer method to acquire one 
buffer of data from the specified analog input channel.

Go to the next page.
405



Chapter 6

406
When done with your program, clean up the subsystem 
(see page 426).

Continued from previous page.

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 
OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the 

resolution is 16 bits or less and copies into an array of signed, 16-bit integers),
OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 

16 bits or less and copies into an array of unsigned 16-bit integers), 
OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 

16-bits and copies into an array of unsigned 32-bit integers), 
OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 

OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),
OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of 

floating-point values), or
OlBuffer.GetDataAsRpm (converts to RPM values and copies into an array of

floating-point values).



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Continuous Analog Input Operations - Multiple Buffers

Set up the ChannelList (see page 412).

Go to the next page.

Use the AnalogInputSubsystem.DataFlow property to set 
one of the following data flow modes: Continuous for 

post-trigger operations, ContinuousPreTrigger for continuous 
pre-trigger operations, or ContinuousPrePostTrigger for 

continuous about-trigger operations.

Get an object for the element of the analog input subsystem 
that you want to use using the 

Device.AnalogInputSubsystem method.

If you haven’t already done so, get an object of type 
DeviceMgr using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device 
for the specified device collection using the 

DeviceMgr.GetDevice method.

Set up the clocks (see page 415).

Set up buffering (see page 418).

Configure the subsystem using the 
AnalogInputSubsystem.Config method.

Set up the triggers (see page 416).

Set up the analog input channels (see page 411).

Set up common subsystem parameters.
(see page 414).
407



Chapter 6

408
 

Deal with events and buffers 
(see page 420).

Stop the operation (see page 425).

Start the operation with the
AnalogInputSubsystem.Start method.

When done with your program, clean up 
the subsystem (see page 426).

Continued from previous page.

Configure the subsystem to execute BufferDoneEvent 
events synchronously in a single thread using the 

AnalogInputSubsystem.SynchronousBufferDone property.



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Continuous Analog Output Operations

Set up the channel list (see page 412).

Set up common subsystem parameters (see page 414).

Get an object for the element of the analog output subsystem that you 
want to use using the Device.AnalogOutputSubsystem method.

Set up buffering (see page 419).

Set up the clocks (see page 415).

If you haven’t already done so, get an object of type DeviceMgr 
using the DeviceMgr.Get method.

If you haven’t already done so, get an object of type Device for the 
specified device collection using the DeviceMgr.GetDevice method.

Set the data flow mode to Continuous using the 
AnalogOutputSubsystem.DataFlow property.

Deal with events and buffers (see page 423).

Stop the operation (see page 425).

When done with your program, clean up the subsystem
(see page 426).

Configure the subsystem using the 
AnalogOutputSubsystem.Config method.

Start the operation with the AnalogOutputSubsystem.Start 
method.

Set up the triggers (see page 416).

If desired, mute the output using the 
AnalogOutputSubsystem.Mute method.
409



Chapter 6

410
Simultaneously Starting Subsystems

Configure the subsystem that you want to run 
simultaneously.

Prestart the subsystems on the simultaneous start 
list using the SimultaneousStart.PreStart 

method.

See the previous flow diagrams in 
this chapter; you cannot perform 
single-value operations 
simultaneously on multiplexed 
A/D modules.

Start the subsystems on the simultaneous start 
list using the SimultaneousStart.Start method.

Add the specified subsystem to the list of 
subsystems to simultaneous start using the 

SimultaneousStart.AddSubsystem method.

Deal with events (see page 420 for analog input 
operations; see page 423 for analog output 

operations).

Stop the operation (see page 425).

When done with your program, clean up the 
subsystem (see page 426 for analog I/O 

operations).



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Set Up Analog Input Channels

Set up the 
channel 
name?

Yes

No

Use the SupportedChannelInfo.Name property to set the 
channel name.

Voltage 
Input 

Channel?

No

Yes
If desired, use the SupportedChannelInfo.SensorGain and 

SupportedChannelInfo.SensorOffset properties to set the gain and 
offset for the sensor connected to the channel.

Accelerometer
channel?

Yes
Use the SupportedChannelInfo.Coupling property to set the 

coupling type to AC or DC.

Use the SupportedChannelInfo.ExcitationCurrentSource 
property to set the excitation current source to Internal, External, 

or Disabled.

Use the SupportedChannelInfo.Excitation
CurrentValue property to set the value of the 

internal excitation current source.Excitation 
internal?

Yes
411



Chapter 6

412
Set Up the ChannelList

Add a channel by physical channel number or 
name to the ChannelList using the 

ChannelList.Add method.

The channel is appended to the end of the 
channel list. A ChannelListEntry object is 
returned.

Add 
another 

channel to 
the list?

Yes

If inhibited, the values for the specified 
channel object are acquired, and then 
discarded.

Set the gain of the specified ChannelListEntry 
object using the ChannelListEntry.Gain property.

Specify whether to inhibit returning data for the 
specified ChannelListEntry object using the 

ChannelListEntry.Inhibit property.

Add a
channel by 

ChannelListEntry
?

No

Yes
Go to the top of page 413.

The driver sets the actual gain as closely as 
possible to the number specified. You can 
read back the exact gain after configuring 
the subsystem using the Gain property. 

Set up the channel to read (see page 411).

At least one channel from the master device in the device collection must 
be added to the channel list.

If supported by your device, you can add a non-native channel (such as 
the digital I/O port, counter/timer, or tachometer) to the channel list. 
However, you must configure these channels using the OpenLayers.Base 
namespace. See Chapter 5 starting on page 347 for more information.



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Add a Channel by ChannelListyEntry 

If inhibited, the values for the specified channel 
object are acquired, and then discarded.

Use the ChannelListEntry constructor within the 
ChannelListEntry class to create and return a 

ChannelListEntry object that is associated with a 
SupportedChannelInfo object for the specified 

subsystem and Device object.

Set the gain of the specified ChannelListEntry 
object using the ChannelListEntry.Gain property.

Specify whether to inhibit returning data for the 
specified ChannelListEntry object using the 

ChannelListEntry.Inhibit property.

Add the ChannelListEntry to the ChannelList 
using the ChannelList.Add method.

The channel is appended to the end of the 
channel list. 

Define 
another 

channel?

Yes

No

Add 
another 

channel to 
the list?

Yes

The driver sets the actual gain as closely as 
possible to the number specified. You can read 
back the exact gain after configuring the subsystem 
using the Gain property. 
413



Chapter 6

414
Set up Common Subsystem Parameters

Specify SingleEnded if you are using 
pseudo-differential channels.

Set the channel type of the subsystem to 
SingleEnded or Differential using the 

ChannelType property within the appropriate 
subsystem class.

Set the data encoding of the subsystem to Binary or 
TwosComplement using the Encoding property 

within the appropriate subsystem class.

Set the voltage range of the subsystem using the 
VoltageRange property within the appropriate 

subsystem class.



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Set Up Clocks 

Using an
internal
clock?

The driver sets the actual frequency as closely as 
possible to the number specified. You can read 
back the exact frequency after configuring the 
subsystem using the Frequency property.

Yes

No

The driver sets the actual clock divider as closely 
as possible to the number specified. You can 
read back the exact clock divider value after 
configuring the subsystem using the 
ExtClockDivider property.

Set the clock source to Internal using the 
Clock.Source property.

Set the frequency of the internal clock using the 
Clock.Frequency property.

Set the clock source to External using the 
Clock.Source property.

Specify a clock divider to apply to the 
external clock source using the 

Clock.ExtClockDivider property.
415



Chapter 6

416
Set Up Triggers

Set the reference trigger source to one of the following values using the 
AnalogInputSubsystem.ReferenceTrigger.TriggerType property: Software 

for a software (internal) trigger, TTLPos for an external TTL low-to-high trigger, 
DigitalEvent for a digital event trigger, TTLNeg for an external TTL high-to-low 

trigger, ThresholdPos for a positive-going threshold trigger, or ThresholdNeg for 
a negative-going threshold trigger. This trigger source stops pre-trigger 

acquisition, if in progress, and starts post-trigger acquisition.

Using a
start trigger and 
reference trigger 
for pre-trigger/ 

post-trigger 
operations?

Yes

No

Set the start trigger type to one of the following values (if supported by your 
device) using the AnalogInputSubsystem.Trigger.TriggerType property: 

Software for a software (internal) trigger, TTLPos for an external TTL low-to-high 
trigger, DigitalEvent for a digital event trigger, TTLNeg for an external TTL 
high-to-low trigger, ThresholdPos for a positive-going threshold trigger, or 

ThresholdNeg for a negative-going threshold trigger. 

Using 
threshold 
trigger for 
the start 
trigger?

Yes
Set the channel to use for the threshold trigger using 

the AnalogInputSubsystem.Trigger.
ThresholdTriggerChannel property.

Set the level of the threshold trigger using the 
AnalogInputSubsystem.Trigger.Level property.

Using 
threshold 

trigger for the 
reference 
trigger?

Yes Set the channel to use for the threshold trigger using 
the AnalogInputSubsystem.ReferenceTrigger.

ThresholdTriggerChannel property.

Set the level of the threshold trigger using the 
AnalogInputSubsystem.ReferenceTrigger.Level 

property.

Specify the number of samples to acquire after the reference trigger using the 
AnalogInputSubsystem.ReferenceTrigger.PostTriggerScanCount 

property.

Go to next page.

No

No



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Set the post-trigger source to one of the following values (if supported by your 
device) using the AnalogInputSubsystem.Trigger.TriggerType property: 

Software for a software (internal) trigger, TTLPos for an external TTL low-to-high 
trigger, DigitalEvent for a digital event trigger, TTLNeg for an external TTL 
high-to-low trigger, ThresholdPos for a positive-going threshold trigger, or 

ThresholdNeg for a negative-going threshold trigger. This trigger source stops 
pre-trigger acquisition, if in progress, and starts post-trigger acquisition.

Using 
post-trigger or 
about-trigger 

mode without a 
reference 
trigger?

Yes

Using 
threshold 
trigger?

Yes If supported by your device, set the channel to use for 
the threshold trigger using the 

AnalogInputSubsystem.Trigger.
ThresholdTriggerChannel property.

If supported by your device, set the level of the 
threshold trigger using the 

AnalogInputSubsystem.Trigger.Level property.

No

Continued from previous page.

Set the trigger source to one of the following values (if supported by your device) 
using the AnalogOutputSubsystem.Trigger.TriggerType property: Software 
for a software (internal) trigger, TTLPos for an external TTL low-to-high trigger, 
DigitalEvent for a digital event trigger, TTLNeg for an external TTL high-to-low 

trigger, ThresholdPos for a positive-going threshold trigger, or ThresholdNeg for 
a negative-going threshold trigger. 

Yes

Using 
threshold 
trigger?

Yes If supported by your device, set the channel to use for 
the threshold trigger using the 

AnalogOutputSubsystem.Trigger.
ThresholdTriggerChannel property.

If supported by your device, set the level of the 
threshold trigger using the 

AnalogOutputSubsystem.Trigger.Level property.

Using a 
trigger to start 
analog output 
operations?
417



Chapter 6

418
Set Up Input Buffering

Allocate 
another 
buffer?

Yes
Continuous input operations require a 
minimum of two OlBuffer objects.

Use the OlBuffer constructor within the OlBuffer 
class to create an OlBuffer object and allocate 
an internal data buffer for use with an analog 

input subsystem,

During this step, you also determine the size 
of the internal data buffer by specifying the 
number of samples in the buffer (each sample 
typically requires 2 bytes).

Use the AnalogInputSubsystem.BufferQueue.
QueueBuffer method to add the OlBuffer object 

to the queue for the analog input subsystem.



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Set Up Output Buffering

Allocate 
another 
buffer?

Yes

Continuous output operations require two OlBuffer 
objects if WrapSingleBuffer is False (one if 
WrapSingleBuffer is True).

Use the OlBuffer constructor within the OlBuffer 
class to create an OlBuffer object and allocate 
an internal data buffer for use with an analog 

output subsystem.

During this step, you also determine the size of 
the internal buffer by specifying the number of 
samples in the buffer (each sample typically 
requires 2 bytes).

Set the buffer wrap mode of the analog output 
subsystem to True or False using the 

AnalogOutputSubsystem.WrapSingleBuffer 
property.

No

Copy data from the user-specified array into the 
internal buffer of the OlBuffer object using one of 
the following methods: OlBuffer.PutDataAsRaw 

(to output raw counts) or 
OlBuffer.PutDataAsVolts (to output voltages).

By default, WrapSingleBuffer is False. In this state, 
data is written from the allocated buffers 
continuously. As each buffer is emptied, a 
BufferDone event occurs. If no more buffers are 
available and queued to the subsystem, the 
operation stops. 

If you set WrapSingleBuffer to True, the device 
driver continuously reuses the first buffer queued to 
the analog output subsystem. Data from a single 
output buffer is downloaded to the FIFO of the 
device (if supported by the device) and is written out 
starting from the first location of the buffer; when the 
end of the buffer is reached, the device starts 
outputting data from the first location of the buffer, 
and the process repeats.

Add the OlBuffer object to the queue for the 
analog output subsystem using the 

AnalogOutputSubsystem.BufferQueue.
QueueBuffer method.

Create a user-specified array with the data 
to output.
419



Chapter 6

420
Deal with Events and Buffers for Input Operations

PreTrigger
BufferDoneEvent 

raised?

Yes Use the PreTriggerBufferDoneHandler delegate to receive the 
BufferDoneEventArgs argument and handle the buffer.

Process the data in your program.

Add the OlBuffer object to the queue for the analog input subsystem using the 
BufferQueue.QueueBuffer method.

Go to the next page.

Declare a user-specified array of the appropriate type (determined 
by the method used next).

No

OlBuffer.
ValidSamples 

> 0?

No

Yes

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 

OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the resolution is 16 bits 
or less and copies into an array of signed, 16-bit integers),

OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 16 bits or less 
and copies into an array of unsigned 16-bit integers), 

OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 16-bits and copies 
into an array of unsigned 32-bit integers), 

OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 
OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),

OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of floating-point values), 
OlBuffer.GetDataAsRpm (converts to RPM values and copies into an array of floating-point values).



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace

B
ufferDoneEvent 
raised?

Yes

No

Use the BufferDoneHandler delegate to receive the 
BufferDoneEventArgs argument and handle the buffer.

OlBuffer.
ValidSamples 

> 0?

No

Yes Declare a user-specified array of the appropriate type 
(determined by the method used next).

Process the data in your program.

Add the OlBuffer object to the queue for the analog input subsystem using the 
AnalogInputSubsystem.BufferQueue.QueueBuffer method.

Go to the next page.

Continued from previous page.

No

Copy the data from the internal buffer of an OlBuffer object to a user-specified array using 
OlBuffer.GetDataAsRawByte (converts to raw counts and copies into an array of bytes), 

OlBuffer.GetDataAsRawInt16 (converts twos complement data into raw counts when the resolution is 16 bits 
or less and copies into an array of signed, 16-bit integers),

OlBuffer.GetDataAsRawUInt16 (converts binary data into raw counts when the resolution is 16 bits or less 
and copies into an array of unsigned 16-bit integers), 

OlBuffer.GetDataAsRawUInt32 (converts to raw counts when the resolution is more than 16-bits and copies 
into an array of unsigned 32-bit integers), 

OlBuffer.GetDataAsVolts (converts to voltage and copies into an array of floating-point values), 
OlBuffer.GetDataAsVoltsByte (converts to voltage and copies into an array of bytes),

OlBuffer.GetDataAsSensor (converts to sensor values and copies into an array of floating-point values), 
OlBuffer.GetDataAsRpm (converts to RPMs and copies into an array of floating-point values).
421



Chapter 6

422
QueueDoneEvent 
raised?

Yes

No

Use the QueueDoneHandler delegate to receive the 
GeneralEventArgs argument and handle the event.

Continued from previous page.

QueueStopped
Event raised?

Yes

No

Use the QueueStoppedHandler delegate to receive 
the GeneralEventArgs argument and handle the event.

DriverRunTime
ErrorEvent 

raised?

Yes

No

Use the DriverRunTimeErrorEventHandler delegate 
to receive the DriverRunTimeErrorEventArgs argument 

and handle the event.

Return to the top of page 420.

Yes
Use the IOCompleteHandler delegate to receive the 

IOCompleteEventArgs argument and handle the event.

IOComplete 
Event 

raised?



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Deal with Events and Buffers for Output Operations

BufferDoneEvent 
raised?

Yes

No

Use the BufferDoneHandler delegate to 
receive the BufferDoneEventArgs argument 

and handle the buffer.

Go to the next page.

No

Yes
Refill 

buffers?

Set the AnalogOutputSubsystem.
WrapSingleBuffer property to True if you 

want the device driver to continuously reuse 
the first OlBuffer object queued to the 

subsystem.

Add the OlBuffer object to the queue for 
the analog output subsystem using the 

AnalogOutputSubsystem.BufferQueue.
QueueBuffer method.

Copy data from a user-specified array into 
the internal buffer of the OlBuffer object 

using one of the following methods: 
OlBuffer.PutDataAsRaw (to output raw 
counts) or OlBuffer.PutDataAsVolts (to 

output voltages).

Create a user-specified array of the 
appropriate type with the data to output 
(determined by the method used next).
423



Chapter 6

424
QueueDoneEvent 
raised?

Yes

No

Use the QueueDoneHandler delegate to receive the 
GeneralEventArgs argument and handle the event.

Continued from previous page.

QueueStopped
Event raised?

Yes

No

Use the QueueStoppedHandler delegate to receive 
the GeneralEventArgs argument and handle the event.

DriverRunTime
ErrorEvent 

raised?

Yes

No

Use the DriverRunTimeErrorEventHandler delegate 
to receive the DriverRunTimeErrorEventArgs argument 

and handle the event.

Return to the top of page 423.

Yes

No

Use the IOCompleteHandler delegate to receive the 
IOCompleteEventArgs argument and handle the event.

IOComplete 
Event 

raised?

Note that in some cases, this event is raised well after the 
data is transferred from the buffer to the device (when 
BufferDoneEvent and QueueDoneEvent are raised). 



Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
Stop the Operation

Stop in an 
orderly 
way?

The driver posts at least one BufferDoneEvent 
and QueueStoppedEvent events. 

Yes

No

Reinitialize 
subsystem?

Yes

No

Use the Stop method within the appropriate 
subsystem class to stop the operation after the 

current buffer has been completed.

Use the Reset method within the appropriate 
subsystem class to stop the operation immediately 

without waiting for the current buffer 
to be completed, and reinitialize the subsystem to 

the default configuration.

Use the Abort method within the appropriate 
subsystem class to stop the operation immediately 

without waiting for the current buffer 
to be completed.
425



Chapter 6

426
Clean Up Single-Value I/O Operations

Clean Up Buffered I/O Operations

Release the device using the
Device.Dispose method.

Release the subsystem connection to the hardware 
device using the Dispose method within the 

appropriate subsystem class.

Release the device using the
Device.Dispose method.

For simultaneous operations only, clear the 
simultaneous start list using the 

SimultaneousStart.Clear method.

Remove all OlBuffer objects queued to the 
subsystem and deallocate the associated internal 

buffers using the 
BufferQueue.FreeAllQueueBuffers method.

Release the subsystem connection to the hardware 
device using the Dispose method within the 

appropriate subsystem class.



7
Product Support
427



Chapter 7

428
Should you experience problems using the DT-Open Layers for .NET Class Library, follow 
these steps:

1. Read all the appropriate sections of this manual, including any “Read This First”
information.

2. Check for a README file on the Data Acquisition OMNI CD. If present, read this file for
the latest installation and usage information.

3. Check that you have installed your hardware devices properly. For information, refer to
the documentation supplied with your devices.

4. Check that you have installed the device drivers for your hardware devices properly. For
information, refer to the documentation supplied with your devices.

5. Check that you have installed your software properly. For information, refer to page 21.

If you are still having problems, Data Translation’s Technical Support Department is available 
to provide technical assistance. To request technical support, go to our web site at 
www.mccdaq.com and click on the Support link. 

When requesting technical support, be prepared to provide the following information:

• Your product serial number

• The hardware/software product you need help on

• The version of the CD you are using

• Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our web site 
(www.mccdaq.com) for the name and telephone number of your nearest distributor.



A
Error Codes and Messages
429



Appendix A

430
Table 78 lists the errors that can be returned by the DT-Open Layers for .NET Class Library. 

Table 78: Error Codes and Messages Returned by the DT-Open Layers for .NET Class Library 

Error Code Message Description

NoError No error occurred.

Success The method completed successfully.

InvalidElement Invalid subsystem element specified.

InvalidListSize An attempt was made to set the ChannelList to an invalid size. 

InvalidListEntry An invalid ChannelListEntry object was specified. 

InvalidChannel An invalid channel was specified. 

InvalidChannelType An invalid ChannelType was specified.

InvalidTrigger An invalid TriggerType was specified. 

InvalidResolution An invalid Resolution was specified. 

InvalidClockSource An invalid ClockSource was specified. 

InvalidFrequency An invalid Clock.Frequency was specified. 

InvalidPulseType An invalid PulseType was specified. 

InvalidPulseWidth An invalid PulseWidth was specified. 

InvalidCounterMode An invalid CounterMode was specified.

InvalidDataFlow An invalid DataFlow was specified. 

SubsystemInUse An attempt was made to access a subsystem that is already in use.

SubsystemNotInUse An operation was attempted on a subsystem that is not in use. 

AlreadyRunning An operation was attempted on a running subsystem. 

NotConfigured An operation was attempted on a subsystem that was not configured 
(Config).

DataFlowMismatch An invalid DataFlow mode was set for the current operation.

NotRunning The specified subsystem is not running. 

InvalidRange An invalid voltage range was specified.

NotSupported The operation that you are attempting to perform is not supported.

InvalidDivider An invalid ExtClockDivider was specified.

InvalidGate An invalid GateType was set for the current operation.

InvalidChannelList An invalid ChannelList was specified. 

ADOverrun An A/D overrun error occurred. To deal with this error, increase the size 
of the buffers, slow down the sampling rate, or stop other CPU-intensive 
running programs.

NoQueuedBuffers No OlBuffers are queued to the subsystem (see QueueBuffer).

CannotOpenDriver The device driver cannot be initialized.



Error Codes and Messages
CantCascade The specified subsystem cannot be cascaded.

WrongCounterMode An invalid CounterMode was set for the current operation.

InvalidGain An invalid Gain value was set for the ChannelListEntry. 

InvalidRetriggerFrequency An invalid RetriggerFrequency was requested for the current ChannelList 
size. 

CommandTimeout A command has timed out in the device driver.

EventCountOverflow The counter overflowed during an event counting operation.

NoSubsystemsOnSimultaneousSta
rtList

No subsystems have been added to the SImultaneousStart list. 

NoChannelInhibitList The subsystem does not support ChannelListEntry.Inhibit.

NotPrestarted The subsystem has not been prestarted (see SimultaneousStart).

InvalidInhibitState All ChannelListEntry objects are inhibited. 

RequiredSubsystemInUse The additional required subsystem is in use.

WrapModeMismatch WrapSingleBuffer cannot be true for the requested operation.

BadRetriggerSource An invalid RetriggerSource was specified.

BadMultiScanCount The MultiScanCount value exceeds the maximum number of scans of the 
ChannelList. 

InvalidRetrigger Triggered scan operations are not supported in combination with 
DataFlow.ContinuousPrePostTrigger or DataFlow.ContinuousPreTrigger.

InvalidPreTrigger The Trigger.PreTriggerSource must be Software when used with 
DataFlow.ContinuousPrePostTrigger or DataFlow.ContinuousPreTrigger.

GeneralFailure A no-specific failure has occurred in the device driver. 

BadEdge An invalid StartEdge or StopEdge was specified for the current 
counter/timer mode. 

HalfCounterEntry Only half of a 32-bit counter was added to the ChannelList. Both 16-bit 
words must be added. 

InvalidX4IndexCombination An invalid combination of Index and X4Scaling was specified.

InvalidCouplingType An invalid CouplingType was specified for the device.

InvalidCurrentSource An invalid ExcitationCurrentSource was specified for the device.

InvalidValue An invalid ExcitationCurrentValue was specified for the internal excitation 
current source.

InvalidWhenADRunning Operation is prohibited while the A/D is running. Refer to your device 
documentation for details.

InvalidSynchronizationMode Invalid synchronization mode.

InvalidWhenDARunning Operation is prohibited while the D/A is running. Refer to your device 
documentation for details.

CannotAllocateBuffer Cannot allocate the requested data buffer.

Table 78: Error Codes and Messages Returned by the DT-Open Layers for .NET Class Library  

Error Code Message Description
431



Appendix A

432
BufferAlreadyQueued The OlBuffer object has already been queued to a subsystem.

BufferInProcess The OlBuffer object has already been queued to the device driver.

InvalidBufferSize An invalid size was specified for an OlBuffer object.

OddSizeBuffer The number samples in the OlBuffer object must be a multiple of 2 for the 
current operation.

BufferNotAllocated The internal data buffer, which is encapsulated by the OlBuffer object, 
has been deallocated.

DataWidthMismatch An OlBuffer was called using a data type that is not compatible with the 
subsystem’s Resolution.

NoValidSamples The OlBuffer object has 0 ValidSamples.

ChannelNotInChannelList The specified channel is not in the ChannelList. 

SourceBufferTooSmall The specified array is too small for the requested operation. 

DuplicateChannelName Each SupportedChannelInfo object in SupportedChannels must have a 
unique name.

BufferInUse The OlBuffer object is in use. 

SubsystemIncompatible The subsystem is incompatible with the OlBuffer format.

EmptyChannelList The ChannelList must have at least one entry for continuous operations. 

InvalidChannelListIndex An invalid ChannelList index was specified.

SubsystemStopping The subsystem is in the process of stopping or aborting. 

FifoOverflow The driver could not read data from the device FIFO (or Windows USB 
FIFO) fast enough. To deal with this error, increase the size of the 
buffers, slow down the sampling rate, or stop other CPU-intensive 
running programs.

FifoUnderflow The driver could not write data to the device FIFO (or Windows USB 
FIFO) fast enough. To deal with this error, increase the size of buffers, 
slow down the sampling rate, or stop other CPU-intensive running 
programs.

DeviceOverClocked The A/D clock (usually the external A/D clock) is running too fast on the 
device. 

TriggerError This error is generated by the device driver when a trigger is detected but 
not acted on by the hardware.

DeviceError This error is generated by the device driver if a USB bus or hardware 
problem occurs.

InvalidError An unknown error string was passed to GetErrorCode.

NoThermocoupleSupport The subsystem does not support thermocouples.

NoCjcChannel No CJC channel was specified in the ChannelList.

NoThermocoupleTypeSpecified A ThermocoupleType was not specified for the requested channel.

ThermocoupleTypeSpecified A ThermocoupleType was specified for the requested channel.

Table 78: Error Codes and Messages Returned by the DT-Open Layers for .NET Class Library  

Error Code Message Description



Error Codes and Messages
SetSingleValuesNotSupported The SetSingleValuesAsRaw and SetSingleValuesAsVolts methods 
are not supported by this subsystem.

DuplicateChannelSpecified A duplicate channel was specified for this operation.

AutoCalibrateNotSupported Auto-calibrate is not supported by this device.

NoRTDSupport The subsystem does not support RTDs.

NoRTDTypeSpecified An RTDType was not specified for the requested channel.

RTDTypeSpecified An RTDType was specified for the requested channel.

ReturnsOhmsNotSupported The subsystem does not support returning values as Ohms.

AccessDenied Access was denied to the subsystem or device. 

TedsError TEDs input streaming error. 

NoThermistorSupport The subsystem does not support Thermistor measurement.

CollectionNameMismatch Device collection name mismatch. There is more than one collection 
present with the same name.

CollectionDeviceCountMismatch Device collection device count mismatch. Not all devices in the collection 
were found.

ChannelNotOnMaster The specified channel is invalid because it is not on the master device. 

BufferSizeNotMultiple The number samples in all queued OlBuffer objects must be a multiple of 
the number of channels in the ChannelList for a DeviceCollection. 

CannotQueueBuffer The DeviceCollection cannot queue a buffer since not all devices in the 
collection have the same state. 

LastError Last error code in the enumeration. 

Table 78: Error Codes and Messages Returned by the DT-Open Layers for .NET Class Library  

Error Code Message Description
433



Appendix A

434



Index

Index
A
Abort method 397, 425

AnalogInputSubsystem class 44, 115, 184, 189, 
192, 195, 297, 302

AnalogOutputSubsystem class 50, 120, 198, 200, 
304, 307

CounterTimerSubsystem class 64, 233, 234, 236, 
238, 239, 243

DigitalInputSubsystem class 54, 231
DigitalOutputSubsystem class 59
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

accelerometer channels 167
for a device collection 289

Add method 77, 124, 205, 311, 380, 381, 412, 413
adding channels 205, 311

by channel name 206
by channel name for a device collection 311
by ChannelListEntry object 207, 381
by ChannelListEntry object for a device collection 

312
by ChannelListEntry object for device collections 

413
by physical channel number 206
by physical channel number for a device 

collection 311
AddSubsystem method 38, 111, 255, 330, 375, 410
aliasing 213, 318
analog input

adding channels to the list 205
adding channels to the list for a device collection 

311
buffers 218
buffers for a device collection 322
channel list 204
channel list for a device collection 310
channel type 201
channel type for a device collection 308
clock sources 212
clock sources for a device collection 317
continuous about-trigger operations 193
continuous post-trigger operations using 

multiple buffers 187
continuous post-trigger operations using 

multiple buffers for a device collection 300

continuous post-trigger operations using one 
buffer 185

continuous post-trigger operations using one 
buffer for a device collection 298

continuous pre- and post-trigger operations 182
continuous pre- and post-trigger operations for a 

device collection 295
continuous pre-trigger operations 190
data encoding 202
data encoding for a device collection 308
excitation voltage source 203
excitation voltage source for a device collection 

309
filter type 204
flowchart for cleaning up buffered operations 398
flowchart for cleaning up buffered operations for 

device collections 426
flowchart for cleaning up single-value operations 

398
flowchart for cleaning up single-value operations 

for device collections 426
flowchart for continuous operations 354, 356
flowchart for continuous operations for device 

collections 407
flowchart for continuous operations for device 

collections using one buffer 405
flowchart for setting up triggered scans 387
flowchart for single-value operations 349
flowchart for single-value operations for device 

collections 403
gain 210
gain for a device collection 315
getting channel information 212
getting channel information for a device 

collection 317
inhibiting data collection for a channel 211
inhibiting data collection for a channel in a device 

collection 316
inserting channels in the list 207
inserting channels in the list for a device collection 

313
post-trigger scan count 217
post-trigger scan count for a device collection 322
reading the resolution 231
removing channels from the list 210
removing channels from the list for a device 

collection 315
435



Index

436
replacing channels in the list 209
replacing channels in the list for a device 

collection 314
single-value operations 176
single-value operations for a device collection 292
synchronization mode 203
trigger types 213
trigger types for a device collection 318
triggered scan mode 227
voltage ranges 202
voltage ranges for a device collection 309

analog input channel configuration
differential 201, 308
pseudo-differential 201, 308
single-ended 201, 308

analog output
adding channels to the list 205
adding channels to the list for a device collection 

311
buffers 218
buffers for a device collection 322
channel list 204
channel list for a device collection 310
channel type 201
channel type for a device collection 308
clock sources 212
clock sources for a device collection 317
continuously paced operations 196
continuously paced operations for a device 

collection 303
data encoding 202
data encoding for a device collection 308
flowchart for cleaning up buffered operations 398
flowchart for cleaning up buffered operations for 

device collections 426
flowchart for cleaning up single-value operations 

398
flowchart for cleaning up single-value operations 

for device collections 426
flowchart for continuous operations 358
flowchart for continuous operations for device 

collections 409
flowchart for single-value operations 351
flowchart for single-value operations for device 

collections 404
gain 210
gain for a device collection 315
getting channel information 212
getting channel information for a device 

collection 317
inserting channels in the list 207

inserting channels in the list for a device collection 
313

reading the resolution 231
removing channels from the list 210
removing channels from the list for a device 

collection 315
replacing channels in the list 209
replacing channels in the list for a device 

collection 314
single-value operations 180
single-value operations for a device collection 293
trigger types 213
trigger types for a device collection 318
voltage ranges 202
voltage ranges for a device collection 309
waveform generation operations 198
waveform generation operations for a device 

collection 305
analog threshold (negative) trigger 216

for a device collection 321
analog threshold (positive) trigger 215

for a device collection 320
AnalogInputSubsystem class 33, 38, 108, 112, 155, 

157, 158, 162, 163, 169, 173, 174, 288
Abort method 44, 115, 184, 189, 192, 195, 297, 302
AnalogInputSubsystem constructor 39, 112
AsynchronousStop property 39, 112, 184, 189, 

192, 196, 298, 302
AutoCalibrate method 44, 115, 256, 331
BufferDoneEvent 46, 116
BufferQueue property 44, 115
ChannelList property 44, 115, 204, 310
ChannelType property 39, 112, 176, 182, 185, 

187, 190, 193, 201, 292, 295, 298, 300, 308, 382, 
414

Clock property 44, 115
Config method 44, 115, 177, 183, 188, 191, 194, 

293, 296, 301, 349, 354, 356, 403, 405, 407
DataFilterType property 39, 177, 182, 185, 187, 

190, 193, 382
DataFlow property 39, 112, 176, 182, 185, 187, 

190, 193, 292, 295, 298, 300, 349, 354, 356, 403, 
405, 407

Device property 40, 113
DeviceRemovedEvent 46, 116
Dispose method 44, 115, 398, 426
DriverRunTimeErrorEvent 46, 116
Element property 40, 113
Encoding property 39, 112, 176, 182, 185, 187, 

190, 193, 292, 295, 298, 300, 382, 414



Index
ExcitationVoltageSource property 39, 177, 182, 
185, 187, 190, 193, 203, 293, 295, 298, 300, 309, 
379, 382

ExcitationVoltageValue property 39, 177, 182, 
185, 187, 190, 193, 203, 293, 295, 298, 300, 309, 
379, 382

FifoSize property 40, 113
GeneralFailureEvent 46, 116
GetOneBuffer method 44, 115, 186, 218, 220, 

299, 322, 323, 325, 354, 405
GetSingleCjcValueAsTemperature method 44, 

178, 350
GetSingleCjcValuesAsTemperature method 44, 

179, 350
GetSingleValueAsBridgeBasedSensor method 

45, 169, 178, 350
GetSingleValueAsCurrent method 45, 157, 177, 

350
GetSingleValueAsNormalizedBridgeOutput 

method 45, 169, 178, 350
GetSingleValueAsRaw method 45, 115, 177, 293, 

350, 403
GetSingleValueAsResistance method 45, 174, 

178, 350
GetSingleValueAsSensor method 45, 116, 177, 

293, 350, 403
GetSingleValueAsStrain method 45, 163, 167, 

172, 178, 350, 378, 379
GetSingleValueAsTemperature method 45, 158, 

162, 173, 177, 350
GetSingleValueAsVolts method 45, 116, 155, 

166, 171, 177, 288, 293, 350, 378, 403
GetSingleValuesAsBridgeBasedSensor method 

169, 179
GetSingleValuesAsCurrent method 45
GetSingleValuesAsRaw method 45, 178, 350
GetSingleValuesAsSensor method 45, 179, 350
GetSingleValuesAsStrain method 163, 179, 350
GetSingleValuesAsTemperature method 45, 

158, 162, 179, 350
GetSingleValuesAsVolts method 155, 178, 350
IOComplete 46, 117
IsRunning property 40, 113
MaxDifferentialChannels property 41, 114
MaxExcitationVoltageValue property 43, 203, 

309
MaxSingleEndedChannels property 41, 114
MinExcitationVoltageValue property 43, 203, 

309
MoveFromBufferInprocess method 46, 116, 226, 

393

NumberOfChannels property 41, 114
NumberOfRanges property 41, 114
NumberOfResolutions property 42, 114
NumberOfSupportedGains property 41, 114
PreTriggerBufferDoneEvent 46, 117
QueuedBufferDones property 42, 114
QueueDoneEvent 46, 117
QueueStoppedEvent 46, 117
RawToSensorValues method 179, 293
RawValueToSensor method 46, 116
RawValueToVolts method 46, 116, 179, 293
ReferenceTrigger property 44, 115
Reset method 46, 116, 184, 189, 192, 195, 297, 302
Resolution property 42, 114
ReturnCjcTemperaturesInStream property 39, 

159, 222, 223, 227
ReturnsFloats property 40, 113, 158, 161
SimultaneousSampleHold property 205
Start method 46, 116, 183, 188, 191, 194, 296, 301, 

357, 408
State property 40, 113
Stop method 46, 116, 184, 189, 192, 195, 297, 302
StopOnError property 39, 112, 266, 341
SubsystemType property 40, 113
SupportedChannels property 44, 115
SupportedExcitationCurrentValues property 43, 

44, 115, 168, 173, 290
SupportedGains property 41, 114
SupportedResolutions property 42, 114
SupportedVoltageRanges property 41, 114
SupportsACCoupling property 43, 115, 167, 290
SupportsAutoCalibrate property 40, 113, 256, 

331
SupportsBinaryEncoding property 42, 114
SupportsBridge property 168
SupportsBuffering property 42, 114
SupportsChannelListInhibit property 41, 114
SupportsCjcSourceChannel property 42, 159
SupportsCjcSourceInternal property 42, 159
SupportsContinuous property 41, 113, 187, 300
SupportsContinuousPrePostTrigger property 

41, 113, 193
SupportsContinuousPreTrigger property 41, 

113, 190
SupportsCurrent property 43, 157
SupportsCurrentOutput property 43, 115
SupportsDataFilters property 40
SupportsDCCoupling property 43, 115, 167, 290
SupportsDifferential property 41, 114
SupportsExternalExcitationCurrentSrc property 

43, 44, 115, 168, 173, 290
437



Index

438
SupportsExternalExcitationVoltageSrc property 
43, 203, 309

SupportsIEPE property 167, 289
SupportsIepe property 115
SupportsInProcessFlush property 42, 225
SupportsInterleavedCjcTemperaturesInStream 

property 42, 159
SupportsInternalExcitationCurrentSrc property 

43, 44, 115, 168, 173, 290
SupportsInternalExcitationVoltageSrc property 

43, 203, 309
SupportsPerChannelVoltageExcitation property 

43
SupportsProgrammableGain property 41, 114
SupportsResistance property 44, 173
SupportsRTD property 42, 160
SupportsSetSingleValues property 40, 113
SupportsShuntCalibration property 43, 167, 172
SupportsSimultaneousSampleHold property 40
SupportsSimultaneousStart property 40, 113
SupportsSingleEnded property 41, 114
SupportsSingleValue property 41, 113, 176, 292
SupportsSoftwareResolution property 42, 114
SupportsStrainGage property 43, 162
SupportsSynchronization property 40
SupportsTemperatureDataInStream property 

42, 158, 159, 177, 178, 179, 223
SupportsTemperatureFilters property 42
SupportsThermistor property 42, 172
SupportsThermocouple property 42, 157
SupportsTriggeredScan property 41, 227
SupportsTwosCompEncoding property 42, 114
SupportsWaveformModeOnly property 41, 113
SynchronizationMode property 39, 177, 182, 

185, 187, 190, 193, 197, 200, 382
SynchronousBufferDone property 39, 112, 183, 

188, 194, 259, 296, 301, 334, 357, 408
TemperatureFilterType property 39
ToString method 46, 116
Trigger property 44, 115
TriggeredScan property 44
VoltageRange property 39, 112, 176, 182, 185, 

187, 190, 193, 292, 295, 298, 300, 382, 414
VoltsToRawValue method 46, 116, 179, 293
WrapSingleBuffer property 47, 118

AnalogInputSubsystem constructor 39, 112
AnalogInputSubsystem method 37, 111, 147, 280, 

349, 354, 356, 403, 405, 407
AnalogOutputSubsystem class 33, 47, 108, 117, 

197, 200, 304, 307, 358, 409
Abort method 50, 120, 198, 200, 304, 307

AnalogOutputSubsystem constructor 47, 117
AsynchronousStop property 47, 117, 198, 201, 

305, 307
BufferDoneEvent 51, 121
BufferQueue property 50, 120
ChannelList property 50, 120, 204, 310
ChannelType property 47, 117, 180, 196, 199, 

201, 293, 303, 305, 308, 382, 414
Clock property 50, 120
Config method 50, 120, 180, 197, 200, 294, 304, 

306, 351, 358, 404, 409
DataFlow property 47, 117, 180, 196, 199, 293, 

303, 305, 351, 358, 404, 409
Device property 48, 118
DeviceRemovedEvent 51, 121
Dispose method 50, 120, 398, 426
DriverRunTimeErrorEvent 51, 121
Element property 48, 118
Encoding property 47, 117, 180, 196, 199, 294, 

303, 305, 382, 414
FifoSize property 48, 118, 198, 200, 305, 306
GeneralFailureEvent 51, 121
IOComplete 51, 121
IsRunning property 48, 118
MaxDifferentialChannels property 49, 119
MaxSingleEndedChannels property 49, 119
Mute method 50, 120, 197, 200, 304, 307, 358, 409
NumberOfChannels property 49, 119
NumberOfGains property 49, 119
NumberOfRanges property 49, 119
NumberOfResolutions property 49, 120
QueuedBufferDones property 50, 120
QueueDoneEvent 51, 121
QueueStoppedEvent 51, 121
RawValueToSensor method 50, 120
RawValueToVolts method 50, 121, 180, 294
ReferenceTrigger property 50, 120, 384, 416
Reset method 50, 120, 198, 200, 304, 307
Resolution property 49, 120
ReturnsFloats property 48, 118
SetSingleValueAsRaw method 50, 121, 180, 294, 

351, 404
SetSingleValueAsVolts method 50, 121, 180, 294, 

351, 404
SetSingleValuesAsRaw method 50, 121, 180, 

294, 351, 404
SetSingleValuesAsVolts method 51, 121, 180, 

294, 351, 404
Start method 51, 121, 197, 200, 304, 306, 358, 409
State property 48, 118
Stop method 51, 121, 197, 200, 304, 307



Index
StopOnError property 47, 118, 266, 341
SubsystemType property 48, 118
SupportedChannels property 50, 120
SupportedGains property 49, 119
SupportedResolutions property 49, 120
SupportedVoltageRanges property 49, 119
SupportsBinaryEncoding property 49, 120
SupportsBuffering property 50, 120
SupportsChannelListInhibit property 49, 119
SupportsContinuous property 48, 119, 198, 305
SupportsContinuousPrePostTrigger property 

48, 119
SupportsContinuousPreTrigger property 48, 119
SupportsCurrentOutput property 48, 118, 202, 

309
SupportsDifferential property 49, 119
SupportsMute property 48, 118, 197, 200, 304, 

307
SupportsProgrammableGain property 49, 119
SupportsSetSingleValues property 48, 118, 180, 

294
SupportsSimultaneousStart property 48, 118
SupportsSingleEnded property 49, 119
SupportsSingleValue property 48, 119, 180, 196, 

293, 303
SupportsSingleWrap property 198, 305
SupportsSoftwareResolution property 49, 120
SupportsSynchronization property 48
SupportsTwosCompEncoding property 49, 120
SupportsWaveformModeOnly property 49, 119, 

198, 305
SupportsWrapSingle property 50, 120
SynchronizationMode property 47, 382
SynchronousBufferDone property 47, 118
ToString method 51, 121
Trigger property 50, 120
UnMute method 51, 121, 197, 200, 304, 307
VoltageRange property 47, 118, 180, 196, 199, 

294, 303, 306, 382, 414
VoltsToRawValue method 51, 121, 180, 294
WrapSingleBuffer property 197, 199, 303, 306, 

389, 394, 419, 423
AnalogOutputSubsystem constructor 47, 117
AnalogOutputSubsystem method 37, 111, 147, 

280, 351, 358, 404, 409
AnalogSubsystem class 35, 109
assembly 22
AssemblyVersion property 93
AsynchronousStop property 184, 189, 192, 196, 

198, 201, 298, 302, 305, 307
AnalogInputSubsystem class 39, 112

AnalogOutputSubsystem class 47, 117
CounterTimerSubsystem class 60
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 69
TachSubsystem class 66

AutoCalibrate method 256, 331
AnalogInputSubsystem class 44, 115

B
BaseClockFrequency property 81, 125
bias return 155
BoardId field 106
BoardModelName property 37, 145
bridge configuration 165, 171
bridge-based sensors 168
BridgeConfiguration enumeration 95
BridgeConfiguration property 75, 171, 379
BridgeResistance property 80, 169
BridgeSensorTeds class 34

BridgeResistance property 80, 169
CalDate property 80
CalibrationPeriod property 80
CalInitials property 80
ElectricalSignalType property 80
IsTedsConfigured property 80
ManufacturerId property 80
MaxElectricalValue property 80
MaximumExcitationVoltage property 80
MaxPhysicalValue property 80
MeasID property 80
MinElectricalValue property 80
MinimumExcitationVoltage property 80, 170
MinPhysicalValue property 81
ModelNumber property 81
Name property 80
NominalExcitationVoltage property 81
PhysicalMeasurand property 81, 170
ReadHardwareTeds method 81, 163, 169, 379
ReadVirtualTeds method 81
ReadVirtualTeds property 169, 379
ResponseTime property 81
SerialNumber property 81
VersionLetter property 81
VersionNumber property 81

BridgeSensorTeds property 75
BridgeType property 78, 80, 164, 169
BufferDoneEvent 46, 51, 55, 59, 65, 69, 72, 116, 121, 

220, 221, 259, 325, 391, 393, 394, 421, 423
for a device collection 334
439



Index

440
BufferDoneEventArgs class 35, 90, 109, 132, 259, 
261, 334, 336, 390, 391, 394, 420, 421, 423

OlBuffer property 90, 132
BufferDoneHandler delegate 90, 94, 132, 134, 259, 

334, 390, 391, 394, 420, 421, 423
BufferQueue class 35, 89, 109, 131

DequeueBuffer method 89, 131, 227, 329
FreeAllQueuedBuffers method 89, 131, 227, 329, 

398, 426
InProcessCount property 89, 131, 219, 324
QueueBuffer method 89, 131, 218, 323, 388, 389, 

390, 391, 394, 418, 419, 420, 421, 423
QueuedCount property 89, 131, 219, 324

BufferQueue property
AnalogInputSubsystem class 44, 115
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

BufferReusedHandler delegate 94
buffers 218, 322

cleaning up 227
cleaning up for a device collection 329
completion events 220
completion events for a device collection 325
counting 219
counting for a device collection 324
flowchart for inprocess buffers 393
flowchart for input operations 390
flowchart for input operations and device 

collections 420
flowchart for output operations 394
flowchart for output operations and device 

collections 423
flowchart for setting up input buffers 388
flowchart for setting up input buffers for device 

collections 418
flowchart for setting up output buffers 389
flowchart for setting up output buffers for device 

collections 419
for a device collection 322
getting information about 226
getting information about for a device collection 

328
handling input buffers 221
handling input buffers for a device collection 325
handling output buffers 224
handling output buffers for a device collection 

327

moving data while in process 225
BufferSizeInBytes property 87, 129, 226, 328
BufferSizeInSamples property 87, 129, 226, 328
BufferState enumeration 100, 136
building applications 22

C
CalDate property 78, 80, 164, 169
calibrating a subsystem 256

for a device collection 331
calibration, shunt for strain gages 167, 172
CalibrationPeriod property 78, 80, 164, 170
CalInitials property 78, 80, 164, 170
capacity, transducer 171
cascaded C/T clock 245
CascadeMode enumeration 95
CascadeMode property 61, 233, 245, 361, 369
CGLDepth property 77, 124, 212, 317
ChangedBits property 91
channel list 204

adding channels 205
adding channels for a device collection 311
for a device collection 310
getting channel information 212
getting channel information for a device 

collection 317
inhibiting data collection 211
inhibiting data collection for a device collection 

316
inserting channels 207
inserting channels for a device collection 313
removing channels 210
removing channels for a device collection 315
replacing channels 209
replacing channels for a device collection 314

ChannelDataType enumeration 95, 135
ChannelList class 34, 77, 109, 124

Add method 77, 124, 205, 311, 380, 381, 412, 413
CGLDepth property 77, 124, 212, 317
Contains method 77, 124, 212, 317
IndexOf method 77, 124, 212, 317
Insert method 77, 125, 207, 313
Item property 77, 124, 209, 314
Remove method 77, 125, 210, 315

ChannelList property 64, 68
AnalogInputSubsystem class 44, 115, 204, 310
AnalogOutputSubsystem class 50, 120, 204, 310
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72



Index
ChannelListEntry class 34, 76, 109, 124
ChannelListEntry constructor 76, 124, 207, 208, 

312, 314, 381, 413
Gain property 76, 124, 210, 315, 380, 381, 412, 413
Inhibit property 76, 124, 211, 316, 380, 381, 412, 

413
Name property 77, 124
PhysicalChannelNumber property 77, 124
SubsystemType property 77, 124

ChannelListEntry constructor 76, 124, 207, 208, 
312, 314, 381, 413

ChannelListOffset property 87, 129, 226, 328
channels

counter/timer 232
determining those available 150
determining those available for a device 

collection 282
flowchart for adding a channel by 

ChannelListEntry 381
flowchart for adding a channel by 

ChannelListEntry for device collections 413
flowchart for setting up a channel list 380
flowchart for setting up a channel list for device 

collections 412
flowchart for setting up analog input channels 

376
flowchart for setting up analog input channels for 

device collections 411
IO type 154
IO type for a device collection 288
list of 204
list of for a device collection 310
logical 152
logical channel word 153
logical channel word for a device collection 286
logical for a device collection 283
name of 154
names for a device collection 287
physical 152
physical for a device collection 283
setting up accelerometer (IEPE) channels 167
setting up accelerometer (IEPE) channels for a 

device collection 289
setting up bridge-based sensors 168
setting up current channels 157
setting up resistance measurement channels 173
setting up RTD channels 160
setting up strain gage channels 162
setting up thermistor channels 172
setting up thermocouple channels 157
setting up voltage input channels 155

setting up voltage input channels for a device 
collection 288

types 201
types for a device collection 308

ChannelType enumeration 95, 135
ChannelType property

AnalogInputSubsystem class 39, 112, 176, 182, 
185, 187, 190, 193, 201, 292, 295, 298, 300, 308, 
382, 414

AnalogOutputSubsystem class 47, 117, 180, 196, 
199, 201, 293, 303, 305, 308, 382, 414

CounterTimerSubsystem class 60
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 69
TachSubsystem class 66

CJC channel 159
CjcChannel property 75, 159
classes

AnalogInputSubsystem 33, 38, 108, 112
AnalogOutputSubsystem 33, 47, 108, 117
AnalogSubsystem 35, 109
BridgeSensorTeds 34
BufferDoneEventArgs 35, 90, 109, 132
BufferQueue 35, 89, 109, 131
ChannelList 34, 77, 109, 124
ChannelListEntry 76, 124
ChannellListEntry 34, 109
Clock 34, 81, 109, 125
CounterTimerSubsystem 34, 60
definition of 32
Device 33, 36, 108, 110
DeviceMgr 33, 36, 108, 110
DigitalInputSubsystem 33, 52
DigitalOutputSubsystem 33, 56
DriverRunTimeErrorEventArgs 35, 90, 109, 132
EventDoneEventArgs 35, 91
GeneralEventArgs 35, 90, 109, 131
InterruptOnChangeEventArgs 35, 91
IOCompleteEventArgs 35, 91, 109, 132
MeasureDoneEventArgs 35, 92
OlBuffer 35, 86, 109, 129
OlError 35, 93, 109, 134
OlException 35, 92, 109, 133
QuadratureDecoderSubsystem 34, 69
Range 34, 86, 109, 128
ReferenceTrigger 34, 109
SimultaneousStart 33, 38, 108, 111
StrainGageTeds 34
SubsystemBase 35, 109
SupportedChannelInfo 34, 73, 78, 80, 109, 122
441



Index

442
SupportedChannels 34, 76, 109, 123
TachSubsystem 34, 65
TedsBase 34
Trigger 34, 82, 84, 109, 126, 127
TriggeredScan 34, 85
Utility 35, 93

cleaning up operations 227, 273
buffered analog I/O 398
buffered analog I/O for device collections 426
counter/timer 399
digital I/O 398
for a device collection 329, 345
quadrature decoder 399
single-value analog I/O 398
single-value analog I/O for device collections 426
tachometer 399

Clear method 38, 111, 255, 273, 330, 345, 398, 399, 
426

Clock class 34, 81, 109, 125
BaseClockFrequency property 81, 125
ExtClockDivider property 81, 125, 213, 239, 244, 

318, 363, 383, 396, 415
Frequency property 81, 125, 212, 239, 244, 317, 

383, 396, 415
MaxExtClockDivider property 82, 125, 213, 244, 

318
MaxFrequency property 82, 125, 212, 244, 317
MinExtClockDivider property 82, 125, 213, 244, 

318
MinFrequency property 82, 125, 212, 244, 317
Source property 81, 125, 212, 213, 244, 254, 317, 

318, 363, 365, 367, 373, 383, 396, 415
SupportsExternalClock property 82, 125, 213, 

244, 318
SupportsInternalClock property 82, 125, 212, 

244, 317
SupportsSimultaneousClocking property 81, 

125, 212, 317
Clock property

AnalogInputSubsystem class 44, 115
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

clock sources 212
external 213
external C/T clock 244
external for a device collection 318
flowchart for setting up clocks 383

flowchart for setting up clocks for device 
collections 415

for a device collection 317
internal 212
internal C/T clock 244
internal for a device collection 317
internally cascaded C/T clock 245
quadrature decoders 254

ClockPreScale property 70, 253, 254, 373
ClockSource enumeration 95, 135
CollectionDevices property 111, 279
CollectionId field 138
ComputeDeltaRosette method 94, 163
ComputeRectangularRosette method 93, 163
Config method 175, 291

AnalogInputSubsystem class 44, 115, 177, 183, 
188, 191, 194, 293, 296, 301, 349, 354, 356, 403, 
405, 407

AnalogOutputSubsystem class 50, 120, 180, 197, 
200, 294, 304, 306, 351, 358, 404, 409

CounterTimerSubsystem class 64, 233, 236, 238, 
239, 242, 243, 249, 361, 363, 365, 367, 369, 371

DigitalInputSubsystem class 54, 229, 231, 352, 
359

DigitalOutputSubsystem class 59, 230, 353
QuadratureDecoderSubsystem class 72, 253, 373
TachSubsystem class 68, 251, 372

configuring a subsystem 175
for a device collection 291

Contains method 77, 124, 212, 317
continuous analog input operations

about-trigger 193
post-trigger and multiple buffers 187
post-trigger and multiple buffers for a device 

collection 300
post-trigger using one buffer 185
post-trigger using one buffer for a device 

collection 298
pre- and post-trigger 182
pre- and post-trigger for a device collection 295
pre-trigger 190

continuous analog output operations
continuously paced 196
continuously paced for a device collection 303
waveform generation 198
waveform generation for a device collection 305

continuous digital input operations 230
continuous edge-to-edge measurement operations 

237
continuous pulse output 239
conventions used 14



Index
conversion rate 227
ConvertTemperatureToVolts method 93, 180
ConvertVoltsToTemperature method 93, 179
Count property 67, 76, 92, 123

TachSubsystem class 251, 372
count, scan 217

for a device collection 322
counter/timers 232, 249

channels 232
clock sources 244
duty cycle 247
edge-to-edge measurement operations 235
event counting operations 232
flowchart for cleaning up 399
flowchart for continuous edge-to-edge 

measurement operations 367
flowchart for edge-to-edge measurement 

operations 365
flowchart for event counting operations 361
flowchart for pulse output operations 369
flowchart for setting the clock and gate 396
flowchart for up/down counting operations 363
gate types 245
one-shot operations 241
pulse output types 247
rate generation operations 239
repetitive one-shot operations 242
up/down counting operations 234

CounterMode enumeration 96
CounterMode property 61, 233, 234, 236, 238, 239, 

241, 242, 361, 363, 365, 367, 369
CounterTimerSubsystem class 34, 60, 64

Abort method 64, 233, 234, 236, 238, 239, 243
AsynchronousStop property 60
BufferDoneEvent 65
BufferQueue property 64
CascadeMode property 61, 233, 245, 361, 369
ChannelList property 64
ChannelType property 60
Clock property 64
Config method 64, 233, 236, 238, 239, 242, 243, 

249, 361, 363, 365, 367, 369, 371
CounterMode property 61, 233, 234, 236, 238, 

239, 241, 242, 361, 363, 365, 367, 369
CounterTimerSubsystem constructor 60
DataFlow property 60, 233, 234, 236, 238, 239, 

241, 242, 361, 363, 365, 367, 369
Device property 61
DeviceRemovedEvent 65
Dispose method 64, 399
Element property 61

Encoding property 60
EventDoneEvent 65
FifoSize property 61
GateType property 61, 245, 396
GeneralFailureEvent 65
IsRunning property 61
MaxDifferentialChannels property 63
MaxSingleEndedChannels property 63
MeasureDoneEvent 65
NumberOfChannels property 63
NumberOfResolutions property 64
PulseType property 61, 247, 369
PulseWidth property 61, 247, 369
QueueDoneEvent 65
QueueStoppedEvent 65
ReadCount method 64, 233, 234, 238, 362, 364, 

368, 371
ReferenceTrigger property 64
Reset method 64
Resolution property 60
ReturnsFloats property 61
Start method 64, 233, 234, 236, 239, 242, 243, 361, 

363, 365, 367, 370
StartEdge property 61, 236, 238, 249, 365, 367, 

371
State property 61
Stop method 64, 233, 234, 236, 238, 239, 243
StopEdge property 61, 236, 238, 249, 365, 367, 

371
StopOnError property 60
SubsystemType property 61
SupportedChannels property 64
SupportedEdgeTypes property 62, 235, 237, 249, 

365, 367, 371
SupportedResolutions property 64
SupportsBinaryEncoding property 64
SupportsBuffering property 64
SupportsCascading property 62, 245
SupportsChannelListInhibit property 63
SupportsClockFalling property 62, 235, 237
SupportsClockRising property 62, 235, 237
SupportsContinuous property 63
SupportsContinuousMeasure property 62, 237
SupportsContinuousPrePostTrigger property 63
SupportsContinuousPreTrigger property 63
SupportsCount property 62, 232
SupportsCurrentOutput property 61
SupportsDifferential property 63
SupportsGateFalling property 62, 235, 237
SupportsGateHighEdge property 62, 246
SupportsGateHighLevel 246
443



Index

444
SupportsGateHighLevel property 62
SupportsGateLevel property 62, 247
SupportsGateLowEdge property 62, 246
SupportsGateLowLevel property 62, 246
SupportsGateNone property 63, 245
SupportsGateRising property 62, 235, 237
SupportsHighToLowPulse property 63, 247
SupportsInterrupt property 63
SupportsLowToHighPulse property 63, 247
SupportsMeasure property 62, 235
SupportsOneShot property 62, 241
SupportsOneShotRepeat property 62, 242
SupportsProgrammableGain property 63
SupportsRateGenerate property 62, 239
SupportsSetSingleValues property 61
SupportsSimultaneousStart property 61
SupportsSingleEnded property 63
SupportsSingleValue property 63
SupportsSoftwareResolution property 64
SupportsSynchronization property 61
SupportsTwosCompEncoding property 64
SupportsUpDown property 62, 234
SupportsVariablePulseWidth property 63, 247
SupportsWaveformModeOnly property 63
SynchronizationMode property 60
ToString method 64
Trigger property 64

CounterTimerSubsystem constructor 60
CounterTimerSubsystem method 37, 148, 361, 

363, 365, 367, 369, 371
counting events

continuous edge-to-edge measurement mode 237
edge-to-edge measurement mode 235
event counting mode 232
up/down counting mode 234

coupling 167
for a device collection 290

Coupling property 74, 123, 167, 290, 377, 411
CouplingType enumeration 96, 135
current input channels 157
current source 168

for a device collection 290

D
data buffers 218, 322
data encoding 202

for a device collection 308
Data property 91
DataFilterType enumeration 96

DataFilterType property 204
AnalogInputSubsystem class 39, 177, 182, 185, 

187, 190, 193, 382
DataFlow enumeration 96, 135
DataFlow property

AnalogInputSubsystem class 39, 112, 176, 182, 
185, 187, 190, 193, 292, 295, 298, 300, 349, 354, 
356, 403, 405, 407

AnalogOutputSubsystem class 47, 117, 180, 196, 
199, 293, 303, 305, 351, 358, 404, 409

CounterTimerSubsystem class 60, 233, 234, 236, 
238, 239, 241, 242, 361, 363, 365, 367, 369

DigitalInputSubsystem class 52, 229, 231, 352, 
359

DigitalOutputSubsystem class 56, 230, 353
QuadratureDecoderSubsystem class 70, 253, 373
TachSubsystem class 66

DateTime property 90, 132
delegates 257, 332

BufferDoneHandler 90, 94, 132, 134, 259, 334, 
390, 391, 394, 420, 421, 423

BufferReusedHandler 94
definition of 32
DeviceRemovedHandler 94, 134, 271, 343
DriverRunTimeErrorEventHandler 90, 94, 132, 

134, 266, 341, 392, 395, 422, 424
EventDoneHandler 91, 94, 269
GeneralFailureHandler 94, 134, 271, 342
InterruptOnChangeHandler 91, 94, 268, 360
IOCompleteHandler 91, 94, 132, 134, 264, 339, 

392, 395, 422, 424
MeasureDoneHandler 92, 95, 236, 270, 366
PreTriggerBufferDoneHandler 95, 134, 261, 336
QueueDoneHandler 95, 135, 265, 340, 392, 395, 

422, 424
QueueStoppedHandler 95, 135, 262, 337, 392, 

395, 422, 424
DequeueBuffer method 89, 131, 227, 329
determining the available channels 150

for a device collection 282
Device class 33, 36, 108, 110

AnalogInputSubsystem method 37, 111, 147, 
280, 349, 354, 356, 403, 405, 407

AnalogOutputSubsystem method 37, 111, 147, 
280, 351, 358, 404, 409

BoardModelName property 37, 145
CollectionDevices property 111, 279
CounterTimerSubsystem method 37, 148, 361, 

363, 365, 367, 369, 371
Device constructor 37, 111
DeviceName property 37, 111, 145, 279



Index
DiagReadCalPot method 37
DiagReadReg method 37
DiagWriteCalPot method 37
DiagWriteReg method 37
DigitalInputSubsystem method 37, 147, 352, 359
DigitalOutputSubsystem method 37, 147, 353
Dispose method 37, 111, 273, 345, 398, 399, 426
DriverName property 37, 145
DriverVersion property 37, 145
GetHardwareInfo method 37, 106, 111, 138, 145, 

279
GetNumSubsystemElements method 37, 111, 

148, 281
MasterIndex property 111, 279
PowerSource property 37
QuadratureDecoderSubsystem method 37, 148, 

373
SetHardwareInfo method 37
SimultaneousStart property 37, 111
SupportsInternalAndExternalPower property 37
TachSubsystem method 37, 148, 372

device collection 108
device collection support 19
Device constructor 145, 279
Device Constructor constructor 37, 111
Device property

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

DeviceId field 106
DeviceMgr class 33, 36, 108, 110

Device constructor 145, 279
Get method 36, 110, 144, 278, 349, 351, 352, 353, 

354, 356, 358, 359, 361, 363, 365, 367, 369, 371, 
372, 373, 403, 404, 405, 407, 409

GetDevice method 36, 110, 145, 279, 349, 351, 
352, 353, 354, 356, 358, 359, 361, 363, 365, 367, 
369, 371, 372, 373, 403, 404, 405, 407, 409

GetDeviceNames method 36, 110, 145, 279
HardwareAvailable method 36, 110, 145, 279

DeviceName property 37, 111, 145, 279
DeviceRemovedEvent 46, 51, 55, 59, 65, 69, 72, 

116, 121, 271
for a device collection 343

DeviceRemovedHandler delegate 94, 134, 271, 343
DiagReadCalPot method 37
DiagReadReg method 37

DiagWriteCalPot method 37
DiagWriteReg method 37
differential inputs 201, 308
digital event trigger 217

for a device collection 322
digital input

flowchart for cleaning up 398
flowchart for interrupt-on-change operations 359
flowchart for single-value operations 352
interrupt-on-change operations 230
resolution 231
single-value operations 229

digital output
flowchart for cleaning up 398
flowchart for single-value operations 353
resolution 231
single-value operations 230

DigitalInputSubsystem class 33, 52
Abort method 54, 231
AsynchronousStop property 52
BufferDoneEvent 55
BufferQueue property 54
ChannelList property 54
ChannelType property 52
Clock property 54
Config method 54, 229, 231, 352, 359
DataFlow property 52, 229, 231, 352, 359
Device property 52
DeviceRemovedEvent 55
DigitalInputSubsystem constructor 52
Dispose method 54, 398
Element property 52
Encoding property 52
FifoSize property 52
GeneralFailureEvent 55
GetSingleValue method 55, 229, 352
InterruptOnChangeEvent 55
IsRunning property 52
MaxDifferentialChannels property 54
MaxSingleEndedChannels property 54
NumberOfChannels property 54
NumberOfResolutions property 54
QueueDoneEvent 55
QueueStoppedEvent 55
ReadInterruptOnChangeMask method 55, 231
ReferenceTrigger property 54
Reset method 55, 231
Resolution property 52, 229, 231, 352, 359
ReturnsFloats property 53
Start method 55, 231, 359
State property 53
445



Index

446
Stop method 55, 231
StopOnError property 52
SubsystemType property 53
SupportedChannels property 54
SupportedResolutions property 54
SupportsBinaryEncoding property 54
SupportsBuffering property 54
SupportsChannelListInhibit property 54
SupportsContinuous property 53, 230
SupportsContinuousPrePostTrigger property 53
SupportsContinuousPreTrigger property 53
SupportsCurrentOutput property 53
SupportsDifferential property 54
SupportsInterruptOnChange property 53, 230
SupportsProgrammableGain property 54
SupportsSetSingleValues property 53
SupportsSimultaneousStart property 53
SupportsSingleEnded property 54
SupportsSingleValue property 53, 229
SupportsSoftwareResolution property 54
SupportsSynchronization property 53
SupportsTwosCompEncoding property 54
SupportsWaveformModeOnly property 53
SynchronizationMode property 52
ToString method 55
Trigger property 54
WriteInterruptOnChangeMask method 55, 231, 

359
DigitalInputSubsystem constructor 52
DigitalInputSubsystem method 37, 147, 352, 359
DigitalOutputSubsystem class 33, 56

Abort method 59
AsynchronousStop property 56
BufferDoneEvent 59
BufferQueue property 58
ChannelList property 58
ChannelType property 56
Clock property 58
Config method 59, 230, 353
DataFlow property 56, 230, 353
Device property 56
DeviceRemovedEvent 59
DigitalOutputSubsystem constructor 56
Dispose method 59, 398
Element property 56
Encoding property 56
FifoSize property 56
GeneralFailureEvent 59
GetSingleValue method 230
IsRunning property 56
MaxDifferentialChannels property 57

MaxSingleEndedChannels property 57
NumberOfChannels property 58
NumberOfResolutions property 58
QueueDoneEvent 59
QueueStoppedEvent 59
ReferenceTrigger property 58
Reset method 59
Resolution property 56, 230, 353
ReturnsFloats property 57
SetSingleValue method 59, 353
Start method 59
State property 57
Stop method 59
StopOnError property 56
SubsystemType property 57
SupportedChannels property 58
SupportedResolutions property 58
SupportsBinaryEncoding property 58
SupportsBuffering property 58
SupportsChannelListInhibit property 58
SupportsContinuous property 57
SupportsContinuousPrePostTrigger property 57
SupportsContinuousPreTrigger property 57
SupportsCurrentOutput property 57
SupportsDifferential property 58
SupportsProgrammableGain property 58
SupportsSetSingleValues property 57
SupportsSimultaneousStart property 57
SupportsSingleEnded property 58
SupportsSingleValue property 57, 230
SupportsSoftwareResolution property 58
SupportsSynchronization property 57
SupportsTwosCompEncoding property 58
SupportsWaveformModeOnly property 57
SynchronizationMode property 56
ToString method 59
Trigger property 58

DigitalOutputSubsystem constructor 56
DigitalOutputSubsystem method 37, 147, 353
Dispose method 37, 87, 111, 129, 273, 345, 398, 

399, 426
AnalogInputSubsystem class 44, 115, 398, 426
AnalogOutputSubsystem class 50, 120, 398, 426
CounterTimerSubsystem class 64, 399
DigitalInputSubsystem class 54, 398
DigitalOutputSubsystem class 59, 398
QuadratureDecoderSubsystem class 72, 399
TachSubsystem class 68, 399

distributing your program 30
DriverName property 37, 145



Index
DriverRunTimeErrorEvent 46, 51, 116, 121, 197, 
228, 266, 304, 392, 395, 422, 424

for a device collection 341
DriverRunTimeErrorEventArgs class 35, 90, 109, 

132, 266, 341, 392, 395, 422, 424
ErrorCode property 91, 132
Message property 91, 132

DriverRunTimeErrorEventHandler delegate 90, 
94, 132, 134, 266, 341, 392, 395, 422, 424

DriverVersion property 37, 145
duty cycle 247

E
EdgeSelect enumeration 97
edge-to-edge measurement operations 235
EdgeType enumeration 98
EdgeType property 66, 251, 372
ElectricalSignalType property 78, 80, 164, 170
Element property

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

Enabled property 85, 227, 387
encoding data 202

for a device collection 308
Encoding enumeration 98, 135
Encoding property 202, 308

AnalogInputSubsystem class 39, 112, 176, 182, 
185, 187, 190, 193, 292, 295, 298, 300, 382, 414

AnalogOutputSubsystem class 47, 117, 180, 196, 
199, 294, 303, 305, 382, 414

CounterTimerSubsystem class 60
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
OlBuffer 87, 129, 226, 328
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

enumerations
BridgeConfiguration 95
BufferState 100, 136
CascadeMode 95
ChannelDataType 95, 135
ChannelType 95, 135
ClockSource 95, 135
CounterMode 96
CouplingType 96, 135

DataFilterType 96
DataFlow 96, 135
definition of 32
EdgeSelect 97
EdgeType 98
Encoding 98, 135
ErrorCode 98, 135
ExcitationCurrentSource 98, 136
ExcitationVoltageSource 98
GageType 99
GateType 100
IOType 100, 136
PhysicalMeasurandUnits 100, 101, 102
PulseType 102
QuadratureIndexMode 102
ReferenceTriggerType 102, 103, 136, 137
RTDType 103
SensorWiringConfiguration 103
States 104, 137
StrainGageBridgeConfiguration 104
SubsystemType 105, 137
SynchronizationModes 105
TedsBridgeType 105
TedsTemplateId 105
TemperatureFilterType 105
TemperatureUnit 105
ThermocoupleType 105
TriggerType 106, 138

error codes 257, 272, 332, 430
for a device collection 344

ErrorCode enumeration 98, 135
ErrorCode property 91, 93, 132, 133, 272, 344
event counting operations 232
event handling 257

flowcharts for analog input 390
flowcharts for analog input and device collections 

420
flowcharts for analog output 394
flowcharts for analog output and device 

collections 423
for a device collection 332

event trigger, digital 217
for a device collection 322

EventDoneEvent 65, 269
EventDoneEventArgs class 35, 91, 269

Data property 91
EventDoneHandler delegate 91, 94, 269
events

BufferDoneEvent 46, 51, 55, 59, 65, 69, 72, 116, 
121, 220, 221, 259, 325, 391, 393, 394, 421, 423

BufferDoneEvent for a device collection 334
447



Index

448
DeviceRemovedEvent 46, 51, 55, 59, 65, 69, 72, 
116, 121, 271

DeviceRemovedEvent for a device collection 343
DriverRunTimeErrorEvent 46, 51, 116, 121, 197, 

228, 266, 304, 392, 395, 422, 424
DriverRunTimeErrorEvent for a device collection 

341
EventDoneEvent 65, 269
GeneralFailureEvent 46, 51, 55, 59, 65, 69, 72, 

116, 121, 271
GeneralFailureEvent for a device collection 342
InterruptOnChangeEvent 55, 268, 360
IOCompleteEvent 46, 51, 117, 121, 221, 263, 325, 

392, 395, 422, 424
IOCompleteEvent for a device collection 338
MeasureDoneEvent 65, 270, 366
PreTriggerBufferDoneEvent 46, 117, 220, 221, 

261, 325, 390, 420
PreTriggerBufferDoneEvent for a device 

collection 336
QueueDoneEvent 46, 51, 55, 59, 65, 69, 72, 117, 

121, 197, 221, 265, 304, 325, 392, 395, 422, 424
QueueDoneEvent for a device collection 340
QueueStoppedEvent 46, 51, 55, 59, 65, 69, 72, 

117, 121, 220, 262, 325, 392, 395, 422, 424
QueueStoppedEvent for a device collection 337

example programs 24
exceptions 272, 344
excitation current source 168

for a device collection 290
excitation voltage source 203

for a device collection 309
excitation voltage value 203

for a device collection 309
ExcitationCurrentSource enumeration 98, 136
ExcitationCurrentSource property 73, 122, 168, 

173, 290, 377, 411
ExcitationCurrentValue property 73, 122, 168, 173, 

290, 377, 411
ExcitationVoltageSource enumeration 98
ExcitationVoltageSource property 203, 309

AnalogInputSubsystem class 39, 177, 182, 185, 
187, 190, 193, 293, 295, 298, 300, 379, 382

ExcitationVoltageValue property 203, 309
AnalogInputSubsystem class 39, 177, 182, 185, 

187, 190, 193, 293, 295, 298, 300, 379, 382
ExtClockDivider property 81, 125, 213, 239, 244, 

318, 363, 383, 396, 415
external analog threshold (negative) trigger 216

for a device collection 321

external analog threshold (positive) trigger 215
for a device collection 320

external C/T clock 244
external clock source 213

for a device collection 318
external negative digital (TTL) trigger 215

for a device collection 320
external positive digital (TTL) trigger 214

for a device collection 319

F
factor, gauge 166
fields

BoardId 106
CollectionId 138
DeviceId 106
NumberofDevices 138
PhysicalChannel 107, 139
ProductId 106
RawValue 107, 139
VendorId 106, 138
Voltage 107, 139

FifoSize property 198, 200, 305, 306
AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

filter type 204
flowcharts 347, 401

adding channels by ChannelListEntry object 381
adding channels by ChannelListEntry object for 

device collections 413
cleaning up buffered analog I/O operations 398
cleaning up buffered analog I/O operations for 

device collections 426
cleaning up counter/timer operations 399
cleaning up digital I/O operations 398
cleaning up quadrature decoder operations 399
cleaning up single-value analog I/O operations 

398
cleaning up single-value analog I/O operations 

for device collections 426
cleaning up tachometer operations 399
continuous analog input operations 354, 356
continuous analog input operations for device 

collections 407



Index
continuous analog input operations for device 
collections using one buffer 405

continuous analog output operations 358
continuous analog output operations for device 

collections 409
continuous digital input operations 359
continuous edge-to-edge measurement 

operations 367
dealing with events and buffers 390, 394
dealing with events and buffers for device 

collections 420, 423
edge-to-edge measurement operations 365
event counting operations 361
measure counter operations 371
pulse output operations 369
quadrature decoder 373
setting up analog input channels 376
setting up analog input channels for device 

collections 411
setting up buffers for analog input operations 388
setting up buffers for analog input operations and 

device collections 418
setting up buffers for analog output operations 

389
setting up buffers for analog output operations 

and device collections 419
setting up channel lists 380
setting up channel lists for device collections 412
setting up clocks 383, 396
setting up clocks for device collections 415
setting up common subsystem parameters 382
setting up common subsystem parameters for 

device collections 414
setting up gates 396
setting up triggered scans 387
setting up triggers 384
setting up triggers for device collections 416
simultaneous starting subsystems 375
simultaneous starting subsystems for device 

collections 410
single-value analog input operations 349
single-value analog input operations for device 

collections 403
single-value analog output operations 351
single-value analog output operations for device 

collections 404
single-value digital input operations 352
single-value digital output operations 353
stopping operations 397
stopping operations for device collections 425
tachometer operations 372

transferring data from an inprocess buffer 393
up/down counting operations 363

FreeAllQueuedBuffers method 89, 131, 227, 329, 
398, 426

Frequency property 81, 125, 212, 239, 244, 317, 
383, 396, 415

Full-Bridge Axial Poisson configuration 165
Full-Bridge Bending configuration 165
Full-Bridge Bending Poisson configuration 165

G
GageArea property 78, 164
GageFactor property 75, 78, 164, 378
GageResistance property 78, 164
GageType enumeration 99
GageType property 78, 164
gain

input signal 210
input signal for a device collection 315
sensor 156
sensor for a device collection 289

Gain property 76, 124, 210, 315, 380, 381, 412, 413
gate types 245

any level 247
high-edge 246
high-level 246
low-edge 246
low-level 246
software 245

GateType enumeration 100
GateType property 61, 245, 396
gauge factor 166
GeneralEventArgs class 35, 90, 109, 131, 262, 265, 

271, 337, 340, 342, 343, 392, 395, 422, 424
DateTime property 90, 132
Subsystem property 90, 132

GeneralFailureEvent 46, 51, 55, 59, 65, 69, 72, 116, 
121, 271

for a device collection 342
GeneralFailureHandler delegate 94, 134, 271, 342
Get method 36, 110, 144, 278, 349, 351, 352, 353, 

354, 356, 358, 359, 361, 363, 365, 367, 369, 371, 
372, 373, 403, 404, 405, 407, 409

GetChannelInfo property 76, 123, 151, 282
GetDataAsBridgeBasedSensor method 87, 169, 

224, 355, 390, 391
GetDataAsCurrent method 87, 157, 222, 355, 390, 

391
GetDataAsNormalizedBridgeOutput method 87, 

169, 224, 355, 390, 391
449



Index

450
GetDataAsRawByte method 87, 129, 221, 326, 355, 
390, 391, 406, 420, 421

GetDataAsRawInt16 method 87, 129, 221, 326, 
355, 390, 391, 406, 420, 421

GetDataAsRawUInt16 method 88, 130, 222, 326, 
355, 390, 391, 406, 420, 421

GetDataAsRawUInt32 method 88, 130, 222, 326, 
355, 390, 391, 406, 420, 421

GetDataAsResistance method 88, 174, 223, 355, 
390, 391

GetDataAsRpm method 88, 130, 223, 251, 327, 
355, 372, 390, 391, 406, 420, 421

GetDataAsSensor method 88, 130, 222, 326, 355, 
390, 391, 406, 420, 421

GetDataAsStrain method 88, 163, 224, 355, 390, 
391

GetDataAsTemperatureByte method 88, 158, 162, 
173, 355, 390, 391

GetDataAsTemperatureDouble method 88, 158, 
162, 173, 355, 390, 391

GetDataAsVolts method 88, 130, 155, 222, 223, 
288, 326, 355, 390, 391, 406, 420, 421

GetDataAsVoltsByte method 88, 130, 222, 327, 
355, 390, 391, 406, 420, 421

GetDevice method 36, 110, 145, 279, 349, 351, 352, 
353, 354, 356, 358, 359, 361, 363, 365, 367, 369, 
371, 372, 373, 403, 404, 405, 407, 409

GetDeviceNames method 36, 110, 145, 279
GetErrorCode method 93, 134
GetErrorString method 93, 134
GetHardwareInfo method 37, 106, 111, 138, 145, 

279
GetNumSubsystemElements method 37, 111, 148, 

281
GetOneBuffer method

AnalogInputSubsystem class 44, 115, 186, 218, 
220, 299, 322, 323, 325, 354, 405

GetSingleCjcValueAsTemperature method 44, 
178, 350

GetSingleCjcValuesAsTemperature method 44, 
179, 350

GetSingleValue method 229, 352
DigitalInputSubsystem class 55
DigitalOutputSubsystem class 230

GetSingleValueAsBridgeBasedSensor method 45, 
169, 178, 350

GetSingleValueAsCurrent method 45, 157, 177, 
350

GetSingleValueAsNominaBridgeOutput method 
169

GetSingleValueAsNormalizedBridgeOutput 
method 45, 178, 350

GetSingleValueAsRaw method 45, 115, 177, 293, 
350, 403

GetSingleValueAsResistance method 45, 174, 178, 
350

GetSingleValueAsSensor method 45, 116, 177, 
293, 350, 403

GetSingleValueAsStrain method 45, 163, 167, 172, 
178, 350, 378, 379

GetSingleValueAsTemperature method 45, 158, 
162, 173, 177, 350

GetSingleValueAsVolts method 45, 116, 155, 166, 
171, 177, 288, 293, 350, 378, 403

GetSingleValuesAsBridgeBasedSensor method 
169, 179, 350

GetSingleValuesAsCurrent method 45
GetSingleValuesAsRaw method 45, 178, 350
GetSingleValuesAsSensor method 45, 179, 350
GetSingleValuesAsStrain method 163, 179, 350
GetSingleValuesAsTemperature method 45, 158, 

162, 179, 350
GetSingleValuesAsVolts method 155, 178, 350
GetSubsystemList method 38, 111, 255, 330
GetThermocoupleRange method 94, 158
getting a Device object 145

for a device collection 279
getting a DeviceMgr object 144

for a device collection 278
getting a subsystem 146

for a device collection 280
getting channel information 212

for a device collection 317

H
Half-Bridge Bending configuration 165
Half-Bridge Poisson configuration 165
handling errors 272

for a device collection 344
handling events 257

for a device collection 332
handling exceptions 272
handling exceptions for a device collection 344
handling input buffers 221

for a device collection 325
handling output buffers 224

for a device collection 327
HardwareAvailable method 36, 110, 145, 279
HardwareInfo structure 106, 138
help 23



Index
High property 86, 128
high-edge gate type 246
high-level gate type 246
high-to-low pulse output 247

I
IEPE channels 167

for a device collection 289
IEPE excitation current source 168

for a device collection 290
importing the namespace

OpenLayers.Base 143
OpenLayers.DeviceCollection 277

index mode 254
IndexMode property 70, 253, 254, 373
IndexOf method 77, 124, 212, 317
Inhibit property 76, 124, 211, 316, 380, 381, 412, 

413
inhibiting data collection 211

for a device collection 316
inprocess buffer, transferring data 393
InProcessCount property 89, 131, 219, 324
input configuration

differential analog 201, 308
single-ended analog 201, 308

InputTerminationEnabled property 73, 155, 157, 
376, 377

Insert method 77, 125, 207, 313
inserting channels 207

by channel name 208
by channel name for a device collection 313
by ChannelListEntry object 208
by ChannelListEntry object for a device collection 

314
by physical channel number 208
by physical channel number for a device 

collection 313
for a device collection 313

installation program 30
internal C/T clock 244
internal clock sources 212

for a device collection 317
internal trigger 214

for a device collection 319
internally cascaded C/T clock 245
interrupt-on-change operations 230
InterruptOnChangeEvent 55, 268, 360
InterruptOnChangeEventArgs class 35, 91, 268, 

360
ChangedBits property 91

NewValue property 91
InterruptOnChangeHandler delegate 91, 94, 268, 

360
IO type 154

for a device collection 288
IOCompleteEvent 46, 51, 117, 121, 221, 263, 325, 

392, 395, 422, 424
for a device collection 338

IOCompleteEventArgs class 35, 91, 109, 132, 264, 
339, 392, 395, 422, 424

LastSampleNumber property 92, 133
IOCompleteHandler delegate 91, 94, 132, 134, 264, 

339, 392, 395, 422, 424
IOType enumeration 100, 136
IOType property 75, 123, 154, 155, 157, 160, 162, 

167, 168, 172, 173, 288, 376
IsRunning property 149, 281

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

IsTedsConfigured property 78, 80, 164, 170
Item property 76, 77, 87, 123, 124, 129, 151, 209, 

224, 282, 314, 327

L
LastSampleNumber property 92, 133
lead wire resistance 166, 171
level gate type 247
Level property 83, 84, 126, 127, 183, 185, 188, 191, 

194, 197, 199, 215, 216, 296, 299, 301, 303, 306, 
320, 321, 384, 385, 386, 416, 417

logical channel word 153
for a device collection 286

logical channels 152
for a device collection 283

LogicalChannelNumber property 73, 122, 153, 286
LogicalChannelWord property 73, 122, 154, 287
Low property 86, 128
low-edge gate type 246
low-level gate type 246
low-to-high pulse output 247

M
ManufacturerId property 78, 80, 164, 170
MasterIndex property 111, 279
451



Index

452
MaxDifferentialChannels property 201, 308
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

MaxElectricalValue property 78, 80, 164, 170
MaxExcitationVoltageValue property 203, 309

AnalogInputSubsystem class 43
MaxExtClockDivider property 82, 125, 213, 244, 

318
MaxFrequency property 82, 125, 212, 244, 317
MaximumExcitationVoltage property 79, 80, 164, 

170
MaxMultiScanCount property 86, 228
MaxPhysicalValue property 79, 80, 164, 170
MaxRetriggerFreq property 86, 228
MaxSingleEndedChannels property 201, 308

AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

MeasID property 79, 80, 164, 170
measure counter operations

flowchart for measure counter operations 371
MeasureDoneEvent 65, 270, 366
MeasureDoneEventArgs class 35, 92, 236, 270, 366

Count property 92
MeasureDoneHandler delegate 92, 95, 236, 270, 

366
Message property 91, 93, 132, 133, 272, 344
MinElectricalValue property 79, 80, 164, 170
MinExcitationVoltageValue property 203, 309

AnalogInputSubsystem class 43
MinExtClockDivider property 82, 125, 213, 244, 

318
MinFrequency property 82, 125, 212, 244, 317
MinimumExcitationVoltage property 80, 170
MinPhysicalValue property 79, 81, 164, 170
MinRetriggerFreq property 86, 228
ModelNumber property 79, 81, 164, 170
MoveFromBufferInprocess method 46, 116, 226, 

393
moving data from an inprocess buffer 225
MultiScanCount property 85, 228, 387

MultiSensorType property 73, 155, 157, 160, 162, 
167, 168, 172, 173

Mute method
AnalogOutputSubsystem class 50, 120, 197, 200, 

304, 307, 358, 409

N
name of channels

for a device collection 287
Name property 73, 77, 122, 124, 154, 287, 376, 411
name, of channels 154
namespace

OpenLayers.Base 33
OpenLayers.DeviceCollection 108

NewValue property 91
nominal resistance 166, 171
NominalExcitationVoltage property 79, 81, 164, 

170
nulling, strain gages 166, 171
NumberOfChannels property

AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

NumberofDevices field 138
NumberOfRanges property 202, 309

AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119

NumberOfResolutions property 231
AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

NumberOfSupportedGains property 210, 315
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119

Nyquist Theorem 213, 318

O
offset

sensor for a device collection 289
offset nulling, strain gages 166, 171
offset, sensor 156



Index
OlBuffer class 35, 86, 109, 129, 155, 157, 158, 162, 
163, 169, 173, 174, 288

BufferSizeInBytes property 87, 129, 226, 328
BufferSizeInSamples property 87, 129, 226, 328
ChannelListOffset property 87, 129, 226, 328
Dispose method 87, 129
Encoding property 87, 129, 226, 328
GetDataACurrent method 355, 390, 391
GetDataAsBridgeBasedSensor method 87, 169, 

224, 355, 390, 391
GetDataAsCurrent method 87, 157, 222
GetDataAsNormalizedBridgeOutput method 

87, 169, 224, 355, 390, 391
GetDataAsRawByte method 87, 129, 221, 326, 

355, 390, 391, 406, 420, 421
GetDataAsRawInt16 method 87, 129, 221, 326, 

355, 390, 391, 406, 420, 421
GetDataAsRawUInt16 method 88, 130, 222, 326, 

355, 390, 391, 406, 420, 421
GetDataAsRawUInt32 method 88, 130, 222, 326, 

355, 390, 391, 406, 420, 421
GetDataAsResistance 391
GetDataAsResistance method 88, 174, 223, 355, 

390
GetDataAsRpm method 88, 130, 223, 251, 327, 

355, 372, 390, 391, 406, 420, 421
GetDataAsSensor method 88, 130, 222, 326, 355, 

390, 391, 406, 420, 421
GetDataAsStrain method 88, 163, 224, 355, 390, 

391
GetDataAsTemperatureByte method 88, 158, 

162, 173, 355, 390, 391
GetDataAsTemperatureDouble method 88, 158, 

162, 173, 355, 390, 391
GetDataAsVolts method 88, 130, 155, 222, 223, 

288, 326, 355, 390, 391, 406, 420, 421
GetDataAsVoltsByte method 88, 130, 222, 327, 

355, 390, 391, 406, 420, 421
Item property 87, 129, 224, 327
OlBuffer constructor 86, 129, 218, 322, 388, 389, 

418, 419
PutDataAsRaw method 89, 130, 224, 327, 389, 

394, 419, 423
PutDataAsVolts method 89, 130, 225, 327, 389, 

394, 419, 423
QueueBuffer method 224, 225, 327
RawDataFormat property 87, 129, 226, 328
Reallocate method 89, 130, 218, 323
Resolution property 87, 129, 226, 328
SampleSizeInBytes property 87, 129, 226, 328
State property 87, 129, 226, 329, 393

Tag property 86, 129, 218, 323
ValidSamples property 87, 129, 184, 189, 192, 

195, 222, 223, 227, 297, 302, 329
VoltageRange property 87, 129, 227, 329

OlBuffer constructor 86, 129, 218, 322, 388, 389, 
418, 419

OlBuffer property 90, 132
OlError class 35, 93, 109, 134

GetErrorCode method 93, 134
GetErrorString method 93, 134

OlError constructor 93, 134
OlException class 35, 92, 109, 133

ErrorCode property 93, 133, 272, 344
Message property 93, 133, 272, 344
Subsystem property 93, 133, 272, 344

one-shot mode 241
online help 23
OpenLayers.Base namespace 33

classes 33
delegates 94
enumerations 95
structures 106

OpenLayers.Base.dll assembly 22
OpenLayers.DeviceCollection namespace 108

classes 108
delegates 134
enumerations 135
structures 138

outputting pulses
continuously 239
one-shot 241
repetitive one-shot 242

overview 19

P
page 75 90
physical channels 152

for a device collection 283
PhysicalChannel field 107, 139
PhysicalChannelNumber property 73, 77, 122, 

124, 152, 286
PhysicalMeasurand property 81, 170
PhysicalMeasurandUnits enumeration 100, 101, 

102
Poisson ratio 166
PoissonCoefficient property 79, 165
post-trigger scan count 217

for a device collection 322
453



Index

454
PostTriggerScanCount property 84, 92, 127, 133, 
183, 217, 296, 322, 384, 416

PowerSource property 37, 212
pre-scale value 254
PreStart method 38, 111, 255, 330, 375, 410
PreTriggerBufferDoneEvent 46, 117, 220, 221, 261, 

325, 390, 420
for a device collection 336

PreTriggerBufferDoneHandler delegate 95, 134, 
261, 336

PreTriggerSource property 83, 126, 191, 194, 214, 
385

ProductId field 106
programmable gain 211, 316
programming flowcharts 347, 401
pseudo-differential channels 201, 308
pulse output

duty cycle 247
one-shot 241
output types 247
rate generation (continuous) 239
repetitive one-shot 242

pulse train output 239
pulse types

high-to-low 247
low-to-high 247

pulse width 247
PulseType enumeration 102
PulseType property 61, 247, 369
PulseWidth property 61, 247, 369
PutDataAsRaw method 89, 130, 224, 327, 389, 394, 

419, 423
PutDataAsVolts method 89, 130, 225, 327, 389, 

394, 419, 423

Q
quadrature decoders

clocks 254
flowchart for cleaning up 399
flowchart for quadrature decoder operations 373
index mode 254
operations 253
X4Scaling mode 254

QuadratureDecoderSubsystem class 34, 69
Abort method 72
AsynchronousStop property 69
BufferDoneEvent 72
BufferQueue property 72
ChannelList property 72
ChannelType property 69

Clock property 72
ClockPreScale property 70, 253, 254, 373
Config method 72, 253, 373
DataFlow property 70, 253, 373
Device property 70
DeviceRemovedEvent 72
Dispose method 72, 399
Element property 70
Encoding property 70
FifoSize property 70
GeneralFailureEvent 72
IndexMode property 70, 253, 254, 373
IsRunning property 70
MaxDifferentialChannels property 71
MaxSingleEndedChannels property 71
NumberOfChannels property 71
NumberOfResolutions property 71
QuadratureDecoderSubsystem constructor 69
QueueDoneEvent 72
QueueStoppedEvent 72
ReadCount method 72, 253, 374
ReferenceTrigger property 72
Reset method 72
Resolution property 70
ReturnsFloats property 70
Start method 72, 253, 373
State property 70
Stop method 72
StopOnError property 70
SubsystemType property 70
SupportedChannels property 72
SupportedResolutions property 71
SupportsBinaryEncoding property 71
SupportsBuffering property 72
SupportsChannelListInhibit property 71
SupportsContinuous property 71
SupportsContinuousPrePostTrigger property 71
SupportsContinuousPreTrigger property 71
SupportsCurrentOutput property 70
SupportsDifferential property 71
SupportsProgrammableGain property 71
SupportsQuadratureDecoder property 253
SupportsSetSingleValues property 70
SupportsSimultaneousStart property 70
SupportsSingleEnded property 71
SupportsSingleValue property 71
SupportsSoftwareResolution property 71
SupportsSynchronization property 71
SupportsTwosCompEncoding property 71
SupportsWaveformModeOnly property 71
SynchronizationMode property 70



Index
ToString method 72
Trigger property 72
X4Scaling property 70, 253, 254, 373

QuadratureDecoderSubsystem constructor 69
QuadratureDecoderSubsystem method 37, 148, 

373
QuadratureIndexMode enumeration 102
Quarter-Bridge configuration 166
Quarter-Bridge Temp Comp configuration 166
QueueBuffer method 89, 131, 218, 224, 225, 323, 

327, 388, 389, 390, 391, 394, 418, 419, 420, 421, 
423

QueuedBufferDones property
AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 50, 120

QueuedCount property 89, 131, 219, 324
QueueDoneEvent 46, 51, 55, 59, 65, 69, 72, 117, 

121, 197, 221, 265, 304, 325, 392, 395, 422, 424
for a device collection 340

QueueDoneHandler delegate 95, 135, 265, 340, 
392, 395, 422, 424

QueueStoppedEvent 46, 51, 55, 59, 65, 69, 72, 117, 
121, 220, 262, 325, 392, 395, 422, 424

for a device collection 337
QueueStoppedHandler delegate 95, 135, 262, 337, 

392, 395, 422, 424

R
Range class 34, 86, 109, 128

High property 86, 128
Low property 86, 128
Range constructor 86, 128

Range constructor 86, 128
rate generation mode 239
rated output, transducer 171
ratio, Poisson 166
RawDataFormat property 87, 129

OlBuffer 226, 328
RawToSensorValues method 179, 293
RawValue field 107, 139
RawValueToSensor method

AnalogInputSubsystem class 46, 116
AnalogOutputSubsystem class 50, 120

RawValueToVolts method 94, 179, 180, 293, 294
AnalogInputSubsystem class 46, 116
AnalogOutputSubsystem class 50, 121

ReadCount method 238
CounterTimerSubsystem class 64, 233, 234, 362, 

364, 368, 371
QuadratureDecoderSubsystem class 72, 253, 374

ReadHardwareTeds method 79, 81, 163, 169, 379
ReadInterruptOnChangeMask method 231

DigitalInputSubsystem class 55
ReadVirtualTeds method 79, 81
ReadVirtualTeds property 163, 169, 379
Reallocate method 89, 130, 218, 323
ReferenceTrigger class 34, 109

Level property 84, 127, 384, 416
PostTriggerScanCount property 84, 127, 384, 416
SupportedThresholdTriggerChannels property 

85, 128
SupportsDigitalEventTrigger property 84, 128
SupportsNegExternalTTLTrigger property 84, 

128
SupportsNegThresholdTrigger property 84, 128
SupportsPosExternalTTLTrigger property 84, 

128
SupportsPosThresholdTrigger property 84, 128
SupportsPostTriggerScanCount property 85, 128
SupportsSyncBusTrigger property 85, 217
ThresholdTriggerChannel property 84, 127, 384, 

416
TriggerType property 84, 127, 384, 416

ReferenceTrigger property 183, 214, 217, 296, 319, 
322, 384, 416

AnalogInputSubsystem class 44, 115
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

ReferenceTriggerType enumeration 102, 103, 136, 
137

Remove method 77, 125, 210, 315
RemoveSubsystem method 38, 111, 255, 330
removing channels 210

for a device collection 315
repetitive one-shot mode 242
replacing channels 209

for a device collection 314
requirements 20
Reset method 184, 189, 192, 195, 198, 200, 231, 297, 

302, 304, 307, 397, 425
AnalogInputSubsystem class 46, 116
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 55
DigitalOutputSubsystem class 59
QuadratureDecoderSubsystem class 72
TachSubsystem class 68
455



Index

456
resistance
lead wire 166, 171
nominal 166, 171

resistance measurement channels 173
resolution 231
Resolution property 229, 231

AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120
CounterTimerSubsystem class 60
DigitalInputSubsystem class 52, 231, 352, 359
DigitalOutputSubsystem class 56, 230, 353
OlBuffer 87, 129, 226, 328
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

ResponseTime property 79, 81, 165, 170
RetriggerFrequency property 85, 228, 387
RetriggerSource property 85, 214, 228, 387
ReturnCjcTemperaturesInStream property 159

AnalogInputSubsystem class 39, 222, 223, 227
ReturnsFloats property 158, 161

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

rosette 163
RTD channels 160
RtdACoefficient property 74, 160, 376
RtdBCoefficient property 74, 160, 376
RtdCCoefficient property 74, 160, 376
RtdR0 property 74, 160, 376
RTDType enumeration 103
RTDType property 74, 160, 376

S
SampleSizeInBytes property 87, 129, 226, 328
scan count 217

for a device collection 322
sensor

gain 156
gain for a device collection 289
offset 156
offset for a device collection 289

SensorGain property 74, 122, 156, 289, 376, 411
SensorOffset property 74, 122, 156, 289, 376, 411
SensorWiringConfiguration enumeration 103
SensorWiringConfiguration property 73, 161, 173, 

174, 376, 377

SerialNumber property 79, 81, 165, 170
service and support procedure 428
SetHardwareInfo method 37
SetSingleValue method

DigitalOutputSubsystem class 59, 353
SetSingleValueAsRaw method

AnalogOutputSubsystem class 50, 121, 180, 294, 
351, 404

SetSingleValueAsVolts method
AnalogOutputSubsystem class 50, 121, 180, 294, 

351, 404
SetSingleValuesAsRaw method 106, 138

AnalogOutputSubsystem class 50, 121, 180, 294, 
351, 404

SetSingleValuesAsVolts method 107, 139
AnalogOutputSubsystem class 51, 121, 180, 294, 

351, 404
setting up analog input channels 376
setting up analog input channels for device 

collections 411
setting up buffers

for analog input operations 388
for analog input operations and device collections 

418
for analog output operations 389
for analog output operations and device 

collections 419
setting up channel lists 380
setting up channel lists for device collections 412
setting up channels 150
setting up channels for a device collection 282
setting up clocks for counter/timer operations 396
setting up common subsystem parameters 382
setting up common subsystem parameters for 

device collections 414
setting up gates 396
setting up triggered scans 387
setup program 30
shunt calibration 167, 172
simultaneously starting subsystems 255

flowchart 375
flowchart for device collections 410
for a device collection 330

SimultaneousSampleHold property 205
SimultaneousStart class 33, 38, 108, 111

AddSubsystem method 38, 111, 255, 330, 375, 
410

Clear method 38, 111, 255, 273, 330, 345, 398, 399, 
426

GetSubsystemList method 38, 111, 255, 330
PreStart method 38, 111, 255, 330, 375, 410



Index
RemoveSubsystem method 38, 111, 255, 330
Start method 38, 111, 255, 330, 375, 410
SupportsSimultaneousStart property 255, 330

SimultaneousStart property 37, 111
single-ended inputs 201, 308
single-value operations

analog input 176, 349
analog input for a device collection 292
analog input for device collections 403
analog output 180, 351
analog output for a device collection 293
analog output for device collections 404
digital input 229, 352
digital output 230, 353

SingleValuesInfoRaw structure 106, 107, 138
SingleValuesInfoVolts structure 107, 139
software gate type 245
software trigger 214

for a device collection 319
Source property 81, 125, 212, 213, 244, 254, 317, 

318, 363, 365, 367, 373, 383, 396, 415
StaleDataFlagEnabled property 66, 251, 372
Start method

AnalogInputSubsystem class 46, 116, 183, 188, 
191, 194, 296, 301, 357, 408

AnalogOutputSubsystem class 51, 121, 197, 200, 
304, 306, 358, 409

CounterTimerSubsystem class 64, 233, 234, 236, 
239, 242, 243, 361, 363, 365, 367, 370

DigitalInputSubsystem class 55, 231, 359
DigitalOutputSubsystem class 59
QuadratureDecoderSubsystem class 72, 253, 373
SimultaneousStart class 38, 111, 255, 330, 375, 410
TachSubsystem class 68

StartEdge property 61, 236, 238, 249, 365, 367, 371
State property 87, 129, 148, 226, 281, 329, 393

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

States enumeration 104, 137
Stop method 397, 425

AnalogInputSubsystem class 46, 116, 184, 189, 
192, 195, 297, 302

AnalogOutputSubsystem class 51, 121, 197, 200, 
304, 307

CounterTimerSubsystem class 64, 233, 234, 236, 
238, 239, 243

DigitalInputSubsystem class 55, 231
DigitalOutputSubsystem class 59
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

StopEdge property 61, 236, 238, 249, 365, 367, 371
StopOnError property

AnalogInputSubsystem class 39, 112, 266, 341
AnalogOutputSubsystem class 47, 118, 266, 341
CounterTimerSubsystem class 60
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

stopping an operation 397
stopping an operation for a device collection 425
strain gage bridge configuration 165
strain gage channels 162
strain gage lead wire resistance 166, 171
strain gage nominal resistance 166, 171
strain gage offset nulling 166, 171
strain gage Poisson ratio 166
strain gage shunt calibration 167, 172
StrainGageBridgeConfiguration enumeration 104
StrainGageBridgeConfiguration property 75, 165, 

378
StrainGageGageFactor property 166
StrainGageLeadWireResistance property 75, 166, 

171, 378, 379
StrainGageNominalResistance property 75, 166, 

171, 378, 379
StrainGageOffsetNullingInVolts property 166, 

171, 378, 379
StrainGageOffsetNullingValueInVolts property 

75
StrainGagePoissonRatio property 75, 166, 378, 

379
StrainGageShuntCalibrationResistorEnabled 

property 75, 167, 172, 378, 379
StrainGageShuntCalibrationValue property 75, 

167, 172, 378, 379
StrainGageTeds class 34

CalDate property 78, 164, 169
CalibrationPeriod property 78, 164, 170
CalInitials property 78, 164, 170
ElectricalSignalType property 78, 164, 170
GageArea property 78, 164
GageFactor property 78, 164
GageResistance property 78, 164
GageType property 78, 164
IsTedsConfigured property 78, 164, 170
ManufacturerId property 78, 164, 170
457



Index

458
MaxElectricalValue property 78, 164, 170
MaximumExcitationVoltage property 79, 164, 

170
MaxPhysicalValue property 79, 164, 170
MeasID property 79, 164, 170
MinElectricalValue property 79, 164, 170
MinPhysicalValue property 79, 164, 170
ModelNumber property 79, 164, 170
Name property 78, 164, 169
NominalExcitationVoltage property 79, 164, 170
PoissonCoefficent property 79, 165
ReadHardwareTeds method 79, 163
ReadVirtualTeds method 79
ReadVirtualTeds property 163
ResponseTime property 79, 165, 170
SerialNumber property 79, 165, 170
TransverseSensitivity property 79, 165
VersionLetter property 79, 165, 170
VersionNumber property 79, 165, 170
YoungModulus property 79, 165
ZeroOffset property 79, 165

StrainGageTeds property 75
structures

definition of 32
HardwareInfo 106, 138, 106, 138
SingleValuesInfoRaw 106, 107, 138
SingleValuesInfoVolts 107, 139

subsystem
getting a subsystem 146
getting a subsystem for a device collection 280
setting up a subsystem 175
setting up a subsystem for a device collection 291
setting up common parameters 382
setting up common parameters for device 

collections 414
Subsystem property 74, 90, 93, 122, 132, 133, 272, 

344
SubsystemBase class 35, 109
SubsystemType enumeration 105, 137
SubsystemType property 75, 77, 123, 124, 148, 281

AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 67

summary of library 31
SupportedChannelInfo class 34, 73, 78, 80, 109, 

122, 150, 282
BridgeConfiguration property 75, 171, 379

BridgeSensorTeds property 75
CjcChannel property 75, 159
Coupling property 74, 123, 167, 290, 377, 411
ExcitationCurrentSource property 73, 122, 168, 

173, 290, 377, 411
ExcitationCurrentValue property 73, 122, 168, 

173, 290, 377, 411
GageFactor property 75, 378
InputTerminationEnabled property 73, 155, 157, 

376, 377
IOType property 75, 123, 154, 155, 157, 160, 162, 

167, 168, 172, 173, 288, 376
LogicalChannelNumber property 73, 122, 153, 

286
LogicalChannelWord property 73, 122, 154, 287
MultiSensorType property 73, 155, 157, 160, 162, 

167, 168, 172, 173
Name property 73, 122, 154, 287, 376, 411
PhysicalChannelNumber property 73, 122, 152, 

286
RtdACoefficient property 74, 160, 376
RtdBCoefficient property 74, 160, 376
RtdCCoefficient property 74, 160, 376
RtdR0 property 74, 160, 376
RTDType property 74, 160, 376
SensorGain property 74, 122, 156, 289, 376, 411
SensorOffset property 376, 411
SensorOffset property 74, 122, 156, 289
SensorWiringConfiguration property 73, 161, 

173, 174, 376, 377
StrainGageBridgeConfiguration property 75, 

165, 378
StrainGageGageFactor property 166
StrainGageLeadWireResistance property 75, 

166, 171, 378, 379
StrainGageNominalResistance property 75, 166, 

171, 378, 379
StrainGageOffsetNullingInVolts property 166, 

171, 378, 379
StrainGageOffsetNullingValueInVolts property 

75
StrainGagePoissonRatio property 75, 166, 378, 

379
StrainGageShuntCalibrationResistorEnabled 

property 75, 167, 172, 378, 379
StrainGageShuntCalibrationValue property 75, 

167, 172, 378, 379
StrainGageTeds property 75
Subsystem property 74, 122
SubsystemType property 75, 123
SupportsInputTermination property 155, 157



Index
SupportsInputTermination property 75
ThermistorACoefficient property 74, 173, 377
ThermistorBCoefficient property 74, 377
ThermistorCCoefficient property 74, 173, 377
ThermocoupleType property 74, 158, 177, 178, 

179, 223, 376
TransducerCapacity property 75, 171, 379
TransducerRatedOutputinMv property 75

SupportedChannels class 34, 76, 109, 123
Count property 76, 123
GetChannelInfo property 76, 123, 151, 282
Item property 76, 123, 151, 282

SupportedChannels property
AnalogInputSubsystem class 44, 115
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

SupportedEdgeTypes property 62
CounterTimerSubsystem class 235, 237, 249, 365, 

367, 371
SupportedExcitationCurrentValues property 168, 

173, 290
AnalogInputSubsystem class 43, 44, 115

SupportedGains property 210, 315
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119

SupportedResolutions property 231
AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportedThresholdTriggerChannels property 
83, 85, 126, 128, 215, 216, 320, 321

SupportedVoltageRanges property 202, 309
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119

SupportMute property
AnalogOutputSubsystem class 48, 118

SupportsACCoupling property 167, 290
AnalogInputSubsystem class 43, 115

SupportsAutoCalibrate property 256, 331
AnalogInputSubsystem class 40, 113

SupportsBinaryEncoding property 202, 308
AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120

CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsBridge property 168
SupportsBuffering property 218, 322

AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

SupportsCascading property 62, 245
SupportsChannelListInhibit property 211, 316

AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsCjcSourceChannel property 159
AnalogInputSubsystem class 42

SupportsCjcSourceInternal property 159
AnalogInputSubsystem class 42

SupportsClockFalling property 62, 235, 237
SupportsClockRising property 62, 235, 237
SupportsContinuous property 198, 204, 230, 305, 

310
AnalogInputSubsystem class 41, 113, 187, 300
AnalogOutputSubsystem class 48, 119, 196, 303
CounterTimerSubsystem class 63
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsContinuousMeasure property 62, 237
SupportsContinuousPrePostTrigger property 193

AnalogInputSubsystem class 41, 113
AnalogOutputSubsystem class 48, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71

SupportsContinuousPrePostTrigger 
propertyTachSubsystem class 67

SupportsContinuousPreTrigger property 190
AnalogInputSubsystem class 41, 113
AnalogOutputSubsystem class 48, 119
459



Index

460
CounterTimerSubsystem class 63
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsCount property 62, 232
SupportsCurrent property 157

AnalogInputSubsystem class 43
SupportsCurrentOutput property

AnalogInputSubsystem class 43, 115
AnalogOutputSubsystem class 48, 118, 202, 309
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 67

SupportsDataFilters property 204
AnalogInputSubsystem class 40

SupportsDCCoupling property 167, 290
AnalogInputSubsystem class 43, 115

SupportsDifferential property 201, 308
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsDigitalEventTrigger property 83, 84, 126, 
128, 217, 322

SupportsExternalClock property 82, 125, 213, 244, 
318

SupportsExternalExcitationCurrentSrc property 
168, 173, 290

AnalogInputSubsystem class 43, 44, 115
SupportsExternalExcitationVoltageSrc property 

203, 309
AnalogInputSubsystem class 43

SupportsFallingEdge property 67
TachSubsystem class 251

SupportsGateFalling property 62, 235, 237
SupportsGateHighEdge property 62, 246
SupportsGateHighLevel property 62, 246
SupportsGateLevel property 62, 247
SupportsGateLowEdge property 62, 246
SupportsGateLowLevel property 62, 246
SupportsGateNone property 63, 245
SupportsGateRising property 62, 235, 237
SupportsHighToLowPulse property 63, 247
SupportsIEPE property 

AnalogInputSubsystem class 115, 167, 289

SupportsInProcessFlush property 225
AnalogInputSubsystem class 42

SupportsInputTermination property 75, 155, 157
SupportsInterleavedCjcTemperaturesInStream 

property 159
AnalogInputSubsystem class 42

SupportsInternalandExternalPower property 37
SupportsInternalClock property 82, 125, 212, 244, 

317
SupportsInternalExcitationCurrentSrc property 

168, 173, 290
AnalogInputSubsystem class 43, 44, 115

SupportsInternalExcitationVoltageSrc property 
203, 309

AnalogInputSubsystem class 43
SupportsInterrupt property 63
SupportsInterruptOnChange property 230

DigitalInputSubsystem class 53
SupportsLowToHighPulse property 63, 247
SupportsMeasure property 62, 235
SupportsMute property 197, 200, 304, 307
SupportsNegExternalTTLTrigger property 83, 84, 

126, 128, 215, 320
SupportsNegThresholdTrigger property 83, 84, 

126, 128, 216, 321
SupportsOneShot property 62, 241
SupportsOneShotRepeat property 62, 242
SupportsPerChannelVoltageExcitation property

AnalogInputSubsystem class 43
SupportsPosExternalTTLTrigger property 83, 84, 

126, 128, 214, 319
SupportsPosThresholdTrigger property 83, 84, 

126, 128, 215, 320
SupportsPostTriggerScanCount property 85, 128
SupportsProgrammableGain property 210, 315

AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsQuadratureDecoder property 253
SupportsRateGenerate property 62, 239
SupportsResistance property 173

AnalogInputSubsystem class 44
SupportsRisingEdge property 67

TachSubsystem class 251
SupportsRTD property 160

AnalogInputSubsystem class 42



Index
SupportsSetSingleValues property
AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118, 180, 294
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 67

SupportsShuntCalibration property 167, 172
AnalogInputSubsystem class 43

SupportsSimultaneousClocking property 81, 125, 
212, 317

SupportsSimultaneousSampleHold property
AnalogInputSubsystem class 40

SupportsSimultaneousStart property 255, 330
AnalogInputSubsystem class 40, 113
AnalogOutputSubsystem class 48, 118
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 70
TachSubsystem class 67

SupportsSingleEnded property 201, 308
AnalogInputSubsystem class 41, 114
AnalogOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsSingleValue property
AnalogInputSubsystem class 41, 113, 176, 292
AnalogOutputSubsystem class 48, 119, 180, 293
CounterTimerSubsystem class 63
DigitalInputSubsystem class 53, 229
DigitalOutputSubsystem class 57, 230
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsSingleWrap property 198, 305
SupportsSoftwareResolution property 231

AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsSoftwareTrigger property 83, 127, 214, 
319

SupportsStaleDataFlag property 67
TachSubsystem class 251

SupportsStrainGage property 162
AnalogInputSubsystem class 43

SupportsSvNegExternalTTLTrigger property 83, 
127, 215, 320

SupportsSvPosExternalTTLTrigger property 83, 
127, 215, 319

SupportsSyncBusTrigger property 85, 217
SupportsSynchronization property 203

AnalogInputSubsystem class 40
AnalogOutputSubsystem class 48
CounterTimerSubsystem class 61
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsTemperatureDataInStream property 158, 
159, 223

AnalogInputSubsystem class 42, 177, 178, 179
SupportsTemperatureFilters property 204

AnalogInputSubsystem class 42
SupportsThermistor property 172

AnalogInputSubsystem class 42
SupportsThermocouple property 157

AnalogInputSubsystem class 42
SupportsTriggeredScan property 227

AnalogInputSubsystem class 41
SupportsTwosCompEncoding property 202, 308

AnalogInputSubsystem class 42, 114
AnalogOutputSubsystem class 49, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 71
TachSubsystem class 68

SupportsUpDown property 62, 234
SupportsVariablePulseWidth property 63, 247
SupportsWaveformModeOnly property 198, 305

AnalogInputSubsystem class 41, 113
AnalogIOutputSubsystem class 49, 119
CounterTimerSubsystem class 63
DigitalInputSubsystem class 53
DigitalOutputSubsystem class 57
QuadratureDecoderSubsystem class 71
TachSubsystem class 67

SupportsWrapSingle property
AnalogOutputSubsystem class 50, 120

Sync Bus trigger 217
synchronization mode 203
SynchronizationMode property 203

AnalogInputSubsystem class 39, 177, 182, 185, 
187, 190, 193, 197, 200, 382
461



Index

462
AnalogOutputSubsystem class 47, 382
CounterTimerSubsystem class 60
DigitalInputSubsystem class 52
DigitalOutputSubsystem class 56
QuadratureDecoderSubsystem class 70
TachSubsystem class 66

SynchronizationModes enumeration 105
SynchronousBufferDone property

AnalogInputSubsystem class 39, 112, 183, 188, 
194, 259, 296, 301, 334, 357, 408

AnalogOutputSubsystem class 47, 118
system requirements 20

T
tachometer operations

flowchart for cleaning up 399
flowchart for tachometer operations 372

TachSubsystem class 34, 65, 68
Abort method 68
AsynchronousStop property 66
BufferDoneEvent 69
BufferQueue property 68
ChannelList property 68
ChannelType property 66
Clock property 68
Config method 68, 251, 372
Count property 67, 251, 372
DataFlow property 66
Device property 66
DeviceRemovedEvent 69
Dispose method 68, 399
EdgeType property 66, 251, 372
Element property 66
Encoding property 66
FifoSize property 66
GeneralFailureEvent 69
IsRunning property 66
MaxDifferentialChannels property 67
MaxSingleEndedChannels property 67
NumberOfChannels property 67
NumberOfResolutions property 68
QueueDoneEvent 69
QueueStoppedEvent 69
ReferenceTrigger property 68
Reset method 68
Resolution property 66
ReturnsFloats property 66
StaleDataFlagEnabled property 66, 251, 372
Start method 68
State property 66

Stop method 68
StopOnError property 66
SubsystemType property 67
SupportedChannels property 68
SupportedResolutions property 68
SupportsBinaryEncoding property 68
SupportsBuffering property 68
SupportsChannelListInhibit property 67
SupportsContinuous property 67
SupportsContinuousPrePostTrigger property 67
SupportsContinuousPreTrigger property 67
SupportsCurrentOutput property 67
SupportsDifferential property 68
SupportsFallingEdge property 67, 251
SupportsProgrammableGain property 68
SupportsRisingEdge property 67, 251
SupportsSetSingleValues property 67
SupportsSimultaneousStart property 67
SupportsSingleEnded property 68
SupportsSingleValue property 67
SupportsSoftwareResolution property 68
SupportsStaleDataFlag property 67, 251
SupportsSynchronization property 67
SupportsTwosCompEncoding property 68
SupportsWaveformModeOnly property 67
SynchronizationMode property 66
TachSubsystem constructor 66
ToString method 68
Trigger property 68

TachSubsystem constructor 66
TachSubsystem method 37, 148, 372
Tag property 86, 129, 218, 323
technical support 428
TEDS

bridge-based sensors 169
strain gage 163

TedsBase class 34
TedsBridgeType enumeration 105
TedsTemplateId enumeration 105
TemperatureFilterType enumeration 105
TemperatureFilterType property 204

AnalogInputSubsystem class 39
TemperatureUnit enumeration 105
termination resistor 155
thermistor channels 172
ThermistorACoefficient property 74, 173, 377
ThermistorBCoefficient property 74, 377
ThermistorCCoefficient property 74, 173, 377
thermocouple channels 157
thermocouple type 158
ThermocoupleType enumeration 105



Index
ThermocoupleType property 74, 158, 376
SupportedChannelInfo class 177, 178, 179, 223

threshold (positive) trigger 215, 216
for a device collection 320, 321

ThresholdTriggerChannel property 83, 84, 126, 
127, 183, 185, 188, 191, 194, 197, 199, 215, 216, 
296, 299, 301, 303, 306, 320, 321, 384, 385, 386, 
416, 417

ToString method
AnalogInputSubsystem class 46, 116
AnalogOutputSubsystem class 51, 121
CounterTimerSubsystem class 64
DigitalInputSubsystem class 55
DigitalOutputSubsystem class 59
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

transduce rated output 171
transducer capacity 171
TransducerCapacity property 75, 171, 379
TransducerRatedOutputinMv property 75
transferring data from an inprocess buffer 393
TransverseSensitivity property 79, 165
Trigger class 34, 82, 84, 109, 126, 127

Level property 83, 126, 183, 185, 188, 191, 194, 
197, 199, 215, 216, 296, 299, 301, 303, 306, 320, 
321, 384, 385, 386, 416, 417

PostTriggerScanCount property 92, 133, 183, 
217, 296, 322

PreTriggerSource property 83, 126, 191, 194, 214, 
385

SupportedThresholdTriggerChannels property 
83, 126, 215, 216, 320, 321

SupportsDigitalEventTrigger property 83, 126, 
217, 322

SupportsNegExternalTTLTrigger property 83, 
126, 215, 320

SupportsNegThresholdTrigger property 83, 126, 
216, 321

SupportsPosExternalTTLTrigger property 83, 
126, 214, 319

SupportsPosThresholdTrigger property 83, 126, 
215, 320

SupportsSoftwareTrigger property 83, 127, 214, 
319

SupportsSvNegExternalTTLTrigger property 83, 
127, 215, 320

SupportsSvPosExternalTTLTrigger property 83, 
127, 215, 319

ThresholdTriggerChannel property 83, 126, 183, 
185, 188, 191, 194, 197, 199, 215, 216, 296, 299, 
301, 303, 306, 320, 321, 384, 385, 386, 416, 417

TriggerType property 83, 126, 183, 185, 188, 191, 
194, 196, 199, 214, 296, 298, 301, 303, 306, 319, 
384, 385, 386, 416, 417

Trigger property
AnalogInputSubsystem class 44, 115
AnalogOutputSubsystem class 50, 120
CounterTimerSubsystem class 64
DigitalInputSubsystem class 54
DigitalOutputSubsystem class 58
QuadratureDecoderSubsystem class 72
TachSubsystem class 68

trigger sources
digital event trigger 217
digital event trigger for a device collection 322
external analog threshold (negative) 216
external analog threshold (negative) for a device 

collection 321
external analog threshold (positive) 215
external analog threshold (positive) for a device 

collection 320
external negative digital (TTL) 215
external negative digital (TTL) for a device 

collection 320
external positive digital (TTL) 214
external positive digital (TTL) for a device 

collection 319
flowchart for setting up triggers 384
flowchart for setting up triggers for device 

collections 416
software (internal) 214
software (internal) for a device collection 319
Sync Bus 217

trigger types 213
for a device collection 318

triggered scan mode 227
using a software retrigger source 228
using an external retrigger source 228

TriggeredScan class 34, 85
Enabled property 85, 227, 387
MaxMultiScanCount property 86, 228
MaxRetriggerFreq property 86, 228
MinRetriggerFreq property 86, 228
MultiScanCount property 85, 228, 387
RetriggerFrequency property 85, 228, 387
RetriggerSource property 85, 214, 228, 387

TriggeredScan property
AnalogInputSubsystem class 44

TriggerType enumeration 106, 138
463



Index

464
TriggerType property 83, 84, 126, 127, 183, 185, 
188, 191, 194, 196, 199, 214, 296, 298, 301, 303, 
306, 319, 384, 385, 386, 416, 417

troubleshooting checklist 428
types of channels 201

for a device collection 308

U
UnMute method

AnalogOutputSubsystem class 51, 121, 197, 200, 
304, 307

up/down counting operations 234
Utility class 35, 93

AssemblyVersion property 93
ComputeDeltaRosette method 94, 163
ComputeRectangularRosette method 93, 163
ConvertTemperatureToVolts method 93, 180
ConvertVoltsToTemperature method 93, 179
GetThermocoupleRange method 94, 158
RawValueToVolts method 94
VoltsToRawValue method 94

V
ValidSamples property 87, 129, 184, 189, 192, 195, 

227, 297, 302, 329
OlBuffer class 222, 223, 227

value of excitation current source 168
for a device collection 290

VendorId field 106, 138
VersionLetter property 79, 81, 165, 170
VersionNumber property 79, 81, 165, 170
Visual Studio .NET 20
Voltage field 107, 139
voltage input channels 155

for a device collection 288
voltage ranges 202

for a device collection 309
VoltageRange property 202, 309

AnalogInputSubsystem class 39, 112, 176, 182, 
185, 187, 190, 193, 292, 295, 298, 300

AnalogIntputSubsystem class 382, 414
AnalogOutputSubsystem class 47, 118, 180, 196, 

199, 294, 303, 306, 382, 414
OlBuffer 87, 129, 227, 329

VoltsToRawValue method 94, 179, 180, 293, 294
AnalogInputSubsystem class 46, 116
AnalogOutputSubsystem class 51, 121

W
WrapSingleBuffer property 197, 199, 303, 306, 389, 

394, 419, 423
AnalogInputSubsystem class 47, 118

WriteInterruptOnChangeMask method 231, 359
DigitalInputSubsystem class 55

X
X4Scaling mode 254
X4Scaling property 70, 253, 254, 373

Y
YoungModulus property 79, 165

Z
ZeroOffset property 79, 165


	Title Page
	Copyright Page
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Organization of this Manual
	Conventions Used in this Manual
	Related Information
	Where to Get Help

	Getting Started
	What’s Included
	What is the DT-Open Layers for .NET Class Library
	Device Collection Support in Open Layers

	What You Need
	Installing the Software
	Building Applications Using DT-Open Layers for .NET
	Using the Online Help
	Using the Example Programs
	Creating Your Own Program
	Distributing Your Program

	Library Summary
	Overview
	OpenLayers.Base Namespace
	Classes
	Device Management
	DeviceMgr Class
	Device Class
	SimultaneousStart Class

	Subsystem Operations
	AnalogInputSubsystem Class
	AnalogOutputSubsystem Class
	DigitalInputSubsystem Class
	DigitalOutputSubsystem Class
	CounterTimerSubsystem Class
	TachSubsystem Class
	QuadratureDecoderSubsystem Class

	Channels
	SupportedChannelInfo Class
	SupportedChannels Class
	ChannelListEntry Class
	ChannelList Class
	StrainGageTeds Class
	BridgeSensorTeds Class

	Clock Class
	Triggers
	Trigger Class
	ReferenceTrigger Class
	TriggeredScan Class

	Range Class
	Buffer Management
	OlBuffer Class
	BufferQueue Class

	Event Handling
	GeneralEventArgs
	BufferDoneEventArgs
	DriverRunTimeErrorEventArgs
	EventDoneEventArgs
	InterruptOnChangeEventArgs
	IOCompleteEventArgs
	MeasureDoneEventArgs

	Error Handling
	OlException
	OlError

	Services

	Delegates
	Enumerations
	Structures

	OpenLayers.DeviceCollection Namespace
	Classes
	Device Management
	DeviceMgr Class
	Device Class
	SimultaneousStart Class

	Subsystem Operations
	AnalogInputSubsystem Class
	AnalogOutputSubsystem Class

	Channels
	SupportedChannelInfo Class
	SupportedChannels Class
	ChannelListEntry Class
	ChannelList Class

	Clock Class
	Triggers
	Trigger Class
	ReferenceTrigger Class

	Range Class
	Buffer Management
	OlBuffer Class
	BufferQueue Class

	Event Handling
	GeneralEventArgs
	BufferDoneEventArgs
	DriverRunTimeErrorEventArgs
	IOCompleteEventArgs

	Error Handling
	OlException
	OlError


	Delegates
	Enumerations
	Structures


	Using the OpenLayers.Base Namespace
	Overview
	Importing the Namespace for the Library
	Getting a DeviceMgr Object
	Getting a Device Object
	Getting a Subsystem
	Determining the Available Channels and Setting up Channel Parameters
	Physical and Logical Channels
	Logical Channel Word
	Channel Name
	IOType
	Setting Up Voltage Input Channels
	Termination Resistor
	Sensor Gain and Offset

	Setting Up Current Input Channels
	Setting Up Thermocouple Input Channels
	Thermocouple Input Types
	CJC Sources

	Setting Up RTD Input Channels
	Setting Up Strain Gage Input Channels
	TEDS for Strain Gages
	Strain Gage Configuration
	Strain Gage Poisson Ratio
	Strain Gage Lead Wire Resistance
	Gage Factor
	Strain Gage Nominal Resistance
	Strain Gage Offset Nulling
	Strain Gage Shunt Calibration

	Setting Up Accelerometer (IEPE) Input Channels
	Coupling
	Excitation Current Source Values

	Setting Up Bridge-Based Sensors
	TEDS for Bridge-Based Sensors
	Bridge Configuration
	Transducer Capacity
	Transducer Rated Output
	Nominal Resistance
	Lead Wire Resistance
	Offset Nulling
	Shunt Calibration

	Setting up Thermistor Input Channels
	Setting Up Resistance Measurement Channels


	Setting Up and Configuring a Subsystem
	Performing Analog I/O Operations
	Single-Value Analog Input Operations
	Single-Value Analog Output Operations
	Continuous, Pre- and Post-Trigger Analog Input Operations Using a Start and Reference Trigger
	Continuous Post-Trigger Analog Input Operations Using One Channel and One Buffer
	Continuous, Post-Trigger Analog Input Operations Using Multiple Buffers
	Continuous, Pre-Trigger Analog Input Operations (Legacy Devices)
	Continuous, About-Trigger Analog Input Operations (Legacy Devices)
	Continuously Paced Analog Output Operations
	Continuous Waveform Generation Operations
	Setting the Channel Type
	Setting the Data Encoding
	Setting the Voltage Range
	Setting the Excitation Voltage Source and Value
	Setting the Synchronization Mode
	Setting the Filter Type
	Setting up the Channel List
	Adding Channels to a Channel List
	Adding Channels By Physical Channel Number
	Adding Channels By Channel Name
	Adding Channels By ChannelListEntry Object

	Inserting Channels in the Channel List
	Inserting a Channel By Physical Channel Number
	Inserting a Channel By Channel Name
	Inserting a Channel By ChannelListEntry Object

	Replacing Channels in the ChannelList
	Removing Channels from the Channel List
	Setting the Gain of a ChannelListEntry
	Inhibiting Channels in a Channel List
	Getting Information about Channels in the ChannelList Object

	Setting up a Clock Source
	Internal Clock Source
	External Clock Source

	Setting Up a Trigger Type
	Software Trigger Source
	TTLPos Trigger Source
	TTLNeg Trigger Source
	ThresholdPos Trigger Source
	ThresholdNeg Trigger Source
	DigitalEvent Trigger Source
	Sync Bus Trigger Source

	Setting up a Post-Trigger Scan Count
	Setting up Buffers
	About QueuedCount and InProcessCount
	Buffer Completion Events
	Handling Input Buffers
	Handling Output Buffers
	Moving Data from an Inprocess OlBuffer Object
	Getting Information about a Buffer
	Cleaning up Buffers

	Setting Triggered Scan Mode
	Using a Software Retrigger Source
	Using an External Retrigger Source


	Performing Digital I/O Operations
	Single-Value Digital Input Operations
	Single-Value Digital Output Operations
	Continuous, Interrupt-On-Change Operations
	Setting the Resolution

	Performing Counter/Timer Operations
	Event Counting
	Up/Down Counting
	Edge-to-Edge Measurement
	Continuous Edge-to-Edge Measurement
	Rate Generation
	One-Shot
	Repetitive One-Shot
	Setting the C/T Clock
	Using an Internal C/T Clock
	Using and External C/T Clock
	Using an Internally Cascaded Clock

	Setting the Gate Type
	Using a None (Software) Gate Type
	Using a HighLevel Gate Type
	Using a LowLevel Gate Type
	Using LowEdge Gate Type
	Using a HighEdge Gate Type
	Using a Level Gate Type

	Setting the Pulse Output Type and Pulse Width

	Performing Measure Counter Operations
	Performing Tachometer Operations
	Performing Quadrature Decoder Operations
	Setting up the Clock
	Setting the X4Scaling Mode
	Setting the Index

	Starting Subsystems Simultaneously
	Auto-Calibrating a Subsystem
	Handling Events
	BufferDoneEvent
	PreTriggerBufferDoneEvent
	QueueStoppedEvent
	IOCompleteEvent
	QueueDoneEvent
	DriverRunTimeErrorEvent
	InterruptOnChangeEvent
	EventDoneEvent
	MeasureDoneEvent
	GeneralFailureEvent
	DeviceRemovedEvent

	Handling Errors
	Cleaning Up Operations

	Using the OpenLayers.DeviceCollection Namespace
	Overview
	Importing the Namespace for the Library
	Getting a DeviceMgr Object
	Getting a Device Object
	Getting a Subsystem
	Determining the Available Channels and Setting up Channel Parameters
	Physical and Logical Channels
	Logical Channel Word
	Channel Name
	IOType
	Setting Up Voltage Input Channels
	Sensor Gain and Offset

	Setting Up Accelerometer (IEPE) Input Channels
	Coupling
	Excitation Current Source Values



	Setting Up and Configuring a Subsystem
	Performing Analog I/O Operations
	Single-Value Analog Input Operations
	Single-Value Analog Output Operations
	Continuous, Pre- and Post-Trigger Analog Input Operations Using a Start and Reference Trigger
	Continuous Post-Trigger Analog Input Operations Using One Channel and One Buffer
	Continuous, Post-Trigger Analog Input Operations Using Multiple Buffers
	Continuously Paced Analog Output Operations
	Continuous Waveform Generation Operations
	Setting the Channel Type
	Setting the Data Encoding
	Setting the Voltage Range
	Setting the Excitation Voltage Source and Value
	Setting up the Channel List
	Adding Channels to a Channel List
	Adding Channels By Physical Channel Number
	Adding Channels By Channel Name
	Adding Channels By ChannelListEntry Object

	Inserting Channels in the Channel List
	Inserting a Channel By Physical Channel Number
	Inserting a Channel By Channel Name
	Inserting a Channel By ChannelListEntry Object

	Replacing Channels in the ChannelList
	Removing Channels from the Channel List
	Setting the Gain of a ChannelListEntry
	Inhibiting Channels in a Channel List
	Getting Information about Channels in the ChannelList Object

	Setting up a Clock Source
	Internal Clock Source
	External Clock Source

	Setting Up a Trigger Type
	Software Trigger Source
	TTLPos Trigger Source
	TTLNeg Trigger Source
	ThresholdPos Trigger Source
	ThresholdNeg Trigger Source
	DigitalEvent Trigger Source

	Setting up a Post-Trigger Scan Count
	Setting up Buffers
	About QueuedCount and InProcessCount
	Buffer Completion Events
	Handling Input Buffers
	Handling Output Buffers
	Getting Information about a Buffer
	Cleaning up Buffers


	Starting Subsystems Simultaneously
	Auto-Calibrating a Subsystem
	Handling Events
	BufferDoneEvent
	PreTriggerBufferDoneEvent
	QueueStoppedEvent
	IOCompleteEvent
	QueueDoneEvent
	DriverRunTimeErrorEvent
	GeneralFailureEvent
	DeviceRemovedEvent

	Handling Errors
	Cleaning Up Operations

	Programming Flowcharts for the OpenLayers.Base Namespace
	Single-Value Analog Input Operations
	Single-Value Analog Output Operations
	Single-Value Digital Input Operations
	Single-Value Digital Output Operations
	Continuous Analog Input Operations - One Buffer
	Continuous Analog Input Operations - Multiple Buffers
	Continuous Analog Output Operations
	Continuous, Interrupt-On-Change Digital Input Operations
	Event Counting Operations
	Up/Down Counting Operations
	Edge-to-Edge Measurement Operations
	Continuous Edge-to-Edge Measurement Operations
	Pulse Output Operations
	Measure Counter Operations
	Tachometer Operations
	Quadrature Decoder Operations
	Simultaneously Starting Subsystems

	Programming Flowcharts for the OpenLayers.DeviceCollection Namespace
	Single-Value Analog Input Operations
	Single-Value Analog Output Operations
	Continuous Analog Input Operations - One Buffer
	Continuous Analog Input Operations - Multiple Buffers
	Continuous Analog Output Operations
	Simultaneously Starting Subsystems

	Product Support
	Error Codes and Messages
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




