

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.digilentinc.com

WaveForms™ SDK Reference Manual

Revised March 8, 2024

DOC#: 506-028 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners.

Page 1 of
154

Table of Contents

Table of Contents .. 1

Overview ... 3

1 The System .. 4

1.1 The API.. 5

1.2 Calling API Functions ... 7

2 System ... 8

3 Device Enumeration ... 10

4 Device Control ... 13

5 Analog In (Oscilloscope) ... 18

5.1 Control .. 19

5.2 Configuration .. 24

5.3 Channels ... 29

5.4 Trigger .. 37

5.5 Trigger Detector ... 42

6 Analog Out (Arbitrary Waveform Generator) ... 48

6.1 Control .. 49

6.2 Configuration .. 52

6.3 States .. 62

7 Analog I/O ... 67

8 Digital I/O .. 72

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 154

9 Digital In (Logic Analyzer) ... 78

9.1 Control .. 79

9.2 Configuration .. 82

9.3 Trigger .. 88

9.4 Trigger Detector ... 92

10 Digital Out (Pattern Generator) .. 95

10.1 Control .. 98

10.2 Configuration .. 98

11 Miscellaneous .. 110

12 Analog Impedance ... 112

13 Digital Protocols ... 119

13.1 UART ... 119

13.2 SPI ... 121

13.3 I2C ... 131

13.4 CAN ... 134

13.5 SWD... 136

14 Devices ... 139

14.1 Electronics Explorer ... 139

14.2 Analog Discovery ... 140

14.3 Analog Discovery 2 .. 141

14.4 Digital Discovery .. 142

14.5 Analog Discovery Pro 3000 Series ... 143

14.6 Analog Discovery Pro 5250 .. 144

14.7 Eclypse Z7 Zmods .. 145

14.8 Discovery Power Supply 3340 ... 146

14.9 Analog Discovery 3 .. 147

15 Deprecated functions ... 148

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 154

Overview

WaveFormsTM provides an interface that allows users to interact with Digilent Analog Design hardware, such as the

Analog DiscoveryTM, Analog Discovery 2TM, Analog Discovery ProTM, Digital DiscoveryTM, Discovery Power SupplyTM

and Electronics ExplorerTM. While the WaveForms application offers a refined graphical interface, the WaveForms

SDK provides access to a public application programming interface (API) that gives users the ability to create

custom PC applications.

This WaveForms SDK manual describes the main components and architecture of the WaveForms system and

details each function contained in the WaveForms API. The SDK package also offers examples demonstrating how

to identify, connect to, and control analog hardware devices.

WaveForms System

WaveForms Application (GUI)

WaveForms Runtime (DWF library)

Adept Runtime (HW communcation)

Custom

Applications

Digilent Test and Measurement devices

Analog

Discovery

Digital

Discovery

Analog

Discovery Pro

Electronics

Explorer

…

USB Ethernet

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 154

1 The System

The WaveForms System is comprised of multiple components. The most visible component is the WaveForms

Application; a suite of graphical instrument panels that give full access to the analog and digital instruments in the

connected hardware. The WaveForms application uses WaveForms Runtime to communicate with the device. For

a custom application it is sufficient to access only the WaveForms Runtime, but both of these Runtimes are

required on the target machine in order to run the application. The WaveForms Runtime is comprised of the DWF

Dynamic Library and several configuration files. This library is located in:

• Windows in System Directory: C: \Windows\System32\dwf.dll

• Linux: /usr/lib/libdwf.so.x.x.x

The static library is located in Windows through the install path:

• Windows 32-bit: C:\Program Files (x86)\Digilent\WaveFormsSDK\lib\x86

• Windows 64-bit: C:\Program Files (x86)\Digilent\WaveFormsSDK\lib\x64

• Windows ARM64: C:\Program Files (x86)\Digilent\WaveFormsSDK\lib\arm64

• Windows ARM64EC: C:\Program Files (x86)\Digilent\WaveFormsSDK\lib\arm64ec

The C header file is located in:

• Windows 32-bit: C:\Program Files\Digilent\WaveFormsSDK\inc

• Windows 64-bit: C:\Program Files (x86)\Digilent\WaveFormsSDK\inc

• Linux: /usr/include/digilent/waveforms

Working code examples are provided with the SDK to demonstrate basic use of each API function set. You can find

samples in the installation directory, which are located here:

• Windows 32-bit: C:\Program Files\Digilent\WaveFormsSDK\samples

• Windows 64-bit: C:\Program Files (x86)\Digilent\WaveFormsSDK\samples

• Linux: /usr/share/digilent/waveforms/samples

• OS X: /Applications/WaveForms.app/Contents/Resources/SDK/

The DWF Library uses Digilent Adept Runtime, which provides basic communication with the targeted hardware

instruments (i.e., Analog Discovery and Electronics Explorer). Although the Adept Runtime is an integral part of the

WaveForms System, knowledge of its structure is not required to write custom applications.

On Mac OS X the WaveForms Runtime (including Adept Runtime) is installed to:

• /Library/Frameworks/dwf.framework

The sample path contains the following directories:

• py: several Python script examples

• C: some C code examples

• cs: C# wrapper, dwf class for the API functions

• vb: VisualBasic wrapper, dwf module for the API function

• dwfcmd: a complex C example application

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 154

1.1 The API

Everything needed to write custom applications is included in the WaveForms SDK, which provides the

header/library files and documentation to access the API for the DWF Library. A custom application must properly

link to these files to make the appropriate API function calls. Every function in the WaveForms public API is

declared in the dwf.h header file.

Basic usage of the WaveForms API can be broken down into the following steps:

1. Call enumeration functions to discover connected hardware devices.

2. Call FDwfDeviceOpen function to establish a connection to specific hardware device.

3. Call function to enable instrument within hardware device.

4. Call functions to configure instrument and acquire/generate signals.

5. Call function to disable instrument.

6. Call FDwfDeviceClose function to disconnect from device.

There are nine main groups of API functions, each named with different prefixes:

Main Groups of API Functions Instrument Function Prefix

Device Enumeration Controls the enumeration of connected and supported

devices.

DwfEnum

Device Control Controls opening and closing specific devices. DwfDevice

AnalogIn

(Oscilloscope)

Acquires samples from each enabled channel

synchronously.

DwfAnalogIn

AnalogOut

(Arbitrary Waveform Generator)

Drives signals from each channel independently. DwfAnalogOut

AnalogIO Acquires and drives various analog signals. DwfAnalogIO

DigitalIn (Logic Analyzer) Acquires samples from digital I/O pins. DwfDigitalIn

DigitalOut (Pattern Generator) Drives digital I/O signals. DwfDigitalOut

DigitalIO Acquires and drives digital I/O signals. DwfDigitalIO

System Obtain basic system information that is instrument and

device independent.

DwfGet

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 154

Each instrument is directly controlled using three types of functions in the API:

Note: Although there are multiple “Status” functions for each instrument, these functions are the only ones that actually read

data from the device.

There are several type definitions and corresponding constants in the dwf.h include file. The majority of them are

used as parameters. When a hardware device is opened, a handle is returned (HDWF), which is used to access and

finally close in all instrument API functions.

The following examples are provided in Python and C++ language.

File Description

Device_Enumeration List the supported and connected devices.

AnalogIO_AnalogDiscovery_SystemMonitor Reading the system monitor information

AnalogIO_AnalogDiscovery_Power Enable power supplies.

AnalogOut_Sine Generate sine waveform on analog out channel.

AnalogOut_Sweep Generate frequency sweep.

AnalogOut_Custom Arbitrary waveform generation.

AnalogOut_Sync How to synchronize the analog output channels

AnalogOutIn Generate analog output signal and perform analog in acquisition.

AnalogIn_Sample Open the first device, configure analog in and read single sample.

AnalogIn_Acquisition Perform acquisition and plot data for first channel.

AnalogIn_Trigger Perform triggered acquisition.

AnalogIn_Record Performs recording of large number of samples.

DigitalIO Drive and read digital IO pins

DigitalOut_Pins Generate pulse, random and custom signal on digital out pins.

DigitalOut_BinaryCounter Generate binary counter

DigitalIn_Acquisition Generate signals on digital out and perform acquisition on digital in.

DigitalIn_Record Perform recording of large number of digital in samples.

To compile and link the c/cpp applications with the dwf library use:

Window: gcc device_enumeration.cpp -L../../lib/x86 -ldwf

Linux: gcc device_enumeration.cpp -ldwf

MacOS: gcc device_enumeration.cpp -F /Library/Frameworks -framework dwf

 install_name_tool -add_rpath /Library/Frameworks a.out

 or add dwf.framework to your app bundle/Frameworks

API Functions Instrument Function Example

Reset function This function resets all of the instrument parameters to

default values.

FDwfAnalogInReset

FDwfAnalogOutReset

FDwfDigitalIOReset

Configure function This function configures and/or starts the instrument. FDwfAnalogInConfigure

FDwfAnalogOutConfigure

FDwfDigitalIOConfigure

Status function This function polls and reads all information from the

instrument.

FDwfAnalogInStatus

FDwfAnalogOutStatus

FDwfDigitalIOStatus

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 154

1.2 Calling API Functions

The API functions are C style and return a integer value: 1 if the call is successful, 0 if unsuccessful. Further

information about the failure can be obtained using the FDwfGetLastError and FDwfGetLastErrorMsg functions.

In general, the API functions contain variations of the following parameters:

Parameters Parameter Function

*Info Returns detailed information about the parameter support for the instrument (i.e.,

minimum/maximum values, supported modes, etc.)

*Set Sets an instrument parameter. When the AutoConfigure is enabled (by default), the instrument

is reconfigured and stopped.

*Get Gets the actual instrument parameter. Use this function to get the actual set value. For

instance, an arbitrary voltage offset is set and Get returns the real DAC output value.

*Status Returns the parameter value from the device.

The API functions won’t fail when a parameter pointer is NULL or when a setting (*Set) parameter value is out of
limits. To verify the actual setting value, use *Get API to return the actual value.

The indices used in function parameters are zero based.

The supported discrete parameters are retrieved in bit field value. To decode the capabilities of the device, use the
IsBitSet macro.

int fsfilter;

FDwfAnalogInChannelFilterInfo(h, &fsfilter)

if(IsBitSet(fsfilter, filterAverage)){

 FDwfAnalogInChannelFilterSet(hdwf, 0, filterAverage)

}

For better performance it is recommended to disable AutoConfigure after opening a device. This will prevent each
FDwf*Set call to communicate with the device which can take considerable time.
FDwfDeviceAutoConfigureSet(hdwf, 0)

Details about eventual errors can be displayed like this:

bool myFunction(){

 if(!FDwf…(…)) return false

 if(!FDwf…(…)) return false

 …

 return true

}

if(!myFunction()){

 char szError[512]

 FDwfGetLastErrorMsg(szError)

 print(szError)

}

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 154

2 System

FDwfGetLastError(DWFERC *pdwferc)

Description: Retrieves the last error code in the calling process. The error code is cleared when other API functions

are called and is only set when an API function fails during execution. Error codes are declared in dwf.h:

DWFERC int Error Code Definition

dwfercNoErc 0 No error occurred.

dwfercUnknownError 1 Unknown error.

dwfercApiLockTimeout 2 Call waiting on pending API time out.

dwfercAlreadyOpened 3 Device already opened.

dwfercNotSupported 4 Device or function not supported by the device.

dwfercInvalidParameter0 0x10 Parameter 0 was invalid in last API call.

dwfercInvalidParameter1 0x11 Parameter 1 was invalid in last API call.

dwfercInvalidParameter2 0x12 Parameter 2 was invalid in last API call.

dwfercInvalidParameter3 0x13 Parameter 3 was invalid in last API call.

Parameters:

- pdwferc – Variable to receive error code.

FDwfGetLastErrorMsg(char szError[512])

Description: Retrieves the last error message. This may consist of a chain of messages, separated by a new line

character, that describe the events leading to the failure.

Parameters:

- szError – Pointer to buffer to receive error string.

FDwfGetVersion(char szVersion[32])

Description: Retrieves the version string. The version string is composed of major, minor, and build numbers (i.e.,

“2.0.19”).

Parameters:

- szVersion – Pointer to buffer to receive version string.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 154

FDwfParamSet(DwfParam param, int value)

Description: Configures various global parameters that will be applied on newly opened devices.

Parameters:

- param – Pointer to buffer to receive version string.

- value – Value to set.

FDwfParamGet(DwfParam param, int *pValue)

Description: Retrieves the parameter value.

Parameters:

- param – Parameter.

- pValue – Pointer to value.

DwfParam int

DwfParamLedBrightness 3 0..100 % LED brightness
Supported by Digital Discovery

DwfParamOnClose 4 Device close behavior.
0 = Continue, keep running
1 = Stop the device outputs but keep the device operational to prevent
temperature drifts
2 = Shutdown device to minimize power consumption

DwfParamAudioOut 5 1 = Enable audio output (default)
0 = Disable audio output
Supported by Analog Discovery 1 and 2

DwfParamUsbLimit 6 USB current limitation in mA, recommended value 600-1000.
Supported by Analog Discovery 1 and 2

DwfParamAnalogOut 7 1 = Enable Wavegen outputs (default)
0 = Disable
Supported by ADP3X50

DwfParamFrequency 8 Adjust system frequency in Hz (default 100MHz)
Supported by Digital Discovery, ADP3X50, Analog Discovery 3

DwfParamExtFreq 9 Specify for input or set reference output frequency in Hz (default 10MHz)
Supported by ADP3X50, Analog Discovery 3

DwfParamClockMode 10 0 = use internal oscillator (default)
1 = enable reference output on Trigger IO 1
2 = use reference input from Trigger IO 1
3 = use Trigger IO 1 as reference input-output (only ADP3X50)
Supported by ADP3X50, Analog Discovery 3

DwfParamTempLimit 11 Specifies the over temperature threshold in degree Celsius on devices
which support such option.

DwfParamFreqPhase 12 Specifies the system clock phase which is useful for device
synchronization when reference input clock is used.

DwfParamDigitalVoltage 13 Adjusts the digital IO voltage in mV.
Supported by Digital Discovery, ADP3X50

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 154

3 Device Enumeration

The FDwfEnum functions are used to discover all connected, compatible devices.

See examples: Device_Enumeration.py, Device_Info.py, Device_InfoEx.py.

FDwfEnum(ENUMFILTER enumfilter, int *pnDevice)

Description: Builds an internal list of detected devices filtered by the enumfilter parameter. It must be called

before using other FDwfEnum functions because they obtain information about enumerated devices

from this list identified by the device index.

ENUMFILTER int

enumfilterAll 0 Enumerate all supported devices

DEVID devid Use devid to filter specific devices

enumfilterType 0x8000000 Use in conjunction with the following filters:

enumfilterUSB 0x0000001 USB devices

enumfilterNetwork 0x0000002 Network devices

enumfilterAXI 0x0000004 Embedded devices

enumfilterRemote 0x1000000 Remote table devices

enumfilterAudio 0x2000000 Sound card device

enumfilterDemo 0x4000000 Demo devices

Parameters:

- enumfilter – Filter value to be used for device enumeration. Use the enumfilterAll constant to discover all

compatible devices or “enumfilterType| enumfilterUSB”

- pnDevice – Integer pointer to return count of found devices by reference.

Example:
FDwfEnum(enumfilterAll, &nDev) # list all devices
FDwfEnum(devidDiscovery3, &nDev) # list Analog Discovery 3 devices
FDwfEnum(enumfilterType|enumfilterUSB|enumfilterAXI, &nDev) # list USB and AXI devices

FDwfEnumStart(ENUMFILTER enumfilter)

Description: Starts enumerating the devices. Nonblocking alternative for FDwfEnum.

Parameters:

- enumfilter – Filter value to be used for device enumeration. Use the enumfilterAll constant to discover all

compatible devices.

FDwfEnumStop(int *pnDevice)

Description: Stops enumeration andeturns the number of detected devices. Call this function after

FDwfEnumStart.

Parameters:

- pnDevice – Integer pointer to return count of found devices by reference.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 154

FDwfEnumDeviceType(int idxDevice, DEVID *pDeviceId, DEVVER *pDeviceRevision)

Description: Returns the device ID and version ID.

DEVID int

devidEExplorer 1 Electronics Explorer

devidDiscovery 2 Analog Discovery (1)

devidDiscovery2 3 Analog Discovery 2

devidDDiscovery 4 Digital Discovery

devidADP3X50 6 Analog Discovery Pro 3000 series

devidADP5250 8 Analog Discovery Pro 5250

devidDPS3340 9 Discovery Power Supply 3340

devidDiscovery3 10 Analog Discovery 3

devidADP2230 14 Analog Discovery Pro 2230

Parameters:

- idxDevice – Zero based index of the enumerated device for which to return the type and revision.

- pDeviceId – Variable to return the device id.

- pDeviceRevision – Pointer to DEVVER instance to return the device revision by reference.

FDwfEnumDeviceIsOpened(int idxDevice, int *pfIsUsed)

Description: Retrieves a Boolean specifying if a device is already opened by this, or any other process.

Parameters:

- idxDevice – Index of the enumerated device.

- pfIsUsed – Pointer to variable to receive Boolean indicating if the device is in use.

FDwfEnumUserName(int idxDevice, char szUserName[32])

Description: Retrieves the user name of the enumerated device.

Parameters:

- idxDevice – Index of the enumerated device.

- szUserName – Pointer to character array to return the user name string by reference.

FDwfEnumDeviceName(int idxDevice, char szDeviceName[32])

Description: Retrieves the device name of the enumerated device.

Parameters:

- idxDevice – Index of the enumerated device.

- szDeviceName – Pointer to character array to return the device name by reference.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 154

FDwfEnumSN(int idxDevice, char szSN[32])

Description: Retrieves the 12-digit, unique serial number of the enumerated device.

Parameters:

- idxDevice – Index of the enumerated device.

- szSN – Pointer to character array to return the serial number by reference.

FDwfEnumConfig(int idxDevice, int *pcConfig)

Description: Builds an internal list of detected configurations for the selected device. The function above must be

called before using other FDwfEnumConfigInfo function because this obtains information about

configurations from this list identified by the configuration index.

Parameters:

- idxDevice – Index of the enumerated device.

- pcConfig – Integer pointer to return count of found configurations by reference.

FDwfEnumConfigInfo(int idxConfig, DwfEnumConfigInfo info, int *pValue)

Description: Returns information about the configuration. These are intended for preliminary information before

opening a device. Further information are available with various the FDwf#Info functions.

DwfEnumConfigInfo int

DECIAnalogInChannelCount 1

DECIAnalogOutChannelCount 2

DECIAnalogIOChannelCount 3

DECIDigitalInChannelCount 4

DECIDigitalOutChannelCount 5

DECIDigitalIOChannelCount 6

DECIAnalogInBufferSize 7

DECIAnalogOutBufferSize 8

DECIDigitalInBufferSize 9

DECIDigitalOutBufferSize 10

Parameters:

- idxConfig – Index of the configuration for which to return the information.

- info – Information type.

- pValue – Integer pointer to return selected information type by reference.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 154

4 Device Control

See Device_Synchronization.py example.

FDwfDeviceOpen(int idxDevice, HDWF *phdwf)

Description: Opens a device identified by the enumeration index and retrieves a handle. To automatically

enumerate all connected devices and open the first discovered device, use index -1.

Parameters:

- idxDevice – Zero based index of the enumerated device.

- phdwf – Pointer to HDWF variable to receive opened interface handle by reference.

FDwfDeviceConfigOpen(int idxDevice, int idxCfg, HDWF *phdwf)

Description: Opens a device identified by the enumeration index with the selected configuration and retrieves a

handle.

Parameters:

- idxDevice – Index of the enumerated device.

- idxCfg – Index of the device configuration.

- phdwf – Pointer to HDWF variable to receive opened interface handle by reference.

FDwfDeviceOpenEx(const char *szOpt, HDWF *phdwf)

Description: Opens a device and retrieves a handle.

Parameters:

- szOpt – Options delimited by new line, like “index:0\nconfig:1”.

- phdwf – Pointer to HDWF variable to receive opened interface handle by reference.

options

index:# Connect to device by enumeration 0 based index

sn:########## Open by serial number*

name:device-name Open by device name*

config:# User configuration 0 based index

ip:#.#.#.#/host Connect to network device identified by IP or hostname

ip:user:pass@#.#.#.#/host Connect to network devoce

user: username Provide username for IP/Host

pass:password Provide password for IP/Host

secure:# Enable TLS communication encryption 0/1

* The devices will be enumberated before connection

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 154

FDwfDeviceClose(HDWF hdwf)

Description: Closes an interface handle when access to the device is no longer needed. Once the function above

has returned, the specified interface handle can no longer be used to access the device.

Parameters:

- hdwf – Interface handle to be closed.

FDwfDeviceCloseAll()

Description: Closes all opened devices by the calling process. It does not close all devices across all processes.

Parameters: None.

FDwfDeviceEnableSet(HDWF hdwf, int fEnable)

Description: Enables (default) or disables the device outputs.

Parameters:

- hdwf – Interface handle to be closed.

- fEnable – Set TRUE to enable, FALSE to disable.

FDwfDeviceAutoConfigureSet(HDWF hdwf, int fAutoConfigure)

Description: Enables or disables the AutoConfig setting for a specific device. When this setting is enabled, the

device is automatically configured every time an instrument parameter is set. For example, when

AutoConfigure is enabled, FDwfAnalogOutConfigure does not need to be called after

FDwfAnalogOutRunSet. This adds latency to every Set function; just as much latency as calling the

corresponding Configure function directly afterward. With value 3 the analog-out configuration will

be applied dynamically, without stopping the instrument.

Parameters:

- hdwf – Interface handle.

- fAutoConfigure– Value for this option: 0 disable, 1 enable, 3 dynamic

FDwfDeviceAutoConfigureGet(HDWF hdwf, int *pfAutoConfigure)

Description: Returns the AutoConfig setting in the device. See the function description for

FDwfDeviceAutoConfigureSet for details on this setting.

Parameters:

- hdwf – Interface handle.

- pfAutoConfigure – Pointer to variable to receive the current value of this option.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 154

FDwfDeviceReset(HDWF hdwf)

Description: Resets and configures (by default, having auto configure enabled) all device and instrument

parameters to default values.

Parameters:

- hdwf – Interface handle.

FDwfDeviceParamSet(HDWF hdwf, DwfParam param, int value)

Description: Configures various parameters for the respective device.

Parameters:

- param – Pointer to buffer to receive version string.

- value – Value to set

FDwfDeviceParamGet(HDWF hdwf, DwfParam param, int *pValue)

Description: Retrieves the parameter value.

Parameters:

- param – Parameter.

- pValue – Pointer to value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 154

The global trigger bus allows multiple instruments to trigger each other. These trigger source options are:

TRIGSRC BYTE Trigger Source Function

trigsrcNone 0 For trigger IO it configures to be input, in high impedance.

This is the default setting.

For instruments it configures no trigger.

trigsrcPC 1 Trigger from PC, this can be used to synchronously start multiple

instruments.

trigsrcDetectorAnalogIn 2 Trigger detector on analog in channels.

trigsrcDetectorDigitalIn 3 Trigger on digital input channels.

trigsrcAnalogIn 4 Trigger on device instruments, these output high when running.

trigsrcDigitalIn 5 Trigger on device instruments, these output high when running.

trigsrcDigitalOut 6 Trigger on device instruments, these output high when running.

trigsrcAnalogOut1 7 Trigger on device instruments, these output high when running.

trigsrcAnalogOut2 8 Trigger on device instruments, these output high when running.

trigsrcAnalogOut3 9 Trigger on device instruments, these output high when running.

trigsrcAnalogOut4 10 Trigger on device instruments, these output high when running.

trigsrcExternal1 11 External trigger signal.

trigsrcExternal2 12 External trigger signal.

trigsrcExternal3 13 External trigger signal.

trigsrcExternal4 14 External trigger signal.

trigsrcHigh 15 High level output for trigger IO.

trigsrcLow 16 Low level output for trigger IO.

trigsrcClock 17 Reference clock output for trigger IO.

Ext/Trig

DI/O ADC

AnalogIn

Trigger Detector

Control

DigitalIn

Trigger Detector

Control

DigitalOut

Control

T
rig

g
e

r s
ig

n
a

ls
 b

u
s

Manual / PC

AnalogOut

Control

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 154

FDwfDeviceTriggerInfo(HDWF hdwf, int *pfstrigsrc)

Description: Returns the supported trigger source options for the global trigger bus. They are returned (by

reference) as a bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are

defined using the TRIGSRC constants in dwf.h.

Parameters:

- hdwf – Interface handle.

- pfstrigsrc – Variable to receive the supported trigger sources.

FDwfDeviceTriggerSet(HDWF hdwf, int idxPin, TRIGSRC trigsrc)

Description: Configures the trigger I/O pin with a specific TRIGSRC option.

Parameters:

- hdwf – Interface handle.

- idxPin – External trigger, I/O pin index.

- trigsrc – Trigger source to set.

FDwfDeviceTriggerGet(HDWF hdwf, int idxPin, TRIGSRC *ptrigsrc)

Description: Returns the configured trigger setting for a trigger I/O pin. The trigger source can be “none”, an

internal instrument, or an external trigger.

Parameters:

- hdwf – Interface handle.

- idxPin – External trigger, I/O pin index.

- ptrigsrc – Variable to receive the current trigger source.

FDwfDeviceTriggerPC(HDWF hdwf)

Description: Generates one pulse on the PC trigger line.

Parameters:

- hdwf – Interface handle.

FDwfDeviceTriggerSlopeInfo(HDWF hdwf, int *pfsslope)

Description: Returns the supported trigger slopes: rising, falling and either edge.

Parameters:

- hdwf – Interface handle.

- pfsslope – Variable to receive the supported trigger slopes.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 154

5 Analog In (Oscilloscope)

The Analog In instrument states:

The states are defined in dwf.h DwfState type.

- Ready: Initial state. After FDwfAnalogInConfigure or any FDwfAnalogIn*Set function call goes to this state.

With FDwfAnalogInConfigure, reconfigure goes to Configure state.
- Configure: The needed configurations are performed, and auto trigger is reset.
- Prefill: Prefills the buffer with samples needed before trigger.
- Armed: Waits for the trigger.
- Running (Trig’d):

o Single acquisition mode: remains in this state to acquire samples after trigger according trigger
position parameter.

o Scan screen and shift modes: remains in this state until configure or any set function of this
instrument.

o Record mode: the time period according to the record length parameter.
- Done: Final state.

See the following examples: AnalogIn_Sample/Acquisition/Trigger/Record.py AnalogOutIn.py

Start?

Reconfigure?

Trigger?

Start?

Ready Armed

Running Done

Instrument configuration or setting

Prefill

Configure

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 154

5.1 Control

5.1 Control

FDwfAnalogInReset(HDWF hdwf)

Description: Resets all AnalogIn instrument parameters to default values. If auto configure is enabled (through

FDwfDeviceAutoConfigureSet), the instrument is also configured.

Parameters:

- hdwf – Interface handle.

FDwfAnalogInConfigure(HDWF hdwf, int fReconfigure, int fStart)

Description: Configures the instrument and start or stop the acquisition. To reset the Auto trigger timeout, set

fReconfigure to TRUE.

Parameters:

- hdwf – Interface handle.

- fReconfigure – Configure the device.
- fStart – Start the acquisition.

FDwfAnalogInStatus(HDWF hdwf, int fReadData, DwfState *psts)

Description: Checks the state of the acquisition. To read the data from the device, set fReadData to TRUE. For

single acquisition mode, the data will be read only when the acquisition is finished.

Parameters:

- hdwf – Interface handle.

- fReadData – TRUE if data should be read.
- psts – Variable to receive the acquisition state.

Note: To ensure consistency between device status and measured data, the following AnalogInStatus*functions
do not communicate with the device. These functions only return information and data from the last
FDwfAnalogInStatus call.

FDwfAnalogInStatusSamplesLeft(HDWF hdwf, int *pcSamplesLeft)

Description: Retrieves the number of samples left in the acquisition.

Parameters:

- hdwf – Interface handle.

- pcSamplesLeft – Variable to receive the remaining samples to acquire.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 154

FDwfAnalogInStatusSamplesValid(HDWF hdwf, int *pcSamplesValid)

Description: Retrieves the number of valid/acquired data samples.

Parameters:

- hdwf – Interface handle.

- pcSamplesValid – Variable to receive the number of valid samples.

FDwfAnalogInStatusIndexWrite(HDWF hdwf, int *pidxWrite)

Description: Retrieves the buffer write pointer which is needed in ScanScreen acquisition mode to display the scan

bar.

Parameters:

- hdwf – Interface handle.

- pidxWrite – Variable to receive the position of the acquisition.

FDwfAnalogInStatusAutoTriggered(HDWF hdwf, int *pfAuto)

Description: Verifies if the acquisition is auto triggered.

Parameters:

- hdwf – Interface handle.

- pfAuto – Returns TRUE if the acquisition was auto triggered.

FDwfAnalogInStatusData(

HDWF hdwf, int idxChannel, double *rgdVoltData, int cdData)

Description: Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument. It

copies the data samples to the provided buffer.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rgdVoltData – Pointer to allocated buffer to copy the acquisition data.
- cdData – Number of samples to copy.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 21 of 154

FDwfAnalogInStatusData2(

HDWF hdwf, int idxChannel, double *rgdVoltData, int idxData, int cdData)

Description: Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument. It

copies the data samples to the provided buffer.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rgdVoltData – Pointer to allocated buffer to copy the acquisition data.
- idxData – First sample index to copy.
- cdData – Number of samples to copy.

FDwfAnalogInStatusData16(

HDWF hdwf, int idxChannel, short*rgs16Data, int idxData, int cdData)

Description: Retrieves the acquired raw data samples from the specified idxChannel on the AnalogIn instrument. It

copies the data samples to the provided buffer.

Example: To convert raw data voltage value:

 rgs16Data[i] * FDwfAnalogInChannelRangeGet / 65536+FDwfAnalogInChannelOffsetGet

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rgs16VoltData – Pointer to allocated buffer to copy the acquisition data.
- idxData – Source sample index to copy.
- cdData – Number of samples to copy.

FDwfAnalogInStatusNoise(

HDWF hdwf, int idxChannel, double *rgdMin, double *rgdMax, int cdData)

Description: Retrieves the acquired noise samples from the specified idxChannel on the AnalogIn instrument. It

copies the data samples to the provided buffer.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rgdMin – Pointer to allocated buffer to copy the minimum noise data.
- rgdMax – Pointer to allocated buffer to copy the maximum noise data.
- cdData – Number of min/max samples to copy.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 22 of 154

FDwfAnalogInStatusNoise2(

HDWF hdwf, int idxChannel, double *rgdMin, double *rgdMax,

int idxData, int cdData)

Description: Retrieves the acquired noise samples from the specified idxChannel on the AnalogIn instrument. It

copies the data samples to the provided buffer.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rgdMin – Pointer to allocated buffer to copy the minimum noise data.
- rgdMax – Pointer to allocated buffer to copy the maximum noise data.
- idxData – First sample index to copy.
- cdData – Number of min/max samples to copy.

FDwfAnalogInStatusSample(HDWF hdwf, int idxChannel, double *pdVoltSample)

Description: Gets the last ADC conversion sample from the specified idxChannel on the AnalogIn instrument.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pdVoltSample – Variable to receive the sample value.

FDwfAnalogInStatusRecord(

HDWF hdwf, int *pcdDataAvailable, int *pcdDataLost, int *pcdDataCorrupt)

Description: Retrieves information about the recording process. The data loss occurs when the device acquisition

is faster than the read process to PC. In this case, the device recording buffer is filled and data

samples are overwritten. Corrupt samples indicate that the samples have been overwritten by the

acquisition process during the previous read. In this case, try optimizing the loop process for faster

execution or reduce the acquisition frequency or record length to be less than or equal to the device

buffer size (record length <= buffer size/frequency).

Parameters:

- hdwf – Interface handle.

- pcdDataAvailable – Pointer to variable to receive the available number of samples.

- pcdDataLost – Pointer to variable to receive the lost samples after the last check.
- pcdDataCorrupt – Pointer to variable to receive the number of samples that could be corrupt.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 154

FDwfAnalogInStatusTime(HDWF hdwf,

unsigned int * psecUtc, unsigned int * ptick, unsigned int * pticksPerSecond)

Description: Retrieves instrument trigger time information.

With Digital Discovery, ADP3000, EclypseZ7, AD3.. returns a high precision device count value. This is

not accurately synchronized between devices but it can be used to measure trigger distances at

system frequency like 100 or 125MHz, at 10 or 8ns resolution.

With other devices returns the host time.

Parameters:

- hdwf – Interface handle.

- psecUtc –Seconds elapsed since Epoch 1970-01-01T00:00:00Z in local time zone.

- pTick – Additional ticks since the second count, like 0 to 999,999,999 or 124,999,999
- pticksPerSecond – Number of ticks in second like 100M or 125M.

FDwfAnalogInRecordLengthSet(HDWF hdwf, double sLegth)

Description: Sets the Record length in seconds. With length of zero, the record will run indefinitely.

Parameters:

- hdwf – Interface handle.

- sLegth – Record length to set expressed in seconds.

FDwfAnalogInRecordLengthGet(HDWF hdwf, double *psLegth)

Description: Gets the current Record length in seconds.

Parameters:

- hdwf – Interface handle.

- sLegth – Pointer to variable to receive the record length.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 24 of 154

5.2 Configuration

FDwfAnalogInFrequencyInfo(HDWF hdwf, double *phzMin, double *phzMax)

Description: Retrieves the minimum and maximum (ADC frequency) settable sample frequency.

Parameters:

- hdwf – Interface handle.

- phzMin – Pointer to return the minimum allowed frequency.

- phzMax – Pointer to return the maximum allowed frequency.

FDwfAnalogInFrequencySet(HDWF hdwf, double hzFrequency)

Description: Sets the sample frequency for the instrument.

Parameters:

- hdwf – Interface handle.

- hzFrequency – Acquisition frequency to set.

FDwfAnalogInFrequencyGet(HDWF hdwf, double *phzFrequency)

Description: Reads the configured sample frequency. The AnalogIn ADC always runs at maximum frequency, but

the method in which the samples are stored in the buffer can be individually configured for each

channel with FDwfAnalogInChannelFilterSet function.

Parameters:

- hdwf – Interface handle.

- phzFrequency – Variable to receive the acquisition frequency.

FDwfAnalogInBitsInfo(HDWF hdwf, int *pnBits)

Description: Retrieves the number bits used by the AnalogIn ADC.

Parameters:

- hdwf – Interface handle.

- pnBits – Variable to receive the number of ADC bits.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 25 of 154

FDwfAnalogInBufferSizeInfo(HDWF hdwf, int *pnSizeMin, int *pnSizeMax)

Description: Returns the minimum and maximum allowable buffer sizes for the instrument.

Parameters:

- hdwf – Interface handle.

- pnMin – Pointer to return the minimum buffer size.

- pnMax – Pointer to return the maximum buffer size.

FDwfAnalogInBufferSizeSet(HDWF hdwf, int nSize)

Description: Adjusts the AnalogIn instrument buffer size.

Parameters:

- hdwf – Interface handle.

- nSize – Buffer size to set.

FDwfAnalogInBufferSizeGet(HDWF hdwf, int *pnSize)

Description: Returns the used AnalogIn instrument buffer size.

Parameters:

- hdwf – Interface handle.

- pnSize – Variable to receive the current buffer size.

FDwfAnalogInNoiseSizeInfo(HDWF hdwf, int *pnSizeMax)

Description: Returns the maximum buffer size for the instrument.

Parameters:

- hdwf – Interface handle.

- pnMax – Pointer to return the maximum noise buffer size.

FDwfAnalogInNoiseSizeSet(HDWF hdwf, int nSize)

Description: Enables or disables (default) the capture on noise samples.

Parameters:

- hdwf – Interface handle.

- nSize – Zero disables and other values enable the noise buffer.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 26 of 154

FDwfAnalogInNoiseSizeGet(HDWF hdwf, int *pnSize)

Description: Returns the used AnalogIn instrument noise buffer size. This is automatically adjusted according to

the sample buffer size. For instance, having maximum buffer size of 8192 and noise buffer size of

512, setting the sample buffer size to 4096 the noise buffer size will be 256.

Parameters:

- hdwf – Interface handle.

- pnSize – Variable to receive the current noise buffer size.

FDwfAnalogInAcquisitionModeInfo(HDWF hdwf, int *pfsacqmode)

Description: Returns the supported AnalogIn acquisition modes. They are returned (by reference) as a bit field.

This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the ACQMODE

constants in dwf.h. The acquisition mode selects one of the following modes, ACQMODE:

ACQMODE int Constant Capabilities

acqmodeSingle 0 Perform a single buffer acquisition and rearm the instrument for next capture after
the data is fetched to host using FDwfAnalogInStatus or

FDwfDigitalInStatus function. This is the default setting.

acqmodeScanShift 1 Perform a continuous acquisition in FIFO style. The trigger setting is ignored. The

last sample is at the end of buffer. The

FDwfAnalog|DigitalInStatusSamplesValid function is used to show

the number of the acquired samples, which will grow until reaching the BufferSize.

Then the waveform “picture” is shifted for every new sample.

acqmodeScanScreen 2 Perform continuous acquisition circularly writing samples into the buffer. The

trigger setting is ignored. The IndexWrite shows the buffer write position. This is

similar to a heart monitor display.

acqmodeRecord 3 Perform record acquisition by streaming data to host.

acqmodeOvers 4 With ADP3000 device series the consecutive captures are shifted by in four phases
relative to the other instruments (AnalogOut, DigitalIn/Out)
Othewise it is identical to acqmoeSingle.

acqmodeSingle1 5 Perform a single buffer acquisition without rearming the instrument.

Parameters:

- hdwf – Interface handle.

- pfsacqmode – Pointer to return the supported acquisition modes.

FDwfAnalogInAcquisitionModeSet(HDWF hdwf, ACQMODE acqmode)

Description: Sets the acquisition mode.

Parameters:

- hdwf – Interface handle.

- acqmode – Acquisition mode to set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 27 of 154

FDwfAnalogInAcquisitionModeGet(HDWF hdwf, ACQMODE *pacqmode)

Description: Retrieves the acquisition mode.

Parameters:

- hdwf – Interface handle.

- pacqmode – Variable to receive the current acquisition mode.

FDwfAnalogInSamplingSourceSet(HDWF hdwf, TRIGSRC trigsrc)

Description: Configures the AnalogIn acquisition data sampling source.

Parameters:

- hdwf – Interface handle.

- trigsrc – Trigger source to be used as data sampling clock.

FDwfAnalogInSamplingSourceGet(HDWF hdwf, TRIGSRC *ptrigsrc)

Description: Returns the configured sampling source.

Parameters:

- hdwf – Interface handle.

- ptrigsrc – Variable to receive the current sampling source.

FDwfAnalogInSamplingSlopeSet(HDWF hdwf, DwfTriggerSlope slope)

Description: Sets the sampling slope for the instrument.

Parameters:

- hdwf – Interface handle.

- slope – Sampling clock slope to set.

FDwfAnalogInSamplingSlopeGet(HDWF hdwf, DwfTriggerSlope * pslope)

Description: Returns the sampling for the instrument.

Parameters:

- hdwf – Interface handle.

- pslope – Variable to receive the current sampling slope.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 28 of 154

FDwfAnalogInSamplingDelaySet(HDWF hdwf, double sec)

Description: Sets the sampling delay for the instrument.

Parameters:

- hdwf – Interface handle.

- hzFrequency – Sampling delay to set.

FDwfAnalogInSamplingDelayGet(HDWF hdwf, double *psec)

Description: Returns the configured sampling delay.

Parameters:

- hdwf – Interface handle.

- phzFrequency – Variable to receive the sampling delay.

FDwfAnalogInBuffersInfo(HDWF hdwf, int *pMax)

Description: Returns the maximum supported device buffers (memory segmentation) for acqmodeSingle,

Oversample for low latency sequential captures.

Parameters:

- hdwf – Interface handle.

- pnMax – Pointer to return the maximum buffers.

FDwfAnalogInBuffersSet(HDWF hdwf, int n)

Description: Sets the desired number of buffers.

Parameters:

- hdwf – Interface handle.

- n – number of device buffers, 0 and 1 disables the device buffering, -1 sets maximum

FDwfAnalogInBuffersGet(HDWF hdwf, int *pn)

Description: Returns the number of device buffers.

Parameters:

- hdwf – Interface handle.

- pn – Variable to receive the current number of device buffers.

FDwfAnalogInBuffersStatus(HDWF hdwf, int *pn)

Description: Returns the number of filled device buffers.

Parameters:

- hdwf – Interface handle.

- pn – Variable to receive the current number of filled device buffers.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 29 of 154

5.3 Channels

The oscilloscope channel settings are identical across all channels.

FDwfAnalogInChannelCount(HDWF hdwf, int *pcChannel)

Description: Reads the number of AnalogIn channels of the device.

Parameters:

- hdwf – Interface handle.

- pcChannel – Variable to receive the number of channels.

FDwfAnalogInChannelEnableSet(HDWF hdwf, int idxChannel, int fEnable)

Description: Enables or disables the specified AnalogIn channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Zero based index of channel to enable/disable.

- fEnable – Set TRUE to enable, FALSE to disable.

FDwfAnalogInChannelEnableGet(HDWF hdwf, int idxChannel, int *pfEnable)

Description: Gets the current enable/disable status of the specified AnalogIn channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Index of channel.

- pfEnable – Variable to return enable/disable status of channel.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30 of 154

FDwfAnalogInChannelFilterInfo(HDWF hdwf, int *pfsfilter)

Description: Returns the supported sampling modes. They are returned (by reference) as a bit field. This bit field

can be parsed using the IsBitSet Macro. Individual bits are defined using the FILTER constants in

dwf.h. When the acquisition frequency (FDwfAnalogInFrequencySet) is less than the ADC frequency

(maximum acquisition frequency).

Parameters:

- hdwf – Interface handle.

- pfsfilter – Pointer to return the supported acquisition modes.

FDwfAnalogInChannelFilterSet(HDWF hdwf, int idxChannel, FILTER filter)

Description: Sets the acquisition filter for each AnalogIn channel. With channel index -1, each enabled AnalogIn

channel filter will be configured to use the same, new option.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- filter – Acquisition sample filter to set.

FDwfAnalogInChannelFilterGet(HDWF hdwf, int idxChannel, FILTER *pfilter)

Description: Returns the configured acquisition filter.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfilter– Variable to receive the current sample filter.

FILTER int Constant Capabilities

filterDecimate 0 Store every Nth ADC conversion, where N = ADC frequency /acquisition

frequency.

filterAverage 1 Store the average of N ADC conversions.

filterMinMax 2 Store interleaved, the minimum and maximum values, of 2xN conversions.

filterAverageFit 3 The stored samples match the specified range instead of the device input range
options. This can improve the vertical resolution of the samples.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 31 of 154

FDwfAnalogInChannelRangeInfo(

HDWF hdwf, double *pvoltsMin, double *pvoltsMax, double *pnSteps)

Description: Returns the minimum and maximum range, peak to peak values, and the number of adjustable steps.
Parameters:
- hdwf – Interface handle.

- pvoltsMin – Variable to receive the minimum voltage range.

- pvoltsMax – Variable to receive the maximum voltage range.

- pnSteps – Variable to receive number of steps.

FDwfAnalogInChannelRangeSteps(

HDWF hdwf, double rgVoltsStep[32], int *pnSteps)

Description: Reads the range of steps supported by the device. For instance: 1, 2, 5, 10, etc.

Parameters:

- hdwf – Interface handle.

- rgVoltsStep – Pointer to buffer to receive the range steps.

- pnSteps – Variable to receive number range steps.

FDwfAnalogInChannelRangeSet(HDWF hdwf, int idxChannel, double voltsRange)

Description: Configures the range for each channel. With channel index -1, each enabled Analog In channel range

will be configured to the same, new value.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- voltsRange – Voltage range to set.

The actual range of the device may be different depending on the hardware design and calibration (tolerance of
the components). For example, when setting 5V range the actual input range may be 5.456789V, which is returned
by the FDwfAnalogInChannelRangeGet function.
With the filterAverageFit option the range is respected down to 1/100 of the hardware range, like a device with
approximately 5V input range can be as low as 50mV.

FDwfAnalogInChannelRangeGet(HDWF hdwf, int idxChannel, double *pvoltsRange)

Description: Returns the real range value for the given channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pvoltsRange – Variable to receive the current voltage range.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 32 of 154

FDwfAnalogInChannelOffsetInfo(

HDWF hdwf, double *pvoltsMin, double *pvoltsMax, double *pnSteps)

Description: Returns the minimum and maximum offset levels supported, and the number of adjustable steps.

Parameters:

- hdwf – Interface handle.

- pvoltsMin – Variable to receive the minimum offset voltage.

- pvoltsMax – Variable to receive the maximum offset voltage.

- pnSteps – Variable to receive the number offset steps.

FDwfAnalogInChannelOffsetSet(HDWF hdwf, int idxChannel, double voltOffset)

Description: Configures the offset for each channel. When channel index is specified as -1, each enabled AnalogIn

channel offset will be configured to the same level.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- voltsRange – Channel offset voltage to set.

FDwfAnalogInChannelOffsetGet(HDWF hdwf, int idxChannel, double *pvoltOffset)

Description: Returns for each AnalogIn channel the real offset level.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pvoltsRange – Variable to receive the offset voltage obtained.

FDwfAnalogInChannelAttenuationSet(

HDWF hdwf, int idxChannel, double xAttenuation)

Description: Configures the attenuation for each channel. When channel index is specified as -1, each enabled

AnalogIn channel attenuation will be configured to the same level. The attenuation does not change

the attenuation on the device, just informs the library about the externally applied attenuation.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- voltsRange – Channel attenuation to set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 33 of 154

FDwfAnalogInChannelAttenuationGet(

HDWF hdwf, int idxChannel, double *pxAttenuation)

Description: Returns for each AnalogIn channel the configured attenuation.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pxAttenuation – Variable to receive the attenuation value.

FDwfAnalogInChannelBandwidthSet(

HDWF hdwf, int idxChannel, double hz)

Description: Configures the bandwidth limitation for each channel.

Supported with ADP3000 and ADP5000 series devices, default maximum.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- hz – Channel bandwidth to set.

FDwfAnalogInChannelBandwidthGet(

HDWF hdwf, int idxChannel, double *pHz)

Description: Returns for each AnalogIn channel the configured bandwidth.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pHz – Variable to receive the bandwidth value.

FDwfAnalogInChannelImpedanceSet(

HDWF hdwf, int idxChannel, double ohms)

Description: Configures the bandwidth limitation for each channel.

Supported with ADP5470 and ADP5490 devices, default maximum.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- hz – Channel impedance to set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 34 of 154

FDwfAnalogInChannelImpedanceGet(

HDWF hdwf, int idxChannel, double *pOhms)

Description: Returns for each AnalogIn channel the configured bandwidth.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pHz – Variable to receive the impedance value.

FDwfAnalogInChannelCouplingInfo(

HDWF hdwf, int *pfscoupling)

Description: Returns the supported coupling options.

Parameters:

- hdwf – Interface handle.

- pfscoupling – Variable to receive the supported coupling modes.

FDwfAnalogInChannelCouplingSet(

HDWF hdwf, int idxChannel, DwfAnalogCoupling coupling)

Description: Configures the coupling for each channel. When channel index is specified as -1, each enabled

AnalogIn channel coupling will be configured to the same level.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- coupling – Channel coupling to set, DwfAnalogCoupling:

- 0 DwfAnalogCouplingDC

- 1 DwfAnalogCouplingAC

FDwfAnalogInChannelCouplingGet(

HDWF hdwf, int idxChannel, DwfAnalogCoupling *pcoupling)

Description: Returns for each AnalogIn channel the real offset level.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- pcoupling – Variable to receive the coupling.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 35 of 154

FDwfAnalogInChannelFiirInfo(HDWF hdwf, int idxChannel, int *cFIR, int *cIIR)

Description: Returns the supported FIR and IIR options.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- cFIR – Variable to receive the maximum support FIR tap count.

- cIIR – Variable to receive the maximum support IIR count.

FDwfAnalogInChannelFiirSet (HDWF hdwf, int idxChannel,

DwfFiirInput input, DwfFiirMode mode, DwfFiirType type,

int ord, double hz1, double hz2, double ep)

Description: Configures the filter channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- input – Set filter input.

- mode – Set filter mode.

- type – Set filter type.

- ord – IIR order or FIR tap count

- hz1/2 – filter cutoff / system frequency or sample rate ratio, 0.01 - 0.5

- ep – epsilon for IIR Chebyshev filter

DwfFiirMode int

DwfFiirWindow 0 Specified window or custom window is used.

DwfFiirFir 1 FIR filtering

DwfFiirIirButterworth 2 IIR Butterworth filter

DwfFiirIirChebyshev 3 IIR Chebyshev filter

DwfFiirType int

DwfFiirLowPass 0

DwfFiirHighPass 1

DwfFiirBandPass 2

DwfFiirBandStop 3

DwfFiirInput int

DwfFiirRaw 0 Filter is performed on raw ADC conversions at system frequency.

DwfFiirDecimate 1 Filter is performed on every Nth conversion set by the

FDwfAnalogInFrequencySet function.

DwfFiirAverage 2 Filter is perform on every Nth average sample.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 36 of 154

FDwfAnalogInChannelWindowSet(

HDWF hdwf, int idxChannel, DwfWindow win, int size, int beta)

Description: Configures the filter window.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- win – Set window type.

- beta – for Keiser window.

FDwfAnalogInChannelCustomWindowSet(

HDWF hdwf, int idxChannel, const double *rg, int size, int normalize)

Description: Configures the custom filter window.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- rg – Custom window array.

- size – Custom window size.

- normalize – Use 1 to normalize the window.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 37 of 154

5.4 Trigger

The trigger is used for Single and Record acquisitions. For ScanScreen and ScanShift, the trigger is ignored.

To achieve the classical trigger types:

- None: Set FDwfAnalogInTriggerSourceSet to trigsrcNone.

- Auto: Set FDwfAnalogInTriggerSourceSet to something other than trigsrcNone, such as

trigsrcDetectorAnalogIn and FDwfAnalogInTriggerAutoTimeoutSet to other than zero.

- Normal: Set FDwfAnalogInTriggerSourceSet to something other than trigsrcNone, such as

trigsrcDetectorAnalogIn or FDwfAnalogInTriggerAutoTimeoutSet to zero.

See the description of FDwfDeviceTriggerInfo.

FDwfAnalogInTriggerSourceSet(HDWF hdwf, TRIGSRC trigsrc)

Description: Configures the AnalogIn acquisition trigger source.

Parameters:

- hdwf – Interface handle.

- trigsrc – Trigger source to set.

FDwfAnalogInTriggerSourceGet(HDWF hdwf, TRIGSRC *ptrigsrc)

Description: Returns the configured trigger source. The trigger source can be “none” or an internal instrument or

external trigger. To use the trigger on AnalogIn channels (edge, pulse, etc.), use

trigsrcDetectorAnalogIn.

Parameters:

- hdwf – Interface handle.

- ptrigsrc – Variable to receive the current trigger source.

FDwfAnalogInTriggerForce(HDWF hdwf)

Description: Force trigger of AnalogIn instrument.

Parameters:

- hdwf – Interface handle.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 38 of 154

FDwfAnalogInTriggerPositionInfo(

HDWF hdwf, double *psecMin, double *psecMax, double *pnSteps)

Description: Returns the minimum and maximum values of the trigger position in seconds.
For Single/Repeated acquisition mode the horizontal trigger position is used is relative to the buffer
middle point.
For Record mode the position is relative to the start of the capture.

Parameters:
- hdwf – Interface handle.

- psecMin – Variable to receive the minimum trigger position.

- psecMax – Variable to receive the maximum trigger position.

- pnSteps – Variable to return the number of steps.

FDwfAnalogInTriggerPositionSet(HDWF hdwf, double secPosition)

Description: Configures the horizontal trigger position in seconds.

Parameters:

- hdwf – Interface handle.

- secPosition – Trigger position to set.

FDwfAnalogInTriggerPositionGet(HDWF hdwf, double *psecPosition)

Description: Returns the configured trigger position in seconds.

Parameters:

- hdwf – Interface handle.

- psecPosition – Variable to receive the current trigger position.

FDwfAnalogInTriggerPositionStatus (HDWF hdwf, double *psecPosition)

Description: Returns the trigger position in seconds.

For triggerer source on analog input channels the value is corrected by the interpolation of triggering samples.

Parameters:

- hdwf – Interface handle.

- psecPosition – Variable to receive the trigger position.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 39 of 154

FDwfAnalogInTriggerAutoTimeoutInfo(

HDWF hdwf, double *psecMin, double *psecMax, double *pnSteps)

Description: Returns the minimum and maximum auto trigger timeout values, and the number of adjustable steps.

The acquisition is auto triggered when the specified time elapses. With zero value the timeout is

disabled, performing “Normal” acquisitions.

Parameters:

- hdwf – Interface handle.

- psecMin – Variable to receive the minimum timeout.

- psecMax – Variable to receive the maximum timeout.

- pnSteps – Variable to return the number of steps.

FDwfAnalogInTriggerAutoTimeoutSet(HDWF hdwf, double secTimeout)

Description: Configures the auto trigger timeout value in seconds.

Parameters:

- hdwf – Interface handle.

- secTimeout – Timeout to set.

FDwfAnalogInTriggerAutoTimeoutGet(HDWF hdwf, double *psecTimeout)

Description: Returns the configured auto trigger timeout value in seconds.

Parameters:

- hdwf – Interface handle.

- psecTimeout – Variable to receive the current timeout.

FDwfAnalogInTriggerHoldOffInfo(

HDWF hdwf, double *psecMin, double *psecMax, double *pnStep)

Description: Returns the supported range of the trigger Hold-Off time in Seconds. The trigger hold-off is an

adjustable period of time during which the acquisition will not trigger. This feature is used when you

are triggering on burst waveform shapes, so the oscilloscope triggers only on the first eligible trigger

point.

Parameters:

- hdwf – Interface handle.

- psecMin – Variable to receive the minimum hold off value.

- psecMax – Variable to receive the maximum hold off value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 40 of 154

FDwfAnalogInTriggerHoldOffSet(HDWF hdwf, double secHoldOff)

Description: Sets the trigger hold-off for the AnalongIn instrument in Seconds.

Parameters:

- hdwf – Interface handle.

- secHoldOff – Holdoff to set.

FDwfAnalogInTriggerHoldOffGet(HDWF hdwf, double *psecHoldOff)

Description: Gets the current trigger hold-off for the AnalongIn instrument in Seconds.

Parameters:

- hdwf – Interface handle.

- psecHoldOff – Variable to receive the current holdoff value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 41 of 154

See AnalogIn_Counter.py example.

FDwfAnalogInCounterInfo(HDWF hdwf, double *pcntMax, double *psecMax)

Description: Returns the supported maximum count and timeout values.

Parameters:

- hdwf – Interface handle.

- pcountMax – Variable to receive the maximum count value.

- psecMax – Variable to receive the maximum timeout value.

FDwfAnalogInCounterSet(HDWF hdwf, double sec)

Description: Sets the timeout value, frequency measurement refresh rate.

Parameters:

- hdwf – Interface handle.

- sec – Timeout value in seconds.

FDwfAnalogInCounterGet(HDWF hdwf, double *psec)

Description: Gets the current timeout value.

Parameters:

- hdwf – Interface handle.

- psec – Variable to receive the current timeout value.

FDwfAnalogInCounterStatus(HDWF hdwf,

double *pcnt, double *pfreq, double *ptick)

Description: Returns the count, frequency and tick values.

Parameters:

- hdwf – Interface handle.

- pcnt – Variable to receive the count value.

- pfreq – Variable to receive the frequency value in hertz.

- ptick – Variable to receive the tick value. This changes on each new measurement.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 42 of 154

5.5 Trigger Detector

The following functions configure the trigger detector on analog in channels. To use this, set trigger source with

FDwfAnalogInTriggerSourceSet to trigsrcDetectorAnalogIn.

See the AnalogIn_Trigger.py example.

FDwfAnalogInTriggerTypeInfo(HDWF hdwf, int *pfstrigtype)

Description: Returns the supported trigger type options for the instrument. They are returned (by reference) as a

bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the

TRIGTYPE constants in dwf.h. These trigger type options are:

• trigtypeEdge: trigger on rising or falling edge. This is the default setting.

• trigtypePulse: trigger on positive or negative; less, timeout, or more pulse lengths.

• trigtypeTransition: trigger on rising or falling; less, timeout, or more transition times.

• trigtypeWindow: trigger on exiting or entering level +/-hysteresis window.

Parameters:

- hdwf – Interface handle.

- pfstrigtype – Variable to receive the supported trigger types.

FDwfAnalogInTriggerTypeSet(HDWF hdwf, TRIGTYPE trigtype)

Description: Sets the trigger type for the instrument.

Parameters:

- hdwf – Interface handle.

- trigtype – Trigger type to set.

FDwfAnalogInTriggerTypeGet(HDWF hdwf, TRIGTYPE *ptrigtype)

Description: Gets the current trigger type for the instrument.

Parameters:

- hdwf – Interface handle.

- ptrigtype – Variable to receive the current trigger type.

FDwfAnalogInTriggerChannelInfo(HDWF hdwf, int *pidxMin, int *pidxMax)

Description: Returns the range of channels that can be triggered on.

Parameters:

- hdwf – Interface handle.

- pidxMin – Variable to receive the minimum channel index.

- pidxMax – Variable to receive the maximum channel index.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 43 of 154

FDwfAnalogInTriggerChannelSet(HDWF hdwf, int idxChannel)

Description: Sets the trigger channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Trigger channel index to set.

FDwfAnalogInTriggerChannelGet(HDWF hdwf, int *pidxChannel)

Description: Retrieves the current trigger channel index.

Parameters:

- hdwf – Interface handle.

- pidxChannel – Variable to receive the current trigger channel index.

FDwfAnalogInTriggerFilterInfo(HDWF hdwf, int *pfsfilter)

Description: Returns the supported trigger filters. They are returned (by reference) as a bit field which can be

parsed using the IsBitSet Macro. Individual bits are defined using the FILTER constants in DWF.h.

Select trigger detector sample source, FILTER:

• filterDecimate: Looks for trigger in each ADC conversion, can detect glitches.

• filterAverage: Looks for trigger only in average of N samples, given by

FDwfAnalogInFrequencySet.

Parameters:

- hdwf – Interface handle.

- pfsFilter – Variable to receive the supported trigger filters.

FDwfAnalogInTriggerFilterSet(HDWF hdwf, FILTER filter)

Description: Sets the trigger filter.

Parameters:

- hdwf – Interface handle.
- filter – Trigger filter to set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 44 of 154

FDwfAnalogInTriggerFilterGet(HDWF hdwf, FILTER *pfilter)

Description: Gets the trigger filter.

Parameters:

- hdwf – Interface handle.

- pfilter – Variable to receive the current trigger filter.

FDwfAnalogInTriggerConditionInfo(HDWF hdwf, int *pfstrigcond)

Description: Returns the supported trigger type options for the instrument. They are returned (by reference) as a

bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the

DwfTriggerSlope constants in dwf.h. These trigger condition options are:

• DwfTriggerSlopeRise (This is the default setting):

 o For edge and transition trigger on rising edge.

 o For pulse trigger on positive pulse; For window exiting.

• DwfTriggerSlopeFall:

 o For edge and transition trigger on falling edge.

 o For pulse trigger on negative pulse; For window entering.

• DwfTriggerSlopeEither:

 o For edge and transition trigger on either edge.

 o For pulse trigger on either positive or negative pulse.

Parameters:

- hdwf – Interface handle.

- pfstrigcond – Variable to receive the supported trigger conditions.

FDwfAnalogInTriggerConditionSet(HDWF hdwf, DwfTriggerSlope trigcond)

Description: Sets the trigger condition for the instrument.

Parameters:

- hdwf – Interface handle.

- trigcond – Trigger condition to set.

FDwfAnalogInTriggerConditionGet(HDWF hdwf, DwfTriggerSlope *ptrigcond)

Description: Sets the trigger condition for the instrument.

Parameters:

- hdwf – Interface handle.

- ptrigcond – Variable to receive the current trigger condition.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 45 of 154

FDwfAnalogInTriggerLevelInfo(
HDWF hdwf, double *pvoltsMin, double *pvoltsMax, double *pnSteps)

Description: Retrieves the range of valid trigger voltage levels for the AnalogIn instrument in Volts.

Parameters:

- hdwf – Interface handle.

- pvoltsMin – Variable to receive the minimum voltage level.

- pvoltsMax – Variable to receive the maximum voltage level.

- pnSteps – Variable to receive the number of voltage level steps.

FDwfAnalogInTriggerLevelSet(HDWF hdwf, double voltsLevel)

Description: Sets the trigger voltage level in Volts.

Parameters:

- hdwf – Interface handle.

- voltsLevel – Trigger voltage level to set.

FDwfAnalogInTriggerLevelGet(HDWF hdwf, double *pvoltsLevel)

Description: Gets the current trigger voltage level in Volts.

Parameters:

- hdwf – Interface handle.

- pvoltsLevel – Variable to receive the current trigger voltage level.

FDwfAnalogInTriggerHysteresisInfo(

HDWF hdwf, double *pvoltsMin, double *pvoltsMax, double *pnSteps)

Description: Retrieves the range of valid trigger hysteresis voltage levels for the AnalogIn instrument in Volts. The

trigger detector uses two levels: low level (TriggerLevel - Hysteresis) and high level (TriggerLevel +

Hysteresis). Trigger hysteresis can be used to filter noise for Edge or Pulse trigger. The low and high

levels are used in transition time triggering.

Parameters:

- hdwf – Interface handle.

- pvoltsMin – Variable to receive the minimum hysteresis level.

- pvoltsMax – Variable to receive the maximum hysteresis level.

- pnSteps – Variable to receive the number of hysteresis level steps.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 46 of 154

FDwfAnalogInTriggerHysteresisSet(HDWF hdwf, double voltsLevel)

Description: Sets the trigger hysteresis level in Volts.

Parameters:

- hdwf – Interface handle.

- voltsLevel – Trigger hysteresis level to set.

FDwfAnalogInTriggerHysteresisGet(HDWF hdwf, double *pvoltsHysteresis)

Description: Gets the current trigger hysteresis level in Volts.

Parameters:

- hdwf – Interface handle.

- pvoltsLevel – Variable to receive the current trigger hysteresis level.

FDwfAnalogInTriggerLengthConditionInfo(HDWF hdwf, int *pfstriglen)

Description: Returns the supported trigger length condition options for the AnalogIn instrument. They are

returned (by reference) as a bit field. This bit field can be parsed using the IsBitSet Macro. Individual

bits are defined using the TRIGLEN constants in DWF.h. These trigger length condition options are:

• triglenLess: Trigger immediately when a shorter pulse or transition time is detected.

• triglenTimeout: Trigger immediately as the pulse length or transition time is reached.

• triglenMore: Trigger when the length/time is reached, and pulse or transition has ended.

Parameters:

- hdwf – Interface handle.

- pfsstriglen – Variable to receive the supported trigger length conditions.

FDwfAnalogInTriggerLengthConditionSet(HDWF hdwf, TRIGLEN triglen)

Description: Sets the trigger length condition for the AnalongIn instrument.

Parameters:

- hdwf – Interface handle.

- triglen – Trigger length condition to set.

FDwfAnalogInTriggerLengthConditionGet(HDWF hdwf, TRIGLEN *ptriglen)

Description: Gets the current trigger length condition for the AnalongIn instrument.

Parameters:

- hdwf – Interface handle.

- ptriglen – Variable to receive the current trigger length condition.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 47 of 154

FDwfAnalogInTriggerLengthInfo(

HDWF hdwf, double *psecMin, double *psecMax, double *pnStep)

Description: Returns the supported range of trigger length for the instrument in Seconds. The trigger length

specifies the minimal or maximal pulse length or transition time.

Parameters:

- hdwf – Interface handle.

- psecMin – Variable to receive the minimum trigger length.

- psecMax – Variable to receive the maximum trigger length.

FDwfAnalogInTriggerLengthSet(HDWF hdwf, double secLength)

Description: Sets the trigger length in Seconds.
Parameters:
- hdwf – Interface handle.

- secLength – Trigger length to set.

FDwfAnalogInTriggerLengthGet(HDWF hdwf, double *psecLength)

Description: Gets the current trigger length in Seconds.

Parameters:

- hdwf – Interface handle.

- secLength – Variable to receive the current trigger length.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 48 of 154

6 Analog Out (Arbitrary Waveform Generator)

The Analog Out instrument states:

The states are defined in dwf.h DwfState type.
- Ready: Initial state. After FDwfAnalogOutConfigure or any FDwfAnalogOut*Set function call goes to this state.

With digital out, configure start command goes to Armed state.
- Armed: It waits for trigger.
- Wait: Remains in this state for the time period specified by FDwfAnalogOutWaitSet function.
- Running: Remains in this state for the time period specified by FDwfAnalogOutRunSet function.
- Repeat: Goes to Armed or Wait state according to the FDwfAnalogOutRepeatTriggerSet setting for the

number of times specified by FDwfAnalogOutRepeatSet.
- Done: Final state.

The analog out channels can run independently or synchronized using the master parameter. The states are

defined by trigger, wait, run, and repeat options. It is enough to start with FDwfAnalogOutConfigure (the master

channel) the slave channels will also start.

See the following examples: AnalogOut_Custom/Pattern/Play/Sine/Sweep/Sync.py AnalogOutIn.py

Trigger? Start?
Ready Armed Wait

Running Repeat Done

Instrument configuration or setting

Analog Out 2

Analog Out 1

States
Generator

M
aster

States
Generator

M
aster

...

...

...

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 49 of 154

6.1 Control

FDwfAnalogOutReset(HDWF hdwf, int idxChannel)

Description: Resets and configures (by default, having auto configure enabled) all AnalogOut instrument

parameters to default values for the specified channel. To reset instrument parameters across all
channels, set idxChannel to -1.

Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

FDwfAnalogOutConfigure(HDWF hdwf, int idxChannel, int fStart)

Description: Starts or stops the instrument. Value 3 will apply the configuration dynamically without changing the

state of the instrument. With channel index -1, each enabled Analog Out channel will be configured.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- fStart – Start the instrument: 0 stop, 1 start, 3 apply.

FDwfAnalogOutStatus(HDWF hdwf, int idxChannel, DwfState *psts)

Description: Checks the state of the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psts – Pointer to variable to return the state.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 50 of 154

The device output signal is output from carrier buffer but can also be frequency and/or amplitude modulated.

The Carrier/FM/AM nodes can be configured by selecting with the AnalogOutNode constants.

AnalogOutNode int

AnalogOutNodeCarrier 0 Carrier signal

AnalogOutNodeFM 1 Frequency or Phase Modulation

AnalogOutNodeAM 2 Amplitude Modulation or Sum

FDwfAnalogOutNodePlayStatus(HDWF hdwf, int idxChannel, AnalogOutNode node,

int *cdDataFree, int *cdDataLost, int *cdDataCorrupted)

Description: Retrieves information about the play process. The data lost occurs when the device generator is faster

than the sample send process from the PC. In this case, the device buffer gets emptied and

generated samples are repeated. Corrupt samples are a warning that the buffer might have been

emptied while samples were sent to the device. In this case, try optimizing the loop for faster

execution; or reduce the frequency or run time to be less or equal to the device buffer size (run time

<= buffer size/frequency).

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- cdDataFree – Pointer to variable to return the available free buffer space, the number of new samples that can
be sent.

- cdDataLost – Pointer to variable to return the number of lost samples.
- cdDataCorrupted – Pointer to variable to return the number of samples that could be corrupted.

Carrier

Buffer

Carrier

Frequency

FM/PM

Buffer

FM/PM

Frequency

AM/SUM

Buffer

AM/SUM

Frequency

Output

Signal

x Index + Offset

x Amplitude

+ Offset

x Index + Offset

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 51 of 154

FDwfAnalogOutNodePlayData(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *rgdData, int cdData)

Description: Sends new data samples for play mode. Before starting the Analog Out instrument, prefill the device

buffer with the first set of samples using the AnalogOutNodeDataSet function. In the loop of sending

the following samples, first call AnalogOutStatus to read the information from the device, then

AnalogOutPlayStatus to find out how many new samples can be sent, then send the samples with

AnalogOutPlayData.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- rgdData – Pointer to samples array to be sent to the device.

- cdData – Number of samples to send.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 52 of 154

6.2 Configuration

FDwfAnalogOutCount(HDWF hdwf, int *pcChannel)

Description: Returns the number of Analog Out channels by the device specified by hdwf.

Parameters:

- hdwf – Open interface handle on a device.

- pcChannel – Pointer to variable to receive the number of channels in the instrument.

FDwfAnalogOutNodeInfo(HDWF hdwf, int idxChannel, int *pfsnode)

Description: Returns the supported AnalogOut nodes of the AnalogOut channel. They are returned (by reference)

as a bit field. This bit field can be parsed using the IsBitSet Macro.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pfsnode – Variable to receive the supported nodes.

FDwfAnalogOutNodeEnableSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, int fMode)

Description: Enables or disables the channel node specified by idxChannel and node. The Carrier node enables or

disables the channel or selectects the modulation. With channel index -1, each Analog Out channel

enable will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- fEnable – Carrier: 0 disable, 1 enable; FM: 1 FM, 2 PM, 3 PMD; AM: 1 AM, 2 SUM, 3 SUMV

The PM, PMD, SUM and SUMV options are available with ADP3000 series.

For PM (Phase Modulation) or PMD (expressed in degrees) the limits are ±100% or ±180°.

For SUM or SUMV (expressed in Volts) the limits are ±400% or in Volts the Offset ± Amplitude ca be up to four

times the Carrier Amplitude.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 53 of 154

FDwfAnalogOutNodeEnableGet(

HDWF hdwf, int idxChannel, AnalogOutNode node, int *pfEnable)

Description: Verifies if a specific channel and node is enabled or disabled.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pfEnable – Pointer to variable to receive enabled state.

FDwfAnalogOutNodeFunctionInfo(

HDWF hdwf, int idxChannel, AnalogOutNode node, int *pfsfunc)

Description: Returns the supported generator function options. They are returned (by reference) as a bit field. This

bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the FUNC constants

in dwf.h. These are:

FUNC Constants Value FUNC Constant Capabilities

funcDC 0 Generate DC value set as offset.

funcSine 1 Generate sine waveform.

funcSquare 2 Generate square waveform, offset +/- amplitude.

funcTriangle 3 Generate triangle waveform.

funcRampUp 4 Generate a waveform with a ramp-up voltage at the beginning.

funcRampDown 5 Generate a waveform with a ramp-down voltage at the end.

funcNoise 6 Generate noise waveform from random samples.

funcPulse 7 Generate pulse waveform, offset + amplitude.

funcTrapezium 8 Genereate trapezium waveform.

funcSinePower 9 Generate sine with symmetry used as power function.

funcCustomPattern 28 Generate waveform from custom samples. It provides constant sample rate,

supporting integer divisions of the system frequency.

funcPlayPattern 29 Generate waveform in stream play style. It provides constant sample rate.

funcCustom 30 Generate waveform from custom samples. Optimizes for average requested

frequency, sample output lengths may vary by one system frequency period.

funcPlay 31 Generate waveform in stream play style. Optimizes for average requested

frequency.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pfsfunc – Variable to receive the supported generator function options.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 54 of 154

FDwfAnalogOutNodeFunctionSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, FUNC func)

Description: Sets the generator output function for the specified instrument channel. With channel index -1, each

enabled Analog Out channel function will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- func – Generator function option to set.

FDwfAnalogOutNodeFunctionGet(

HDWF hdwf, int idxChannel, AnalogOutNode node, FUNC *pfunc)

Description: Retrieves the current generator function option for the specified instrument channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- ptrigsrc – Pointer to variable to receive the generator function option.

FDwfAnalogOutNodeFrequencyInfo(HDWF hdwf, int idxChannel, AnalogOutNode node,
double *phzMin, double *phzMax)

Description: Returns the supported frequency range for the instrument. The maximum value shows the DAC

frequency. The frequency of the generated waveform: repetition frequency for standard types and

custom data; DAC update for noise type; sample rate for play type.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Zero based channel index.

- node – Zero based node index.

- phzMin – Variable to receive the supported minimum frequency.

- phzMax – Variable to receive the supported maximum frequency.

FDwfAnalogOutNodeFrequencySet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double hzFrequency)

Description: Sets the frequency. With channel index -1, each enabled Analog Out channel frequency will be

configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- hzFrequency – Frequency value to set expressed in Hz.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 55 of 154

FDwfAnalogOutNodeFrequencyGet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *phzFrequency)

Description: Gets the currently set frequency for the specified channel-node on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- hzFrequency – Pointer to variable to receive frequency value in Hz.

FDwfAnalogOutNodeAmplitudeInfo(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *pvMin, double *pvMax)

Description: Retrieves the amplitude range for the specified channel-node on the instrument. The amplitude is

expressed in Volt units for carrier and in percentage units (modulation index) for AM/FM.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pvMin – Minimum amplitude level or modulation index.

- pvMax – Maximal amplitude level or modulation index.

FDwfAnalogOutNodeAmplitudeSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double vAmplitude)

Description: Sets the amplitude or modulation index for the specified channel-node on the instrument. With

channel index -1, each enabled Analog Out channel amplitude (or modulation index) will be

configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- vAmplitude – Amplitude of channel in Volts or modulation index in percentage.

FDwfAnalogOutNodeAmplitudeGet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *pvAmplitude)

Description: Gets the currently set amplitude or modulation index for the specified channel-node on the

instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pvAmplitude – Pointer to variable to receive amplitude value in Volts or modulation index in percentage.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 56 of 154

FDwfAnalogOutNodeOffsetInfo(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *pvMin, double *pvMax)

Description: Retrieves available the offset range. For carrier node in units of volts, and in percentage units for

AM/FM nodes.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pvMin – Minimum offset voltage or modulation offset percentage.

- pvMax – Maximum offset voltage or modulation offset percentage.

FDwfAnalogOutNodeOffsetSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double vOffset)

Description: Sets the offset value for the specified channel-node on the instrument. With channel index -1, each

enabled Analog Out channel offset will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- vOffset – Value to set voltage offset in Volts or modulation offset percentage.

FDwfAnalogOutNodeOffsetGet(HDWF hdwf, int idxChannel, AnalogOutNode node,
double *pvOffset)

Description: Gets the current offset value for the specified channel-node on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pvOffset – Pointer to variable to receive offset value in Volts or modulation offset percentage.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 57 of 154

FDwfAnalogOutNodeSymmetryInfo(HDWF hdwf, int idxChannel, AnalogOutNode node,
double *ppercentageMin, double *ppercentageMax)

Description: Obtains the symmetry (or duty cycle) range (0 … 100). This symmetry is supported for standard signal

types. It the pulse duration divided by the pulse period.
Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- ppercentageMin – Minimum value of Symmetry percentage.
- ppercentageMax – Maximum value of Symmetry percentage.

FDwfAnalogOutNodeSymmetrySet(HDWF hdwf, int idxChannel, AnalogOutNode node,
double percentageSymmetry)

Description: Sets the symmetry (or duty cycle) for the specified channel-node on the instrument. With channel

index -1, each enabled Analog Out channel symmetry will be configured to use the same, new
option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- percentageSymmetry –Value of percentage of Symmetry (duty cycle).

FDwfAnalogOutNodeSymmetryGet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *ppercentageSymmetry)

Description: Gets the currently set symmetry (or duty cycle) for the specified channel-node of the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- ppercentageSymmetry – Pointer to variable to receive value of Symmetry (duty cycle).

FDwfAnalogOutNodePhaseInfo(HDWF hdwf, int idxChannel, AnalogOutNode node,
double *pdegreeMin, double *pdegreeMax)

Description: Retrieves the phase range (in degrees 0 ... 360) for the specified channel-node of the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pdegreeMin – Minimum value of Phase (in degrees).
- pdegreeMax – Maximum value of Phase (in degrees).

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 58 of 154

FDwfAnalogOutNodePhaseSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double degreePhase)

Description: Sets the phase for the specified channel-node on the instrument. With channel index -1, each enabled

Analog Out channel phase will be configured to use the same, new option.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- degreePhase – Value of Phase in degrees.

FDwfAnalogOutNodePhaseGet(HDWF hdwf, int idxChannel, AnalogOutNode node,
double *pdegreePhase)

Description: Gets the current phase for the specified channel-node on the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pdegreePhase – Pointer to variable to receive Phase value (in degrees).

FDwfAnalogOutNodeDataInfo(HDWF hdwf, int idxChannel, AnalogOutNode node,
int *pnSamplesMin, double *pnSamplesMax)

Description: Retrieves the minimum and maximum number of samples allowed for custom data generation.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- pnSamplesMin – Minimum number of samples available for custom data.

- pnSamplesMax – Maximum number of samples available for custom data.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 59 of 154

FDwfAnalogOutNodeDataSet(

HDWF hdwf, int idxChannel, AnalogOutNode node, double *rgdData, int cdData)

Description: Set the custom data or to prefill the buffer with play samples. The samples are double precision

floating point values (rgdData) normalized to ±1.
With the custom function option, the data samples (cdData) will be interpolated to the device buffer
size. The output value will be Offset + Sample*Amplitude, for instance:
• 0 value sample will output: Offset.
• +1 value sample will output: Offset + Amplitude.
• -1 value sample will output: Offset – Amplitude.

Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- node – Node index.

- rgbData – Buffer of samples to set.

- cData – Number of samples to set in rgbData.

-

FDwfAnalogOutLimitationInfo(

HDWF hdwf, int idxChannel, double *pvMin, double *pvMax)

Description: Retrieves the limitation range supported by the channel. This option is supported on Electronics

Explorer Analog Out Channel 3 and 4, Positive and Negative Power supplies, to set current or voltage

limitation.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pvMin – Minimum limitation value.

- pvMax – Maximum offset voltage or modulation offset percentage.

FDwfAnalogOutLimitationSet(HDWF hdwf, int idxChannel, double limit)

Description: Sets the limitation value for the specified channel on the instrument. With channel index -1, each

enabled Analog Out channel limitation will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- limit – Value to set voltage offset in Volts or modulation offset percentage.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 60 of 154

FDwfAnalogOutLimitationGet(HDWF hdwf, int idxChannel, double *plimit)

Description: Gets the current limitation value for the specified channel on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- limit – Pointer to variable to receive offset value in Volts or modulation offset percentage.

FDwfAnalogOutModeSet(HDWF hdwf, int idxChannel, DwfAnalogOutMode mode)

Description: Set the generator output mode for the specified instrument channel. With channel index -1, each

enabled Analog Out channel mode will be configured to use the same, new option. This option is

supported on Electronics Explorer Analog Out Channel 3 and 4, Positive and Negative Power

supplies, to set current or voltage waveform generator mode.

The DwfAnalogOutMode options are:

• DwfAnalogOutModeVoltage

• DwfAnalogOutModeCurren

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- mode – Generator mode option to set.

FDwfAnalogOutModeGet(HDWF hdwf, int idxChannel, DwfAnalogOutMode *pmode)

Description: Retrieves the current generator mode option for the specified instrument channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- mode – Pointer to variable to receive the generator mode option.

DwfAnalogOutIdle Idle Constant Capabilities

DwfAnalogOutIdleDisable Supported on Electronics Explorer:
Channel 1&2 0V ouput
Channel 3&4. having 1 kΩ resistor to GND and diode

DwfAnalogOutIdleOffset The idle output is the configured Offset level.

DwfAnalogOutIdleInitial The idle output voltage level has the initial waveform value of the current
configuration. This depends on the selected signal type, Offset, Amplitude and
Amplitude Modulator configuration.

DwfAnalogOutIdleHold Like initial but holds the last output level in Done state. This can be used to create
rump signals like settings Run length to period (Auto) and Repeat once.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 61 of 154

FDwfAnalogOutIdleInfo(HDWF hdwf, int idxChannel, int *pfsidle)

Description: Returns the supported generator idle output options. They are returned (by reference) as a bit field.

This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the

DwfAnalogOutIdle constants in dwf.h.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pfsidlec – Variable to receive the supported generator idle options.

FDwfAnalogOutIdleSet(HDWF hdwf, int idxChannel, AnalogOutNode idle)

Description: Sets the generator idle output for the specified instrument channel. The idle output selects the output

while not running, Ready, Stopped, Done, or Wait states.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- idle – Generator function option to set.

FDwfAnalogOutIdleGet(HDWF hdwf, int idxChannel, AnalogOutNode *pidle)

Description: Retrieves the generator idle output option for the specified instrument channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pidle – Pointer to variable to receive the generator function option.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 62 of 154

6.3 States

See the description of FDwfDeviceTriggerInfo.

FDwfAnalogOutTriggerSourceSet(HDWF hdwf, int idxChannel, TRIGSRC trigsrc)

Description: Sets the trigger source for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- trigsrc – Trigger source to set.

FDwfAnalogOutTriggerSourceGet(HDWF hdwf, int idxChannel, TRIGSRC *ptrigsrc)

Description: Gets the current trigger source setting for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- ptrigsrc – Pointer to variable to receive the trigger source.

FDwfAnalogOutTriggerSlopeSet(

HDWF hdwf, int idxChannel, DwfTriggerSlope slope)

Description: Sets the trigger slope for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- slope – Trigger slope to set.

FDwfAnalogOutTriggerSlopeGet(

HDWF hdwf, int idxChannel, DwfTriggerSlope *pslope)

Description: Gets the current trigger slope setting for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pslope – Pointer to variable to receive the trigger slope.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 63 of 154

FDwfAnalogOutRunInfo(

HDWF hdwf, int idxChannel, double *psecMin, double *psecMax)

Description: Returns the supported run length range for the instrument in Seconds. Zero values represent an

infinite (or continuous) run. Default value is zero.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psecMin – Variable to receive the supported minimum run length.

- psecMax – Variable to receive the supported maximum run length.

FDwfAnalogOutRunSet(HDWF hdwf, int idxChannel, double secRun)

Description: Sets the run length for the instrument in Seconds.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- secRun – Run length to set expressed in seconds.

FDwfAnalogOutRunGet(HDWF hdwf, int idxChannel, double *psecRun)

Description: Reads the configured run length for the instrument in Seconds.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psecRun – Pointer to variable to receive the run length.

FDwfAnalogOutRunStatus(HDWF hdwf, int idxChannel, double *psecRun)

Description: Reads the remaining run length. It returns data from the last FDwfAnalogOutStatus call.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psecRun – Pointer to variable to receive the remaining run length.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 64 of 154

FDwfAnalogOutWaitInfo(

HDWF hdwf, int idxChannel, double *psecMin, double *psecMax)

Description: Returns the supported wait length range in Seconds. The wait length is how long the instrument waits

after being triggered to generate the signal. Default value is zero.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psecMin/Max – Variable to receive the supported minimum/maximum wait length.

FDwfAnalogOutWaitSet(HDWF hdwf, int idxChannel, double secWait)

Description: Sets the wait length for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- secWait – Wait length to set expressed in seconds.

FDwfAnalogOutWaitGet(HDWF hdwf, int idxChannel, double *psecWait)

Description: Gets the current wait length for the channel on instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- psecWait – Pointer to variable to receive the wait length.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 65 of 154

FDwfAnalogOutRepeatInfo(HDWF hdwf, int idxChannel, int *pnMin, int *pnMax)

Description: Returns the supported repeat count range. This is how many times the generated signal will be

repeated upon. Zero value represents infinite repeat. Default value is one.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pnMin – Variable to receive the supported minimum repeat count.

- pnMax – Variable to receive the supported maximum repeat count.

FDwfAnalogOutRepeatSet(HDWF hdwf, int idxChannel, int cRepeat)

Description: Sets the repeat count.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- cRepeat – Repeat count to set.

FDwfAnalogOutRepeatGet(HDWF hdwf, int idxChannel, int *pcRepeat)

Description: Reads the current repeat count.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pcRepeat – Pointer to variable to receive the repeat count.

FDwfAnalogOutRepeatStatus(HDWF hdwf, int idxChannel, int *pcRepeat)

Description: Reads the remaining repeat counts. It only returns information from the last FDwfAnalogOutStatus

function call, it does not read from the device.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pcRepeat – Pointer to variable to receive the remaining repeat counts.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 66 of 154

FDwfAnalogOutRepeatTriggerSet(HDWF hdwf, int idxChannel, int fRepeatTrigger)

Description: Sets the repeat trigger option. To include the trigger in wait-run repeat cycles, set fRepeatTrigger to

TRUE. It is disabled by default.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- fRepeatTrigger – Boolean used to specify if the trigger should be included in a repeat cycle.

FDwfAnalogOutRepeatTriggerGet(

HDWF hdwf, int idxChannel, int *pfRepeatTrigger)

Description: Verifies if the trigger has been included in wait-run repeat cycles.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pfRepeatTrigger – Pointer to variable to receive the repeat trigger option.

FDwfAnalogOutMasterSet(HDWF hdwf, int idxChannel, int idxMaster)

Description: Sets the state machine master of the channel generator. With channel index -1, each enabled Analog

Out channel will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- idxMaster – Node index.

FDwfAnalogOutMasterGet(HDWF hdwf, int idxChannel, int *pidxMaster)

Description: Verifies the parameter set by FDwfAnalogOutMasterSet.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pidxMaster – Pointer to variable to receive parameter.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 67 of 154

7 Analog I/O

The AnalogIO functions are used to control the power supplies, reference voltage supplies, voltmeters, ammeters,

thermometers, and any other sensors on the device. These are organized into channels which contain a number of

nodes. For instance, a power supply channel might have three nodes: an enable setting, a voltage level

setting/reading, and current limitation setting/reading.

See the AnalogIO.py example.

FDwfAnalogIOReset(HDWF hdwf)

Description: Resets and configures (by default, having auto configure enabled) all AnalogIO instrument parameters

to default values.

Parameters:

- hdwf – Open interface handle on a device.

FDwfAnalogIOConfigure(HDWF hdwf)

Description: Configures the instrument.

Parameters:

- hdwf – Open interface handle on a device.

FDwfAnalogIOStatus(HDWF hdwf)

Description: Reads the status of the device and stores it internally. The following status functions will return the

information that was read from the device when the function above was called.

Parameters:

- hdwf – Open interface handle on a device.

FDwfAnalogIOEnableInfo(HDWF hdwf, int *pfSet, int *pfStatus)

Description: Verifies if Master Enable Setting and/or Master Enable Status are supported for the AnalogIO

instrument. The Master Enable setting is essentially a software switch that “enables” or “turns on”

the AnalogIO channels. If supported, the status of this Master Enable switch (Enabled/Disabled) can

be queried by calling FDwfAnalogIOEnableStatus.

Parameters:

- hdwf – Open interface handle on a device.

- pfSet – Returns true when the master enable setting is supported.

- pfStatus – Return true when the status of the master enable can be read.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 68 of 154

FDwfAnalogIOEnableSet(HDWF hdwf, int fMasterEnable)

Description: Sets the master enable switch.

Parameters:

- hdwf – Open interface handle on a device.

- fMasterEnable – Set TRUE to enable the master switch; FALSE to disable the master switch.

FDwfAnalogIOEnableGet(HDWF hdwf, int *pfMasterEnable)

Description: Returns the current state of the master enable switch. This is not obtained from the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfMasterEnable – Pointer to variable to return the enabled configuration.

FDwfAnalogIOEnableStatus(HDWF hdwf, int *pfMasterEnable)

Description: Returns the master enable status (if the device supports it). This can be a switch on the board or an

overcurrent protection circuit state.

Parameters:

- hdwf – Open interface handle on a device.

- pfMasterEnabled – Pointer to variable to return the active status.

FDwfAnalogIOChannelCount(HDWF hdwf, int *pnChannel)

Description: Returns the number of AnalogIO channels available on the device.

Parameters:

- hdwf – Open interface handle on a device.

- pnChannel – Pointer to variable to return the number of channels.

FDwfAnalogIOChannelName(

HDWF hdwf, int idxChannel, char szName[32], char szLabel[16])

Description: Returns the name (long text) and label (short text, printed on the device) for a channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- szName – Pointer to character array to return the user name.

- szLabel – Pointer to character array to return the label.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 69 of 154

FDwfAnalogIOChannelInfo(HDWF hdwf, int idxChannel, int *pnNodes)

Description: Returns the number of nodes associated with the specified channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pnNodes – Pointer to variable to return the number of node .

FDwfAnalogIOChannelNodeName(

HDWF hdwf, int idxChannel, int idxNode,

char szNodeName[32], char szUnits[16])

Description: Returns the node name (“Voltage”, “Current”…) and units (“V”, “A”) for an Analog I/O node.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- idxNode – Node index.

- szNodeName – Pointer to character array to return the node name.

- szUnits – Pointer to character array to return the value units.

FDwfAnalogIOChannelNodeInfo(

HDWF hdwf, int idxChannel, int idxNode, ANALOGIO *panalogio)

Description: Returns the supported channel nodes. They are returned (by reference) as a bit field. This bit field can

be parsed using the IsBitSet Macro. Individual bits are defined using the ANALOGIO constants in

dwf.h. The acquisition mode selects one of the following modes, ANALOGIO:

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- idxNode – Node index.

- panalogio – Pointer to variable to return the node type.

ANALOGIO Modes ANALOGIO Mode Functions

analogioEnable Enable I/O node; used to enable a power supply, reference voltage, etc.

analogioVoltage Voltage I/O node; used to input/output voltage levels.

analogioCurrent Current I/O node; used to input/output current levels.

analogioTemperature Temperature I/O node; used to retrieve read values from a temperature sensor.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 70 of 154

FDwfAnalogIOChannelNodeSetInfo(HDWF hdwf, int idxChannel, int idxNode,

double *pmin, double *pmax, int *pnSteps)

Description: Returns node value limits. Since a Node can represent many things (Power supply, Temperature

sensor, etc.), the Minimum, Maximum, and Steps parameters also represent different types of values.

In broad terms, the (Maximum – Minimum)/Steps = the number of specific input/output values.

FDwfAnalogIOChannelNodeInfo returns the type of values to expect and

FDwfAnalogIOChannelNodeName returns the units of these values.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Analog I/O channel index of the device.

- idxNode – Node index.

- pmin – Minimum settable value.

- pmax – Maximum settable value.

- pnSteps – Number of steps between minimum and maximum values.

FDwfAnalogIOChannelNodeSet(

HDWF hdwf, int idxChannel, int idxNode, double value)

Description: Sets the node value for the specified node on the specified channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxNode – Node index.

- idxChannel – Analog I/O channel index of the device.

- value – Value to set.

FDwfAnalogIOChannelNodeGet(

HDWF hdwf, int idxChannel, int idxNode, double *pvalue)

Description: Returns the currently set value of the node on the specified channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Analog I/O channel index of the device.

- idxNode – Node index.

- pvalue – Pointer to variable to return the configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 71 of 154

FDwfAnalogIOChannelNodeStatusInfo(

HDWF hdwf, int idxChannel, int idxNode, double *pmin, double *pmax, int

*pnSteps)

Description: Returns node the range of reading values available for the specified node on the specified channel.

Parameters:

- hdwf – Interface handle.

- idxChannel – Channel index.

- idxNode – Node index.

- pmin – Minimum reading value.

- pmax – Maximum reading value.

- pnSteps – Number of steps between minimum and maximum values.

FDwfAnalogIOChannelNodeStatus(

HDWF hdwf, int idxChannel, int idxNode, double *pvalue)

Description: Returns the value reading of the node.

Parameters:

- hdwf –Interface handle.

- idxChannel – Channel index.

- idxNode – Node index.

- pvalue – Pointer to variable to return the value reading.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 72 of 154

8 Digital I/O

The digital IO signals are shared in the device between Digital-IO, Out and In functions. The Digital-IO has priority

over Digital-Out. The Digital-Out is only applied for a signal when the Digital-IO Enable and Output are zero for the

respective bit.

See the DigitalIO.py example.

FDwfDigitalIOReset(HDWF hdwf)

Description: Resets and configures (by default, having auto configure enabled) all DigitalIO instrument parameters

to default values. It sets the output enables to zero (tri-state), output value to zero, and configures

the DigitalIO instrument.

Parameters:

- hdwf – Open interface handle on a device.

FDwfDigitalIOConfigure(HDWF hdwf)

Description: Configures the DigitalIO instrument. This doesn’t have to be used if AutoConfiguration is enabled.

Parameters:

- hdwf – Open interface handle on a device.

FDwfDigitalIOStatus(HDWF hdwf)

Description: Reads the status and input values, of the device DigitalIO to the PC. The status and values are

accessed from the FDwfDigitalIOInputStatus function.

Parameters:

- hdwf – Open interface handle on a device.

The functions with 32 bit arguments are the following.

FDwfDigitalIOOutputEnableInfo(HDWF hdwf,

unsigned long long *pfsOutputEnableMask)

Description: Returns the output enable mask (bit set) that can be used on this device. These are the pins that can

be used as outputs on the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputEnableMask – Variable to return the OE mask bit field.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 73 of 154

FDwfDigitalIOOutputEnableSet(HDWF hdwf, unsigned int fsOutputEnable)

Description: Enables specific pins for output. This is done by setting bits in the fsOutEnable bit field (1 for enabled,

0 for disabled).

Parameters:

- hdwf – Open interface handle on a device.

- fsOutputEnable – Output enable bit set.

FDwfDigitalIOOutputEnableGet(HDWF hdwf, unsigned int *pfsOutputEnable)

Description: Returns a bit field that specifies which output pins have been enabled.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputEnable – Pointer to variable to returns output enable bit set.

FDwfDigitalIOOutputInfo(HDWF hdwf, unsigned int *pfsOutputMask)

Description: Returns the settable output value mask (bit set) that can be used on this device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputMask – Variable to return the output value mask.

FDwfDigitalIOOutputSet(HDWF hdwf, unsigned int fsOutput)

Description: Sets the output logic value on all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- fsOutput – Output bit set.

FDwfDigitalIOOutputGet(HDWF hdwf, unsigned int *pfsOutput)

Description: Returns the currently set output values across all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutput – Pointer to variable to returns output bit set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 74 of 154

FDwfDigitalIOInputInfo(HDWF hdwf, unsigned int *pfsInputMask)

Description: returns the readable input value mask (bit set) that can be used on the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsInputMask – Variable to return the input value mask.

FDwfDigitalIOInputStatus(HDWF hdwf, unsigned int *pfsInput)

Description: Returns the input states of all I/O pins. Before calling the function above, call the

FDwfDigitalIOStatus function to read the Digital I/O states from the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsInput – Variable to return the input value.

FDwfDigitalIOPullInfo(HDWF hdwf, unsigned int *pfsUp, unsigned int *pfsDown)

Description: Returns the settable output pullup and down mask that can be used on this device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsUp – Variable to return the pullup value mask.

- pfsDown – Variable to return the puldown value mask.

FDwfDigitalIOPullSet(HDWF hdwf, unsigned int fsUp, unsigned int fsDown)

Description: Sets the output logic value on all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- fsUp – Pullup bit set.

- fsDown – Pulldown bit set.

FDwfDigitalIOPullGet(HDWF hdwf, unsigned int *pfsUp, unsigned int *pfsDown)

Description: Returns the currently set output values across all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- pfsUp– Pointer to variable to returns pullup bit set.

- pfsDown – Pointer to variable to returns pulldown bit set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 75 of 154

FDwfDigitalIODriveInfo(HDWF hdwf, int channel,

double *ampMin, double *ampMax, int *ampSteps, int *slewSteps)

Description: Returns information about the settable drive current and slew that can be used on this device

channels.

Parameters:

- hdwf – Open interface handle on a device.

- channel – Channel index, not yet used by any device.

- ampMin – Variable to return the minimum drive value in ampere.

- ampMax – Variable to return the maximum drive value in ampere.

- ampSteps – Variable to return the supported drive steps.

- slewSteps – Variable to return the supported slew steps.

FDwfDigitalIODriveSet(HDWF hdwf, int channel, double amp, int slew)

Description: Sets the output logic value on all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- channel – Channel index.

- amp – Drive strength in ampere.

- slew – Slew option.

FDwfDigitalIODriveGet(HDWF hdwf, double *pamp, int *pslew)

Description: Returns the currently set output values across all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- pamp– Pointer to variable to return drive.

- pslew – Pointer to variable to return slew.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 76 of 154

The functions with 64bit arguments are the following.

FDwfDigitalIOOutputEnableInfo64(HDWF hdwf, unsigned long long

*pfsOutputEnableMask)

Description: Returns the output enable mask (bit set) that can be used on this device. These are the pins that can

be used as outputs on the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputEnableMask – Variable to return the OE mask bit field.

FDwfDigitalIOOutputEnableSet64(HDWF hdwf, unsigned long long fsOutputEnable)

Description: Enables specific pins for output. This is done by setting bits in the fsOutEnable bit field (1 for enabled,

0 for disabled).

Parameters:

- hdwf – Open interface handle on a device.

- fsOutputEnable – Output enable bit set.

FDwfDigitalIOOutputEnableGet64(HDWF hdwf, unsigned long long

*pfsOutputEnable)

Description: Returns a bit field that specifies which output pins have been enabled.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputEnable – Pointer to variable to returns output enable bit set.

FDwfDigitalIOOutputInfo64(HDWF hdwf, unsigned long long *pfsOutputMask)

Description: Returns the settable output value mask (bit set) that can be used on this device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutputMask – Variable to return the output value mask.

FDwfDigitalIOOutputSet64(HDWF hdwf, unsigned long long fsOutput)

Description: Sets the output logic value on all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- fsOutput – Output bit set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 77 of 154

FDwfDigitalIOOutputGet64(HDWF hdwf, unsigned long long *pfsOutput)

Description: Returns the currently set output values across all output pins.

Parameters:

- hdwf – Open interface handle on a device.

- pfsOutput – Pointer to variable to returns output bit set.

FDwfDigitalIOInputInfo64(HDWF hdwf, unsigned long long *pfsInputMask)

Description: returns the readable input value mask (bit set) that can be used on the device.

Parameters:

- hdwf – Open interface handle on a device.

- pfsInputMask – Variable to return the input value mask.

FDwfDigitalIOInputStatus64(HDWF hdwf, unsigned long long *pfsInput)

Description: Returns the input states of all I/O pins. Before calling the function above, call the

FDwfDigitalIOStatus function to read the Digital I/O states from the device.

For Digital Discovery returns DIN[23-0] DIO[39-24]

Parameters:

- hdwf – Open interface handle on a device.

- pfsInput – Variable to return the input value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 78 of 154

9 Digital In (Logic Analyzer)

The Digital In instrument states:

The states are defined in dwf.h DwfState type.
- Ready: Initial state. After FDwfDigitalInConfigure or any FDwfDigitalIn*Set function call goes to this state. With

FDwfDigitalInConfigure, reconfigure goes to Configure state.
- Configure: The digital in auto trigger is reset.
- Prefill: Prefills the buffer with samples need before trigger.
- Armed: It waits for trigger.
- Running: For single acquisition mode remains in this state to acquire samples after trigger set by

FDwfDigitalInTriggerPositionSet. Scan screen and shift modes remain until configure or any set function of this
instrument.

- Done: Final state.

See the following examples: DigitalIn_Acquisition/Record.py.

Start?

Reconfigure?

Trigger?

Start?

Ready Armed

Running Done

Instrument configuration or setting

Prefill

Configure

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 79 of 154

9.1 Control

FDwfDigitalInReset(HDWF hdwf)

Description: Resets and configures (by default, having auto configure enabled) all DigitalIn instrument parameters

to default values.

Parameters:

- hdwf – Interface handle.

FDwfDigitalInConfigure(HDWF hdwf, int fReconfigure, int fStart)

Description: Configures the instrument and start or stop the acquisition. To reset the Auto trigger timeout, set

fReconfigure to TRUE.

Parameters:

- hdwf – Interface handle.

- fReconfigure – Configure the device.
- fStart – Start the acquisition.

FDwfDigitalInStatus(HDWF hdwf, int fReadData, DwfState *psts)

Description: Checks the state of the instrument. To read the data from the device, set fReadData to TRUE. For

single acquisition mode, the data will be read only when the acquisition is finished.

Parameters:

- hdwf – interface handle.

- fReadData – TRUE if data should be read.
- psts – Variable to receive the acquisition state.

FDwfDigitalInStatusSamplesLeft(HDWF hdwf, int *pcSamplesLeft)

Description: Retrieves the number of samples left in the acquisition.

Parameters:

- hdwf – Interface handle.

- pcSamplesLeft – Variable to receive the remaining samples to acquire.

FDwfDigitalInStatusSamplesValid(HDWF hdwf, int *pcSamplesValid)

Description: Retrieves the number of valid/acquired data samples.
Parameters:
- hdwf – Interface handle.

- pcSamplesValid – Variable to receive the number of valid samples.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 80 of 154

FDwfDigitalInStatusIndexWrite(HDWF hdwf, int *pidxWrite)

Description: Retrieves the buffer write pointer. This is needed in ScanScreen acquisition mode to display the scan
bar.
Parameters:
- hdwf – Interface handle.

- pidxWrite – Variable to receive the position of the acquisition.

FDwfDigitalInStatusAutoTriggered(HDWF hdwf, int *pfAuto)

Description: Verifies if the acquisition is auto triggered.
Parameters:
- hdwf – Interface handle.

- pfAuto – Returns TRUE if the acquisition was auto triggered.

FDwfDigitalInStatusTime(HDWF hdwf,

unsigned int * psecUtc, unsigned int * ptick, unsigned int * pticksPerSecond)

Description: Retrieves instrument trigger time information.

With ADP3000 returns a high precision device count value. This is not accurately synchronized

between devices but it can be used to measure trigger distances at system frequency like 100 or

125MHz, at 10 or 8ns resolution.

With other devices returns the host time.

Parameters:

- hdwf – Interface handle.

- psecUtc –Seconds elapsed since Epoch 1970-01-01T00:00:00Z in local time zone.

- pTick – Additional ticks since the second count, like 0 to 999,999,999 or 124,999,999
- pticksPerSecond – Number of ticks in second like 100M or 125M.

FDwfDigitalInStatusData(HDWF hdwf, void *rgData, int countOfDataBytes)

Description: It copies the data samples to the provided buffer. The sample format is specified by

FDwfDigitalInSampleFormatSet function.
Parameters:
- hdwf – Interface handle.

- rgData – Pointer to allocated buffer to copy the acquisition data.

- countOfDataBytes – Number of bytes to copy.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 81 of 154

FDwfDigitalInStatusData2(HDWF hdwf,

void *rgData, int idxSample, int countOfDataBytes)

Description: It copies the data samples to the provided buffer. The sample format is specified by

FDwfDigitalInSampleFormatSet function.
Parameters:
- hdwf – Interface handle.

- rgData – Pointer to allocated buffer to copy the acquisition data.

- idxSample – First sample index to copy.

- countOfDataBytes – Number of bytes to copy.

FDwfDigitalInStatusNoise2(HDWF hdwf,

void *rgData, int idxSample, int countOfDataBytes)

Description: It copies the noise samples to the provided buffer.

The noise capture can be enabled with DwfDigitalInSampleModeNoise.
Parameters:
- hdwf – Interface handle.

- rgData – Pointer to allocated buffer to copy the acquisition data.

- idxSample – First sample index to copy.

- countOfDataBytes – Number of bytes to copy.

FDwfDigitalInStatusRecord(

HDWF hdwf, int *pcdDataAvailable, int *pcdDataLost, int *pcdDataCorrupt)

Description: Retrieves information about the recording process. The data loss occurs when the device acquisition

is faster than the read process to PC. In this case, the device recording buffer is filled and data

samples are overwritten. Corrupt samples indicate that the samples have been overwritten by the

acquisition process during the previous read. In this case, try optimizing the loop process for faster

execution or reduce the acquisition frequency or record length to be less than or equal to the device

buffer size (record length <= buffer size/frequency).

Parameters:

- hdwf – Interface handle.

- pcdDataAvailable – Pointer to variable to receive the available number of samples.

- pcdDataLost – Pointer to variable to receive the lost samples after the last check.
- pcdDataCorrupt – Pointer to variable to receive the number of samples that could be corrupt.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 82 of 154

9.2 Configuration

FDwfDigitalInInternalClockInfo(HDWF hdwf, double *phzFreq)

Description: Retrieves the internal clock frequency.
Parameters:
- hdwf – Interface handle.

- phzFreq – Pointer to return the internal clock frequency.

FDwfDigitalInClockSourceInfo(HDWF hdwf, int *pfsDwfDigitalInClockSource)

Description: Returns the supported clock sources for Digital In instrument. They are returned (by reference) as a

bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the

DwfDigitalInClockSource constants in dwf.h:

• DwfDigitalInClockSourceInternal: Internal clock.

• DwfDigitalInClockSourceExternal: External clock source.

Parameters:

- hdwf – Open interface handle on a device.

- pfsDwfDigitalInClockSource – Pointer to variable to return the available clock source options.

FDwfDigitalInClockSourceSet(HDWF hdwf, DwfDigitalInClockSource v)

Description: Sets the clock source of instrument.

Parameters:

- hdwf – Open interface handle on a device.

- v – Clock source.

FDwfDigitalInClockSourceGet(HDWF hdwf, DwfDigitalInClockSource *pv)

Description: Gets the clock source of instrument.

Parameters:

- hdwf – Open interface handle on a device.

- pv – Pointer to variable to return the configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 83 of 154

FDwfDigitalInDividerInfo(HDWF hdwf, unsigned int *pdivMax)

Description: Returns the maximum supported clock divider value. This specifies the sample rate.

Parameters:

- hdwf –Interface handle.

- pdivMax – Pointer to variable to return the available maximum divider value.

FDwfDigitalInDividerSet(HDWF hdwf, unsigned int div)

Description: Sets the clock divider value.

Parameters:

- hdwf – Interface handle.

- div – Divider value.

FDwfDigitalInDividerGet(HDWF hdwf, unsigned int *pdiv)

Description: Gets the configured clock divider value.

Parameters:

- hdwf – Interface handle.

- pdiv – Pointer to return configured value.

FDwfDigitalInBitsInfo(HDWF hdwf, int *pnBits)

Description: Returns the number of Digital In bits.

Parameters:

- hdwf – Interface handle.

- pnBits – Pointer to variable to return the number of bits.

FDwfDigitalInInputOrderSet(HDWF hdwf, int fDioFirst)

Description: Configures the order of values stored in the sampling array. If fDIOFirst = true DIO24..39 are placed at

the beginning of the array followed by DIN0..23. With fDIOFirst = false DIN0..23 are placed at the

beginning followed by DIO24..31. Valid only for Digital Discovery device.

Parameters:

- hdwf – Interface handle.

- fDioFirst – DIO or DIN lines start from index zero.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 84 of 154

FDwfDigitalInSampleFormatSet(HDWF hdwf, int nBits)

Description: Sets the sample format, the number of bits starting from least significant bit. Valid options are 8, 16,

and 32.

Parameters:

- hdwf – Interface handle.

- nBits – Sample format.

FDwfDigitalInSampleFormatGet(HDWF hdwf, int *pnBits)

Description: Returns the configured sample format.

Parameters:

- hdwf – Interface handle.

- pnBits – Pointer to return configured value.

FDwfDigitalInBufferSizeInfo(HDWF hdwf, int *pnSizeMax)

Description: Returns the Digital In maximum buffer size.

Parameters:

- hdwf – Interface handle.

- pnSizeMax – Pointer to variable to return maximum buffer size.

FDwfDigitalInBufferSizeSet(HDWF hdwf, int nSize)

Description: Set the buffer size.

Parameters:

- hdwf – Interface handle.

- nSize – Buffer size.

FDwfDigitalInBufferSizeGet(HDWF hdwf, int *pnSize)

Description: Returns the configured buffer size.

Parameters:

- hdwf – Interface handle.

- nSize – Pointer to return configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 85 of 154

FDwfDigitalInSampleModeInfo(HDWF hdwf, int *pfsDwfDigitalInSampleMode)

Description: Returns the supported sample modes. They are returned (by reference) as a bit field. This bit field can

be parsed using the IsBitSet Macro. Individual bits are defined using the DwfDigitalInSampleMode

constants in dwf.h:

• DwfDigitalInSampleModeSimple: Stores one sample on every divider clock pulse.

• DwfDigitalInSampleModeNoise: Stores alternating noise and sample values, where noise is more

than one transition between two samples. This could indicate glitches or ringing. It is available when

sample rate is less than maximum clock frequency, divider is greater than one.

Parameters:

- hdwf – Interface handle.

- pfsDwfDigitalInSampleMode – Pointer to return the supported sample modes.

The function above

FDwfDigitalInSampleModeSet(HDWF hdwf, DwfDigitalInSampleMode v)

Description: Set the sample mode.

Parameters:

- hdwf – Open interface handle on a device.

- v – Sample mode.

FDwfDigitalInSampleModeGet(HDWF hdwf, DwfDigitalInSampleMode *pv)

Description: Return the configured sample mode.

Parameters:

- hdwf – Open interface handle on a device.

- pv – Pointer to return configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 86 of 154

FDwfDigitalInAcquisitionModeInfo(HDWF hdwf, int *pfsacqmode)

- Description: Returns the supported DigitalIn acquisition modes. They are returned (by reference) as a bit field.

This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the ACQMODE constants

in DWF.h. The acquisition mode selects one of the following modes, ACQMODE:

Parameters:

- hdwf – Interface handle.

FDwfDigitalInAcquisitionModeSet(HDWF hdwf, ACQMODE acqmode)

Description: Sets the acquisition mode.

Parameters:

- hdwf – Interface handle.

- acqmode – Acquisition mode to set.

FDwfDigitalInAcquisitionModeGet(HDWF hdwf, ACQMODE *pacqmode)

Description: Retrieves the acquisition mode.

Parameters:

- hdwf – Interface handle.

- pacqmode – Variable to receive the current acquisition mode.

FDwfDigitalInSampleSensibleSet(HDWF hdwf, unsigned int fs)

Description: Selects the signals to be used for data compression in record acquisition mode.
Parameters:
- hdwf – Interface handle.

- fs – bit field set of signals to look for compression.

FDwfDigitalInSampleSensibleGet(HDWF hdwf, unsigned int *pfs)

Description: Retrieves the signals being used for data compression in record acquisition mode.
Parameters:
- hdwf – Interface handle.

- pfs – Pointer to variable to receive configured value

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 87 of 154

FDwfDigitalInBuffersInfo(HDWF hdwf, int *pMax)

Description: Returns the maximum supported device buffers (memory segmentation) for acqmodeSingle,

Oversample for low latency sequential captures.

Parameters:

- hdwf – Interface handle.

- pnMax – Pointer to return the maximum buffers.

FDwfDigitalInBuffersSet(HDWF hdwf, int n)

Description: Sets the desired number of buffers.

Parameters:

- hdwf – Interface handle.

- n – number of device buffers, 0 and 1 disables the device buffering, -1 sets maximum

FDwfDigitalInBuffersGet(HDWF hdwf, int *pn)

Description: Returns the number of device buffers.

Parameters:

- hdwf – Interface handle.

- pn – Variable to receive the current number of device buffers.

FDwfDigitalInBuffersStatus(HDWF hdwf, int *pn)

Description: Returns the number of filled device buffers.

Parameters:

- hdwf – Interface handle.

- pn – Variable to receive the current number of filled device buffers.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 88 of 154

9.3 Trigger

See the description of FDwfDeviceTriggerInfo.

FDwfDigitalInTriggerSourceSet(HDWF hdwf, TRIGSRC trigsrc)

Description: Sets the trigger source for the instrument.
Parameters:
- hdwf – Interface handle.

- trigsrc – Trigger source to set.

FDwfDigitalInTriggerSourceGet(HDWF hdwf, TRIGSRC *ptrigsrc)

Description: Gets the current trigger source setting for the instrument.
Parameters:
- hdwf – Interface handle.

- ptrigsrc – Pointer to variable to receive the trigger source.

FDwfDigitalInTriggerSlopeSet(HDWF hdwf, DwfTriggerSlope slope)

Description: Sets the trigger slope for the instrument.
Parameters:
- hdwf – Interface handle.

- slope – Trigger source to set.

FDwfDigitalInTriggerSlopeGet(HDWF hdwf, DwfTriggerSlope *pslope)

Description: Gets the current trigger source setting for the instrument.
Parameters:
- hdwf – Interface handle.

- pslope – Pointer to variable to receive the trigger slope.

FDwfDigitalInTriggerPositionInfo(

HDWF hdwf, unsigned int *pnSamplesAfterTriggerMax)

Description: Returns maximum values of the trigger position in samples. This can be greater than the specified

buffer size.

Parameters:

- hdwf – Interface handle.

- pnSamplesAfterTriggerMax – Variable to receive the maximum trigger position.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 89 of 154

FDwfDigitalInTriggerPositionSet(HDWF hdwf, unsigned int cSamplesAfterTrigger)

Description: Sets the number of samples to acquire after trigger.
Parameters:
- hdwf – Interface handle.

- cSamplesAfterTrigger – Samples after trigger.

FDwfDigitalInTriggerPositionGet(

HDWF hdwf, unsigned int *pcSamplesAfterTrigger)

Description: Gets the configured trigger position.
Parameters:
- hdwf – Interface handle.

- pcSamplesAfterTrigger – Pointer to variable to receive configured value

FDwfDigitalInTriggerPrefillSet(HDWF hdwf, unsigned int cSamplesBeforeTrigger)

Description: Sets the number of samples to acquire before arming in Record acquisition mode. The prefill is used

for record with trigger to make sure at last the required number of samples are collected before
arming, before looking for trigger event.
With prefill 0 the recording process will stream data only after trigger event.
With prefill more than zero the recording will stream until trigger occurs plus the samples specified
by trigger position.

Parameters:
- hdwf – Interface handle.

- cSamplesBeforeTrigger – Samples before trigger.

FDwfDigitalInTriggerPrefillGet(

HDWF hdwf, unsigned int *pcSamplesBeforeTrigger)

Description: Gets the configured trigger prefill.
Parameters:
- hdwf – Interface handle.

- pcSamplesBeforeTrigger – Pointer to variable to receive configured value

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 90 of 154

FDwfDigitalInTriggerAutoTimeoutInfo(

HDWF hdwf, double *psecMin, double *psecMax, double *pnSteps)

Description: Returns the minimum and maximum auto trigger timeout values, and the number of adjustable steps.

Parameters:

- hdwf – Interface handle.

- psecMin – Variable to receive the minimum timeout.

- psecMax – Variable to receive the maximum timeout.

- pnSteps – Variable to return the number of steps.

FDwfDigitalInTriggerAutoTimeoutSet(HDWF hdwf, double secTimeout)

Description: Configures the auto trigger timeout value in seconds.

Parameters:

- hdwf – Interface handle.

- secTimeout – Timeout to set.

FDwfDigitalInTriggerAutoTimeoutGet(HDWF hdwf, double *psecTimeout)

Description: Returns the configured auto trigger timeout value in seconds. The acquisition is auto triggered when

the specified time elapses. With zero value the timeout is disabled, performing “Normal” acquisitions.

Parameters:

- hdwf – Interface handle.

- psecTimeout – Variable to receive the current timeout.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 91 of 154

See DigitalIn_Counter.py example.

FDwfDigitalInCounterInfo(HDWF hdwf, double *pcntMax, double *psecMax)

Description: Returns the supported maximum count and timeout values.

Parameters:

- hdwf – Interface handle.

- pcountMax – Variable to receive the maximum count value.

- psecMax – Variable to receive the maximum timeout value.

FDwfDigitalInCounterSet(HDWF hdwf, double sec)

Description: Sets the timeout value, frequency measurement refresh rate.

Parameters:

- hdwf – Interface handle.

- sec – Timeout value in seconds.

FDwfDigitalInCounterGet(HDWF hdwf, double *psec)

Description: Gets the current timeout value.

Parameters:

- hdwf – Interface handle.

- psec – Variable to receive the current timeout value.

FDwfDigitalInCounterStatus(HDWF hdwf,

double *pcnt, double *pfreq, double *ptick)

Description: Returns the count, frequency and tick values.

Parameters:

- hdwf – Interface handle.

- pcnt – Variable to receive the count value.

- pfreq – Variable to receive the frequency value in hertz.

- ptick – Variable to receive the tick value. This changes on each new measurement.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 92 of 154

9.4 Trigger Detector

In order to use trigger on digital in pins, set trigger source with FDwfDigitalInTriggerSourceSet to

trigsrcDetectorDigitalIn.

FDwfDigitalInTriggerInfo(HDWF hdwf,

unsigned int *pfsLevelLow, unsigned int *pfsLevelHigh,

unsigned int *pfsEdgeRise, unsigned int *pfsEdgeFall)

Description: Returns the supported digital in triggers. The bits of the arguments represent pins.

Parameters:

- hdwf – Interface handle.

- pfsLevelLow – Variable to receive the supported low state triggers.

- pfsLevelHigh – Variable to receive the supported low state triggers.

- pfsEdgeRise – Variable to receive the supported rising edge triggers.

- pfsEdgeFall – Variable to receive the supported falling edge triggers.

FDwfDigitalInTriggerSet(HDWF hdwf,

unsigned int fsLevelLow, unsigned int fsLevelHigh,

unsigned int fsEdgeRise, unsigned int fsEdgeFall)

Description: Configures the digital in trigger detector.

The logic for the trigger bits is: Low and High and (Rise or Fall). Setting a bit in both rise and fall will trigger on any

edge, any transition. For instance FDwfDigitalInTriggerInfo(hdwf, 1, 2, 4, 8) will generate trigger when DIO-0 is low

and DIO-1 is high and DIO-2 is rising or DIO-3 is falling.

Parameters:

- hdwf – Interface handle.

- fsLevelLow – Set low state condition.

- fsLevelHigh – Set high state condition.

- fsEdgeRise – Set rising edge condition.

- fsEdgeFall – Set falling edge condition.

FDwfDigitalInTriggerGet(HDWF hdwf,

unsigned int *pfsLevelLow, unsigned int *pfsLevelHigh,

unsigned int *pfsEdgeRise, unsigned int *pfsEdgeFall)

Description: Returns the configured digital in trigger detector option.

Parameters:

- hdwf – Interface handle.

- pfsLevelLow – Variable to receive the configured value.

- pfsLevelHigh – Variable to receive the configured value.

- pfsEdgeRise – Variable to receive the configured value.

- pfsEdgeFall – Variable to receive the configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 93 of 154

FDwfDigitalInTriggerResetSet(HDWF hdwf,

unsigned int fsLevelLow, unsigned int fsLevelHigh,

unsigned int fsEdgeRise, unsigned int fsEdgeFall)

Description: Configures the digital in trigger reset condition.

Parameters:

- hdwf – Interface handle.

- fsLevelLow – Set low state condition.

- fsLevelHigh – Set high state condition.

- fsEdgeRise – Set rising edge condition.

- fsEdgeFall – Set falling edge condition.

FDwfDigitalInTriggerCountSet(HDWF hdwf, int cCount, int fRestart)

Description: Configures the trigger counter.

Parameters:

- hdwf – Interface handle.

- cCount – Set event count.

- fRestart – Set to restart counter after expires or not and wait for next reset condition.

FDwfDigitalInTriggerLengthSet(HDWF hdwf,

double secMin, double secMax, int idxSync)

Description: Configures the trigger timing. The synchronization modes are the following:

0 – Normal

1 – Timing: use for UART, CAN. The min length specifies bit length and max the timeout length.

2 – PWM: use for 1-Wire. The min length specifies sampling time and max the timeout length.

Parameters:

- hdwf – Interface handle.

- secMin – Set minimum length in seconds, up to 20sec.

- secMax – Set maximum length in seconds, up to 20sec.

- idxSync – Set synchronization mode.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 94 of 154

FDwfDigitalInTriggerMatchSet(HDWF hdwf,

int iPin, unsigned int fsMask, unsigned int fsValue, int cBitStuffing)

Description: Configure the deserializer. The bits are left shifted. The mask and value should be specified according

to this, in MSBit first order. Like to trigger on first to fourth bits received from a sequence of 8,

b1010XXXX, set mask to 0x000000F0 and value to 0x000000A0.

Parameters:

- hdwf – Interface handle.

- iPin – Set pin to deserialize.

- fsMask – Set bit mask pattern.

- fsValue – Set bit match pattern.

- cBitStuffing – Set bit stuffing count.

To trigger on a pulse configure the following:
FDwfDigitalInTriggerCountSet (hdwf, 1, 0);
- For positive pulse specify rising and for negative falling edge reset.
FDwfDigitalInTriggerResetSet(hdwf, 0, 0, positive?1<<dio:0, negative?1<<dio:0);
- For positive pulse specify high and for negative low level trigger.
FDwfDigitalInTriggerSet(hdwf, negative?1<<dio:0, positive?1<<dio:0, 0, 0);

Glitch/Less: To trigger on glitch, a pulse length at most the specified value:
FDwfDigitalInTriggerLengthSet(hdwf, 0, max, 0); // maximum pulse length in seconds

Timeout: To trigger on pulse timeout, on a pulse after the specified minimum time expires:
FDwfDigitalInTriggerLengthSet(hdwf, min, 0, 0); // minimum pulse length in seconds

More: To trigger on pulse ending slope which is longer than the specified minimum time:
FDwfDigitalInTriggerLengthSet(hdwf, min, -1, 0); // minimum pulse length in seconds

Length: To trigger on a pulse length with the specified minimum and maximum lengths use:
FDwfDigitalInTriggerLengthSet(hdwf, min, max, 0); // min/max pulse length in seconds

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 95 of 154

10 Digital Out (Pattern Generator)

The DigitalOut instrument states:

The states are described defined in dwf.h DwfState type.
- Ready: Initial state. After FDwfDigitalOutConfigure or any FDwfDigitalOut*Set function call goes to this state.

With digital out, configure start command goes to Armed state
- Armed: It waits for trigger.
- Wait: Remains in this state for the time period specified by FDwfDigitalOutWaitSet function.
- Running: Remains in this state for the time period specified by FDwfDigitalOutRunSet function.
- Repeat: Goes to Armed or Wait state according to the FDwfDigitalOutRepeatTriggerSet setting for the number

of times specified by FDwfDigitalOutRepeatSet.
- Done: Final state.

This states machine controls all digital out channels.

See the following examples: DigitalOut_BinaryCounter/Pins.py

Trigger? Start?
Ready Armed Wait

Running Repeat Done

Instrument configuration or setting

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 96 of 154

Channel configuration:

The initial values, for divider and counter, specify the initially loaded values, initial delay, when entering in Running
state. The Divider specifies the clock division. This rate will be the custom sample frequency and step for the
counter. When entering Running state, the initial value specified with FDwfDigitalOutDividerInitSet is loaded.
When this expires, the value specified by FDwfDigitalOutDividerSet will be loaded upon each expiration.
The Counter initial value is set by FDwfDigitalOutCounterInitSet function. This function also sets the initial level.
When this expires the level values specified by FDwfDigitalOutCounterSet are loaded upon further expiration. On
counter expiration the level is toggled, and this directs the low or high value loading. In case one of these is zero,
the level is not toggled.

The Counter is used for:
- Pulse to generate the low and high state lengths.
- Random to set update rate.
- Custom to address buffer. The samples are configured by FDwfDigitalOutDataSet function. This also configures

the counter low/high according countOfBits parameter. In TS mode the counter step is double, providing two
bits of samples for output: value and enable.

The output Mode (FDwfDigitalOutModeSet) selects between: PP, OS, OD and TS.
The Idle output (FDwfDigitalOutIdleSet) selects the output while not in Running state.

(TS +2)

1

1/2

1/2 Address

Expire

OE

IO

Clock Expire
Divider Counter

Initial

Divider

Initial

Low

High

Typ
e

Pulse

(Level)

Random

Custom

Mode

PP OS OD

TS(2)

Idle

OE

IO

R
u
n

n
in

g
?

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 97 of 154

Pulse signal:

For pulse signal the initial level and initial value are specified with FDwfDigitalOutCounterInitSet function. These

are loaded when entering Running state.

Divider

Initial Divide Divide Divide ...

Triggered/Running state

Counter start high

Initial Low High Low ...

Counter start low

Initial High Low High ...

Each expire of divider is one step for the counter

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 98 of 154

10.1 Control

FDwfDigitalOutReset(HDWF hdwf)

Description: Resets and configures (by default, having auto configure enabled) all the instrument parameters to

default values.
Parameters:
- hdwf – Interface handle.

FDwfDigitalOutConfigure(HDWF hdwf, int fStart)

Description: Starts or stops the instrument.
Parameters:
- hdwf – Interface handle.

- fStart – Start the instrument. To stop, set to FALSE.

FDwfDigitalOutStatus(HDWF hdwf, DwfState *psts)

Description: Checks the state of the instrument.
Parameters:
- hdwf – Interface handle.

- psts – Pointer to variable to return the state.

10.2 Configuration

FDwfDigitalOutInternalClockInfo(HDWF hdwf, double *phzFreq)

Description: Retrieves the internal clock frequency.
Parameters:
- hdwf – Interface handle.

- phzFreq – Pointer to return the internal clock frequency.

See the description of FDwfDeviceTriggerInfo.

FDwfDigitalOutTriggerSourceSet(HDWF hdwf, TRIGSRC trigsrc)

Description: Sets the trigger source for the instrument. Default setting is trigsrcNone.
Parameters:
- hdwf – Interface handle.

- trigsrc – Trigger source to set.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 99 of 154

FDwfDigitalOutTriggerSourceGet(HDWF hdwf, TRIGSRC *ptrigsrc)

Description: Gets the current trigger source setting for the instrument.
Parameters:
- hdwf – Interface handle.

- ptrigsrc – Pointer to variable to receive the trigger source.

FDwfDigitalOutTriggerSlopeSet(HDWF hdwf, DwfTriggerSlope slope)

Description: Sets the trigger slope for the instrument.
Parameters:
- hdwf – Interface handle.

- slope – Trigger source to set.

FDwfDigitalOutTriggerSlopeGet(HDWF hdwf, DwfTriggerSlope *pslope)

Description: Gets the current trigger source setting for the instrument.
Parameters:
- hdwf – Interface handle.

- pslope – Pointer to variable to receive the trigger slope.

FDwfDigitalOutRunInfo(HDWF hdwf, double *psecMin, double *psecMax)

Description: Returns the supported run length range for the instrument in seconds. Zero value (default) represent
an infinite (or continuous) run.
Parameters:
- hdwf – Interface handle.

- psecMin – Variable to receive the supported minimum run length.

- psecMax – Variable to receive the supported maximum run length.

FDwfDigitalOutRunSet(HDWF hdwf, double secRun)

Description: Sets the run length for the instrument in Seconds.
Parameters:
- hdwf – Interface handle.

- secRun – Run length to set expressed in seconds.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 100 of 154

FDwfDigitalOutRunGet(HDWF hdwf, double *psecRun)

Description: Reads the configured run length for the instrument in seconds.
Parameters:
- hdwf – Interface handle.

- psecRun – Pointer to variable to receive the run length.

FDwfDigitalOutRunStatus(HDWF hdwf, double *psecRun)

Description: Reads the remaining run length. It returns data from the last FDwfDigitalOutStatus call.
Parameters:
- hdwf – Interface handle.

- psecRun – Pointer to variable to receive the remaining run length.

FDwfDigitalOutWaitInfo(HDWF hdwf, double *psecMin, double *psecMax)

Description: Returns the supported wait length range in seconds. The wait length is how long the instrument waits

after being triggered to generate the signal. Default value is zero.
Parameters:
- hdwf – Interface handle.

- psecMin – Variable to receive the supported minimum wait length.

- psecMax – Variable to receive the supported maximum wait length.

FDwfDigitalOutWaitSet(HDWF hdwf, double secWait)

Description: Sets the wait length.
Parameters:
- hdwf – Interface handle.

- secWait – Wait length to set expressed in seconds.

FDwfDigitalOutWaitGet(HDWF hdwf, double *psecWait)

Description: Gets the current wait length.
Parameters:
- hdwf – Interface handle.

- psecWait – Pointer to variable to receive the wait length.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 101 of 154

FDwfDigitalOutRepeatInfo(HDWF hdwf, unsigned int *pnMin, unsigned int *pnMax)

Description: Returns the supported repeat count range. This is how many times the generated signal will be

repeated. Zero value represents infinite repeats. Default value is one.
Parameters:
- hdwf – Interface handle.

- pnMin – Variable to receive the supported minimum repeat count.

- pnMax – Variable to receive the supported maximum repeat count.

FDwfDigitalOutRepeatSet(HDWF hdwf, unsigned int cRepeat)

Description: Sets the repeat count.
Parameters:
- hdwf – Interface handle.

- cRepeat – Repeat count to set.

FDwfDigitalOutRepeatGet(HDWF hdwf, unsigned int *pcRepeat)

Description: Reads the current repeat count.
Parameters:
- hdwf – Interface handle.

- pcRepeat – Pointer to variable to receive the repeat count.

FDwfDigitalOutRepeatStatus(HDWF hdwf, unsigned int *pcRepeat)

Description: Reads the remaining repeat counts. It only returns information from the last FDwfDigitalOutStatus
function call, it does not read from the device.
Parameters:
- hdwf – Interface handle.

- pcRepeat – Pointer to variable to receive the remaining repeat counts.

FDwfDigitalOutRepeatTriggerSet(HDWF hdwf, int fRepeatTrigger)

Description: Sets the repeat trigger option. To include the trigger in wait-run repeat cycles, set fRepeatTrigger to
TRUE. It is disabled by default.
Parameters:
- hdwf – Interface handle.

- fRepeatTrigger – Boolean used to specify if the trigger should be included in a repeat cycle.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 102 of 154

FDwfDigitalOutRepeatTriggerGet(HDWF hdwf, int *pfRepeatTrigger)

Description: Verifies if the trigger has been included in wait-run repeat cycles.

Parameters:

- hdwf – Open interface handle on a device.

- pfRepeatTrigger – Pointer to variable to receive the repeat trigger option.

FDwfDigitalOutCount(HDWF hdwf, int *pcChannel)

Description: Returns the number of Digital Out channels by the device specified by hdwf.
Parameters:
- hdwf – Interface handle.

- pcChannel – Pointer to variable to receive the number of channels in the instrument.

FDwfDigitalOutEnableSet(HDWF hdwf, int idxChannel, int fEnable)

Description: Enables or disables the channel specified by idxChannel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- fEnable – TRUE to enable, FALSE to disable.

FDwfDigitalOutEnableGet(HDWF hdwf, int idxChannel, int *pfEnable)

Description: Verifies if a specific channel is enabled or disabled.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfEnable – Pointer to variable to receive enabled state.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 103 of 154

FDwfDigitalOutOutputInfo(

HDWF hdwf, int idxChannel, int *pfsDwfDigitalOutOutput)

Description: Returns the supported output modes of the channel. They are returned (by reference) as a bit field.

This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the
DwfDigitalOutOutput constants in DWF.h:
• DwfDigitalOutOutputPushPull: Default setting.
• DwfDigitalOutOutputOpenDrain: External pull needed.
• DwfDigitalOutOutputOpenSource: External pull needed.
• DwfDigitalOutOutputThreeState: Available with custom and random types.

Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfsDwfDigitalOutOutput – Pointer to variable to receive the supported output modes.

FDwfDigitalOutOutputSet(HDWF hdwf, int idxChannel, DwfDigitalOutOutput v)

Description: Specifies output mode of the channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- v – Output mode.

FDwfDigitalOutOutputGet(HDWF hdwf, int idxChannel, DwfDigitalOutOutput *pv)

Description: Verifies if a specific channel output mode.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfEnable – Pointer to variable to receive enabled state.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 104 of 154

FDwfDigitalOutTypeInfo(HDWF hdwf, int idxChannel, int *pfsDwfDigitalOutType)

Description: Returns the supported types of the channel. They are returned (by reference) as a bit field. This bit

field can be parsed using the IsBitSet Macro. Individual bits are defined using the DwfDigitalOutType
constants in dwf.h:
• DwfDigitalOutTypePulse: Frequency = internal frequency/divider/(low + high counter).
• DwfDigitalOutTypeCustom: Sample rate = internal frequency / divider.
• DwfDigitalOutTypeRandom: Random update rate = internal frequency/divider/counter
alternating between low and high values.
• DwfDigitalOutTypeROM: ROM logic, the DIO input value is used as address for output value
• DwfDigitalOutTypeState: similar to ROM logic but uses internal loopback and no output
• DwfDigitalOutTypePlay: Supported with Digital Discovery.

Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfsDwfDigitalOutType – Pointer to variable to receive the supported output types.

FDwfDigitalOutTypeSet(HDWF hdwf, int idxChannel, DwfDigitalOutType v)

Description: Sets the output type of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- v – Output mode.

FDwfDigitalOutTypeGet(HDWF hdwf, int idxChannel, DwfDigitalOutType *pv)

Description: Verifies the type of a specific channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfEnable – Pointer to variable to receive enabled state.

FDwfDigitalOutIdleInfo(HDWF hdwf, int idxChannel, int *pfsDwfDigitalOutIdle)

Description: Returns the supported idle output types of the channel. They are returned (by reference) as a bit

field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the
DwfDigitalOutIdle constants in dwf.h. Output while not running:
• DwfDigitalOutIdleInit: Output initial value.
• DwfDigitalOutIdleLow: Low level.
• DwfDigitalOutIdleHigh: High level.
• DwfDigitalOutIdleZet: Three state.

Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pfsDwfDigitalOutIdle – Pointer to variable to receive the supported idle output types.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 105 of 154

FDwfDigitalOutIdleSet(HDWF hdwf, int idxChannel, DwfDigitalOutIdle v)

Description: Sets the idle output of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- v – Value to set idle output.

FDwfDigitalOutIdleGet(HDWF hdwf, int idxChannel, DwfDigitalOutIdle *pv)

Description: Verifies the idle output of a specific channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pv – Pointer to variable to receive configured value.

FDwfDigitalOutDividerInfo(

HDWF hdwf, int idxChannel, unsigned int *vMin, unsigned int *vMax)

Description: Returns the supported clock divider value range.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pnMin – Variable to receive the supported minimum divider value.

- pnMax – Variable to receive the supported maximum divider value.

FDwfDigitalOutDividerInitSet(HDWF hdwf, int idxChannel, unsigned int v)

Description: Sets the initial divider value of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- v – Divider initial value.

FDwfDigitalOutDividerInitGet(HDWF hdwf, int idxChannel, unsigned int *pv)

Description: Verifies the initial divider value of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 106 of 154

- pv – Pointer to variable to receive configured value.

FDwfDigitalOutDividerSet(HDWF hdwf, int idxChannel, unsigned int v)

Description: Sets the divider value of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- v – Divider value.

FDwfDigitalOutDividerGet(HDWF hdwf, int idxChannel, unsigned int *pv)

Description: Verifies the divider value of the specified channel.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- pv – Pointer to variable to receive configured value.

FDwfDigitalOutCounterInfo(

HDWF hdwf, int idxChannel, unsigned int *vMin, unsigned int *vMax)

Description: Returns the supported counter value range.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pnMin – Variable to receive the supported minimum counter value.
- pnMax – Variable to receive the supported maximum counter value.

FDwfDigitalOutCounterInitSet(

HDWF hdwf, int idxChannel, int fHigh, unsigned int v)

Description: Sets the initial state and counter value of the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- fHigh – Start high.
- v – Counter initial value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 107 of 154

FDwfDigitalOutCounterInitGet(

HDWF hdwf, int idxChannel, int *pfHigh, unsigned int *pv)

Description: Retrieves the initial state and counter value for the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pfHigh – Pointer to variable to receive configured value.
- pv – Pointer to variable to receive configured value.

FDwfDigitalOutCounterSet(

HDWF hdwf, int idxChannel, unsigned int vLow, unsigned int vHigh)

Description: Sets the counter low and high values for the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- vLow – Counter low value.
- vHigh – Counter high value.

FDwfDigitalOutCounterGet(

HDWF hdwf, int idxChannel, unsigned int *pvLow, unsigned int *pvHigh)

Description: Verifies the low and high counter value of the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pvLow – Pointer to variable to receive configured value.
- pvHigh – Pointer to variable to receive configured value.

Repetition specifies how many times the counter should be reloaded. For pulse signals set twice the desired value
since each pulse is generated by two counter loads, low and high.
It is available with ADP3X50 and newer devices.

FDwfDigitalOutRepetitionInfo(HDWF hdwf, int idxChannel, unsigned int *pnMax)

Description: Returns the supported repetition value range.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pnMax – Variable to receive the supported maximum value, 2^31

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 108 of 154

FDwfDigitalOutRepetitionSet(HDWF hdwf, int idxChannel, unsigned int cRepeat)

Description: Sets the counter low and high values for the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- cRepeat – Repetition value for low and high counts. Use twice the repeat for pulse, like 2 to repeat once.

FDwfDigitalOutRepetitionGet(HDWF hdwf, int idxChannel, unsigned int *cRepeat)

Description: Verifies the low and high counter value of the specified channel.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pvLow – Pointer to variable to receive configured value.
- pvHigh – Pointer to variable to receive configured value.

FDwfDigitalOutDataInfo(

HDWF hdwf, int idxChannel, unsigned int *pcountOfBitsMax)

Description: Returns the maximum buffers size, the number of custom data bits.
Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- pcountOfBitsMax – Variable to receive the maximum number of bits.

FDwfDigitalOutDataSet(

HDWF hdwf, int idxChannel, void *rgBits, unsigned int countOfBits)

Description: Sets the custom data bits. The function also sets the counter initial, low and high value, according the
number of bits. The data bits are sent out in LSB first order. For TS output, the count of bits is the total number of
output value (I/O) and output enable (OE) bits, which should be an even number.

Parameters:
- hdwf – Interface handle.
- idxChannel – Channel index.
- rgBits – Custom data array.
- countOfBits –Number of bits.

Custom Data Bits

BYTE 0 1

Bits 0 1 2 3 ... 7 0 1 ...

Output I/O(0) OE(0) I/O(1) OE(1) ... OE(3) I/O(4) OE(4) ...

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 109 of 154

The Play functions are supported by Digital Discovery.

FDwfDigitalOutPlayRateSet(HDWF hdwf, double hzRate)

Description: Sets the play rate.
Parameters:
- hdwf – Interface handle.

- idxChannel – Channel index.

- hzRate – Sample rate.

FDwfDigitalOutPlayDataSet(HDWF hdwf, unsigned char * rgBits,
unsigned int bitPerSample, unsigned int countOfSamples)

Description: Sets the data bits to play. The output can be DwfDigitalOutOutputPushPull, OpenDrain or
OpenSource. ThreeState is not supported.
Parameters:
- hdwf – Interface handle.

- rgBits – Data array to play.

- bitPerSample – Bits per sample, should be 1, 2, 4, 8 or 16. The expected bit order in rgBits:
 1: rgBits[DIO-0-S0, DIO-0-S1, DIO-0-S2, …]
 2: rgBits[DIO-0-S0, DIO-1-S0, DIO-0-S1, DIO-1-S1, …]
 4: rgBits[DIO-0-S0, DIO-1-S0, DIO-2-S0, DIO-3-S0, DIO-0-S1, DIO-1-S1, DIO-2-S1, DIO-3-S1, …]
 8: rgBits[DIO-0-S0, DIO-1-S0,…, DIO-7-S0, DIO-0-S1, DIO-1-S1, …, DIO-7-S1, …]
 16: rgBits[DIO0-S0, DIO-1-S0,…, DIO-15-S0, DIO-0-S1, DIO-1-S1, …, DIO-15-S1, …]
- countOfSamples – Number of samples

FDwfDigitalOutPlayUpdateSet(HDWF hdwf, unsigned char * rgBits,
unsigned int indexOfSample, unsigned int countOfSamples)

Description: Changes the data bits configured to play.
Parameters:
- hdwf – Interface handle.

- rgBits – Data array with new values.

- indexOfSample – Start index were to insert the new value.
- countOfSamples – Number of new samples.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 110 of 154

11 Miscellaneous

See examples: AnalogIn_FFT.py AnalogIn_Frequency.py AnalogIn_Spectrum.py

FDwfSpectrumWindow (double * rgdWin, int cdWin, DwfWindow iWindow,
double vBeta, double * vNEBW)

Description: Generates a window function.
Parameters:
- rgdWin – Data array for window data.

- cdWin – Data array size (N).

- iWindow – Window type, DwfWindow:
 DwfWindowRectangular 0
 DwfWindowTriangular 1 WX = (2/(N+1) *((N+1)/2 - abs(X - (N-1)/2))

 DwfWindowHamming 2 WX = 0.54 - 0.46*cos(2*PI*X/(N-1))

 DwfWindowHann 3 WX = 0.5 - 0.5*cos(2*PI*X/(N-1));

 DwfWindowCosine 4 WX = sin(PI*X/(N-1))

 DwfWindowBlackmanHarris 5
 WX = 0.35875-0.48829*cos(2* PI*X/(N-1))+0.14128*cos(4*PI*X/(N-1))-0.01168*cos(6*PI*X/(N-1))

 DwfWindowFlatTop 6
 WX = 1 - 1.93*cos(2*PI*X/(N-1)) + 1.29*cos(4*PI*X/(N-1)) - 0.388*cos(6*PI*X/(N-1)) + 0.028*cos(8*PI*X/(N-1))

 DwfWindowKaiser 7 WX = bessel_i0(beta * sqrt(1 - ((2*X - (N-1)) / n(N-1)m))^2)

 DwfWindowBlackman 8
 WX = 0.42 - 0.5*cos(2*PI*X/(N-1)) + 0.08*cos(4*PI*X/(N-1))

 DwfWindowFlatTopM 9
 WX = 1 - 1.93*cos(2*PI*X/(N-1)) + 1.29*cos(4*PI*X/(N-1)) - 0.388*cos(6*PI*X/(N-1)) + 0.0322*cos(8*PI*X/(N-1))

- vBeta – Beta parameter used by Kaiser window.

- vNEBW – Noise equivalent bandwidth (optional). (= N*sum(w^2)/sum(w)^2)

FDwfSpectrumFFT(const double * rgdData, int cdData,
double * rgdBin, double * rgdPhase, int cdBin)

Description: Peforms FFT on data array and returns BINs and/or Phase.
Parameters:
- rgdData – Data array input.

- cdData – Data array size. It should be power of two number, otherwise

- rgdBin – BIN array output in peak voltage unit (optional). DC to rate/2 with rate/2/(cdBin-1) resolution

- rgdPase – Phase array output in radian unit (optional).

- cdBin – BIN and Phase array size. It must be cdData/2+1.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 111 of 154

FDwfSpectrumTransform(const double * rgdData, int cdData,
double * rgdBin, double * rgdPhase, int cdBin, double iFirst, double iLast)

Description: Peforms FFT or CZT on data array and returns BINs and/or Phase.
Parameters:
- rgdData – Data array input.

- cdData – Data array size.

- rgdBin – BIN array output in peak voltage unit (optional). For dBV use 20*log10(BIN/sqrt(2))

- rgdPase – Phase array output in radian unit (optional).

- cdBin – BIN and Phase array size.

- iFirst – Start of frequency domain, between 0 and 1 interpreted as DC and sample rate/2.

- iLast – End of frequency domain, between 0 and 1 interpreted as DC to sample rate/2.

Like for 100MHz sample rate: for 0.0 and 1.0 will output 0Hz to 50MHz; 0.1 and 0.5 output 5MHz to 25MHz

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 112 of 154

12 Analog Impedance

The Analog Impendace functions use the Analog Input and Output channel 1.

When used with Imepdance Analyzer module the Analog IO (Power Supplies) and Digital IO will be used too.

These functions can be used with Impedance Analyzer for Analog Discovery (specify this with value 8 in
FDwfAnalogImpedanceModeSet function) or the analyzer circuit can be constructed in the following ways:

The DUT (Device Under Test) stands for the inductive or capacitive load to be analyzed and Resistor is the
reference resistor. The resistor value depends on the load value and frequency.

Wavegen 1

DUT

Scope 1 Scope 2

Resistor

GND

W1-C1-R-C2-DUT-GND

Wavegen 1

Resistor

Scope 1 Scope 2

DUT

GND
W1-C1-DUT-C2-R-GND

https://reference.digilentinc.com/reference/add-ons/impedance-analyzer/start

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 113 of 154

See AnalogImpedance_Meter.py, AnalogImpedance_ Compensation.py examples.

FDwfAnalogImpedanceReset(HDWF hdwf)

Description: Resets the AI configuration to default value.
Parameters:
- hdwf – Interface handle.

FDwfAnalogImpedanceModeSet(HDWF hdwf, int mode)

Description: Specifies the circuit to be used.
Parameters:
- hdwf – Interface handle.

- mode – circuit model to be used
 - 0: W1-C1-DUT-C2-R-GND
 - 1: W1-C1-R-C2-DUT-GND
 - 8: Impedance Analyzer module for Analog Discovery

FDwfAnalogImpedanceModeGet(HDWF hdwf, int *pmode)

Description: Returns the selected circuit model.
Parameters:
- hdwf – Interface handle.

- pmode – Pointer to variable to receive configured value.

FDwfAnalogImpedanceReferenceSet(HDWF hdwf, double ohms)

Description: Specifies the reference resistor to be used.

For AD IA module the resistor is selected by relays controlled by power supplies and digital IOs.
Parameters:
- hdwf – Interface handle.

- ohms – Reference resistor value.

FDwfAnalogImpedanceReferenceGet(HDWF hdwf, double *pohms)

Description: Returns the reference resistor value.
Parameters:
- hdwf – Interface handle.

- pohms – Pointer to variable to receive configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 114 of 154

FDwfAnalogImpedanceFrequencySet(HDWF hdwf, double hz)

Description: Configures the stimulus frequency and restart the capture.
Parameters:
- hdwf – Interface handle.

- hz – Frequency value.

FDwfAnalogImpedanceFrequencyGet(HDWF hdwf, double *phz)

Description: Returns the frequency value.
Parameters:
- hdwf – Interface handle.
- phz – Pointer to variable to receive configured value.

FDwfAnalogImpedanceAmplitudeSet(HDWF hdwf, double volts)

Description: Configures the stimulus signal amplitude, half of the peak to peak value.
Parameters:
- hdwf – Interface handle.
- volts – Amplitude value.

FDwfAnalogImpedanceAmplitudeGet(HDWF hdwf, double *pvolts)

Description: Returns the amplitude value.
Parameters:
- hdwf – Interface handle.
- pvolts – Pointer to variable to receive configured value.

FDwfAnalogImpedanceOffsetSet(HDWF hdwf, double volts)

Description: Configures the stimulus signal offset.
Parameters:
- hdwf – Interface handle.
- volts – Offset value.

FDwfAnalogImpedanceOffsetGet(HDWF hdwf, double *pvolts)

Description: Returns the offset value.
Parameters:
- hdwf – Interface handle.
- pvolts – Pointer to variable to receive configured value.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 115 of 154

FDwfAnalogImpedanceProbeSet(HDWF hdwf, double ohmRes, double faradCap)

Description: Specifies the probe impedance that will be taken in consideration for measurements.

The default values are set specific for device when calling the FDwfAnalogImpedanceReset function.
Parameters:
- hdwf – Interface handle.
- ohmRes – Probe resistance.
- faradCap – Probe capacitance.

FDwfAnalogImpedanceProbeGet(HDWF hdwf, double *pohmRes, double *pfaradCap)

Description: Returns the probe impedance.
Parameters:
- hdwf – Interface handle.
- pohmRes – Pointer to variable to receive configured value.
- pfaradCap – Pointer to variable to receive configured value.

FDwfAnalogImpedancePeriodSet(HDWF hdwf, int cMinPeriods)

Description: Specifies the minimum number of periods to be captured.
Parameters:
- hdwf – Interface handle.

- cMinPeriods – Number of minimum periods, default 16.

FDwfAnalogImpedancePeriodGet(HDWF hdwf, int *pcMinPeriods)

Description: Returns the periods value.
Parameters:
- hdwf – Interface handle.

- pcMinPeriods – Pointer to variable to receive configured value.

FDwfAnalogImpedanceCompReset(HDWF hdwf)

Description: Resets the currently configured compensation parameters.
Parameters:
- hdwf – Interface handle.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 116 of 154

FDwfAnalogImpedanceCompSet(HDWF hdwf,

double ohmOpenResistance, double ohmOpenReactance,

double ohmShortResistance, double ohmShortReactance)

Description: Specifies the open and short compensation parameters. These values are specific for the

circuit/adapter.
Parameters:
- hdwf – Interface handle.

- ohmOpenResistance – Open resistance value.
- ohmOpenReactance – Open reactance value.
- ohmShortResistance – Short resistance value.
- ohmShortReactance – Short reactance value.

FDwfAnalogImpedanceCompGet(HDWF hdwf,

double *pohmOpenResistance, double *pohmOpenReactance,

double *pohmShortResistance, double *pohmShortReactance)

Description: Returns the compensation parameters.
Parameters:
- hdwf – Interface handle.

- pohmOpenResistance – Pointer to variable to receive configured value.
- pohmOpenReactance – Pointer to variable to receive configured value.
- pohmShortResistance – Pointer to variable to receive configured value.
- pohmShortReactance – Pointer to variable to receive configured value.

FDwfAnalogImpedaceConfigure(HDWF hdwf, int fStart)

Description: Configures the instrument and start or stop the analysis.

Parameters:

- hdwf – Interface handle.

- fStart – Start the analysis.

FDwfAnalogImpedanceStatus(HDWF hdwf, DwfState *psts)

Description: Checks the state of the acquisition.

Parameters:

- hdwf – Interface handle.

- psts – Variable to receive the acquisition state.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 117 of 154

FDwfAnalogImpedanceStatusInput(HDWF hdwf,

int idxChannel, double *pgain, double *pradian)

Description: Read the raw input, for network analysis purpose. This returns the raw values without taking in

consideration the probe characteristics or compensation parameters.

For scope channel 1 (idxChannel = 0) the gain is relative to Wavegen amplitude (Ampltiude/Channel1)

and the phase is zero. For further channels the gain and phase is relative to channel 1, gain = C1/C#

The gain value is dimensionless, it represents the V/V ratio.

Parameters:

- hdwf – Interface handle.

- idxChannel – Scope channel index.

- pgain – Pointer to variable to receive the gain.
- pradian – Pointer to variable to receive the phase.

FDwfAnalogImpedanceStatusWarning(HDWF hdwf, int idxChannel, int *pWarning)

Description: This returns the warning if the scope input range is exceeded.

Parameters:

- hdwf – Interface handle.

- idxChannel – Scope channel index.

- pWarning– Pointer to variable to receive the warning status, 1 low, 2 high, 3 both.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 118 of 154

FDwfAnalogImpedanceStatusMeasure(HDWF hdwf,

DwfAnalogImpedance measure, double *pvalue)

Description: Read the DUT measurements. These take in account the scope probe characteristics and

compensation parameters.

Parameters:

- hdwf – Interface handle.

- measure – Select measurement to return.

- pvalue – Pointer to variable to receive the measurement.

DwfAnalogImpedance int Impedance measurement

DwfAnalogImpedanceImpedance 0 |Z| in Ohms = Sqrt(Rs^2 + Xs^2)

DwfAnalogImpedanceImpedancePhase 1 Ø in Radians = Tan2(Xs,Rs)

DwfAnalogImpedanceResistance 2 Rs in Ohms

DwfAnalogImpedanceReactance 3 Xs in Ohms = -1/(ω*Cs) = ω*Ls

DwfAnalogImpedanceAdmittance 4 |Y| in Siemen = Sqrt(Gp^2 + Bp^2)

DwfAnalogImpedanceAdmittancePhase 5 Ø in Radians = Tan2(Bp,Gp)

DwfAnalogImpedanceConductance 6 Gp in Siemen

DwfAnalogImpedanceSusceptance 7 Bp in Siemen = ω*Cp = -1/(ω*Lp)

DwfAnalogImpedanceSeriesCapactance 8 Cs in Farad = -1/(ω*Xs)

DwfAnalogImpedanceParallelCapacitance 9 Cp in Farad = Bp/ ω

DwfAnalogImpedanceSeriesInductance 10 Ls in Henry = Xs/ ω

DwfAnalogImpedanceParallelInductance 11 Lp in Henry = = -1/(ω*Bp)

DwfAnalogImpedanceDissipation 12 Dissipation factor = Rs/Xs = Gp /Bp

DwfAnalogImpedanceQuality 13 Quality factor = Xs/Rs = Bp/Gp

DwfAnalogImpedanceVrms 14 RMS voltage on DUT

DwfAnalogImpedanceVreal 15 Real voltage on DUT

DwfAnalogImpedanceVimag 16 Imaginary voltage on DUT

DwfAnalogImpedanceIrms 17 RMS current on DUT, resistor voltage/resistor value

DwfAnalogImpedanceIreal 18 Real current on DUT

DwfAnalogImpedanceIimag 19 Imaginary current on DUT

 ω = 2*PI*Hz

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 119 of 154

13 Digital Protocols

The protocols use the Digital-In/Out device resources to create various communication protocols. Only one of the

protocols can be used at a time. The Digital-Out is used to generate the output signals and the Digital-In to capture

the received data. Overriding a signal used by the protocol with Digital-IO may mess up the communication.

Note:

The DIO channe indexing for Digital Discovery starts from 0, 0 is DIO-24, 1 is DIO-25…

13.1 UART

See Digital_Uart.py example.

FDwfDigitalUartReset(HDWF hdwf)

Description: Resets the UART configuration to default value. Use FDwfDigitalOutReset to reset the output.
Parameters:
- hdwf – Interface handle.

FDwfDigitalUartRateSet(HDWF hdwf, double hz)

Description: Sets the data rate.
Parameters:
- hdwf – Interface handle.

- hz – data rate to set

FDwfDigitalUartBitsSet(HDWF hdwf, double cBits)

Description: Sets the character length, typically 8, 7, 6 or 5.
Parameters:
- hdwf – Interface handle.

- cBits – character length

FDwfDigitalUartParitySet(HDWF hdwf, int parity)

Description: Sets the parity bit: 0 no parity, 1 even, 2 odd, 3 mark (high), 4 space (low)
Parameters:
- hdwf – Interface handle.

- parity – parity mode to set

FDwfDigitalUartPolaritySet(HDWF hdwf, int polarity)

Description: Sets the polarity 0 normal and 1 iverted.
Parameters:
- hdwf – Interface handle.

- polarity – polarity to set

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 120 of 154

FDwfDigitalUartStopSet(HDWF hdwf, double cBits)

Description: Sets the stop length as number of bits.
Parameters:
- hdwf – Interface handle.

- cBits – stop length

FDwfDigitalUartTxSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for transmission.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for TX

FDwfDigitalUartRxSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for reception.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for RX

FDwfDigitalUartTx(HDWF hdwf, char *szTx, int cTx)

Description: Transmits the specified characters.
Parameters:
- hdwf – Interface handle.

- szTX – array of characters to send

- cTX – number of characters to send

FDwfDigitalUartRx(HDWF hdwf, char *szRx, int cRxMax, int *pcRx, int *pParity)

Description: Initializes the reception with cRxMax zero. Otherwise returns the received characters since the last
call.
Parameters:
- hdwf – Interface handle.

- szRX – buffer to receive characters

- cRxMax – the maximum number of characters to receive, the buffer size

- pcRX – pointer to return the number of characters received

- pParity – pointer to return:
 - negative value for buffer overflow, in case the buffer got full since the previos call of this function
 - the first parity check failure as one based index
 - zero for no error

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 121 of 154

13.2 SPI

See examples: Digital_Spi.py, Digital_Spi_Dual.py, Digital_Spi_Quad.py, Digital_Spi_Siso.py

The Select signal is controlled automatically for transfer funnctions if it is configured by the FDwfDigitalSpiSelectSet

and it is not activated with the FDwfDigitalSpiSelect, having the same DIO and active level.

FDwfDigitalSpiReset(HDWF hdwf)

Description: Resets the SPI configuration to default value. Use FDwfDigitalOutReset to reset the outputs.
Parameters:
- hdwf – Interface handle.

FDwfDigitalSpiFrequencySet(HDWF hdwf, double hz)

Description: Sets the SPI frequency.
Parameters:
- hdwf – Interface handle.

- hz – bit rate to set (default 1kHz)

FDwfDigitalSpiClockSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for SPI clock.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for SPI clock (default DIO1)

FDwfDigitalSpiDataSet(HDWF hdwf, int idxDQ, int idxChannel)

Description: Specifies the DIO channels to use for SPI data.
Parameters:
- hdwf – Interface handle.

- idxDQ – specify data index to set, 0 = DQ0_MOSI_SISO, 1 = DQ1_MISO, 2 = DQ2, 3 = DQ3

- idxChannel – DIO channel to use for SPI data

FDwfDigitalSpiIdleSet(HDWF hdwf, int idxDQ, DwfDigitalOutIdle idle)

Description: Specifies the DQ singal idle output state. DQ2 and 3 may be used for alternative purpose like for write
protect (should driven low) or for hold (should be in high impendance).
Parameters:
- hdwf – Interface handle.

- idxDQ – specify data index

- idle – idle state of the channel

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 122 of 154

FDwfDigitalSpiModeSet(HDWF hdwf, int iMode)

Description: Sets the SPI mode.

iMode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Parameters:
- hdwf – Interface handle.

- iMode – specify SPI mode, bit1 CPOL and bit0 CPHA. With bit2=1 the MISO will be sampled on the active edge.

FDwfDigitalSpiOrderSet(HDWF hdwf, int fMSBLSB)

Description: Sets the bit order for SPI data.
Parameters:
- hdwf – Interface handle.

- fMSB – Specify bit order, 1 MSB first (default), 0 LSB first

FDwfDigitalSpiDelaySet(HDWF hdwf, int cStart, int cCmd, int cWord, int cStop)

Description: Sets the delays used by FDwfDigitalSpiCmdWrite/Read* functions.
Parameters:
- hdwf – Interface handle.

- cStart – Specify delay after start in clock cycle length.

- cCmd – Specify delay after command.

- cWord – Specify delay between words.

- cStop – Specify delay before stop.

FDwfDigitalSpiSelectSet(HDWF hdwf, int idxChannel, int fIdle)

Description: Specifies the SPI chip select signal.
Parameters:
- hdwf – Interface handle.

- idxChannel – Specify the DIO channel

- fIdle – Set the idle level: 0 low, 1 high

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 123 of 154

FDwfDigitalSpiSelect(HDWF hdwf, int idxChannel, int iLevel)

Description: Controls the SPI CS signal(s) FDwfDigitalSpiWrite/Read* functions.
Parameters:
- hdwf – Interface handle.

- idxChannel – Specify DIO channel for which to set the level

- iLevel – Set the channel level: 0 low, 1 high, -1 release (Z, high impedance)

FDwfDigitalSpiWriteRead(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned char *rgTX, int cTX, unsigned char *rgRX, int cRX)

Description: Performs SPI transfer of up to 8bit words. This function is intended for standard MOSI/MISO (cDQ 1)

operations, but it can be used for other modes as long only write (rgTX/cTX) or read (rgRX/cRX) is
specified.
The number of clock signals generated is the maximum of cTX and cRX.

Parameters:
- hdwf – Interface handle.

- cDQ – specify the DQ lines to use to transfer data:

cDQ

0 SISO use only DQ0 for read and write

1 MOSI/MISO use DQ0 for write and DQ1 to read data

2 DUAL use DQ0 for even and DQ1 for odd bits

3 QUAD use DQ0 for 0,4,8…, DQ1 for 1,5,9…, DQ2 for 2,6,10…, DQ3 for 3,7,11… data bits

- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 8bit values (byte words) to write.

- cTX – number of words to write.

- rgRx – buffer for read words.

- cRx – number of words to read.

FDwfDigitalSpiWriteOne(HDWF hdwf, int cDQ, int cBits, unsigned int vTX)

Description: Performs SPI transmit of up to 32 bits. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBits – Specify the number of bits to transmit.

- vTX – Specify the data to transmit.

FDwfDigitalSpiReadOne(HDWF hdwf, int cDQ, int cBits, unsigned int *pRX)

Description: Performs SPI reception of up to 32 bits. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBits – Specify the number of bits to receive.

- pRX – Pointer to variable to return the received bits.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 124 of 154

FDwfDigitalSpiWrite(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned char *rgTX, int cTX)

Description: Performs SPI transmission of up to 8-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 8-bit values (words) to transmit.

- cTX – Number of words to transmit.

FDwfDigitalSpiRead(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned char *rgRX, int cRX)

Description: Performs SPI reception of up to 8-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgRx – Buffer for receive words.

- cRx – Number of words to received.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 125 of 154

FDwfDigitalSpiWriteRead16(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned short *rgTX, int cTX, unsigned short *rgRX, int cRX)

Description: Performs SPI transfer of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 16bit values (words) to transmit.

- cTX – Number of words to transmit.

- rgRx – Buffer for read words.

- cRx – Number of words to read.

FDwfDigitalSpiWriteRead32(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned int *rgTX, int cTX, unsigned int *rgRX, int cRX)

Description: Performs SPI transfer of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 32bit values (words) to write.

- cTX – Number of words to write.

- rgRx – Buffer for read words.

- cRx – Number of words to read.

FDwfDigitalSpiRead16(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned short *rgRX, int cRX)

Description: Performs SPI read of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – specify the DQ lines to use to transfer data.

- cBitPerWord – specify the number of bits to transfer for each word.

- rgRx – buffer for read words.

- cRx – number of words to read.

FDwfDigitalSpiRead32(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned int *rgRX, int cRX)

Description: Performs SPI read of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – specify the DQ lines to use to transfer data.

- cBitPerWord – specify the number of bits to transfer for each word.

- rgRx – buffer for read words.

- cRx – number of words to read.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 126 of 154

FDwfDigitalSpiWrite16(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned short *rgTX, int cTX)

Description: Performs SPI read of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – specify the DQ lines to use to transfer data.
- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 16-bit values (words) to write.

- cTX – number of words to write.

FDwfDigitalSpiWrite32(HDWF hdwf, int cDQ, int cBitPerWord,

unsigned int *rgTX, int cTX)

Description: Performs SPI read of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cDQ – specify the DQ lines to use to transfer data.
- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 32-bit values (int) to write.

- cTX – number of bytes to write.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 127 of 154

FDwfDigitalSpiCmdWriteRead(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord,

unsigned char *rgTX, int cTX, unsigned char *rgRX, int cRX)

Description: Performs SPI transfer of up to 8bit words. This function is intended for standard MOSI/MISO (cDQ 1)

operations, but it can be used for other modes as long only write (rgTX/cTX) or read (rgRX/cRX) is
specified. The number of clock signals generated is the maximum of cTX and cRX.

Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data

- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 8bit values (byte words) to write.

- cTX – number of words to write.

- rgRx – buffer for read words.

- cRx – number of words to read.

FDwfDigitalSpiCmdWriteOne(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBits, unsigned int vTX)

Description: Performs SPI transmit of up to 32 bits. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBits – Specify the number of bits to transmit.

- vTX – Specify the data to transmit.

FDwfDigitalSpiCmdReadOne(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBits, unsigned int *pRX)

Description: Performs SPI reception of up to 32 bits. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBits – Specify the number of bits to receive.

- pRX – Pointer to variable to return the received bits.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 128 of 154

FDwfDigitalSpiCmdWrite(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord,

unsigned char *rgTX, int cTX)

Description: Performs SPI transmission of up to 8-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 8-bit values (words) to transmit.

- cTX – Number of words to transmit.

FDwfDigitalSpiCmdRead(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord, unsigned char *rgRX, int cRX)

Description: Performs SPI reception of up to 8-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgRx – Buffer for receive words.

- cRx – Number of words to received.

FDwfDigitalSpiCmdWriteRead16(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord,

unsigned short *rgTX, int cTX, unsigned short *rgRX, int cRX)

Description: Performs SPI transfer of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 16bit values (words) to transmit.

- cTX – Number of words to transmit.

- rgRx – Buffer for read words.

- cRx – Number of words to read.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 129 of 154

FDwfDigitalSpiCmdWriteRead32(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord,

unsigned int *rgTX, int cTX, unsigned int *rgRX, int cRX)

Description: Performs SPI transfer of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – Specify the DQ lines to use to transfer data.

- cBitPerWord – Specify the number of bits to transfer for each word.

- rgTX – Array of 32bit values (words) to write.

- cTX – Number of words to write.

- rgRx – Buffer for read words.

- cRx – Number of words to read.

FDwfDigitalSpiCmdRead16(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord, unsigned short *rgRX, int cRX)

Description: Performs SPI read of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – specify the DQ lines to use to transfer data.

- cBitPerWord – specify the number of bits to transfer for each word.

- rgRx – buffer for read words.

- cRx – number of words to read.

FDwfDigitalSpiCmdRead32(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord, unsigned int *rgRX, int cRX)

Description: Performs SPI read of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – specify the DQ lines to use to transfer data.

- cBitPerWord – specify the number of bits to transfer for each word.

- rgRx – buffer for read words.

- cRx – number of words to read.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 130 of 154

FDwfDigitalSpiCmdWrite16(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord, unsigned short *rgTX, int cTX)

Description: Performs SPI read of up to 16-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – specify the DQ lines to use to transfer data.
- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 16-bit values (words) to write.

- cTX – number of words to write.

FDwfDigitalSpiCmdWrite32(HDWF hdwf,

int cBitCmd, unsigned char cmd, int cDummy,

int cDQ, int cBitPerWord, unsigned int *rgTX, int cTX)

Description: Performs SPI read of up to 32-bit words. See FDwfDigitalSpiWriteRead for more information.
Parameters:
- hdwf – Interface handle.

- cBitCmd – specify the number of command bits.

- cmd – Specify command value

- cDummy – Specify the number of dummy bits before data transfer

- cDQ – specify the DQ lines to use to transfer data.
- cBitPerWord – specify the number of bits to transfer for each word.

- rgTX – array of 32-bit values (int) to write.

- cTX – number of bytes to write.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 131 of 154

13.3 I2C

See Digital_I2c.py exampels.

FDwfDigitalI2cReset(HDWF hdwf)

Description: Resets the I2C configuration to default value.
Parameters:
- hdwf – Interface handle.

FDwfDigitalI2cClear(HDWF hdwf, int *pfFree)

Description: Verifies and tries to solve eventual bus lockup. The argument returns true, non-zero value if the bus is
free.
Parameters:
- hdwf – Interface handle.

- pfFree – pointer to return the

FDwfDigitalI2cRateSet(HDWF hdwf, double hz)

Description: Sets the data rate.
Parameters:
- hdwf – Interface handle.

- hz – bit rate to set (default 100kHz).

FDwfDigitalI2cTimeoutSet(HDWF hdwf, double sec)

Description: Sets the data rate.
Parameters:
- hdwf – Interface handle.

- sec –timeout in seconds (default 1sec).

FDwfDigitalI2cReadNakSet(HDWF hdwf, int fNakLastReadByte)

Description: Specifies if the last read byte should be acknowledged or not. The I2C specifications require NAK, this

parameter set to true.
Parameters:
- hdwf – Interface handle.

- fNakLastReadByte – value to set (default 1, true).

FDwfDigitalI2cStretchSet(HDWF hdwf, int fEnable)

Description: Enables or disables clock stretching.
Parameters:
- hdwf – Interface handle.

- fEnable – Enable (default) or disable the clock stretching.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 132 of 154

FDwfDigitalI2cSclSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for I2C clock.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for SCL.

FDwfDigitalI2cSdaSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for I2C data.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for SDA.

FDwfDigitalI2cWriteRead(HDWF hdwf, unsigned char adr8bits,

unsigned char *rgbTx, int cTx, unsigned char *rgbRx, int cRx, int *pNak)

Description: Performs I2C write, repeated start and read. In case zero bytes are specified for read (cRx) only write

and for zero write (cTx) only read is peformed. The read/write bit in the address is controlled by the
function. The returned NAK index returns one based index of the first negative ackedged transfer
byte, zero when all the bytes where acknowledged. When the first address is acknowledged it returns
1. Returns negative value for other communication falures like timeout.

Parameters:
- hdwf – Interface handle.

- adr8bits – specify the address in 8-bit format, bAAAAAAAX.

- rgbTX – array of bytes to write.

- cTX – number of bytes to write.

- rgbRx – buffer for read bytes.

- cRx – number of bytes to read.

- pNak – pointer to variable to return eventual NAK index.

FDwfDigitalI2cRead(HDWF hdwf, unsigned char adr8bits,

unsigned char *rgbRx, int cRx, int *pNak)

Description: Performs I2C read. See DwfDigitalI2cWriteRead function for more information.
Parameters:
- hdwf – Interface handle.

- adr8bits – specify the address.

- rgbRx – buffer for read bytes.

- cRx – number of bytes to read.

- pNak – pointer to variable to return eventual NAK index.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 133 of 154

FDwfDigitalI2cWrite(HDWF hdwf, unsigned char adr8bits,

unsigned char *rgbTx, int cTx, int *pNak)

Description: Performs I2C write. See DwfDigitalI2cWriteRead function for more information.
Parameters:
- hdwf – Interface handle.

- adr8bits – specify the address.

- rgbTX – array of bytes to write.

- cTX – number of bytes to write.

- pNak – pointer to variable to return eventual NAK index.

FDwfDigitalI2cWriteOne(HDWF hdwf, unsigned char adr8bits,

unsigned char bTx, int *pNak)

Description: Performs I2C write of one byte. See DwfDigitalI2cWriteRead function for more information.
Parameters:
- hdwf – Interface handle.

- adr8bits – specify the address.

- bTX – bytes to write.

- pNak – pointer to variable to return eventual NAK index.

FDwfDigitalI2cSpyStart(HDWF hdwf)

Description: Start I2C spy.
Parameters:
- hdwf – Interface handle.

FDwfDigitalI2cSpyStatus(HDWF hdwf,

int *fStart, int *fStop, unsigned char *rgData, int *cData, int *iNak)

Description: Decoded I2C communication. Active values are returned when when Stop is met, before ReStart or
the requested number of data is decoded.
See example: SDK/ samples/ py/ Digital_I2c_Spy.py
Parameters:
- hdwf – Interface handle.

- fStart – Rerturn 1 if start and 2 if restart was detected, otherwise 0.

- fStop – Rerturn 1 if stop was detected, otherwise 0.

- rgData – Buffer for data. First value is addres when fStart is not zero.

- cData – Specify the maximum number of data and returns the decoded words.

- iNak – Returns NAK index + 1. Negative values indicated error.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 134 of 154

13.4 CAN

See Digital_Can.py example.

FDwfDigitalCanReset(HDWF hdwf)

Description: Resets the CAN configuration to default value. Use FDwfDigitalOutReset to reset the output.
Parameters:
- hdwf – Interface handle.

FDwfDigitalCanRateSet(HDWF hdwf, double hz)

Description: Sets the data rate.
Parameters:
- hdwf – Interface handle.

- hz – data rate to set.

FDwfDigitalCanPolaritySet(HDWF hdwf, double fInvert)

Description: Sets the signal polarity.
Parameters:
- hdwf – Interface handle.

- fInvert – 0 normal, 1 invert.

FDwfDigitalCanTxSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for transmission.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for TX.

FDwfDigitalCanRxSet(HDWF hdwf, int idxChannel)

Description: Specifies the DIO channel to use for reception.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for RX.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 135 of 154

FDwfDigitalCanTx(HDWF hdwf, int vID, int fExtended, int fRemote,

int cDLC, unsigned char *rgTX)

Description: Performs a CAN transmission. Specifying -1 for vID it initializes the TX channel.
Parameters:
- hdwf – Interface handle.

- vID – identifier.

- fExtended – 0 base frame, 1 extended frame; 11- or 29-bit identifier.

- fRemote – 0 data frame, 1 remote request.

- rgTX - array of data bytes to send.

FDwfDigitalCanRx(HDWF hdwf, int *pvID, int *pfExtended, int *pfRemote,

int *pcDLC, unsigned char *rgRX, int cRX, int *pvStatus)

Description: Returns the received frames since the last call. With cRX zero initializes the reception.
Parameters:
- hdwf – Interface handle.

- pvID – pointer to return the identifier.

- pfExtended - pointer to return the extended bit value.

- pfRemote – pointer to return the remote bit value.

- pcDLC – pointer to return the data length code.

- rgRX – poiter to array to return the data bytes.

- cRX - the maximum number of data bytes to receive, rgRX buffer size

- pvStatus – pointer to return the function status:

 0 - nothing received.

 1 – frame received without error.

 2 – frame received with bit stuffing error.

 3 – frame received with CRC error.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 136 of 154

13.5 SWD

See Digital_Swd.py example.

FDwfDigitalSwdReset(HDWF hdwf)

Description: Resets the SWD configuration to default value. Use FDwfDigitalOutReset to reset the outputs and
FDwfDigitalSwdClear for SWD reset command!
Parameters:
- hdwf – Interface handle.

FDwfDigitalSwdRateSet(HDWF hdwf, double hz)

Description: Sets the data rate.
Parameters:
- hdwf – Interface handle.

- hz – data rate to set.

FDwfDigitalSwdCkSet(HDWF hdwf, double idxChannel)

Description: Specifies the channel to use for clock signal, default DIO-0.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for clock.

FDwfDigitalSwdIoSet(HDWF hdwf, int idxChannel)

Description: Specifies the channel to use for data signal, default DIO-1.
Parameters:
- hdwf – Interface handle.

- idxChannel – DIO channel to use for data.

FDwfDigitalSwdTurnSet(HDWF hdwf, int cTurn)

Description: Specifies the turnaround length, default 1, valid values 1,2,3,4
Parameters:
- hdwf – Interface handle.

- cTurn – turnaround cycles.

FDwfDigitalSwdTrailSet(HDWF hdwf, int cTrail)

Description: Specifies the trail length for data transfers, default 0
Parameters:
- hdwf – Interface handle.

- cTrail – trail cycles after data transfer.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 137 of 154

FDwfDigitalSwdParkSet(HDWF hdwf, int fDrive)

Description: Specifies to drive or not the park bit.
Parameters:
- hdwf – Interface handle.

- fDrive – 1 to drive and 0 for no drive.

FDwfDigitalSwdNakSet(HDWF hdwf, int fContinue)

Description: Specifies to continue sequence when not acknowledged.
Parameters:
- hdwf – Interface handle.

- fDrive – 1 to continue and 0 to stop on no acknowledgement.

FDwfDigitalSwdIoIdleSet(HDWF hdwf, int fHigh)

Description: Specifies the data IO line for idle.
Parameters:
- hdwf – Interface handle.

- fHigh – 0 low, 1 high, 2 three state.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 138 of 154

FDwfDigitalSwdClear (HDWF hdwf, int cReset, int cTrail)

Description: Performs a SWD reset.
Parameters:
- hdwf – Interface handle.

- cReset – reset length.

- cTrail – trail length

FDwfDigitalSwdWrite(HDWF hdwf, int APnDP, int A32, int *pAck,

unsigned char Write)

Description: Performs a SWD write.
Parameters:
- hdwf – Interface handle.

- APnDP – 1 for AccessPort and 0 for DataPort.

- A32 – address bits 3:2

- pAck – returns acknowledgement bits: 1 OK, 2 WAIT, 4 FAILURE

- Write – data to write.

FDwfDigitalSwdRead(HDWF hdwf, int APnDP, int A32, int *pAck,

unsigned char *pRead, int *pCrc)

Description: Performs a SWD read.
Parameters:
- hdwf – Interface handle.

- APnDP – 1 for AccessPort and 0 for DataPort.

- A32 – address bits 3:2

- pAck – returns acknowledgement bits: 1 OK, 2 WAIT, 4 FAILURE

- pRead – read data.

- pCrc – 0 for parity ok and 1 for error.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 139 of 154

14 Devices

14.1 Electronics Explorer

The Electronics Explorer has nine AnalogIO channels. The master enable validates the power supplies and

reference voltages.

Channel Node Name Description

0 Vcc Fixed supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Select voltage 3.3V or 5V
Status returns the voltage reading

 2 Current Status returns the current reading

1 VP+ Positive supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0 to 9V
Status returns the voltage reading

 2 Current Specify the current limitation between 0 and 1.5A
Status returns the current reading

2 VP- Negative supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0 to -9V
Status returns the voltage reading

 2 Current Specify the current limitation between 0 and -1.5A
Status returns the current reading

3 Ref1 Voltage Reference 1

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level between -10V and -10V

4 Ref2 Voltage Reference 2

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level between -10V and -10V

5 Vmtr1 Voltmeter 1

 0 Voltage Status returns the voltage reading, -15V to 15V

6 Vmtr2 Voltmeter 2

 0 Voltage Status returns the voltage reading, -15V to 15V

7 Vmtr3 Voltmeter 3

 0 Voltage Status returns the voltage reading, -15V to 15V

8 Vmtr4 Voltmeter 4

 0 Voltage Status returns the voltage reading, -15V to 15V

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 140 of 154

14.2 Analog Discovery

The Analog Discovery has four AnalogIO channels. The master enable validates the power supplies.

Channel Node Name Description

0 V+ Positive supply

 0 Enable Enables or disables the supply channel, 1/0

1 V- Negative supply

 0 Enable Enables or disables the supply channel, 1/0

2 SYS USB power monitor

 0 Voltage Status returns the line voltage

 1 Current Status returns the line current

 2 Temp Status returns the device temperature

3 V+- Power supply monitor

 0 Voltage Status returns the voltage input for the supply regulators

 1 Current Status returns the current taken by the supply regulators

There are five configurations available for the device. See FDwfDeviceConfigOpen.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 141 of 154

14.3 Analog Discovery 2

The Analog Discovery 2 has four AnalogIO channels. The master enable validates the power supplies.

Channel Node Name Description

0 V+ Positive supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0.5 to 5V

1 V- Negative supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, -0.5 to -5V

2 USB USB power monitor

 0 Voltage Status returns the line voltage

 1 Current Status returns the line current

 2 Temp Status returns the device temperature

3 AUX AUX power monitor

 0 Voltage Status returns the line voltage

 1 Current Status returns the line current

There are eight configurations available for the device. See FDwfDeviceConfigOpen.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 142 of 154

14.4 Digital Discovery

For the DigitalOut and IO functions, and AnalogIO DIOPP/PE the indexing 15:0 refers to DIO39:24.

The Digital Discovery has three AnalogIO channels. The master enable activates the VIO output.

Channel Node Name Description

0 0 Voltage Configures the digital voltage between 1.2V and 3.3V

 1 DINPP Configures the week pull for DIN lines with values:
0 down, 0.5 middle, 0.75 up, 1 up
See Digital Discovery RM Input Dividers

 2 DIOPE Configure pull enable (1) for DIO 39-24 as bit field set, like:
0x00F1 enables for DIO 31,30,29,28 and 24
See Digital Discovery RM I/O Level Translators

 3 DIOPP Configure pull up/down (1/0) for DIO 39-24 as bit field set

 4 Drive Configure drive strength for DIO lines:
0 (auto), 2mA, 4mA, 6mA, 8mA, 12mA, 16mA

 5 Slew Configure slew rate for DIO lines:
quietio, slow, fast
See Xilinx DS162

 6 Frequency Configure, fine adjust the system frequency between:
 50-100/125MHz (50e6-100e6/125e6)
Zero value does not change the last setting.
Negative resets to the default 100MHz.

1 VIO VIO power monitor
See Digital Discovery RM Power Supplies

 0 Voltage Status returns the VIO voltage reading

 1 Current Status returns the VIO current reading

2 USB USB power monitor

 0 Voltage Status returns the USB voltage reading

 1 Current Status returns the USB current reading

Based on the FDwfDigitalInInputOrderSet and FDwfDigitalInSampleFormatSet the captured samples and the

configured FDwfDigitalInTriggerSet bits are as follows:

Order Format Samples Bits

DIN 8 DIN [7-0] bit 7 to 0

DIN 16 DIN [15-0] bit 15 to 0

DIN 32 DIO [31-24] - DIN [23-0] bit 31 to 0

DIO 8 DIO [31-24] bit 7 to 0

DIO 16 DIO [39-24] bit 15 to 0

DIO 32 DIN [15-0] - DIO [39-24] bit 31 to 0

https://reference.digilentinc.com/reference/instrumentation/digital-discovery/reference-manual#input_dividers
https://reference.digilentinc.com/reference/instrumentation/digital-discovery/reference-manual#io_level_translators
https://www.xilinx.com/support/documentation/data_sheets/ds162.pdf
https://reference.digilentinc.com/reference/instrumentation/digital-discovery/reference-manual#power_supplies_and_control

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 143 of 154

14.5 Analog Discovery Pro 3000 Series

The ADP3450 and ADP3250 have four AnalogIO channels. The master enable activates the VIO output.

Channel Node Name Description

0 0 Voltage Configures the digital voltage between 1.2V and 3.3V

 1 DIOPE Configure pull enable (1) for DIO 15-0 as bit field set, like:
0xF001 enables for DIO 15,14,13,12 and 0

 2 DIOPP Configure pull up/down (1/0) for DIO 15-0 as bit field set

1 Zynq System monitor of the device Zynq IC

 0 Tempterature Temperature in degree Celsius

 1 VccInt 1V rail

 2 VccAux 1.8V rail

 3 VccBRam 1V rail

 4 VccPInt 1V rail

 5 VccPAux 1.8V rail

 6 VccDDR 1.35V rail

2 ZynqMin Minimum values since power on or reset/reboot

 0-6

3 ZynqMax Maximum values since power on or reset/reboot

 0-6

There are two configurations available for the device. See FDwfDeviceConfigOpen.

The (FDwfEnumDeviceType/pDeviceRevision >>8) &3 identifies boot/connection mode:

0 – Linux

1 - Standard Recovery

2 - Standard

3 - AXI (embedded Linux interface)

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 144 of 154

14.6 Analog Discovery Pro 5250

The ADP5250 has six AnalogIO channels. The master enable validates the three power supplies.

The following are not supported:

- AnalogIn: acquisition modes: shift, screen, record; noise buffer, average filter, trigger holdoff, trigger types: pulse,

transition, window

- AnalogOut: play mode, device noise, AM/FM, wait, run, repeat

- DigitalIn: acquisition modes: shift, screen, record, sync; noise buffer, timeout trigger, protocol trigger,

- DigitalOut and Protocols (only I2C and SPI master)

The I2C signals are fixed SCL DIO-6, SDA DIO-7; it supports 100kHz, 200kHz and 1MHz; it does not support writing 0

bytes.

The SPI signals are CLK DIO-0, MOSI DIO-1, MISO DIO-2, CS DIO-3; supported word length is 8 bits; it does not

support delay adjustment.

Channel Node Name Description

0 p6V +6V supply channel

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0 to 6V
Status returns the voltage reading

 2 Current Specify the current limitation between 0 and 1A
Status returns the current reading

1 p25V +25V supply channel

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0 to 25V
Status returns the voltage reading

 2 Current Specify the current limitation between 0 and 0.5A
Status returns the current reading

2 n25V -25V supply channel

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0 to -25V
Status returns the voltage reading

 2 Current Specify the current limitation between 0 and 0.5A
Status returns the current reading

3 DMM Digital Multimeter

 0 Enable Enables or disables the DMM, 1/0

 1 Mode Select measurement, DwfDmm

 2 Range Specify the input range, 0 stands for auto range
Status returns the current range

 3 Meas Status returns the measurement value

 4 Raw Not used

 5 Input Input impedance for DCVoltage 10G option, 1e7 or 1e10

4 System System Monitor

 0 Adj Adjustment temeperature

 1 DMM DMM temperature

 2 Core Core temperature

 3 Fan Fan speed in RPM

5

 0 Digital Adjust DIN threshold voltage between 0 and 2V

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 145 of 154

14.7 Eclypse Z7 Zmods

The Eclypse Z7 Zmod support provides three AnalogIO channels.

Channel Node Name Description

0 Zynq System monitor of the device Zynq IC

 0 Tempterature Temperature in degree Celsius

 1 VccInt 1V rail

 2 VccAux 1.8V rail

 3 VccBRam 1V rail

 4 VccPInt 1V rail

 5 VccPAux 1.8V rail

 6 VccDDR 1.35V rail

1 ZynqMin Minimum values since power on or reset/reboot

 0-6

2 ZynqMax Maximum values since power on or reset/reboot

 0-6

There are four configurations provided to support combinations of Zmod Scope/Digitizer (ADC) or

AWG (DAC) loaded in ZMOD A and B. The suitable configuration is automatically selected based on

the loaded Zmods.

Note that the software does not support combining Scope and Digitizer Zmods.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 146 of 154

14.8 Discovery Power Supply 3340

The DPS3340 has four AnalogIO channels. The master enable validates the power supplies.

The analog-in functions can be used for voltage/current readback monitoring-logging with oscilloscope-like

functions, triggered capture and stream-recording. This can work in parallel with analog-io readback, *Status

functions.

The analog-out functions can be used for slow voltage or current arbitrary waveform generator or play-streaming.

The analog-io channel settings have priority over analog-out. To use the analog-out functionality on a channel this

should not be enabled from the analog-io function.

Channel Node Name Description

0 Output 1 +5V power supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 1V to 5V
Status returns the voltage reading

 2 Current Specify the current limitation between 10mA and 3A
Status returns the current reading

 3 Protection Specify the protection mode
0 – current limitation
1 – channel fuse, disable channel when current setting is reached
2 – master fuse, disable all channels when current setting is reached

 4 Fuse Specify fuse timeout 0 to 60sec, in 1ms steps

 5 Prime Specify fuse timeout for enable or voltage or current change

1 Output 2 -15V power supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, -1V to -15V
Status returns the voltage reading

 2 Current Specify the current limitation between 10mA and 3A
Status returns the current reading

 3 Protection Specify the protection mode

 4 Fuse Specify fuse timeout 0 to 60sec, in 1ms steps

 5 Prime Specify fuse timeout for enable or voltage or current change

2 Output 3 +15V power supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, +1V to +15V
Status returns the voltage reading

 2 Current Specify the current limitation between 10mA and 3A
Status returns the current reading

 3 Protection Specify the protection mode

 4 Fuse Specify fuse timeout 0 to 60sec, in 1ms steps

 5 Prime Specify fuse timeout for enable or voltage or current change

3 Others

 1 Average Averaging for voltage/current readback, AnalogIO-status functions
1ms to 4Msec, in 1ms steps

 2 VDC19 19VDC voltage monitoring

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 147 of 154

14.9 Analog Discovery 3

The Analog Discovery 3 has four AnalogIO channels. The master enable validates the power supplies.

Channel Node Name Description

0 V+ Positive supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, 0.5 to 5V and status reading range ±15V

1 V- Negative supply

 0 Enable Enables or disables the supply channel, 1/0

 1 Voltage Specify voltage level, -0.5 to -5V and reading range ±15V

2 USB USB power monitor

 0 Temp Status returns the device PCB temperature in *C

 1 Die Status returns the device FPGA temperature in *C

 2 VUSB Status returns the USB voltage in Volts

 3 IUSB Status returns the USB current in Amperes

 4 VAUX Status returns the auxiliary supply voltage in Volts

 5 IAUX Status returns the auxiliary supply current in Amperes

 6 VCC1 Status returns the USB CC1 voltage

 7 VCC2 Status returns the USB CC2 voltage

3 Power supply

 0 Limit Specify the user supplies current limit 0.6W to 15W. Zero is the
default auto based on USB CC and AUX supply presence.
Status returns the current value set or auto determined.

There are six configurations available for the device. See FDwfDeviceConfigOpen.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 148 of 154

15 Deprecated functions

The following functions are replaced by FDwfAnalogOutNode *providing access to the Amplitude and Frequency

Modulation of Analog Out channels.

FDwfAnalogOutPlayStatus(HDWF hdwf, int idxChannel,

int *cdDataFree, int *cdDataLost, int *cdDataCorrupted)

Description: Retrieves information about the play process. The data lost occurs when the device generator is faster

than the sample send process from the PC. In this case, the device buffer gets emptied and generated

samples are repeated. Corrupt samples are a warning that the buffer might have been emptied while

samples were sent to the device. In this case, try optimizing the loop for faster execution; or reduce

the frequency or run time to be less or equal to the device buffer size (run time <= buffer

size/frequency).

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- cdDataFree – Pointer to variable to return the available free buffer space, the number of new samples that can
be sent.

- cdDataLost – Pointer to variable to return the number of lost samples.
- cdDataCorrupted – Pointer to variable to return the number of samples that could be corrupted.

FDwfAnalogOutPlayData(HDWF hdwf, int idxChannel, double *rgdData, int cdData)

Description: Sends new data samples for play mode. Before starting the Analog Out instrument, prefill the device

buffer with the first set of samples using the AnalogOutDataSet function. In the loop of sending the

following samples, first call AnalogOutStatus to read the information from the device, then

AnalogOutPlayStatus to find out how many new samples can be sent, then send the samples with

AnalogOutPlayData.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- rgdData – Pointer to samples array to be sent to the device.

- cdData – Number of samples to send.

FDwfAnalogOutEnableSet(HDWF hdwf, int idxChannel, int fEnable)

Description: Enables or disables the channel specified by idxChannel. With channel index -1, each Analog Out

channel enable will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- fEnable – TRUE to enable, FALSE to disable.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 149 of 154

FDwfAnalogOutEnableGet(HDWF hdwf, int idxChannel, int *pfEnable)

Description: Verifies if a specific channel is enabled or disabled.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pfEnable – Pointer to variable to receive enabled state.

FDwfAnalogOutFunctionInfo(HDWF hdwf, int idxChannel, int *pfsfunc)

Description: Returns the supported generator function options. They are returned (by reference) as a bit field. This

bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the FUNC constants

in dwf.h. These are:

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pfsfunc – Variable to receive the supported generator function options.

FUNC Constants FUNC Constant Capabilities

funcDC 0 Generate DC value set as offset.

funcSine 1 Generate sine waveform.

funcSquare 2 Generate square waveform.

funcTriangle 3 Generate triangle waveform.

funcRampUp 4 Generate a waveform with a ramp-up voltage at the beginning.

funcRampDown 5 Generate a waveform with a ramp-down voltage at the end.

funcNoise 6 Generate noise waveform from random samples.

funcPulse 6 Generate pulse waveform.

funcTrapezium 6 Generate trapezium.

funcSinePower 6 Generate sine power waveform.

funcCustomPattern 28 Generate waveform from custom repeated data with fixed sample rate.

funcPlayPattern 29 Generate waveform from custom data in stream play style with fixed sample rate.

funcCustom 30 Generate waveform from custom repeated data.

funcPlay 31 Generate waveform from custom data in stream play style.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 150 of 154

FDwfAnalogOutFunctionSet(HDWF hdwf, int idxChannel, FUNC func)

Description: Sets the generator output function for the specified instrument channel. With channel index -1, each

enabled Analog Out channel function will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- func – Generator function option to set.

FDwfAnalogOutFunctionGet(HDWF hdwf, int idxChannel, FUNC *pfunc)

Description: Retrieves the current generator function option for the specified instrument channel.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- ptrigsrc – Pointer to variable to receive the generator function option.

FDwfAnalogOutFrequencyInfo(

HDWF hdwf, int idxChannel, double *phzMin, double *phzMax)

Description: Returns the supported frequency range for the instrument. The maximum value shows the DAC

frequency. The frequency of the generated waveform: repetition frequency for standard types and

custom data; DAC update for noise type; sample rate for play type.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- phzMin – Variable to receive the supported minimum frequency.

- phzMax – Variable to receive the supported maximum frequency.

FDwfAnalogOutFrequencySet(HDWF hdwf, int idxChannel, double hzFrequency)

Description: Sets the frequency. With channel index -1, each enabled Analog Out channel frequency will be

configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- hzFrequency – Frequency value to set expressed in Hz.

FDwfAnalogOutFrequencyGet(HDWF hdwf, int idxChannel, double *phzFrequency)

Description: Gets the currently set frequency for the specified channel on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- hzFrequency – Pointer to variable to receive frequency value in Hz.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 151 of 154

FDwfAnalogOutAmplitudeInfo(

HDWF hdwf, int idxChannel, double *pvMin, double *pvMax)

Description: Retrieves the amplitude range for the specified channel on the instrument. The amplitude is

expressed in Volts units for carrier and in percentage units (modulation index) for AM/FM.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pvMin – Minimum amplitude level or modulation index.

- pvMax – Maximal amplitude level or modulation index.

FDwfAnalogOutAmplitudeSet(HDWF hdwf, int idxChannel, double vAmplitude)

Description: Sets the amplitude or modulation index for the specified channel on the instrument. With channel

index -1, each enabled Analog Out channel amplitude will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- vAmplitude – Amplitude of channel in Volts or modulation index in percentage.

FDwfAnalogOutAmplitudeGet(HDWF hdwf, int idxChannel, double *pvAmplitude)

Description: Gets the currently set amplitude or modulation index for the specified channel on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pvAmplitude – Pointer to variable to receive amplitude value in Volts or modulation index in percentage.

FDwfAnalogOutOffsetInfo(HDWF hdwf, int idxChannel, double *pvMin, double

*pvMax)

Description: Retrieves available the offset range in units of volts.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pvMin – Minimum offset voltage or modulation offset percentage.

- pvMax – Maximum offset voltage or modulation offset percentage.

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 152 of 154

FDwfAnalogOutOffsetSet(HDWF hdwf, int idxChannel, double vOffset)

Description: Sets the offset value for the specified channel on the instrument. With channel index -1, each enabled

Analog Out channel offset will be configured to use the same, new option.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- vOffset – Value to set voltage offset in Volts or modulation offset percentage.

FDwfAnalogOutOffsetGet(HDWF hdwf, int idxChannel, double *pvOffset)

Description: Gets the current offset value for the specified channel on the instrument.

Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pvOffset – Pointer to variable to receive offset value in Volts or modulation offset percentage.

The function above is used to:

FDwfAnalogOutSymmetryInfo(

HDWF hdwf, int idxChannel, double *ppercentageMin, double *ppercentageMax)

Description: Obtains the symmetry (or duty cycle) range (0..100). This symmetry is supported for standard signal

types. It the pulse duration divided by the pulse period.
Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- ppercentageMin – Minimum value of Symmetry percentage.
- ppercentageMax – Maximum value of Symmetry percentage.

FDwfAnalogOutSymmetrySet(

HDWF hdwf, int idxChannel, double percentageSymmetry)

Description: Sets the symmetry (or duty cycle) for the specified channel on the instrument. With channel index -1,

each enabled Analog Out channel symmetry will be configured to use the same, new option.
Parameters:

- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- percentageSymmetry –Value of percentage of Symmetry (duty cycle).

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 153 of 154

FDwfAnalogOutSymmetryGet(

HDWF hdwf, int idxChannel, double *ppercentageSymmetry)

Description: Gets the currently set symmetry (or duty cycle) for the specified channel of the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- ppercentageSymmetry –– Pointer to variable to receive value of symmetry (duty cycle).

FDwfAnalogOutPhaseInfo(

HDWF hdwf, int idxChannel, double *pdegreeMin, double *pdegreeMax)

Description: Retrieves the phase range (in degrees 0...360) for the specified channel of the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pdegreeMin – Minimum value of Phase (in degrees).
- pdegreeMax – Maximum value of Phase (in degrees).

FDwfAnalogOutPhaseSet(

HDWF hdwf, int idxChannel, double degreePhase)

Description: Sets the phase for the specified channel on the instrument. With channel index -1, each enabled

Analog Out channel phase will be configured to use the same, new option.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- degreePhase – Value of Phase in degrees.

FDwfAnalogOutPhaseGet(HDWF hdwf, int idxChannel, double *pdegreePhase)

Description: Gets the current phase for the specified channel on the instrument.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pdegreePhase – Pointer to variable to receive Phase value (in degrees).

WaveForms™ SDK Reference Manual

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 154 of 154

FDwfAnalogOutDataInfo(

HDWF hdwf, int idxChannel, int *pnSamplesMin, double *pnSamplesMax)

Description: Retrieves the minimum and maximum number of samples allowed for custom data generation.
Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- pnSamplesMin - Minimum number of samples available for custom data.

- pnSamplesMax – Maximum number of samples available for custom data.

FDwfAnalogOutDataSet(HDWF hdwf, int idxChannel, double *rgdData, int cdData)

Description: Sets the custom data or to prefill the buffer with play samples. The samples are double precision

floating point values (rgdData) normalized to ±1.
With the custom function option, the data samples (cdData) will be interpolated to the device buffer
size. The output value will be Offset + Sample*Amplitude, for instance:
• 0 value sample will output: Offset.
• +1 value sample will output: Offset + Amplitude.
• -1 value sample will output: Offset – Amplitude.

Parameters:
- hdwf – Open interface handle on a device.

- idxChannel – Channel index.

- rgbData – Buffer of samples to set.

- cData – Number of samples to set in rgbData.

	Table of Contents
	Overview
	1 The System
	1.1 The API
	1.2 Calling API Functions

	2 System
	3 Device Enumeration
	4 Device Control
	5 Analog In (Oscilloscope)
	5.1 Control
	5.2 Configuration
	5.3 Channels
	5.4 Trigger
	5.5 Trigger Detector

	6 Analog Out (Arbitrary Waveform Generator)
	6.1 Control
	6.2 Configuration
	6.3 States

	7 Analog I/O
	8 Digital I/O
	9 Digital In (Logic Analyzer)
	9.1 Control
	9.2 Configuration
	9.3 Trigger
	9.4 Trigger Detector

	10 Digital Out (Pattern Generator)
	10.1 Control
	10.2 Configuration

	11 Miscellaneous
	12 Analog Impedance
	13 Digital Protocols
	13.1 UART
	13.2 SPI
	13.3 I2C
	13.4 CAN
	13.5 SWD

	14 Devices
	14.1 Electronics Explorer
	14.2 Analog Discovery
	14.3 Analog Discovery 2
	14.4 Digital Discovery
	14.5 Analog Discovery Pro 3000 Series
	14.6 Analog Discovery Pro 5250
	14.7 Eclypse Z7 Zmods
	14.8 Discovery Power Supply 3340
	14.9 Analog Discovery 3

	15 Deprecated functions

