SPECIFICATIONS

CIO-DAS16/330

Analog Input \& Digital I/O

Revision 4, October, 2001
© Copyright 2001, MEASUREMENT COMPUTING CORPORATION

Power Consumption

$$
+5 \mathrm{~V}:
$$

Analog Input Section

A/D converter type
Resolution
Number of channels
Programmable ranges
Polarity
A/D pacing
A/D Trigger sources
A/D Triggering Modes Digital:

Data transfer

DMA
A/D conversion time
Throughput
Absolute accuracy
Differential Linearity error
Integral Linearity error
Differential Linearity error
No missing codes guaranteed
Gain drift (A/D specs)
Zero drift (A/D specs)
Common Mode Range
CMRR @ 60 Hz
Input leakage current
Input impedance
Absolute max. input voltage

900 mA typical, mA max

AD7800
12 bits
8 differential or 16 single-ended, switch-selectable $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 1.25 \mathrm{~V}, \pm 0.625 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 5 V , 0 to $2.5 \mathrm{~V}, 0$ to $1.25 \mathrm{~V}, 0$ to 0.625 V , fully programmable
Unipolar/Bipolar, software-selectable
Programmable: internal counter or external source (DIG. IN 0 /
TRIGGER, rising edge) or software-polled
External hardware/software (DIG. IN 0 / TRIGGER, active high)
Gated pacer, software-polled. (Gate must be disabled by software after trigger event.)
From 512 sample FIFO via REPINSW, interrupt, DMA or software polled
Channel 1 or 3, switch-selectable
$3 \mu \mathrm{~s}$
330 kHz
0.01% of reading $\pm 1 \mathrm{LSB}$
± 1 LSB
± 1 LSB
± 1 LSB
12 bits
$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\pm 10 \mathrm{~V}$
$-72 \mathrm{~dB}$
200 nA (@25 Deg C)
10 MegOhms min
$\pm 35 \mathrm{~V}$

Digital Input / Output

Digital type:

Input:
Output:
Configuration
Input low voltage
Input high voltage
Output low voltage
Output high voltage
Absolute max. input voltage

74LS367
74LS197
Two ports, 4 input bits and 4 output bits
0.8 V max
2.0 V min
$0.5 \mathrm{~V} \max (\mathrm{IOL}=8 \mathrm{~mA})$
$2.7 \mathrm{~V} \min (\mathrm{IOH}=-0.4 \mathrm{~mA})$
$-0.5 \mathrm{~V},+7 \mathrm{~V}$

Interrupts	2 through 7,10 and 11, programmable
Interrupt enable	Programmable
Interrupt sources	A/D End-of-conversion, A/D FIFO-half-full, Residual counter,
	DMA terminal count

Counter Section

Counter type
 82C54
 Configuration
 Two 82C54 devices, 3 down-counters each device; 16 bits each.

82C54A:

Counter 0 - Independent, available to user
Source: $\quad 100 \mathrm{kHz}$ on board clock or external (CTR 0 Clock In)
Gate: \quad External (Dig In $2 /$ CTR 0 Gate)
Output: Available at user connector (CTR 0 Out)
Counter 1-ADC Pacer Lower Divider
Source: $\quad 1$ or 10 MHz oscillator, jumper-selectable
Gate: Tied to Counter 2 gate, programmable source (internal or external (Dig In 0 / Trigger).
Output: Chained to Counter 2 Clock.
Counter 2 - ADC Pacer Upper Divider
Source: Counter 1 Output.
Gate: Tied to Counter 1 gate, programmable source: internal or external (Dig In 0 / Trigger).
Output: ADC Pacer clock, available at user connector (CTR 2
Out)

82C54B:

Counter 0 - Total samples (residual) counter upper divider
Source: Counter 1 output (total samples lower divider)
Gate: Internal
Output: Internal
Counter 1 - Total samples (residual) counter lower divider
Source: ADC conversion complete
Gate: Tied to Counter 2 gate, internal source.
Output: Counter 0 input (total samples upper divider)
Counter 2 - Trigger index counter
Source: ADC conversion complete
Gate: Tied to Counter 1 gate, internal source.
Output: Not used

Clock input frequency	10 MHz max
High pulse width (clock input)	30 ns min
Low pulse width (clock input)	50 ns min
Gate width high	50 ns min
Gate width low	50 ns min
Input low voltage	0.8 V max
Input high voltage	2.0 V min
Output low voltage	0.4 V max
Output high voltage	3.0 V min
Crystal Oscillator Frequency	10 MHz
Frequency accuracy	100 ppm

Environmental

Operating temperature range 0 to $50^{\circ} \mathrm{C}$
Storage temperature range
Humidity
-20 to $70^{\circ} \mathrm{C}$
0 to 90% non-condensing

