
Data Translation

UM-22024-N

Title Page

DAQ Adaptor for MATLAB®

Copyright Page
Trademark and Copyright Inf
Measurement Computing Corporation, In
either trademarks or registered trademar
Trademarks section on mccdaq.com/lega
Other product and company names ment
companies.

© 2016 Measurement Computing Corpo
reproduced, stored in a retrieval system,
photocopying, recording, or otherwise w
Corporation.

Notice
Measurement Computing Corporation do
use in life support systems and/or device
Corporation. Life support devices/system
into the body, or b) support or sustain life
injury. Measurement Computing Corpora
not subject to the testing required to ensu
people.
ormation
staCal, Universal Library, and the Measurement Computing logo are
ks of Measurement Computing Corporation. Refer to the Copyrights &
l for more information about Measurement Computing trademarks.
ioned herein are trademarks or trade names of their respective

ration. All rights reserved. No part of this publication may be
or transmitted, in any form by any means, electronic, mechanical, by
ithout the prior written permission of Measurement Computing

es not authorize any Measurement Computing Corporation product for
s without prior written consent from Measurement Computing
s are devices or systems that, a) are intended for surgical implantation
 and whose failure to perform can be reasonably expected to result in
tion products are not designed with the components required, and are
re a level of reliability suitable for the treatment and diagnosis of

http://www.mccdaq.com/legal.aspx

Table of Contents

Table of Contents
About this Manual . 5

Intended Audience. 5

How this Manual is Organized . 5

Conventions Used in this Manual . 5

Where To Get Help. 5

Chapter 1: Overview . 7

Overview . 8

Session-Based or Legacy Interface . 9

Related Information . 10

Chapter 2: Session-Based DAQ Adaptor for MATLAB . 11

Overview . 12

Requirements . 13

Installation. 14

Hardware Discovery and Session Setup. 15

Analog Input Operations . 16

Analog Input Channel Functions, Events, and Properties . 16

Setting up an Analog Input Operation . 17

Adding Other Channels in the Analog Input Stream . 19

Performing a Single-Value Input Operation . 20

Performing a Foreground Acquisition. 20

Performing a Background Acquisition . 21

Triggering Analog Input Operations . 22

Analog Output Operations . 24

Analog Output Channel Functions, Events, and Properties. 24

Setting up an Analog Output Operation . 24

Adding a Digital Output Port in the Analog Output Stream. 26

Performing a Single-Value Output Operation . 27

Performing a Foreground Output Operation . 27

Performing a Background Output Operation. 28

Triggering Analog Output Operations . 29

Analog Input and Output Operations at the Same Time . 31

Performing I/O Operations at the Same Time in the Foreground. 31

Performing I/O Operations at the Same Time in the Background 32

Digital I/O Operations . 34

Performing Digital Input Operations. 34

Performing a Digital Output Operation . 34
3

Contents

4

Chapter 3: Legacy DAQ Adaptor for MATLAB . 35

Requirements . 36

Installation. 37

Setting up an I/O Operation . 38

Analog Input and Output Subsystem Properties . 39

Setting the Input Type . 40

Setting the Synchronization Mode . 40

Setting the Filter Type . 40

Channel Properties . 41

Configuring a Channel for a Voltage Input . 43

Configuring a Channel for a Current Measurement . 44

Configuring a Channel for an IEPE (Accelerometer) Input 44

Configuring a Channel for a Thermocouple Input . 45

Configuring a Channel for an RTD Input . 45

RTD Support for MEASURpoint Instruments . 45

RTD Support for the DT9829 and Other DT-Open Layers Devices 46

Configuring a Channel for a Thermistor Input . 48

Configuring a Channel for a Resistance Measurement . 49

Configuring a Channel for a Strain Gage Input . 49

Configuring a Channel for a Bridge-Based Sensor . 50

Configuring the Gain of a Channel . 50

Utility Methods in MATLAB . 51

olDaReadBridgeSensorVirtualTeds . 51

olDaReadStrainGageVirtualTeds . 53

VoltstoMicroStrain . 55

VoltstoBridgeBasedSensor . 56

MATLAB Property Notes. 57

Multiple Subsystems of a Single Type . 57

Analog Output Operation Notes . 58

Using Hardware Triggers . 58

Index . 59

About this Manual
This manual describes how to use the Data Translation DAQ Adaptor for MATLAB to
program Data Translation DT-Open Layers devices using MATLAB® from the Mathworks.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for
using and/or programming DT-Open Layers-compliant devices using MATLAB. It is
assumed that you have some familiarity with data acquisition principles and that you
understand your application.

How this Manual is Organized

The manual is organized as follows:

• Chapter 1, “Overview,” describes the Data Translation DAQ Adaptor for MATLAB,
describes the session-based and legacy interfaces of the DAQ Adaptor for MATLAB, and
provides references to related information.

• Chapter 2, “Session-Based DAQ Adaptor for MATLAB,” describes the session-based Data
Translation DAQ Adaptor for MATLAB.

• Chapter 3, “Legacy DAQ Adaptor for MATLAB,” describes the legacy Data Translation
DAQ Adaptor for MATLAB.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information or information that requires special emphasis, cautions
provide information to help you avoid losing data or damaging your equipment, and
warnings provide information to help you avoid catastrophic damage to yourself or your
equipment.

• Code snippets are shown in courier.

Where To Get Help

Should you run into problems installing or using the Data Translation DAQ Adaptor for
MATLAB, the Data Translation Technical Support Department is available to provide
technical assistance. Refer to the Data Translation web site (www.mccdaq.com) or call
508-946-5100. If you are outside the United States or Canada, call your local distributor, whose
number is listed on our web site (www.mccdaq.com).
5

About this Manual

6

1
Overview

Overview . 8

Session-Based or Legacy Interface . 9

Related Information . 10
7

Chapter 1

8

Overview
The Data Translation DAQ Adaptor for MATLAB provides an interface between MATLAB
and the Data Acquisition Toolbox and Data Translation’s DT-Open Layers architecture. Figure
1 shows the data flow model using the Data Translation DAQ Adaptor for MATLAB.

Figure 1: Data Flow Model Using the Data Translation DAQ Adaptor for MATLAB

DT-Open Layers provides an interface to all of Data Translation’s analog and digital I/O data
acquisition hardware modules. By using the Data Translation DAQ Adaptor for MATLAB
with MATLAB and the Data Acquisition Toolbox, you can acquire data from Data Translation
modules directly within MATLAB and then use all of MATLAB’s features to analyze and
display the data.

MATLAB

Data Acquisition Toolbox

Data Translation DAQ Adaptor for MATLAB

Data Translation DT-Open Layers API

Data Translation Drivers and Modules

Data
Flow

Control

Overview
Session-Based or Legacy Interface
Data Translation provides both a 64-bit session-based interface and a 32-bit legacy interface of
the DAQ Adaptor for MATLAB.

If want to use a 64-bit version of MATLAB (release R2016a or greater of MATLAB), you need
the session-based DAQ Adaptor for MATLAB.

For all previous versions of MATLAB (32-bit), you need the legacy DAQ Adaptor for
MATLAB.

Both interfaces are described in this manual.
9

Chapter 1

10
Related Information
Refer to your MATLAB documentation, including documentation for the Data Acquisition
toolbox, and the user’s manuals for your Data Translation modules. For more information on
DT-Open Layers, refer to following documents from Data Translation:

• Online help for the Data Acquisition Toolbox for MATLAB:
https://www.mathworks.com/help/daq

• DataAcq SDK User’s Manual (UM-18326). For programmers who are developing their own
application programs using the Microsoft C compiler, this manual describes how to use
the DT-Open LayersTM DataAcq SDKTM to access the capabilities of Data Translation data
acquisition devices.

• DT-Open Layers for .NET User’s Manual (UM-22161). For programmers who are developing
their own application programs using Visual C# or Visual Basic .NET, this manual
describes how to use the DT-Open Layers for .NET Class Library to access the capabilities
of Data Translation data acquisition devices.

https://www.mathworks.com/help/daq

2
Session-Based DAQ Adaptor for

MATLAB
Overview . 12

Requirements . 13

Installation. 14

Hardware Discovery and Session Setup. 15

Analog Input Operations . 16

Analog Output Operations . 24

Analog Input and Output Operations at the Same Time . 31

Digital I/O Operations . 34
11

Chapter 2

12
Overview
Data Translation’s session-based DAQ Adaptor for MATLAB supports analog and digital I/O
operations on Data Translation DT-Open Layers-compliant modules.

Note: For Data Translation modules only, if your device supports digital input, tachometer,
or counter operations in the analog input stream, you can read the value of the digital input
port, tachometer, or counter channel through the specified analog input subsystem using the
session-based DAQ Adaptor for MATLAB.

Similarly, if your Data Translation device supports digital output operations in the analog
output stream, you can update the value of the digital output port through the specified
analog output subsystem using the session-based DAQ Adaptor for MATLAB.

MEASURpoint instruments are not supported using the session-based DAQ Adaptor for
MATLAB.

Session-Based DAQ Adaptor for MATLAB
Requirements
You must install the following before installing the session-based DAQ Adaptor for MATLAB:

• Your Data Translation hardware module(s) and their drivers (from the Data Acquisition
OMNI CD that ships with your hardware)

• A 64-bit version of MATLAB - Version R2016a or higher

• Data Acquisition Toolbox Version 3.9 or higher

Install Data Translation components from a recent OMNI CD, or download the software from
our web site (www.mccdaq.com). Contact The MathWorks for updates to your MATLAB
components.
13

Chapter 2

14
Installation
You can install the session-based DAQ Adaptor for MATLAB one of the following ways:

From the Data Translation web site:

1. Navigate to the following web page for the Data Translation DAQ Adaptor for MATLAB:
http://www.mccdaq.com/Products/Data-Acquisition-Software/MATLAB-Data-
Acquisition

2. Click the Download tab.

3. Click Free Download.

4. Click Session-Based DAQ Adaptor for MATLAB, and then click Download.
The file Data Translation Data Acquisition Toolbox.mltbx is downloaded to your computer.

5. Once it is downloaded, right-click on the file Data Translation Data Acquisition
Toolbox.mltbx, and click Install.
The Install Data Translation Data Acquisition Toolbox dialog appears.

6. Click Install.
The Data Translation DAQ Adaptor for MATLAB is installed.

From within MATLAB:

1. Click Add-Ons.
The Add-Ons Explorer appears.

2. Search for Data Translation.

3. Click Session-Based DAQ Adaptor for MATLAB.

4. Click Add, and select Add to MATLAB.
The Data Translation DAQ Adaptor for MATLAB is installed.

From the MATLAB Central web site:

1. Navigate to the MATLAB Central main page:
http://www.mathworks.com/matlabcentral/?s_tid=srchtitle

2. Search for Data Translation.

3. Click Session-Based DAQ Adaptor for MATLAB.

4. Click Download Zip.
The file Data Translation Data Acquisition Toolbox.mltbx and the PDF file that contains the
documentation are downloaded to your computer.

5. Once downloaded and unzipped, right-click on the file Data Translation Data
Acquisition Toolbox.mltbx, and click Install.
The Install Data Translation Data Acquisition Toolbox dialog appears.

6. Click Install.
The Data Translation DAQ Adaptor for MATLAB is installed.

http://www.datatranslation.com/Products/Data-Acquisition-Software/MATLAB-Data-Acquisition
http://www.datatranslation.com/Products/Data-Acquisition-Software/MATLAB-Data-Acquisition
http://www.mathworks.com/matlabcentral/?s_tid=srchtitle

Session-Based DAQ Adaptor for MATLAB
Hardware Discovery and Session Setup
Refer to the following web page for information on the functions and properties that are
available for hardware discovery and session setup:
http://www.mathworks.com/help/daq/hardware-discovery-and-session-setup.html

Note that to create a data acquisition session for Data Translation devices, use the
daq.createSession function and specify 'dt' as the vendor name.
15

http://www.mathworks.com/help/daq/hardware-discovery-and-session-setup.html

Chapter 2

16
Analog Input Operations
This section describes information about performing analog input operations using the
MATLAB session-based interface.

Analog Input Channel Functions, Events, and Properties

Refer to the following web page for information on the functions, events, and properties for
setting up analog input channels:
http://www.mathworks.com/help/daq/analog-data-acquisition.html

For Data Translation devices, note the following differences:

• TerminalConfig – For Data Translation devices, the terminal configuration (SingleEnded
or Differential) applies to all the channels of the analog input subsystem. Therefore, you
cannot specify one channel as SingleEnded and another channel as Differential for the
same subsystem.

• Range – Gains are not specified in MATLAB. Therefore, when specifying the input range
for an analog input channel on a Data Translation device, you must specify the effective
input range that you desire. For example, assume that your device supports an input
range of ±10 V and a gain of 1, which yields an effective input range of ±10 V, and a gain of
2 , which provides an effective input range of ±5 V. For the Range property, specify either
–10 V to +10 V or –5 V to +5 V for the channel.

Some devices also allow you to read the value of other input channels, such as the digital
input port, tachometer, or counters, through the analog input stream. For these devices, a
range appropriate to that channel type, such as 0 to 65535 for the digital input port, is
provided. In these cases, the input range applies only to the specified channel type.

• MeasurementType – Currently, 'Voltage'(input) and 'IEPE' (input) measurement types
are available for Data Translation devices that support these capabilities.

http://www.mathworks.com/help/daq/analog-data-acquisition.html

Session-Based DAQ Adaptor for MATLAB
Setting up an Analog Input Operation

This section shows an example of setting up an analog input operation for a Data Translation
device using the session-based DAQ Adaptor for MATLAB:

1. Discover connected devices using the daq.getDevices function. In the following example,
the system has several devices installed, including the Data Translation DT9837B device.
The DT9837B device has the ID 'DT9837-B(01)', which is set in the Open Layers Control
Panel (see the documentation for your hardware for more information on the Open
Layers Control Panel):

devs = daq.getDevices
ans =

Data acquisition devices:
index Vendor Device ID Description
----- ------ --------- --------------------------------
1 ni Dev1 National Instruments USB-9201
2 ni Dev2 National Instruments USB-9234
3 ni Dev4 National Instruments USB-4431
4 ni Dev5 National Instruments USB-9265
5 directsound Audio0 DirectSound Primary Sound Capture Driver
6 directsound Audio1 DirectSound Microphone (Realtek High Definition Audio)
7 directsound Audio2 DirectSound Primary Sound Driver
8 directsound Audio3 DirectSound Speaker/HP Realtek High Definition Audio)
9 dt DT9837-B(01) Data Translation DT9837-B(01)

2. To get information about the device, click the device ID or specify the index of the device
to query. For example, to get information about the Data Translation device with index 9,
use the following command:

devs(9)

The following information is returned:

dt.Data Translation DT9837-B(01) (Device ID:'DT9837-B(01)')
Analog input subsystem supports:
-10 to +10 Volts, -1.0 to +1.0 Volts ranges
Rates from 195.3 to 105469.0 scans/sec
7 channels ('0'-'6')
'Voltage' measurement type

3. Create a session for Data Translation devices using the daq.createSession function,
specifying 'dt' as the vendor name. An example follows; the default number of scans
and the acquisition duration are shown:

s = daq.createSession('dt')
s
s =
Data acquisition session using Data Translation hardware:

 Will run for 1 second (1000 scans) at 1000.116 scans/second.
 No channels have been added.

By default, the acquisition is configured to run for a duration of 1 second to acquire 1000
scans; for this device, the default rate is 1000.116 scans per second.
17

Chapter 2

18
4. Configure the session, as needed, using the following properties: NumberofScans,
DurationinSeconds, Rate, or IsContinuous. The following example sets the duration of
the acquisition to 10 seconds:

s.DurationInSeconds = 10;
s
s =
Data acquisition session using Data Translation hardware:

 Will run for 10 seconds (10000 scans) at 1000.116 scans/second.
 No channels have been added.

5. Add analog input channels to the session using the addAnalogInputChannel function.
The following example adds analog input channels 0 and 1 of the DT9837-B(01) device to
the session; note that these channels are configured for the IEPE measurement type:

ch0 = s.addAnalogInputChannel('DT9837-B(01)','0', 'IEPE');
ch1 = s.addAnalogInputChannel('DT9837-B(01)','1', 'IEPE');
s
s=
Data acquisition session using Data Translation hardware: Will run
for 10 seconds (10000 scans) at 1000.116 scans/second.
Number of channels: 2
index Type Device Channel MeasurementType Range Name
_____ ____ _____________ _______ _______________ __________ _____
1 ai DT9837-B(01) 0 IEPE (Diff) -10 to +10 Volts
2 ai DT9837-B(01) 1 IEPE (Diff) -10 to +10 Volts

Note: If desired, you can add analog input and analog output channels from one or
multiple devices in the same session.

6. Configure the analog input channels, as needed, using the following properties: Range,
TerminalConfig, ID, Coupling, ExcitationCurrent, and/or ExcitationSource.

The following example configures IEPE inputs for analog input channel 0 (ch index 1) and
analog input channel 1 (ch index 2) of the 'DT9837-B(01)' device. Channel 0 is configured
for AC coupling and an internal excitation current value of 4 mA. Channel 1 is configured
for DC coupling and no excitation source is used:

ch0.Range = [-10 10];
ch0.TerminalConfig='SingleEnded';
ch0.Coupling='AC';
ch0.ExcitationCurrentSource='Internal';
ch0.ExcitationCurrent = 0.004;
ch1.Range = [-10 10];
ch1.TerminalConfig='SingleEnded';
ch1.Coupling='DC';
ch1.ExcitationCurrentSource='None';

Session-Based DAQ Adaptor for MATLAB
Adding Other Channels in the Analog Input Stream

If your Data Translation device supports reading the tachometer, digital input port, or counter
through the analog input stream, you can add these as channels using the
addAnalogInputChannel function. Note that you must specify 'Voltage'as the measurement
type using the addAnalogInputChannel function; however, in these cases, the value is treated
as a raw number rather than a voltage.

Refer to the user’s manual for your device to determine whether other channels can be added
to the analog input stream as well as their corresponding channel numbers.

The following example adds the tachometer (channel 4) of the DT9837B device with device ID
'DT9837-B(01)' to the analog input stream:

ch = s.addAnalogInputChannel('DT9837-B(01)','4', 'Voltage');

Get information about the channel:

ch
ans =

Data acquisition analog input voltage '4' on device 'DT9837-B(01)'
Terminal Config: Differential
Range: 0 to 4294967295
Name:"
Device:[1x1 daq.dt.DeviceInfo]

MeasurementType:'Tachometer'

Note that the range for the channel depends on the channel type. For example, the range for a
16-bit digital input port is 0 to 65535. The value that is returned represents the value of the
channel, so in this example, if the first eight bits are set to 1 and the other bits are set to 0, then
a value of 255 would be returned for this channel.

Note that if you add the analog input channels as well as other channels to the input stream,
the specified voltage range is used for the analog input channels only.
19

Chapter 2

20
Performing a Single-Value Input Operation

You can acquire a single analog input value using the inputSingleScan function.

The following example shows how to acquire a single analog input value for a Data
Translation device using the session-based DAQ Adaptor for MATLAB. A Data Translation
DT9837B device with device ID 'DT9837-B(01)' is used in this example:

1. Create a session:

s = daq.createSession('dt');

2. Add analog input channels 0 and 1 to the session:

s.addAnalogInputChannel('DT9837-B(01)','0', 'Voltage');
s.addAnalogInputChannel('DT9837-B(01)','1', 'Voltage');

3. Acquire an analog input value for each input channel that was added:

data = inputSingleScan(s);

One value is acquired for each analog input channel and the operation stops.

4. Read the acquired data. In this example, the value –0.1495 V is acquired from analog input
channel 0 and 0.8643 V is acquired from analog input channel 1.

data =
-0.1495 0.8643

Performing a Foreground Acquisition

When you perform an analog input operation in the foreground, the operation blocks
MATLAB until the operation is complete. Therefore, no other MATLAB commands can be
used until the operation completes.

The following example shows how to start an analog input operation in the foreground. A
Data Translation DT9837B device with device ID 'DT9837-B(01)' is used in this example:

1. Create a session and add analog input channel 0 to the session:

s = daq.createSession('dt');

2. Add analog input channel 0 to the session:

s.addAnalogInputChannel('DT9837-B(01)', 0, 'IEPE');

3. Set the sample rate to 10 kHz:

s.Rate = 10000;

4. Set the channel's ExcitationCurrent to 4 mA:

s.Channels(1).ExcitationCurrent = .004;

5. Start the analog input session in the foreground and save the data and the acquisition
time in the variables [data, time]:

[data,time] = startForeground(s);

6. Plot the data:

plot(time, data);

Session-Based DAQ Adaptor for MATLAB
7. When you are finished with the operation, delete the session:

delete (s);

Performing a Background Acquisition

When you perform an analog input operation in the background, other MATLAB commands
can be executed while the analog input operation is in progress. MATLAB is not blocked. A
background acquisition depends on events and listeners to allow your code to access data as
the hardware acquires it and to react to any errors as they occur.

Refer to the following web page for more information on events and listeners in background
operations: http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--c
oncepts.html

To start an analog input operation in the background, use the startBackground command. Use
the DataAvailable event to determine when the acquired data is available.

Note: By default the DataAvailable event fires when 1/10 second worth of data is available
for analysis. If you want to change the frequency of when the DataAvailable event is fired,
set IsNotifyWhenDataAvailableExceedsAuto to false, and modify the value of
NotifyWhenDataAvailableExceeds as desired. Refer to your MATLAB documentation for
more information.

Listeners execute a callback function when notified that the event has occurred. Use
Session.addlistener to create a listener object that executes your callback function.

By default, the IsContinuous property is set to False and the operation stops automatically. If
you have a continuous operation, set IsContinuous to True and use stop when you want to
stop the background operation.

If desired, you can use wait to block MATLAB execution until the background operation is
complete.

This example shows how to acquire data from a Data Translation DT9837B device with device
ID 'DT9837-B(01)' in the background using events and listeners:

1. Create an Data Translation session object:

s = daq.createSession('dt');

2. Add analog input 0 to the session:

addAnalogInputChannel(s,'DT9837-B(01)', '0', 'Voltage');

3. Add the listener for the DataAvailable event and assign it to the variable lh:

lh = addlistener(s,'DataAvailable', @plotData);
21

http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--concepts.html
http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--concepts.html

Chapter 2

22
4. Create a simple callback function to plot the acquired data and save it as plotData.m in
your working directory:

function plotData(src,event)
 plot(event.TimeStamps, event.Data)

end

Here, src is the session object for the listener and event is a daq.DataAvailableInfo object that
contains the data and associated timing information.

5. Start a continuous background operation and see the plot update while MATLAB is
running:

s.IsContinuous = true;
startBackground(s);

6. When you are finished acquiring data, stop the operation:

s.stop();

7. Delete the listener:

delete (lh);

8. When you are finished with the operation, delete the session:

delete (s);

Triggering Analog Input Operations

Note: Refer to the following web page for information on the functions and properties for
setting up triggers using MATLAB:
http://www.mathworks.com/help/daq/simultaneous-and-synchronized-operations.html

You can trigger analog input operations based on an external event if your Data Translation
device supports an external TTL trigger for the analog input subsystem. Refer to the user’s
manual for your device to determine its supported capabilities.

To specify an external TTL trigger on a Data Translation device, use the MATLAB
addTriggerConnection function, and specify the following parameters:

• For the trigger source, specify 'external'.

• For the trigger destination, specify 'deviceID/EXT_TTL_AI_TRIG', where deviceID is the
ID of your device as defined in the Open Layers Control Panel. See the documentation for
your hardware for more information on pin assignments and the Open Layers Control
Panel.

• For the trigger type, specify 'StartTrigger'.

Once you have set up the trigger connection, use the TriggerCondition property to set the
trigger condition to 'RisingEdge' or 'FallingEdge'.

http://www.mathworks.com/help/daq/simultaneous-and-synchronized-operations.html

Session-Based DAQ Adaptor for MATLAB
The following example shows how to trigger an analog input operation on a DT9837B device
with device ID 'DT9837-B(01)' using a signal connected to the external TTL trigger input on
the device:

1. Create a session and add two analog input channels:

s = daq.createSession('dt');
ch = addAnalogInputChannel(s,'DT9837-B(01)',0:1,'Voltage');

2. Configure the terminal configuration and range of the channels in the session:

ch(1).TerminalConfig = 'SingleEnded';
ch(1).Range = [-10.0 10.0];
ch(2).TerminalConfig = 'SingleEnded';
ch(2).Range = [-10.0 10.0];

3. Create an external trigger connection and specify that a rising-edge trigger will trigger
acquisition:

addTriggerConnection(s,'external','DT9837-B(01)/EXT_TTL_AI_TRIG',
'StartTrigger');

s.Connections(1).TriggerCondition = 'RisingEdge';

4. Set the rate and the duration of the acquisition:

s.Rate = 50000;
s.DurationInSeconds = 0.01;

5. Set up the foreground operation:

[data,timestamps] = startForeground(s);
plot(timestamps,data);

When the rising-edge trigger is detected on the external TTL trigger input pin on the
DT9837-B(01) device, analog input data is acquired and plotted in the foreground.
23

Chapter 2

24
Analog Output Operations
This section describes information about performing analog output operations using the
MATLAB session-based interface.

Analog Output Channel Functions, Events, and Properties

Refer to the following web page for information on the functions, events, and properties for
setting up analog input channels:
http://www.mathworks.com/help/daq/analog-signal-generation.html

For Data Translation devices, note the following differences:

• TerminalConfig – For Data Translation devices, the terminal configuration (SingleEnded
or Differential) applies to all the channels of the analog output subsystem. This setting is
typically not configurable for analog output subsystems but is returned.

• Range – One or more analog output voltage ranges may be supported by your Data
Translation device. The voltage range applies to all analog output channels of the analog
output subsystem.

Some devices also allow you to update the digital output port through the analog output
stream. For these devices, a digital output range, such as 0 to 65535, is provided. The
digital output range applies only to the digital output channel in the analog output
stream.

• MeasurementType – Currently, 'Voltage'(output) is the only measurement type
available for Data Translation devices. You must specify this measurement type even if
you are setting up a digital output channel in the analog output stream.

Setting up an Analog Output Operation

This section shows an example of setting up an analog output operation for a Data Translation
device using the session-based DAQ Adaptor for MATLAB:

1. Discover connected devices using the daq.getDevices function. In the following example,
the system has several devices installed, including the Data Translation DT9836-12-2
device. The DT9836-12-2 device has the ID 'dt9836', which is set in the Open Layers
Control Panel (see the documentation for your hardware for more information on the
Open Layers Control Panel):

devs = daq.getDevices
ans =

Data acquisition devices:
index Vendor Device ID Description
----- ------ --------- --------------------------------
1 dt dt9836 Data Translation DT9836-12-2
2 directsound Audio0 DirectSound Primary Sound Capture Driver
3 directsound Audio1 DirectSound Microphone (Realtek High Definition Audio)
4 directsound Audio2 DirectSound Primary Sound Driver
5 directsound Audio3 DirectSound DELL U2414H (Intel(R) Display Audio)
6 directsound Audio4 DirectSound Speakers/Headphones (Realtek High Def Audio)
7 ni Dev1 National Instruments USB-9234
8 ni Dev2 National Instruments PCI-MIO-16XE-50

http://www.mathworks.com/help/daq/analog-signal-generation.html

Session-Based DAQ Adaptor for MATLAB
2. To get information about the device, click the device ID or specify the index of the device
to query. For example, to get information about the Data Translation device with index 1,
use the following command:

devs(1)

The following information is returned:

dt.Data Translation DT9836-12-2 (Device ID:'dt9836')
Analog input subsystem supports:
-10 to +10 Volts, -5.0 to +5.0 Volts ranges
Rates from 0.0 to 225000.0 scans/sec
23 channels ('0' - '22')
'Voltage' measurement type

Analog output subsystem supports:
-10 to +10 Volts ranges
Rates from 0.0 to 500000.0 scans/sec
3 channels ('0','1','2')
'Voltage' measurement type

3. Create a session for Data Translation devices using the daq.createSession function,
specifying 'dt' as the vendor name. An example follows; the default number of scans
and the acquisition duration are shown:

s = daq.createSession('dt')
s
s =
Data acquisition session using Data Translation hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added.

By default, the operation is configured to run for a duration of 1 second to output If1000
scans; for this device, the default rate is 1000 scans per second.

4. Configure the session, as needed. For analog output operations, use the following
properties: DurationinSeconds, Rate, and/or IsContinuous. The following example sets
the output rate to 8 kHz:

s.Rate = 8000;

5. Add analog output channels to the session using the addAnalogOutputChannel
function. The following example adds analog output channels 0 and 1 of the dt9836
device to the session:

ch0 = s.addAnalogOutputChannel('dt9836','0', 'Voltage');
ch1 = s.addAnalogOutputChannel('dt9836','1', 'Voltage');

Note: If desired, you can add analog input and analog output channels from one or
multiple devices in the same session.
25

Chapter 2

26
Adding a Digital Output Port in the Analog Output Stream

If your Data Translation device supports updating the digital output port through the analog
output stream, you can add the digital output port as a channel using the
addAnalogOutputChannel function. Note that you must specify 'Voltage'as the
measurement type using the addAnalogOutputChannel function even though it is a digital
output channel. The DAQ Adaptor for MATLAB ignores voltage for this channel, treating the
data as a raw value.

The following example adds the digital output port (channel 2) of the DT9836-12-2 device
(device ID 'dt9836') to the analog output stream:

aoutch = s.addAnalogOutputChannel('dt9836','2', 'Voltage');

Get information about the channel:

aoutch
ans =

Data acquisition analog output voltage '2' on device 'dt9836'
Terminal Config: Differential
Range: 0 to +65535 DigitalOutput
Name:
Device:[1x1 daq.dt.DeviceInfo]
MeasurementType:'DigitalOutput'

The range for a digital output channel is 0 to 65535, which represents the 16-bit digital output
port. Note that if you add the analog output channels as well as the digital output channel to
the output stream, the specified voltage range is used for the analog output channels and the 0
to 65535 range is used for the digital output channel.

Note: The MeasurementType that is returned for the digital output channel in the analog
output stream is 'DigitalOutput', which indicates the channel type. However, when using
the addAnalogOutputChannel function, you must specify 'Voltage' for this channel type.

When you want to update the digital output channel, specify a value that corresponds to the
bits of the 16-bit digital port. For example, to set the lower eight bits to 1 and the higher eight
bits to 0, specify a value of 255.

Session-Based DAQ Adaptor for MATLAB
Performing a Single-Value Output Operation

You can output a single analog output value using the outputSingleScan function.

The following example shows how to output a single analog output value to a Data
Translation device using the session-based DAQ Adaptor for MATLAB. A Data Translation
DT9836-12-2 device (device ID 'dt9836') is used in this example:

1. Create a session:

s = daq.createSession('dt');

2. Add analog output channels 0 and 1 to the session:

s.addAnalogOutputChannel('dt9836', 0, 'Voltage');
s.addAnalogOutputChannel('dt9836', 1, 'Voltage');

3. Create an output value and output a single scan for each output channel that was added.

outputSingleScan(s,[1.5 4]);

In this example, a value of 1.5 V is output to analog output channel 0 and a value of 4 V is
output to analog output channel 1. One value is output for each channel and the operation
stops.

Performing a Foreground Output Operation

When you perform an analog output operation in the foreground, the operation blocks
MATLAB until the operation is complete. Therefore, no other MATLAB commands can be
used until the operation completes.

The following example shows how to start an analog output operation in the foreground. A
Data Translation DT9836-12-2 device with device ID 'dt9836' is used in this example:

1. Create a session:

s = daq.createSession('dt');

2. Add analog output channel 0 to the session:

s.addAnalogOutputChannel('dt9836', 0, 'Voltage');

3. Create the data to output:

outputData = linspace(-1, 1, 2200)';

4. Queue the data:

queueOutputData(s,outputData);

The duration changes based on the length of the queued data and the specified scan rate.
When the session contains output channels, duration and number of scans become
read-only properties of the session. The number of scans in a session is determined by the
amount of data queued and the duration is determined by s.ScansQueued divided by
s.Rate.

5. Generate the output signal in the foreground; MATLAB returns once the data has been
output.

startForeground(s);
27

Chapter 2

28
6. When you are finished, delete the session:

delete (s);

Performing a Background Output Operation

When you perform an analog output operation in the background, other MATLAB commands
can be executed while the analog output operation is in progress. MATLAB is not blocked. A
background output operation depends on events and listeners to allow your code to continue
to output data as the queue data is depleted and to react to any errors that may occur.

To start an analog output operation in the background, use the startBackground command.
Use the DataRequired event to determine when more data needs to be queued to the device.
This event is fired periodically when a continuous output operation is in progress.

Listeners execute a callback function when notified that the event has occurred. Use
addlistener to create a listener object that executes your callback function.

Refer to the following web page for more information on events and listeners in background
operations: http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--c
oncepts.html

By default, the IsContinuous property is set to False and the operation stops automatically. If
you want to perform a continuous output operation, set IsContinuous to True and use stop
when you want to stop the background operation.

To start an analog output operation in the background, use the startBackground command.

This example shows how to output analog data from a Data Translation DT9836-12-2 device
(device ID 'dt9836') in the background:

1. Create an Data Translation session object:

s = daq.createSession('dt');

2. Add analog output 0 to the session:

addAnalogOutputChannel(s,'dt9836', '0', 'Voltage');

3. Set the output rate. In this example, the output rate is set to 8 kHz:

s.Rate = 8000;

4. Create the data to output:

data = linspace(0,pi,s.Rate)';
outputSignal = sin(data*2)*2;

5. Queue the output data:

queueOutputData(s,outputSignal);

6. Set up an output event handler that adds a listener for DataRequired events. In this
example, the event handler requeues the output data when the DataRequired event
occurs; the listener for the DataRequired event is assigned to the variable lh:

lh = addlistener(s,'DataRequired', ...
@(src,event) src.queueOutputData(outputSignal));

http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--concepts.html
http://www.mathworks.com/help/matlab/matlab_oop/events-and-listeners--concepts.html

Session-Based DAQ Adaptor for MATLAB
7. Generate the output signal in the background:

s.IsContinuous = true;
startBackground(s);

You can execute other MATLAB commands while the signal generation operation is in
progress.

8. When you are finished generating the signal, stop the operation:

s.stop();

9. Delete the listener:

delete (lh);

10. When you are finished, delete the session:

delete (s);

Triggering Analog Output Operations

Note: Refer to the following web page for information on the functions and properties for
setting up triggers using MATLAB:
http://www.mathworks.com/help/daq/simultaneous-and-synchronized-operations.html

You can trigger analog output operations based on an external event if the your Data
Translation device supports an external TTL trigger for the analog output subsystem. Refer to
the user’s manual for your device to determine its supported capabilities.

To specify an external TTL trigger for an analog output operation on a Data Translation
device, use the MATLAB addTriggerConnection function with the following parameters:

• For the trigger source, specify 'external'.

• For the trigger destination, specify 'deviceID/EXT_TTL_AO_TRIG', where deviceID is the
ID of your device as defined in the Open Layers Control Panel. See the documentation for
your hardware for more information on pin assignments and the Open Layers Control
Panel.

• For the trigger type, specify 'StartTrigger'.

Once you have set up the trigger connection, use the TriggerCondition property to set the
trigger condition to 'RisingEdge' or 'FallingEdge'.

The following example shows how to trigger an analog output operation on a DT9836 device
(device ID 'dt9836') using a signal connected to the external TTL trigger input on the device:

1. Create a session:

s = daq.createSession('dt');

2. Add analog output channel 0 to the session:

s.addAnalogOutputChannel('dt9836', 0, 'Voltage');
29

http://www.mathworks.com/help/daq/simultaneous-and-synchronized-operations.html

Chapter 2

30
3. Create an external trigger connection and specify that a rising-edge trigger will trigger the
analog output operation:

addTriggerConnection(s,'external','dt9836/EXT_TTL_AO_TRIG',
'StartTrigger');

s.Connections(1).TriggerCondition = 'RisingEdge';

4. Create the data to output:

outputData = linspace(-1, 1, 2200)';

5. Queue the data:

queueOutputData(s,outputData);

6. Set up the foreground operation:

startForeground(s);

When the rising edge is detected on the on external trigger pin of the DT9836 device, the
analog output operation is started in the foreground. MATLAB returns once the data has
been output.

Session-Based DAQ Adaptor for MATLAB
Analog Input and Output Operations at the Same Time
The DAQ Adaptor for MATLAB supports performing analog input and analog output
operations at the same time. For DT-Open Layers-compliant devices that support this feature,
the DAQ Adaptor automatically starts both operations at the same time (unless different
trigger sources are used for each subsystem).

Performing I/O Operations at the Same Time in the Foreground

The following example shows how to perform analog input and output operations at the same
time in the foreground. This examples uses a Data Translation DT9836-12-2 device (device ID
'dt9836'):

1. Create a Data Translation session object:

s = daq.createSession('dt');

2. Add analog output 0 to the session:

addAnalogOutputChannel(s,'dt9836', '0', 'Voltage');

3. Add analog input 0 to the session:

addAnalogInputChannel(s,'dt9836', '0', 'Voltage');

4. Set the properties of the session. Note that for any given session, acquisition and signal
generation run at the same rate. In this example, the acquisition and signal generation rate
is set to 8 kHz:

s.Rate = 8000;

5. Create the data to output:

data = linspace(0,pi,s.Rate)';
outputSignal1 = sin(data)*2;

6. Queue the output data:

queueOutputData(s,outputSignal1);

7. Generate the output signal and acquire data in the foreground:

[data,time] = startForeground(s);

MATLAB returns once the I/O operations are complete.

8. Plot the data:

plot(time, data);

9. When you are finished, delete the session:

delete (s);
31

Chapter 2

32
Performing I/O Operations at the Same Time in the Background

The following example shows how to perform analog input and output operations at the same
time n the background. This examples uses a Data Translation DT9836-12-2 device (device ID
'dt9836'):

1. Create a Data Translation session object:

s = daq.createSession('dt');

2. Add analog output 0 to the session:

addAnalogOutputChannel(s,'dt9836', '0', 'Voltage');

3. Add analog input 0 to the session:

addAnalogInputChannel(s,'dt9836', '0', 'Voltage');

4. Set the properties of the session. Note that for any given session, acquisition and signal
generation run at the same rate. In this example, the acquisition and signal generation rate
is set to 8 kHz:

s.Rate = 8000;

5. Create the data to output:

data = linspace(0,pi,s.Rate)';
outputSignal1 = sin(data)*2;

6. Queue the output data:

queueOutputData(s,outputSignal1);

7. Set up an output event handler that adds a listener for DataRequired events. In this
example, the event handler requeues the output data when the DataRequired event
occurs; the listener for the DataRequired event is assigned to the variable
dataRequiredListener:

dataRequiredListener= addlistener(s,'DataRequired', ...
@(src,event) src.queueOutputData(outputSignal1));

8. Set up an input event handler that adds a listener for DataAvailable events. In this
example, the event handler plots the acquired data against time when the DataAvailable
event occurs; the listener for the DataAvailable event is assigned to the variable
dataAvailableListener:

dataAvailableListener = addlistener(s,'DataAvailable',...
@(src,event)plot(event.TimeStamps, event.Data));

9. Generate the output signal and acquire data in the background:

s.IsContinuous = true;
startBackground(s);

You can execute other MATLAB commands while the signal generation operation is in
progress.

10. When you are finished generating the output signal and acquiring input data, stop the
operation:

s.stop();

Session-Based DAQ Adaptor for MATLAB
11. Delete the listeners:

delete (dataRequiredListener);
delete (dataAvailableListener);

12. When finished, delete the session:

delete (s);
33

Chapter 2

34
Digital I/O Operations
This section describes information about performing digital I/O operations using the
MATLAB session-based interface.

Refer to the following web page for information on the functions, events, and properties for
performing digital I/O operations:
http://www.mathworks.com/help/daq/digital-input-and-output.html

Note: Data Translation devices do not support foreground or background digital I/O
operations. In addition, interrupt-on-change operations are not supported by the
session-based DAQ Adaptor for MATLAB.

Performing Digital Input Operations

If your Data Translation device supports reading the digital input port through the analog
input stream, refer to page 19 for information about adding the digital input port as a channel
of the analog input subsystem.

If your Data Translation device supports single-value digital input operations through the
digital input subsystem, you can read a single value from one or more digital input lines using
the inputSingleScan function of the session-based DAQ Adaptor for MATLAB.

The following example shows how to read a single value from lines 0 and 1 of digital input
port 0 on a 'DT9857' device using the inputSingleScan function:

s = daq.createSession('dt');
addDigitalChannel(s,'DT9857', 'Port0/Line0:1', 'InputOnly');
data = inputSingleScan(s);

Performing a Digital Output Operation

If your Data Translation device supports updating the digital output port through the analog
output stream, refer to page 26 for information about adding the digital output port as a
channel to analog output subsystem.

If your Data Translation device supports a single-value digital output operation through the
digital output subsystem, you can update one more digital output lines using the
outputSingleScan function of the session-based DAQ Adaptor for MATLAB.

The following example shows how to output a value of 0 to line 0 and a value of 1 to line 1 of
digital output port 0 on a 'DT9857' device using the outputSingleScan function:

s = daq.createSession('dt');
addDigitalChannel(s,'DT9857', 'Port0/Line0:1', 'OutputOnly');
outputSingleScan(s,[0 1])

http://www.mathworks.com/help/daq/digital-input-and-output.html

3
Legacy DAQ Adaptor for MATLAB

Requirements . 36

Installation. 37

Setting up an I/O Operation . 38
35

Chapter 3

36
Requirements
You must install the following before installing the legacy Data Translation DAQ Adaptor for
MATLAB:

• Your Data Translation hardware module(s) and their drivers (from the Data Acquisition
OMNI CD that ships with your hardware)

• A 32-bit version of MATLAB - Version 7 (R14) Service Pack 3 or higher

• Data Acquisition Toolbox Version 2.7 to 3.8

Install Data Translation components from a recent OMNI CD, or download from our web site
(www.mccdaq.com). Contact The MathWorks for updates to your MATLAB components.

Legacy DAQ Adaptor for MATLAB
Installation
To install the legacy Data Translation DAQ Adaptor for MATLAB, do the following:

1. Navigate to the following web page for the Data Translation DAQ Adaptor for MATLAB:
http://www.mccdaq.com/Products/Data-Acquisition-Software/MATLAB-Data-
Acquisition

2. Click the Download tab.

3. Click Free Download.

4. Click Legacy-Based DAQ Adaptor for MATLAB, and then click Download.
The file setup.exe is downloaded to your computer.

5. Once it is downloaded, double-click on the file setup.exe.

6. Close other programs if necessary, and click Next on the welcome screen.

7. Either change the directory path using Browse or accept the default directory, and then
click Next.
The installer asks you whether to back up replaced files.

8. Choose the Yes to back up replaced files or No if you do not wish to back up replaced files,
and then click Next.
The installer prompts you to begin file installation.

9. Click Next.
The installer copies the files to the destination directory.

The installer copies the files and then launches MATLAB. MATLAB registers the DAQ
Adaptor .DLL using the path you provided:

>rehash toolboxcache;daqregister ’C:\PROGRA~1\DATATR~1\DAQADA~1\

dtol.dll’;quit
>>

10. Click Finish.
37

http://www.mccdaq.com/Products/Data-Acquisition-Software/MATLAB-Data-Acquisition
http://www.datatranslation.com/Products/Data-Acquisition-Software/MATLAB-Data-Acquisition

Chapter 3

38
Setting up an I/O Operation
The Data Translation legacy DAQ Adaptor for MATLAB is specified as dtol in MATLAB code.
The following example shows how to create an analog input object (ai0) using the DTOL
adaptor for a device at index 0:

ai0 = analoginput ('dtol', 0)

To add hardware channel 1 to the ai0 object, use the MATLAB command addchannel, as
follows:

addchannel(ai0, 1)

To get a single sample from that channel, use the MATLAB command getsample, as follows:

s = getsample(ai0)

You can display the properties of an adaptor (including installed hardware modules) with the
daqhwinfo command. This example shows how to display the properties of the DTOL
adaptor using the daqhwinfo command:

daqhwinfo('dtol')

If there are too many devices to display on a single line, you can assign daqhwinfo to an array
and query the name of each device separately, as shown in this example:

x = daqhwinfo('dtol')
x.BoardNames

You can examine properties of a subsystem that you created with the adaptor by using the
MATLAB daqhwinfo command (for built-in properties) and the get command (for
user-settable properties). In this example, the first command shows all the built-in properties
of the analog input subsystem (ai0) and the second command shows all the DTOL
user-settable properties of the analog input subsystem (ai0):

daqhwinfo(ai0)
get(ai0)

You can find out more information about a property using the MATLAB propinfo command.
For example, this command shows how to get information about the GainPerChan property
that is associated with channel 1 of the analog input subsystem (ai0):

propinfo(ai0.channel(1),’GainPerChan’)

To control a data acquisition session, issue MATLAB commands and set the appropriate
DTOL properties, described in the following subsections. For more information about using
MATLAB commands and the Data Acquisition Toolbox properties, refer to your MATLAB
documentation.

Legacy DAQ Adaptor for MATLAB
Analog Input and Output Subsystem Properties

The Data Translation DAQ Adaptor for MATLAB provides the following adapter-specific
properties for analog I/O operations:

Table 1: Adaptor-Specific Analog Input/Output Properties

Property Description A/D D/A

FIFOAvailable Determines if a FIFO is available on the subsystem. No Yes

FIFODepth Determines the size of the FIFO. No Yes

OutOfDataMode Specifies how to handle an out-of-data condition. Set Hold to
use the last value in the output buffer. Set Default to use the
channel-specific Default Value property.

No Yes

SupportBinaryEncoding Determines if the subsystem uses binary encoding. Yes Yes

SupportExternalTriggerFalling Checks for external, falling-edge triggering support. Yes Yes

SupportExternalTriggerRising Checks for external, rising-edge triggering support. Yes Yes

SupportGainPerChannel Determines if the subsystem supports different gain values for
each analog channel.

Yes Yes

SupportSoftTrigger Determines if the subsystem supports an internal software
trigger.

Yes Yes

SupportTwosComp Determines if the subsystem uses twos complement encoding. Yes Yes

ReturnCjcTemperatureInStreama

a. This property is visible only when a TEMPpoint or VOLTpoint instrument is specified.

Specifies whether to return CJC values in the analog input
data stream.

Yes No

SyncMode Specifies the synchronization mode (None, Master, or Slave)
for the analog input subsystem of the device.

Yes No

DataFilterTypea Specifies the filter type (Raw or MovingAverage) for the analog
input subsystem of the device.

Yes No

ExcitationVoltageSource Specifies the excitation voltage source (Internal or External)
for the analog input subsystem of the device.

Yes No

ExcitationVoltage Specifies the excitation voltage for the excitation voltage
source of the analog input subsystem.

Yes No

WrapMode Specifies how the analog output subsubsystem specifies
buffers. Possible values are None (data is written from multiple
output buffers continuously) or Single (data is written from a
single buffer continuously).

If the WrapMode is Single, the device operates in waveform
mode and uses the first user buffer regardless of the number
of MATLAB buffers that are set.

No Yes
39

Chapter 3

40
Setting the Input Type

To specify whether a subsystem uses differential or single-ended input channels, use the
MATLAB property inputtype. For example, this command configures the analog input
subsystem (ai0) to use differential input channels:

ai0.inputtype='Differential'

To configure the analog input subsystem (ai0) to use single-ended channels, use this
command:

ai0.inputtype='SingleEnded'

You can use the get(ai0) command to see the changes. When you change input types, the
channel list also changes.

Setting the Synchronization Mode

Some devices provide a synchronization connector (such as a Sync Bus RJ45 connector) that
allows you to synchronize operations on multiple devices. In this configuration, the
subsystem on one device is configured as the master and the subsystem on the other device is
configured as a slave. When the master module is triggered, both the master device and the
slave device start operating at the same time.

If the device allows you to program the synchronization mode (SupportSynchronization is
True), use the DTOL-specific property SyncMode to set the synchronization mode to one of
the following values:

• None – The subsystem is configured to ignore the synchronization circuit on the device.

• Master – Sets the subsystem as a master; the synchronization connector on the device is
configured to output a synchronization signal.

• Slave – Sets the subsystem as a slave; the synchronization connector on the device is
configured to accept a synchronization signal as an input.

The following command sets the synchronization mode of the analog input subsystem to
Master:

ai0.SyncMode='Master'

Setting the Filter Type

Some devices, such as TEMPpoint and VOLTpoint instruments, support a
software-programmable filter type for the analog input subsystem. For these devices, the
following filter types are available:

• Raw – No filter. Provides fast response times, but the data may be difficult to interpret.
Use when you want to filter the data yourself.

The Raw filter type returns the data exactly as it comes out of the Delta-Sigma A/D
converters. Note that Delta-Sigma converters provide substantial digital filtering above
the Nyquist frequency.

Legacy DAQ Adaptor for MATLAB
Generally, the only time it is desirable to turn off the software filter is if you are using fast
responding inputs, sampling them at higher speeds (> 1 Hz), and need as much response
speed as possible.

• MovingAverage – Provides a compromise of filter functionality and response time. This
filter can be used in any application.

This low-pass filter takes the previous 16 samples, adds them together, and divides by 16.

The following command sets the filter type of the analog input subsystem to MovingAverage:

ai0.DataFilterType='MovingAverage'

Channel Properties

Table 2 lists the properties that appear at the channel level after you add a channel. The
following subsections describe each of these properties in more detail.

Table 2: Adaptor-Specific Channel Properties

Property Description A/D D/A

MultiSensorType For subsystems that support multiple sensor types for each
channel, specify one of the following sensor types for each
channel: VoltageIn, Current, Thermocouple, StrainGage,
Accelerometer, Bridge, Thermistor, Resistance, RTD.

Yes No

InputTerminationEnabled For subsystems that support a bias return termination resistor,
enables or disables the bias return termination resistor for a
particular analog input channel.

Yes No

Coupling For subsystems that support IEPE (accelerometer) inputs,
specify the coupling type (AC or DC) for a particular analog input
channel.

Yes No

ExcitationCurrentSource For subsystems that support IEPE (accelerometer) and
resistance inputs, specify the excitation current source for a
particular analog input channel. Possible values are Internal
(excitation current source is on the device), External (excitation
current source is external to the device), or Disabled (no
excitation is applied).

Yes No

ExcitationCurrentValue If you specify an internal excitation current source, specify the
value of the current source.

Yes No

GainPerChan For subsystems that support multiple gain values, specify the
gain value for a particular analog input channel.

Yes No

ThermocoupleTypea For subsystems that support thermocouple measurements,
specify the thermocouple type for a particular analog input
channel. The following thermocouple types are supported:
J,K,B,E,N,R,S,T, or None.

Yes No
41

Chapter 3

42
RtdType For subsystems that support RTD measurements, specify the
RTD type for a particular analog input channel.

For MEASURpoint instruments, which use an IVI-COM device
driver, the following RTD types are supported: Volts, Ohms,
PT100_385, PT500_385, PT1000_385, PT100_392, PT500_
392, or PT1000_392.

For the DT9829 and other device that use a DT-Open Layers
device driver, the following RTD types are supported: PT3750,
PT3850, PT3911, PT3916, PT3920, PT3928, or Custom.

Yes No

RtdR0 (Not supported by MEASURpoint instruments) For subsystems
that support RTD measurements, specify the R0 coefficient for
the RTD that is connected to a particular analog input channel.
This coefficient is used by the Callendar-Van Dusen transfer
function.

Yes No

RtdA (Not supported by MEASURpoint instruments) For subsystems
that support RTD measurements, specify the A coefficient for
the RTD that is connected to a particular analog input channel.
This coefficient is used by the Callendar-Van Dusen transfer
function.

Yes No

RtdB (Not supported by MEASURpoint instruments) For subsystems
that support RTD measurements, specify the B coefficient for
the RTD that is connected to a particular analog input channel.
This coefficient is used by the Callendar-Van Dusen transfer
function.

Yes No

RtdC (Not supported by MEASURpoint instruments) For subsystems
that support RTD measurements, specify the C coefficient for
the RTD that is connected to a particular analog input channel.
This coefficient is used by the Callendar-Van Dusen transfer
function.

Yes No

SensorWiringConfiguration (Not supported by MEASURpoint instruments) For subsystems
that support RTD, thermistor, or resistance measurements,
specify the wiring configuration (TwoWire, ThreeWire, or
FourWire) used by a particular analog input channel.

Yes No

ThermistorA For subsystems that support thermistor measurements, specify
the A coefficient for the thermistor that is connected to a
particular analog input channel. This coefficient is used by the
Steinhart-Hart transfer function.

Yes No

ThermistorB For subsystems that support thermistor measurements, specify
the B coefficient for the thermistor that is connected to a
particular analog input channel. This coefficient is used by the
Steinhart-Hart transfer function.

Yes No

ThermistorC For subsystems that support thermistor measurements, specify
the C coefficient for the thermistor that is connected to a
particular analog input channel. This coefficient is used by the
Steinhart-Hart transfer function.

Yes No

Table 2: Adaptor-Specific Channel Properties (cont.)

Property Description A/D D/A

Legacy DAQ Adaptor for MATLAB
Configuring a Channel for a Voltage Input

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a voltage input using the DTOL-specific MultiSensorType property. For example, the
following command configures the first channel (channel 0), which is associated with analog
input subsystem (ai0), for a voltage measurement:

ai0.channel(1).MultiSensorType ='VoltageIn'

Some voltage input channels support a bias return termination resistor. The bias return
termination resistor is typically enabled for floating and grounded voltage sources, and is
typically disabled for voltage sources with grounded references. Refer to the documentation
for your device for wiring information.

You can enable or disable the bias return termination resistor for a given channel using the
InputTerminationEnabled property.

The following example enables the bias return termination resistor for analog input channel 0:

ai0.channel(1).InputTerminationEnabled ='Yes'

StrainBridgeConfiguration For subsystems that support strain gage inputs, specifies the
strain gage configuration for a particular analog input channel.
The following strain gage configurations are supported:
FullBridgeBending, FullBridgeBendingPoisson, FullBridgeAxial,
HalfBridgePoisson, HalfBridgeBending, QuarterBridge, and
QuarterBridgeTempCompensation.

Yes No

BridgeConfiguration For subsystems that support bridge-based inputs, specifies the
bridge configuration (FullBridge, HalfBridge, or QuarterBridge)
for a particular analog input channel.

Yes No

StrainShuntResistorEnabled For devices that support strain gage inputs, specifies whether
the shunt resistor is enabled or disabled for a particular analog
input channel. If this value is Yes, the shunt resistor is enabled. If
this value is No, the shunt resistor is disabled.

Yes No

a. This property is not supported for the DT9805 and DT9806 modules; customers of these modules must use their own
algorithms to convert voltage to temperature based on the thermocouple type they are using. This property is supported
by MEASURpoint instruments as well as the DT9828 and DT9828E.

Table 2: Adaptor-Specific Channel Properties (cont.)

Property Description A/D D/A
43

Chapter 3

44
Configuring a Channel for a Current Measurement

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a current measurement using the DTOL-specific MultiSensorType property. For example, the
following command configures the first channel (channel 0), which is associated with analog
input subsystem (ai0), for a current measurement:

ai0.channel(1).MultiSensorType ='Current'

Some current input channels support a bias return termination resistor. The bias return
termination resistor is typically enabled for floating and grounded current sources, and is
typically disabled for current sources with grounded references. Refer to the documentation
for your device for wiring information.

You can enable or disable the bias return termination resistor for a given channel using the
InputTerminationEnabled property.

The following example disables the bias return termination resistor for analog input channel
0:

ai0.channel(1).InputTerminationEnabled ='No'

Configuring a Channel for an IEPE (Accelerometer) Input

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
an IEPE (accelerometer) input using the DTOL-specific MultiSensorType property. For
example, the following command configures the first channel (channel 0), which is associated
with analog input subsystem (ai0), for an accelerometer sensor type:

ai0.channel(1).MultiSensorType ='Accelerometer'

Then, use the properties Coupling and ExcitationCurrentSource to the configure the coupling
type and excitation current source for the channel. Values for the coupling type can be AC or
DC. Values for the excitation current source can be Internal, External, or Disabled. If you
specify an Internal excitation current source, specify the value of the current source (as a
floating-point number) using the ExcitationCurrentValue property.

The following example configures the same analog input channel for an internal excitation
current source of 4 mA and AC coupling:

ai0.channel(1).Coupling='AC'
ai0.channel(1).ExcitationCurrentSource='Internal'
ai0.channel(1).ExcitationCurrentValue= 0.004

To configure the same channel for an external excitation current source and DC coupling, use
these commands:

ai0.channel(1).ExcitationCurrentSource='External'
ai0.channel(1).Coupling=’DC’

To disable the excitation current source for the same channel, use this command:

ai0.channel(1).ExcitationCurrentSource='Disabled'

Legacy DAQ Adaptor for MATLAB
Configuring a Channel for a Thermocouple Input

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a thermocouple input using the DTOL-specific MultiSensorType property. For example, the
following command configures the first channel (channel 0), which is associated with analog
input subsystem (ai0), for a thermocouple measurement:

ai0.channel(1).MultiSensorType ='Thermocouple'

Then, use the DTOL-specific property ThermocoupleType to the configure the type of
thermocouple that is connected to the channel. The following values are supported: J, K, B, E,
N, R, S, T, or None.

If you specify 'None' for ThermocoupleType, data is read as voltage from the corresponding
channel and the UnitRange reflects the voltage range that is supported by the device.

If you specify a value other than 'None' for ThermocoupleType, data is read as temperature
from the corresponding channel and the UnitRange reflects the temperature range, in degrees
C, of the specified thermocouple type.

For example, the following command configures the same channel for a J type thermocouple
input; the UnitRange property for that channel will then reflect the temperature range, in
degrees C, of the J type thermocouple input:

ai0.channel(1).ThermocoupleType= 'J'

Data read using Getdata and Getsample is returned in floating-point format.

Configuring a Channel for an RTD Input

RTD support is implemented differently for MEASURpoint instruments, which use an
IVI-COM driver, and the DT9829 and other devices, which use a DT-Open Layers device
driver. The following sections describe how RTDs are supported for these devices.

RTD Support for MEASURpoint Instruments

If you are using a MEASURpoint instrument, which uses an IVI-COM device driver, the
following values are supported for RtdType:

• PT100_385 – Platinum 100 Ω RTD with European alpha curve of 0.00385

• PT500_385 – Platinum 500 Ω RTD with European alpha curve of 0.00385

• PT1000_385 – Platinum 1000 Ω RTD with European alpha curve of 0.00385

• PT100_392 – Platinum 100 Ω RTD with American alpha curve of 0.00392

• PT500_ 392 – Platinum 500 Ω RTD with American alpha curve of 0.00392

• PT1000_392 – Platinum 1000 Ω RTD with American alpha curve of 0.00392

• Volts (if you want to measure voltage instead)

• Ohms (if you want to measure resistance instead)
45

Chapter 3

46
For example, the following command configures analog input channel 0 for a Platinum 1000 Ω
RTD with American alpha curve of 0.00392:

ai0.channel(1).RtdType = 'PT1000_392'

The UnitRange property for that channel will then reflect the temperature range, in degrees C,
of the RTD input.

Data read using Getdata and Getsample is returned in floating-point format.

RTD Support for the DT9829 and Other DT-Open Layers Devices

If you are using a DT9829 module or any other device that uses a DT-Open Layers device
driver, and your subsystem supports multiple sensor inputs for each channel, configure the
channel for an RTD input using the DTOL-specific MultiSensorType property. For example,
the following command configures the first channel (channel 0), which is associated with
analog input subsystem (ai0), for an RTD measurement:

ai0.channel(1).MultiSensorType ='Rtd'

Then, use the DTOL-specific property RtdType to the configure the type of RTD that is
connected to the channel. DT-Open Layers device drivers support the following values for
RtdType:

• Pt3750

• Pt3850

• Pt3911

• Pt3916

• Pt3920

• Pt3928

• Custom

RtdType identifies the Temperature Coefficient of Resistance (TCR) value that is used by the
Callendar-Van Dusen transfer function to determine temperature for RTDs. The
Callendar-Van Dusen transfer function is described as follows:

where,

• RT is the resistance at temperature (TCR).

• R0 is the resistance at 0° C.

• A, B, and C are the Callendar-Van Dusen coefficients for a particular RTD type. (The value
of C is 0 for temperatures above 0° C.)

RT R0 1 AT BT
2

CT
3

T 100–()+ + +[]=

Legacy DAQ Adaptor for MATLAB

Rtd rds

PT3

PT3

PT3 ard

PT3

PT3 6

PT3
Table 3 lists the coefficients that are used by the Callendar-Van Dusen transfer function for
each RtdType.

If you specify a value of Pt3850 for the RtdType, you must also specify the R0 value using the
RtdR0 property, unless you are using a 100 Ω RTD (the default value). If you specify a value of
Custom for the RtdType, use the RtdR0, RtdA, RtdB, and RtdC properties to specify the
values of the R0, A, B, and C coefficients that are used in the Callander Van-Dusen transfer
function. For all other RtdTypes, the software automatically sets the appropriate value for R0,
A, B, and C coefficients based on the selected RtdType.

Use the SensorWiringConfiguration property to specify the wiring configuration (TwoWire,
ThreeWire, or FourWire) for the RTD input. Ensure that the software configuration matches
the hardware configuration.

For example, the following commands configure analog input channel 0 for a PT3850 RtdType
that uses a four-wire configuration:

ai0.channel(1).RtdType = 'PT3850'
ai0.channel(1).RtdR0 = 1000
ai0.channel(1).RtdA = 0.0039083
ai0.channel(1).RtdB = -5.775E-07
ai0.channel(1).RtdC = -4.183E-12
ai0.channel(1).SensorWiringConfiguration = 'FourWire'

The UnitRange property for that channel reflects the temperature range, in degrees C, of the
RTD input.

Table 3: Callendar-Van Dusen Coefficients Supported By RTD Channels

Type

Temperature
Coefficient of

Resistance (TCR)
R0

Coefficient A Coefficient B Coefficient C Coefficient Applicable Standa

750 0.003750 Ω / Ω /° C 1000 Ω 3.81 x 10–3 –6.02 x 10–7 –6.0 x 10–12 Low Cost

850 0.003850 Ω / Ω /° C 100 Ω,
500 Ω,
1000 Ω

3.9083 x 10–3 –5.775 x 10–7 –4.183 x 10–12 DIN/IEC 60751
ASTM-E1137

911 0.003911 Ω / Ω / ° C 100 Ω 3.9692 x 10–3 –5.8495 x 10–7 –4.233 x 10–12 US Industrial Stand

916 0.003916 Ω / Ω /° C 100 Ω 3.9739 x 10–3 –5.870 x 10–7 –4.4 x 10–12 Japanese JISC
1604-1989

920 0.003920 Ω / Ω /° C 98.129 Ω 3.9787 x 10–3 –5.869 x 10–7 –4.167 x 10–12 SAMA RC21-4-196

928 0.003928 Ω / Ω /° C 100 Ω 3.9888 x 10–3 –5.915 x 10–7 –3.85 x 10–12 ITS-90
47

Chapter 3

48
Configuring a Channel for a Thermistor Input

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a thermistor input using the DTOL-specific MultiSensorType property. For example, the
following command configures the first channel (channel 0), which is associated with analog
input subsystem (ai0), for a thermistor measurement:

ai0.channel(1).MultiSensorType ='Thermistor'

To determine the temperature of a thermistor, the software uses the Steinhart-Hart equation:

where,

• T is the temperature.

• R is the resistance at T, in ohms, that is supplied by the device.

• A, B, and C are the Steinhart-Hart coefficients for a particular thermistor type and value,
and are supplied by the thermistor manufacturer.

Use the ThermistorA, ThermistorB, and ThermistorC properties to specify the A, B, and C
coefficients used in the Steinhart-Hart transfer function.

Use the SensorWiringConfiguration property to specify the wiring configuration (TwoWire,
ThreeWire, or FourWire) for the thermistor input. Ensure that the software configuration
matches the hardware configuration.

For example, the following commands configure analog input channel 0 for a thermistor
measurement that uses a two-wire configuration:

ai0.channel(1).ThermistorA = 0.001032
ai0.channel(1).ThermistorB = 0.0002387
ai0.channel(1).ThermistorC = 1.58E-07
ai0.channel(1).SensorWiringConfiguration = 'TwoWire'

The UnitRange property for that channel reflects the temperature range, in degrees C, of the
thermistor input.

1
T
--- A BInR CIn R()3+ +=

Legacy DAQ Adaptor for MATLAB
Configuring a Channel for a Resistance Measurement

Note: To measure resistance on MEASURpoint instruments, specify the channel for an RTD
measurement, as described on page 45, and choose Ohms as the RtdType.

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a resistance measurement using the DTOL-specific MultiSensorType property. For example,
the following command configures the first channel (channel 0), which is associated with
analog input subsystem (ai0), for a resistance measurement:

ai0.channel(1).MultiSensorType ='Resistance'

Then, use the ExcitationCurrentSource property to the configure the excitation current source
for the channel. Values for the excitation current source can be Internal, External, or Disabled.
If you specify an Internal excitation current source, specify the value of the current source (as a
floating-point number) using the ExcitationCurrentValue property.

Use the SensorWiringConfiguration property to specify the wiring configuration (TwoWire,
ThreeWire, or FourWire) for the resistor that is connected to the channel. Ensure that the
software configuration matches the hardware configuration.

The following example configures analog input channel 0 for an internal excitation current
source of 425 μA and a three-wire configuration:

ai0.channel(1).ExcitationCurrentSource ='Internal'
ai0.channel(1).ExcitationCurrentValue = 0.000425
ai0.channel(1).SensorWiringConfiguration = 'ThreeWire'

Configuring a Channel for a Strain Gage Input

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
a strain gage measurement using the DTOL-specific MultiSensorType property. For example,
the following command configures the first channel (channel 0), which is associated with
analog input subsystem (ai0), for a strain gage measurement:

ai0.channel(1).MultiSensorType ='StrainGage'

Use the DTOL-specific properties StrainBridgeConfiguration and
StrainShuntResistorEnabled to the configure a channel for a strain gage input. Possible
values for StrainBridgeConfiguration are as follows: FullBridgeBending,
FullBridgeBendingPoisson, FullBridgeAxial, HalfBridgePoisson, HalfBridgeBending,
QuarterBridge, and QuarterBridgeTempCompensation. Possible values for
StrainShuntResistorEnabled are Yes (to enable the shunt resistor) and No (to disable the
shunt resistor.
49

Chapter 3

50
For example, the following commands configure the first channel (channel 0), which is
associated with the analog input subsystem (ai0), for a strain gage input that uses a Full
Bridge Bending bridge configuration with the shunt resistor enabled:

ai0.channel(1).StrainBridgeConfiguration='FullBridgeBending'
ai0.channel(1).StrainShuntResistorEnabled='Yes'

Configuring a Channel for a Bridge-Based Sensor

If your subsystem supports multiple sensor inputs for each channel, configure the channel for
measuring a bridge-based sensor or general-purpose bridge using the DTOL-specific
MultiSensorType property. For example, the following command configures the first channel
(channel 0), which is associated with analog input subsystem (ai0), for a bridge-based sensor
measurement:

ai0.channel(1).MultiSensorType ='Bridge'

Use the DTOL-specific properties BridgeConfiguration and StrainShuntResistorEnabled to
the configure a channel for a bridge-based sensor or general-purpose bridge input. Possible
values for BridgeConfiguration are FullBridge, HalfBridge, and QuarterBridge. Possible
values for StrainShuntResistorEnabled are Yes (to enable the shunt resistor) and No (to
disable the shunt resistor.

For example, the following commands configure the first channel (channel 0), which is
associated with the analog input subsystem (ai0), for a bridge-based sensor with the shunt
resistor disabled:

ai0.channel(1).BridgeConfiguration='FullBridge'
ai0.channel(1).StrainShuntResistorEnabled='No'

Configuring the Gain of a Channel

Use the DTOL-specific GainPerChan property to set the gain for a channel. For example, this
command sets the gain for the first channel (channel 0) of the analog input subsystem (ai0) to
4:

ai0.channel(1).GainPerChan = 4

Note: DT-Open Layers uses a per-channel gain concept, which differs from MATLAB’s range
based per channel setting to control gain and range. You can specify a per-channel gain, or the
adaptor attempts to set the best per-channel gain for a specified range.

We recommend using the GainPerChan property for per-channel gain control.

Legacy DAQ Adaptor for MATLAB
Utility Methods in MATLAB

A MATLAB file called DtStrainGageUtils.m is provided for users who want to convert voltage
data from a strain gage input into strain gage units or voltage data from a bridge-based sensor
into the units of a bridge-based sensor.

DtStrainGageUtils.m contains the following utility methods:

olDaReadBridgeSensorVirtualTeds

If your bridge-based sensor or transducer supports a TEDS (Transducer Electronic Data Sheet)
interface, this method allows you to read the TEDS data from a data file (virtual TEDS).

The format of this method is as follows:

TedsBridgeData = olDaReadBridgeSensorVirtualTeds (
virtualTedsFileName)

where,

• virtualTedsFileName is the full path, including the file name of the TEDS data file.

• TedsBridgeData is a structure of type BRIDGE_SENSOR_TEDS_tag containing the TEDS
data for the bridge-based sensor. This structure has the following elements; refer to the file
OldaapiExports.m for more information on this structure:

Table 4: Utility Methods in DtStrainGageUtils.m for Converting Voltage from
Strain Gage and Bridge-Based Sensors in MATLAB

Utility Method Description

olDaReadBridgeSensorVirtualTeds If your bridge-based sensor or transducer supports a TEDS (Transducer
Electronic Data Sheet) interface, this method allows you to read the
TEDS data from a data file (virtual TEDS).

olDaReadStrainGageVirtualTeds If your strain gage input supports a TEDS (Transducer Electronic Data
Sheet) interface, this method allows you to read the TEDS data from a
data file (virtual TEDS).

VoltstoMicroStrain Converts a raw A/D count value into a strain value based on a specified
configuration.

VoltstoBridgeBasedSensor Converts a raw A/D count value into a value for a bridge-based sensor
based on a specified configuration.
51

Chapter 3

52

Table 5: Elements of the BRIDGE_SENSOR_TEDS_tag Structure

Element Description

manufacturerId Part of the Basic TEDS information, identifies the manufacturer of the sensor for the
channel.

modelNumber Part of the Basic TEDS information, identifies the model number of the sensor for the
channel.

versionLetter Part of the Basic TEDS information, identifies the version letter of the sensor for the
channel.

versionNumber Part of the Basic TEDS information, identifies the version number of the sensor for the
channel.

serialNumber Part of the Basic TEDS information, identifies the serial number of the sensor for the
channel.

calDaysSince1_1_1998 The calibration date that was specified in the TEDS data for the channel.

calInitials The calibration initials that were specified in the TEDS data for the channel.

calPeriod The calibration period that was specified in the TEDS data for the channel.

exciteAmplMax The maximum excitation voltage that was specified in the TEDS data for the channel

exciteAmplMin The minimum excitation voltage that was specified in the TEDS data for the channel.

exciteAmplNom The nominal excitation voltage that was specified in the TEDS data for the channel.

maxElecVal The maximum electrical output, in V/V, that was specified in the TEDS data for the channel.

maxPhysicalValue The positive full-scale value, in strain, that was specified in the TEDS data for the channel.

measID The measurement location ID that was specified in the TEDS data for the channel.

minElecVal The minimum electrical output, in V/V, that was specified in the TEDS data for the channel.

minPhysicalValue The negative full-scale value, in strain, that was specified in the TEDS data for the channel.

physicalMeasurand The physical Measurand units that were specified in the TEDS data for the channel.
Possible values are as follows:

- Temperature_Kelvin - Temperature (Kelvin)
- Temperature_Celsius - Temperature (Celsius)
- Strain - Strain
- Microstrain - Microstrain
- Newton - Force/Weight (Newton)
- pounds - Force/Weight (pounds)
- kilogram ForcePer Kilopound - Force/Weight (kilogram-force/kilopound)
- Acceleration_m_ss - Acceleration (m/s²)
- Acceleration_g - Acceleration (g)
- Torque_Nm_Radian - Torque (Nm/radian)
- Torque_Nm - Torque (Nm)
- Torque_oz_in - Torque (oz-in)
- Pressure_Pascal - Pressure (Pascal)
- Pressure_PSI - Pressure (PSI)
- Mass_Kg - Mass (kg)
- Mass_g - Mass (g)
- Distance_m - Distance (m)
- Distance_mm - Distance (mm)
- Distance_inches - Distance (inches)

Legacy DAQ Adaptor for MATLAB
olDaReadStrainGageVirtualTeds

If your strain gage input supports a TEDS interface, this method allows you to read the TEDS
data from a data file (virtual TEDS).

The format of this method is as follows:

TedsStrainData = olDaReadStrainGageVirtualTeds (virtualTedsFileName)

where,

• virtualTedsFileName is the full path, including the file name of the TEDS data file.

• TedsStrainData is a structure of type BSTRAIN_GAGE_TEDS_tag containing the TEDS
data for the strain gage. This structure has the following elements; refer to the file
OldaapiExports.m for more information on this structure:

physicalMeasurand
(cont.)

- Velocity_m_s - Velocity (m/s)
- Velocity_mph - Velocity (mph)
- Velocity_fps - Velocity (fps)
- AngularPosition_radian- Angular Position (radian)
- AngularPosition_degrees - Angular Position (degrees)
- RotationalVelocity_radian_s - Rotational Velocity (radian/s)
- RotationalVelocity_rpm - Rotational Velocity (rpm)
- Frequency - Frequency
- Concentration_gram_liter - Concentration (gram/liter)
- Concentration_kg_liter - Concentration (kg/liter)
- MolarConcentration_mole_m3 - Molar Concentration (mole/m³)
- MolarConcentration_mole_l - Molar Concentration (mole/l)
- VolumetricConcentration_m3_m3 - Volumetric Concentration (m³/m³)
- VolumetricConcentration_l_l - Volumetric Concentration (l/l)
- MassFlow - Mass Flow
- VolumetricFlow_m3_s - Volumetric Flow (m³/s)
- VolumetricFlow_m3_hr - Volumetric Flow (m³/hr)
- VolumetricFlow_gpm - Volumetric Flow (gpm)
- VolumetricFlow_cfm - Volumetric Flow (cfm)
- VolumetricFlow_l_min - Volumetric Flow (l/min)
- RelativeHumidity - Relative Humidity
- Ratio_percent - Ratio (percent)
- Voltage - Voltage
- RmsVoltage - RMS Voltage
- Current - Current
- RmsCurrent - RMS Current
- Power_Watts - Power (Watts)

respTime The response time, in seconds, that was specified in the TEDS data for the channel.

selector The full-scale electrical value precision (minimum voltage output for 11-, 19-, or 32-bits; or
maximum voltage output for 11-, 19-, or 32-bits) that was specified in the TEDS data for the
channel.

sensorImped The bridge element impedance, in ohms, that was specified in the TEDS data for the
channel.

tedsBridgeType The type of bridge (Full Bridge, Half Bridge, or Quarter Bridge) that was specified in the
TEDS data for the channel.

Table 5: Elements of the BRIDGE_SENSOR_TEDS_tag Structure (cont.)

Element Description
53

Chapter 3

54
Table 6: Elements of the STRAIN_GAGE_TEDS_tag Structure

Element Description

manufacturerId Part of the Basic TEDS information, identifies the manufacturer of the sensor for the
channel.

modelNumber Part of the Basic TEDS information, identifies the model number of the sensor for the
channel.

versionLetter Part of the Basic TEDS information, identifies the version letter of the sensor for the
channel.

versionNumber Part of the Basic TEDS information, identifies the version number of the sensor for the
channel.

serialNumber Part of the Basic TEDS information, identifies the serial number of the sensor for the
channel.

minPhysicalValue The negative full-scale value, in strain, that was specified in the TEDS data for the channel.

maxPhysicalValue The positive full-scale value, in strain, that was specified in the TEDS data for the channel.

minElecVal The minimum electrical output, in V/V, that was specified in the TEDS data for the channel.

maxElecVal The maximum electrical output, in V/V, that was specified in the TEDS data for the channel.

gageType The type of gage that was specified in the TEDS data for the channel. Possible values are
as follows:

- SingleElement - Single element gage.
- TwoPoissonElements - Two elements with a Poisson arrangement.
- TwoOppositeSignedElements - Two elements, opposite sign (adjacent arms).
- TwoSameSignedElements - Two elements, same sign (opposite arms).
- TwoElementChevron - Two elements, 45° Chevron (torque or shear) arrangement.
- FourSameSignElementsPoisson - Four elements, Poisson strains of same sign in
opposite arms.

- FourOppositeSignedElements - Four elements, Poisson strains of opposite sign in
adjacent arms.

- FourUniaxialElements - Four elements, equal strains of opposite sign in adjacent arms.
- FourElementDualChevron - Four elements, 45° Chevron (torque or shear) arrangement.
- TeeRosetteGrid1_0Degrees - Tee Rosette grid 1 or a (0°).
- TeeRosetteGrid2_90Degrees - Tee Rosette grid 2 or b (90°).
- DeltaRosetteGrid1_0Degrees - Delta Rosette grid 1 or a (0°).
- DeltaRosetteGrid2_60Degrees - Delta Rosette grid 2 or b (60°).
- DeltaRosetteGrid3_120Degrees - Delta Rosette grid 3 or c (120°).
- RectangularRosetteGrid1_0Degrees - Rectangular Rosette grid 1 or a (0°).
- RectangularRosetteGrid2_45Degrees - Rectangular Rosette grid 2 or a (45°).
- RectangularRosetteGrid3_90Degrees - Rectangular Rosette grid 3 or a (90°).

gageFactor The gage factor, or sensitivity of the strain gage, that was specified in the TEDS data for the
channel.

gageTransSens The transverse sensitivity, in percentage, that was specified in the TEDS data for the
channel.

gageOffset The zero offset value after installation, in V/V, that was specified in the TEDS data for the
channel.

poissonCoef The Poisson coefficient after installation that was specified in the TEDS data for the
channel.

youngsMod The Young’s modulus, or measure of the stiffness of the material, in MPa, that was specified
in the TEDS data for the channel.

Legacy DAQ Adaptor for MATLAB
VoltstoMicroStrain

This method converts a raw A/D count value into a strain value based on a specified
configuration.

The format of this method is as follows:

MicroStrainResults = VoltstoMicroStrain (BridgeConfig, Vu, Vs, Vex,
GF, Rg, Rl, Pr, ShuntCorrection)

The arguments to the method are as follows:

gageArea The area of each gage element, in mm², that was specified in the TEDS data for the
channel.

tedsBridgeType The type of bridge (Quarter, Half, or Full) hat was specified for the channel.

sensorImped The bridge element resistance, in ohms, that was specified in the TEDS data for the
channel.

respTime The response time, in seconds, that was specified in the TEDS data for the channel.

exciteAmplNom The nominal excitation voltage that was specified in the TEDS data for the channel.

exciteAmplMax The maximum excitation voltage that was specified in the TEDS data for the channel.

calDaysSince1_1_1998 The calibration date that was specified in the TEDS data for the channel.

calInitials The calibration initials that were specified in the TEDS data for the channel.

calPeriod The calibration period that was specified in the TEDS data for the channel.

measID The measurement location ID that was specified in the TEDS data for the channel.

Table 7: Arguments to VoltstoMicroStrain

Argument Description

BridgeConfig The configuration of the bridge. Values are as follows:
FULL_BRIDGE_BENDING,
FULL_BRIDGE_BENDING_POISSON,
FULL_BRIDGE_AXIAL,
HALF_BRIDGE_POISSON,
HALF_BRIDGE_BENDING,
QUARTER_BRIDGE,
QUARTER_BRIDGETEMPCOMPENSATION

Vu The initial value of the bridge output (in voltage) in the unstrained/unloaded
condition.

Vs The measured voltage output of the bridge in the strained condition.

Vex The excitation voltage.

GF The gage factor, or sensitivity, of the bridge. Refer to documentation from the
manufacturer of the strain gage.

Rg The nominal gage resistance of the bridge, in ohms. Refer to documentation from
the manufacturer of the strain gage.

Table 6: Elements of the STRAIN_GAGE_TEDS_tag Structure (cont.)

Element Description
55

Chapter 3

56
VoltstoBridgeBasedSensor

This method converts a raw A/D count value into a value for a bridge-based sensor based on
a specified configuration.

The format of this method is as follows:

BridgeSensorResults = VoltstoBridgeBasedSensor (Vu, Vs, Vex, Tc, Rg,
Rl, RolnmV_V, ShuntCorrection)

The arguments to the method are as follows:

Rl The lead wire resistance, in ohms. Specify 0 for this parameter if remote sensing
is used.

Remote sensing ensures the correct Vex at the bridge so any wire resistance is
effectively negated.

Pr The Poisson ratio for the bridge, defined as the negative ratio of transverse strain
to axial (longitudinal) strain.

ShuntCorrection The shunt correction value.

Table 8: Arguments to VoltstoBridgeBasedSensor

Argument Description

Vu The initial value of the bridge output (in voltage) in the unstrained/unloaded
condition.

Vs The measured voltage output of the bridge in the strained condition.

Vex The excitation voltage.

Tc The full-scale range of the transducer in its native engineering units.

Rg The nominal gage resistance of the bridge, in ohms.

Rl The lead wire resistance, in ohms. Specify 0 for this parameter if remote
sensing is used.

Remote sensing ensures the correct Vex at the bridge so any wire
resistance is effectively negated.

Rolnmv_V The rated output of the transducer in terms of mV/V excitation.

ShuntCorrection The shunt correction value.

Table 7: Arguments to VoltstoMicroStrain (cont.)

Argument Description

Legacy DAQ Adaptor for MATLAB
MATLAB Property Notes

The following adaptor-specific notes apply to MATLAB properties:

Multiple Subsystems of a Single Type

To provide access to all elements of a device with multiple subsystems of a particular type (for
example, multiple analog input subsystems, such as on the DT9822), the adaptor creates
virtual boards. The first board enumerated includes any other types of subsystems.

For example, the DT9822 module enumerates in the adaptor like this:

To access the fourth A/D subsystem, use the virtual board ’DT9822(01)-3’ and its one
analoginput() object.

Table 9: Adaptor Notes for MATLAB Properties

MATLAB Property Notes

BufferingConfig The minimum buffer size is 128, but for best performance, set to 1024 or greater.

NOTE: If the value for RepeatOutput is greater than 1, the buffer size must be an
integer multiple of the number of samples queued. The adaptor warns you of this
when you change RepeatOutput.

TotalChannels This may include channels that are in two lists and have a mode (single-ended vs.
differential). Also, when the InputType is changed from SingleEnded to Differential,
the channel IDs will change in the DaqHwInfo() listing.

TriggerCondition Either "RisingEdge" or "FallingEdge" depending upon what the module supports.

’DT9822(01)’ A/D, D/A, Digital I/O

’DT9822(01)-1’ A/D

’DT9822(01)-2’ A/D

’DT9822(01)-3’ A/D
57

Chapter 3

58
Analog Output Operation Notes

The following caveats apply to analog output operations:

• Before starting an analog output operation, use the OutofDataMode command if you
want to reset the output to 0 V after the buffer has completed. An example follows:

set (a0, ’OutofDataMode’, ’DefaultValue’);

• Whenever you want to perform analog output streaming, it is recommended that you add
the following two lines of code during the configuration process and before starting the
analog output operation:

set (a0, ’BufferingMode’, ’manual’);
set (a0, ’BufferingConfig’,[samplesPerBuffer,10]);

These two lines improve performance as the engine buffers used in MATLAB will match
the DT-Open Layers buffers and the buffers passed in the PutData method.

The first line allows MATLAB to set the buffer size of the engine to correspond to the size
of the buffer used in PutData.

In the second line, samplesPerBuffer is the number of samples in each waveform used in
PutData.

• The number of samples output will not always be correct, particularly when the samples
to output are not the same as the buffer size. This is because DT-Open Layers sends the
whole buffer to the D/A converter, and the adaptor pads the output buffer to either the
Hold value or the channel default value (see OutofDataMode).

• DT-Open Layers does not send a message when the actual hardware trigger occurs.
Therefore, the time and sample count for the trigger event will not be correct for
TriggerType=’HwDigital’ for analog out.

• The final voltage on a output channel might be unpredictable after a streaming operation.

Using Hardware Triggers

To use a hardware trigger for analog output operations, set the TriggerType to ’HwDigital’
and set the TriggerCondition property to Rising or Falling.

When the analog output subsystem is started, data buffers may be sent to the hardware FIFO,
resulting in a "buffer done" message to the adaptor and a trigger event before the D/A output
value has been set. Therefore it may appear that data output occurs before the hardware
trigger happens, but the data has only been moved to the board FIFO, not output through the
D/A converter.

Index

Index
A
A coefficients, RTD 47
addAnalogInputChannel 18, 19
addAnalogOutputChannel 25, 26
addlistener 28
addTriggerConnection function 22, 29
analog input

legacy interface 38
session-based interface 16, 17

analog output
legacy interface 58
session-based interface 24

B
B coefficients, RTD 47
background operation

analog input 21
analog input and output at the same time 32
analog output 28

BRIDGE_SENSOR_TEDS_tag structure 52
bridge-based sensor, legacy 50
BridgeConfiguration 43, 50
BufferingConfig 57

C
C coefficients, RTD 47
Callendar-Van Dusen transfer function 47
channel properties, legacy 41
choosing an interface 9
counter in the input stream 19
counter in the input stream, session-based interface

19
Coupling 18, 41, 44
current measurement, legacy 44

D
daq.createSession 15, 17, 25
daq.getDevices 17, 24
DataAvailable 21
DataFilterType 39
DataRequired 28

digital input operations
in the analog input stream, session-based

interface 19
single-value, session-based interface 34

digital output operations
in the analog output stream, session-based

interface 26
single-value operations, session-based interface

34
DurationinSeconds 18

E
ExcitationCurrent 18
ExcitationCurrentSource 41, 44, 49
ExcitationCurrentValue 41, 44, 49
ExcitationSource 18
ExcitationVoltage 39
ExcitationVoltageSource 39

F
FIFOAvailable 39
FIFODepth 39
filter type, legacy 40
foreground operation

analog input 20
analog input and output at the same time 31
analog output 27

G
gain, legacy 50
GainPerChan 41, 50

H
hardware discovery

legacy interface 38
session-based interface 15

hardware triggers
legacy interface 58
session-based interface 22, 29
59

Index

60
I
ID 18
IEPE inputs

legacy interface 44
session-based interface 18

inputSingleScan 20, 34
InputTerminationEnabled 41, 43, 44
inputtype 40
installation

legacy interface 37
session-based interface 14

IsContinuous 18, 21, 25, 28
IsNotifyWhenDataAvailableExceedsAuto 21

L
legacy interface 9

analog input properties 39
analog output notes 58
analog output properties 39
bridge-based sensor 50
channel properties 41
current measurement 44
filter type 40
gain 50
hardware discovery 38
IEPE inputs 44
input type 40
MATLAB property notes 57
requirements 36
resistance measurement 49
RTD inputs 45
setting up an I/O operation 38
software installation 37
strain gage input 49
synchronization mode 40
TEDs support 51, 53
thermistor input 48
thermocouple input 45
triggers 58
utility methods 51
voltage input 43

M
MATLAB property notes, legacy 57
MeasurementType 16, 24
MultiSensorType 41

Accelerometer 44
Bridge-based sensor 50
Current 44

Resistance 49
RTD 46
Strain gage 49
Thermistor 48
Thermocouple 45
Voltage input 43

N
NotifyWhenDataAvailableExceeds 21
NumberofScans 18, 25

O
olDaReadBridgeSensorVirtualTeds 51
olDaReadStrainGageVirtualTeds 51, 53
OutOfDataMode 39
outputSingleScan 27, 34
overview 8

R
R0 coefficients, RTD 47
Range 16, 18, 24
Rate 18, 25
related information 10
requirements

legacy interface 36
session-based interface 13

resistance measurements, legacy 49
ReturnCjcTemperatureInStream 39
RTD channels

A coefficient 47
B coefficient 47
C coefficient 47
R0 coefficient 47

RTD input, legacy 45
RtdA 42, 47
RtdB 42, 47
RtdC 42, 47
RtdR0 42, 47
RtdType 42, 45, 46

S
SensorWiringConfiguration 42, 47, 48, 49
Session.addlistener 21
session-based interface 9, 19

analog input 16, 17
analog output 24
background analog I/O operation 32

Index
background analog input operation 21
background analog output operation 28
digital input port in the input stream 19
digital output port in the output stream 26
foreground analog I/O operation 31
foreground analog input operation 20
foreground output operation 27
hardware discovery 15
IEPE inputs 18
requirements 13
session setup 15
single-value analog input operation 20
single-value analog output operation 27
single-value digital input operations 34
single-value digital output operations 34
software installation 14
tachometer in the input stream 19
triggering analog input operations 22
triggering analog output operations 29

setting up an operation
analog input, session-based 17
analog output, session-based 24
counter in the input stream, session-based 19
digital port in the input stream, session-based 19
digital port in the output stream, session-based 26
I/O, legacy 38
tachometer in the input stream, session-based 19

single-value operation
analog input 20
analog output 27

software installation
legacy interface 37
session-based interface 14

startBackground 21, 28
stop 21, 28
strain gage input, legacy 49
STRAIN_GAGE_TEDS_tag structure 54
StrainBridgeConfiguration 43, 49
StrainShuntResistorEnabled 43, 49, 50
structures

BRIDGE_SENSOR_TEDS_tag 52
STRAIN_GAGE_TEDS_tag 54

SupportBinaryEncoding 39
SupportExternalTriggerFalling 39
SupportExternalTriggerRising 39
SupportGainPerChannel 39
SupportSoftTrigger 39
SupportTwosComp 39
synchronization mode, legacy 40
SyncMode 39

T
tachometer in the input stream, session-based

interface 19
TEDs, legacy 51, 53
TerminalConfig 16, 18, 24
thermistor inputs, legacy 48
ThermistorA 42, 48
ThermistorB 42, 48
ThermistorC 42, 48
thermocouple input, legacy 45
ThermocoupleType 41, 45
TotalChannels 57
TriggerCondition 57
TriggerCondition property 22, 29
triggering analog input operations, session-based

interface 22
triggering analog output operations, session-based

interface 29
triggers

legacy 58
session-based interface 22, 29

U
UnitRange 45, 46, 47, 48
utility methods, legacy 51

V
voltage input

legacy interface 43
session-based interface 17

VoltstoBridgeBasedSensor 51, 56
VoltstoMicroStrain 51, 55

W
wait 21
WrapMode 39
61

Index

62

	Title Page
	Copyright Page
	Table of Contents
	About this Manual
	Intended Audience
	How this Manual is Organized
	Conventions Used in this Manual
	Where To Get Help

	Overview
	Overview
	Session-Based or Legacy Interface
	Related Information

	Session-Based DAQ Adaptor for MATLAB
	Overview
	Requirements
	Installation
	Hardware Discovery and Session Setup
	Analog Input Operations
	Analog Input Channel Functions, Events, and Properties
	Setting up an Analog Input Operation
	Adding Other Channels in the Analog Input Stream
	Performing a Single-Value Input Operation
	Performing a Foreground Acquisition
	Performing a Background Acquisition
	Triggering Analog Input Operations

	Analog Output Operations
	Analog Output Channel Functions, Events, and Properties
	Setting up an Analog Output Operation
	Adding a Digital Output Port in the Analog Output Stream
	Performing a Single-Value Output Operation
	Performing a Foreground Output Operation
	Performing a Background Output Operation
	Triggering Analog Output Operations

	Analog Input and Output Operations at the Same Time
	Performing I/O Operations at the Same Time in the Foreground
	Performing I/O Operations at the Same Time in the Background

	Digital I/O Operations
	Performing Digital Input Operations
	Performing a Digital Output Operation

	Legacy DAQ Adaptor for MATLAB
	Requirements
	Installation
	Setting up an I/O Operation
	Analog Input and Output Subsystem Properties
	Setting the Input Type
	Setting the Synchronization Mode
	Setting the Filter Type

	Channel Properties
	Configuring a Channel for a Voltage Input
	Configuring a Channel for a Current Measurement
	Configuring a Channel for an IEPE (Accelerometer) Input
	Configuring a Channel for a Thermocouple Input
	Configuring a Channel for an RTD Input
	RTD Support for MEASURpoint Instruments
	RTD Support for the DT9829 and Other DT-Open Layers Devices

	Configuring a Channel for a Thermistor Input
	Configuring a Channel for a Resistance Measurement
	Configuring a Channel for a Strain Gage Input
	Configuring a Channel for a Bridge-Based Sensor
	Configuring the Gain of a Channel

	Utility Methods in MATLAB
	olDaReadBridgeSensorVirtualTeds
	olDaReadStrainGageVirtualTeds
	VoltstoMicroStrain
	VoltstoBridgeBasedSensor

	MATLAB Property Notes
	Multiple Subsystems of a Single Type
	Analog Output Operation Notes
	Using Hardware Triggers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	R
	S
	T
	U
	V
	W

