
DT7837 File I/O

UM-26001-F

Title Page

Programming Manual

Copyright Page
Trademark and Copyright Inf
Measurement Computing Corporation, In
either trademarks or registered trademar
Trademarks section on mccdaq.com/lega
Other product and company names ment
companies.

© 2015 Measurement Computing Corpo
reproduced, stored in a retrieval system,
photocopying, recording, or otherwise w
Corporation.

Notice
Measurement Computing Corporation do
use in life support systems and/or device
Corporation. Life support devices/system
into the body, or b) support or sustain life
injury. Measurement Computing Corpora
not subject to the testing required to ensu
people.
ormation
staCal, Universal Library, and the Measurement Computing logo are
ks of Measurement Computing Corporation. Refer to the Copyrights &
l for more information about Measurement Computing trademarks.
ioned herein are trademarks or trade names of their respective

ration. All rights reserved. No part of this publication may be
or transmitted, in any form by any means, electronic, mechanical, by
ithout the prior written permission of Measurement Computing

es not authorize any Measurement Computing Corporation product for
s without prior written consent from Measurement Computing
s are devices or systems that, a) are intended for surgical implantation
 and whose failure to perform can be reasonably expected to result in
tion products are not designed with the components required, and are
re a level of reliability suitable for the treatment and diagnosis of

http://www.mccdaq.com/legal.aspx

Table of Contents

Table of Contents
About this Manual . 7

Intended Audience. 7

What You Should Learn from this Manual. 7

Conventions Used in this Manual . 7

Related Documents . 8

Where to Get Help . 8

Chapter 1: Overview . 9

Introduction. 10

Installing the Software. 11

Examples . 12

Summary of Supported File I/O Operations . 15

Chapter 2: Using the File I/O Commands . 21

Opening and Closing a File. 22

Analog Input and Input Stream Operations . 24

Opening the Subsystem and Input Stream . 24

Configuring the Input Channels . 24

Configuring the Channel Mask for the Input Stream . 25

Configuring the Sample Clock . 25

Configuring the Trigger that Starts Acquisition . 26

Submitting I/O Requests . 27

Arming and Starting Continuous Operations . 28

Getting the Status of Acquisition . 28

Processing I/O Requests . 28

Dealing with Input Buffers . 28

Enabling Buffer Error Reporting. 29

Stopping Continuous Operations . 31

Cleaning up Resources . 31

Analog Output and Output Stream Operations . 32

Performing a Single Value Operation . 32

Opening the Subsystem . 32

Updating the Value of the Analog Output Channel . 32

Closing the Subsystem . 32

Performing a Continuous Output Operation . 32

Opening the Output Stream . 32

Configuring the Channel Mask for the Output Stream . 33

Configuring the Sample Clock . 33

Configuring the Trigger that Starts the Output Operation 33
3

Contents

4

Submitting I/O Requests . 34

Arming and Starting Continuous Operations . 34

Getting the Status of the Output Operation . 35

Processing I/O Requests . 35

Dealing with Output Buffers . 35

Enabling Buffer Error Reporting . 35

Stopping Continuous Operations . 37

Cleaning up Resources . 38

Tachometer Operations . 39

Opening the Subsystem . 39

Configuring the Tachometer Subsystem . 39

Counter/Timer Operations. 41

Opening the Subsystem . 41

Configuring the Counter/Timer Subsystem. 41

Mode . 41

Event Counting Mode . 41

Rate Generation Mode . 42

Non-Retriggerable One-Shot Mode . 43

Idle Mode . 44

Gate . 44

C/T Clock Input Sources . 45

Pulse Output Period, Pulse Width, and Polarity . 46

Starting the Counter/Timer Operation . 47

Reading the Counter/Timer . 47

Stopping the Counter/Timer Operation . 47

Closing the Subsystem . 47

Measure Counter Operations . 48

Opening the Subsystem . 48

Configuring the Measure Counter Subsystem . 48

Digital Input Operations . 52

Opening the Subsystem . 52

Reading the Value . 52

Closing the Subsystem . 52

Digital Output Operations . 53

Opening the Subsystem . 53

Updating the Value of the Port . 53

Closing the Subsystem . 53

Calibration. 54

Analog Input Calibration. 54

Opening the Subsystem . 55

Calibrating the Offset . 55

Contents
Calibrating the Gain . 56

Closing the Subsystem . 56

Analog Output Calibration . 56

Opening the Subsystem . 57

Calibrating the Offset . 57

Calibrating the Gain . 58

Closing the Subsystem . 58

Modifying the State of the User LEDs on the Module . 59

Sending Data to or Receiving Data from the Host USB Application 61

Opening the File . 61

Sending Data to the USB Host. 61

Receiving Data from the USB Host. 62

Eliminating Data from the Endpoint . 62

Closing the File . 62

Chapter 3: File I/O Command Reference. 63

close . 65
ioctl - IOCTL_ACQ_STATUS_GET . 66
ioctl - IOCTL_AIN_CNF_GET . 67
ioctl - IOCTL_AIN_CNF_SET. 69
ioctl - IOCTL_ARM_SUBSYS . 71
ioctl - IOCTL_CHAN_MASK_GET . 72
ioctl - IOCTL_CHAN_MASK_SET . 75
ioctl - IOCTL_CT_CFG_GET . 78
ioctl - IOCTL_CT_CFG_SET . 85
ioctl - IOCTL_GAIN_POT_GET. 92
ioctl - IOCTL_GAIN_POT_SET . 94
ioctl - IOCTL_GAIN_POT_WIPER_GET . 97
ioctl - IOCTL_GAIN_POT_WIPER_SET. 99
ioctl - IOCTL_LED_GET . 101
ioctl - IOCTL_LED_SET. 103
ioctl - IOCTL_MCTR_CFG_GET . 105
ioctl - IOCTL_MCTR_CFG_SET. 111
ioctl - IOCTL_OFFSET_POT_GET . 117
ioctl - IOCTL_OFFSET_POT_SET . 119
ioctl - IOCTL_OFFSET_POT_WIPER_GET . 121
ioctl - IOCTL_OFFSET_POT_WIPER_SET . 123
ioctl - IOCTL_SAMPLE_CLK_GET . 125
ioctl - IOCTL_SAMPLE_CLK_SET . 127
ioctl - IOCTL_START_SUBSYS. 129
ioctl - IOCTL_START_TRIG_CNF_GET . 131
ioctl - IOCTL_START_TRIG_CNF_SET . 135
ioctl - IOCTL_STOP_SUBSYS . 139
ioctl - IOCTL_TACH_CFG_GET . 140
ioctl - IOCTL_TACH_CFG_SET . 142
open . 144
5

Contents

6

Chapter 4: Programming Flowcharts Using the File I/O Commands 147

Input Stream Asynchronous Read Operations . 148

Analog Output Synchronous Write Operation . 151

Output Stream Asynchronous Write Operations . 152

Digital Input Synchronous Read Operation. 154

Digital Output Synchronous Write Operation . 155

Counter/Timer Operation . 156

Calibration. 157

User LED Modifications . 158

Sending Data to a USB Host . 159

Receiving Data from a USB Host . 160

Chapter 5: Product Support . 161

Index . 163

About this Manual
This manual describes the file I/O commands that are supported by the DT7837 module in
Linux user space.

Intended Audience

This document is intended for experienced Linux programmers.

What You Should Learn from this Manual

This manual provides detailed information about the file I/O operations that are supported
for the DT7837 module. This manual is organized as follows:

• Chapter 1, “Overview,” provides an overview of the file I/O support for the DT7837
module.

• Chapter 2, “Using the File I/O Commands,” describes the I/O operations that are
supported by the DT98337 module and the file I/O commands that are used to perform
these operations.

• Chapter 3, “File I/O Command Reference,” provides in-depth information about each of
the file I/O commands that are supported by the DT7837 module, including the command
syntax, arguments, and examples.

• Chapter 4, “Programming Flowcharts Using the File I/O Commands,” provides a
flowchart showing the order in which to use the file I/O commands to perform the
supported I/O functions of the DT7837 module.

• Chapter 5, “Product Support,” provides information about obtaining technical support.

• An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information or information that requires special emphasis, cautions
provide information to help you avoid losing data or damaging your equipment, and
warnings provide information to help you avoid catastrophic damage to yourself or your
equipment.

• Command syntax is shown in courier font.
7

About this Manual

8

Related Documents

Refer to the following documents for more information:

• DT7837 Getting Started help file on our website
(hhttp://www.mccdaq.com/PDFs/Manuals/DT7837_WebHelp/
DT7837_Getting_Started.htm)

• DT7837 User’s Manual (UM-26000). This manual describes the operation of the DT7837
module, as well calibration instructions, operating specifications, and pin assignments.

• Linux documentation on the AIO model (such as
//code.google.com/p/kernel/wiki/AIOUserGuide) and on Linux file I/O commands.

Where to Get Help

Should you run into problems installing or using the DT7837 module, the Data Translation
Technical Support Department is available to provide technical assistance. Refer to Chapter 5
for more information. If you are outside the United States or Canada, call your local
distributor, whose number is listed on Data Translation’s web site (www.mccdaq.com).

https://datatranslation.box.com/s/m7g7ltq9sjw70x3byq4bnexlj0pylclj
//code.google.com/p/kernel/wiki/AIOUserGuide
//code.google.com/p/kernel/wiki/AIOUserGuide
http://www.mccdaq.com/PDFs/Manuals/DT7837_WebHelp/DT7837_Getting_Started.htm

1
Overview

Introduction. 10

Installing the Software. 11

Examples . 12
9

Chapter 1

10
Introduction
The Linux operating system provides a powerful and flexible infrastructure for developing
embedded software for the DT7837. Because it is supported by an open source community,
developers can decrease development time by leveraging source code that is freely available,
and reduce costs by taking advantage of software that does not require licensing or
distribution fees.

Figure 1 shows how the software support is organized for the DT7837 module.

Figure 1: DT7837 Software Support

The device drivers (DT78xx driver and DT78xx USB driver), which are loaded when the
module is powered up, expose the functionality of the module to Linux user space
applications using virtual file interfaces, such as /dev/dt7837-ain for the analog input
subsystem and/dev/dt7837-ep1out for a USB gadget OUT endpoint.

This manual describes the virtual files and the file I/O commands that are supported by the
DT78xx device driver and DT78xx USB gadget driver. Using these files and file I/O
commands, you can write applications in Linux user space that communicate with the
subsystems on the DT7837 module to perform I/O operations.

Overview
Installing the Software
Refer to the DT7837 Getting Started help file on the Data Translation website for detailed
information on installing and setting up a host system for use in developing application
programs for the DT7837 module.
11

http://www.datatranslation.com/products/dataacquisition/embedded/DT7837/
http://www.datatranslation.com/products/dataacquisition/embedded/DT7837/
http://www.datatranslation.com/products/dataacquisition/embedded/DT7837/

Chapter 1

12
Examples
Once you have installed the DT7837 software to your Linux host computer, you can access the
DT7837 example programs, which are located in the following subdirectory under the TI SDK
directory: example-applications/dt78xx-examples/

The example programs demonstrate the capabilities of the hardware and illustrate how user
programs communicate with the DT7837 drivers using file I/O commands and IOCTLS. All
examples are written in ANSI C and are open source.

Each example program is located in a separate subdirectory. Each example directory includes
a README.txt file that provides information about the example and a makefile, which allows
you to build the example using the TI SDK toolchain and cross compiler.

You can build these example programs, use them to test the hardware, and modify them as
needed to get up and running quickly. It is recommended that you refer to these examples
when learning about the file I/O commands.

Figure 2: DT7837 Example Programs

The example programs are summarized in Table 1.

Overview
Table 1: Description of the Examples

Board Features Example Directory Description

Analog Input/

Input Stream

aio-in Performs an asynchronous analog input operation and
stores the data to a file.

data-logger Acquires data from all the channels in the input stream and
stores it to a file. Many file formats are supported.

fir-filter Performs an input stream and an output stream operation
simultaneously and continuously. Data from the input
stream is filtered and then output from the analog output
channel.

sig-analyzer An embedded web server and signal analyzer. It acquires
data from two analog input channels and performs and
FFT on the data. The results are displayed to a client’s web
browser when connected to the device.

web-server An embedded web server that performs most of the
functions of the DT7837 module and saves the acquired
data to a file.

Analog output/

Output stream

aout-single Performs a synchronous write operation on the analog
output channel.

fir-filter Performs an input stream and an output stream operation
simultaneously and continuously. Data from the input
stream is filtered and then output from the analog output
channel.

function-gen Performs an asynchronous analog output operation,
generating one of the following waveforms using Direct
Digital Synthesis: sine, triangle, sawtooth, or square. This
example also outputs a pulse waveform on several bits of
the digital output port.

Analog Input and

Analog Output
Calibration

dt7837-calibration A command-line program that calibrates the analog input
and analog output circuitry of the DT7837 module.

web-calibration A web-based calibration program that calibrates the analog
input and analog output circuitry of the DT7837 module.

Digital I/O digio Performs a synchronous write operation on the digital
output port, and then reads back the value that was output
by performing a synchronous read operation on the digital
input port.

web-server An embedded web server that performs most of the
functions of the DT7837 module and saves the acquired
data to a file.

function-gen Performs an asynchronous analog output operation,
generating one of the following waveforms using Direct
Digital Synthesis: sine, triangle, sawtooth, or square. This
example also outputs a pulse waveform on several bits of
the digital output port.
13

Chapter 1

14
Note: Linux is an open-source development environment. As such, our example programs
may use code from other vendors. This code is for demonstration purposes only. If you want
to use this code for commercial purposes, you must ensure that you resolve any licensing
issues with the appropriate parties.

Refer to the DT7837 Getting Started help file on the Data Translation website for more
information about building these example programs.

Counter/timer clk-gen Uses the counter/timer to generate an output clock.

event-counter Performs an event counting operation.

web-server An embedded web server that performs most of the
functions of the DT7837 module and saves the acquired
data to a file.

USB usb-loopback Demonstrates use of the gadget USB driver to send data
from a host application to the DT7837 using and OUT USB
pipe and to receive data from the DT7837 using IN USB
pipe.

Misc common Includes common functions used by the other example
programs.

Table 1: Description of the Examples (cont.)

Board Features Example Directory Description

http://www.datatranslation.com/products/dataacquisition/embedded/DT7837/
http://www.datatranslation.com/products/dataacquisition/embedded/DT7837/

Overview

Sub

Analo

d

ain

og

ster.

iper

g

d

ffset

og
ster.

iper

g

le

s on
Summary of Supported File I/O Operations
Table 2 lists the supported file I/O operations for the DT7837 module.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module

system Virtual File FIle I/O Command Description

g Input /dev/dt7837-ain open Opens the subsystem.

close Closes the subsystem.

ioctl - IOCTL_AIN_CFG_SET Configures the parameters of the
analog input subsystem.

ioctl - IOCTL_AIN_CFG_GET Returns the configuration of the

analog input subsystem.

ioctl - IOCTL_GAIN_POT_SET Sets the gain potentiometer for a

specified analog input channel an

calibration register.

ioctl - IOCTL_GAIN_POT_GET Returns the configuration of the g

potentiometer for a specified anal

input channel and calibration regi

ioctl - IOCTL_GAIN_POT_WIPER_SET Sets the wiper value for the gain

potentiometer associated with a

specified analog input channel.

ioctl - IOCTL_GAIN_POT_WIPER_GET Returns the configuration of the w

value for the gain potentiometer

associated with a specified analo
input channel.

ioctl - IOCTL_OFFSET_POT_SET Sets the offset potentiometer for a

specified analog input channel an
calibration register.

ioctl - IOCTL_OFFSET_POT_GET Returns the configuration of the o

potentiometer for a specified anal
input channel and calibration regi

ioctl - IOCTL_OFFSET_POT_WIPER_SET Sets the wiper value for the offset

potentiometer associated with a
specified analog input channel.

ioctl - IOCTL_OFFSET_POT_WIPER_GET Returns the configuration of the w

value for the offset potentiometer
associated with a specified analo

input channel.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.
15

Chapter 1

16

Input

ut

r for

h to

bled

r for

ext.

sts

le

s on

Sub
Stream /dev/dt7837-stream-in open Opens the input stream.

close Closes the input stream.

ioctl - IOCTL_SAMPLE_CLK_SET Configures the sample clock

frequency for the input stream.

ioctl - IOCTL_SAMPLE_CLK_GET Returns the configuration of the
sample clock frequency for the inp

stream.

ioctl - IOCTL_START_TRIG_CFG_SET Configures the start trigger for the
input stream.

ioctl - IOCTL_START_TRIG_CFG_GET Returns the configured start trigge

the input stream.

ioctl - IOCTL_CHAN_MASK_SET Configures the channels from whic

acquire data.

ioctl - IOCTL_CHAN_MASK_GET Returns the channels that are ena
for acquisition.

ioctl - IOCTL_ARM_SUBSYS Arms the module to detect a trigge

the input stream.

ioctl - IOCTL_START_SUBSYS Starts continuous acquisition (an

asynchronous operation) when a

software trigger is specified.

ioctl - IOCTL_ACQ_STATUS_GET Returns the status of acquisition

(armed or triggered).

ioctl - IOCTL_STOP_SUBSYS Stops continuous acquisition.

io_setup Opens an asynchronous I/O cont

io_submit Submits I/O requests.

io_getevents Processes events when I/O reque
are completed.

io_cancel Cancels I/O requests.

io_destroy Destroys an asynchronous I/O
context.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module (cont.)

system Virtual File FIle I/O Command Description

Overview

Analo

nd

ain

og

iper

g

nd

ffset
og

iper

g

le

s on

Sub
g Output /dev/dt7837-aout open Opens the subsystem.

close Closes the subsystem.

ioctl - IOCTL_GAIN_POT_SET Sets the gain potentiometer for a

specified analog output channel a

calibration register.

ioctl - IOCTL_GAIN_POT_GET Returns the configuration of the g

potentiometer for a specified anal

output channel and calibration
register.

ioctl - IOCTL_GAIN_POT_WIPER_SET Sets the wiper value for the gain

potentiometer associated with a
specified analog output channel.

ioctl - IOCTL_GAIN_POT_WIPER_GET Returns the configuration of the w

value for the gain potentiometer
associated with a specified analo

output channel.

ioctl - IOCTL_OFFSET_POT_SET Sets the offset potentiometer for a
specified analog output channel a

calibration register.

ioctl - IOCTL_OFFSET_POT_GET Returns the configuration of the o
potentiometer for a specified anal

output channel and calibration

register.

ioctl - IOCTL_OFFSET_POT_WIPER_SET Sets the wiper value for the offset

potentiometer associated with a

specified analog output channel.

ioctl - IOCTL_OFFSET_POT_WIPER_GET Returns the configuration of the w

value for the offset potentiometer

associated with a specified analo
output channel.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module (cont.)

system Virtual File FIle I/O Command Description
17

Chapter 1

18

Outpu
Strea

tput

r for

ant

are
m.

r for

ion

n a

ext.

sts

le

s on

Digita

e

Sub
t
m

/dev/dt7837-stream-out open Opens the input stream.

close Closes the input stream.

ioctl - IOCTL_SAMPLE_CLK_SET Configures the sample clock

frequency for the output stream.

ioctl - IOCTL_SAMPLE_CLK_GET Returns the configuration of the
sample clock frequency for the ou

stream.

ioctl - IOCTL_START_TRIG_CFG_SET Configures the start trigger for the
output stream.

ioctl - IOCTL_START_TRIG_CFG_GET Returns the configured start trigge

the output stream.

ioctl - IOCTL_CHAN_MASK_SET Configures the channels that you w

to update in the output stream.

ioctl - IOCTL_CHAN_MASK_GET Returns the output channels that
enabled in the analog output strea

ioctl - IOCTL_ARM_SUBSYS Arms the module to detect a trigge

the output stream.

ioctl - IOCTL_START_SUBSYS Starts a continuous output operat

(an asynchronous operation) whe

software trigger is specified.

ioctl - IOCTL_ACQ_STATUS_GET Returns the status of the output

operation (armed or triggered).

ioctl - IOCTL_STOP_SUBSYS Stops the output operation.

io_setup Opens an asynchronous I/O cont

io_submit Submits I/O requests.

io_getevents Processes events when I/O reque
are completed.

io_cancel Cancels I/O requests.

io_destroy Destroys an asynchronous I/O
context.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

l Input /dev/dt7837-din open Opens the subsystem.

close Closes the subsystem.

read Synchronously reads a single valu

from the digital input port.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module (cont.)

system Virtual File FIle I/O Command Description

Overview

Digita
(cont.

le

s on

Digita

e to

le

s on

Coun

Timer

.

.

e

le

s on

Meas

Coun

le

s on

Sub
l Input
)

/dev/dt7837-din ioctl - IOCTL_LED_SET Turns the user LEDs on the modu
either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

l Output /dev/dt7837-dout open Opens the subsystem.

close Closes the subsystem.

write Synchronously writes a single valu

the digital output port.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED
the module.

ter/ /dev/dt7837-ctr-tmr open Opens the subsystem.

close Closes the subsystem.

ioclt - IOCTL_CT_CFG_SET Configures the parameters of the

counter/timer subsystem.

ioclt - IOCTL_CT_CFG_GET Returns the configuration of the
counter/timer subsystem.

ioctl - IOCTL_START_SUBSYS Starts the counter/timer operation

ioctl - IOCTL_STOP_SUBSYS Stops the counter/timer operation

read Synchronously reads a single valu

from the counter/timer.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu
either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

ure

ter

/dev/dt7837-measure open Opens the subsystem.

close Closes the subsystem.

ioctl - IOCTL_MCTR_CFG_SET Configures the parameters of the
measure counter subsystem.

ioctl - IOCTL_MCTR_CFG_GET Returns the configuration of the

measure counter subsystem.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module (cont.)

system Virtual File FIle I/O Command Description
19

Chapter 1

20

Tacho

le

s on

Gadg
IN en

n to

end

Gadg

OUT

endpo
n to

Sub
meter /dev/dt7837-tach open Opens the subsystem.

close Closes the subsystem.

ioctl - IOCTL_TACH_CFG_SET Configures the parameters of the

tachometer subsystem.

ioctl - IOCTL_TACH_CFG_GET Returns the configuration of the
tachometer subsystem.

ioctl - IOCTL_LED_SET Turns the user LEDs on the modu

either on or off.

ioctl - IOCTL_LED_GET Returns the state of the user LED

the module.

et USB
dpoints

/dev/dt7837-ep1in
/dev/dt7837-ep2in

open Opens the IN file.

close Closes the IN file.

write Performs a blocking write operatio
send data to a USB host.

aio_write Performs a non-blocking,
asynchronous write operation to s
data to a USB host.

flush Removes the data from the IN
endpoint.

et USB

ints

/dev/dt7837-ep1out
/dev/dt7837-ep2out
/dev/dt7837-ep3out
/dev/dt7837-ep4out
/dev/dt7837-ep5out

open Opens the OUT file.

close Closes the OUT file.

read Performs a blocking read operatio
receive data from a USB host.

aio_read Performs a non-blocking,
asynchronous read operation to
receive data from a USB host.

flush Removes the data from the IN
endpoint.

Table 2: Summary of File I/O Operations Supported on the DT7837 Module (cont.)

system Virtual File FIle I/O Command Description

2
Using the File I/O Commands

Opening and Closing a File. 22

Analog Input and Input Stream Operations . 24

Analog Output and Output Stream Operations . 32

Tachometer Operations . 39

Counter/Timer Operations. 41

Measure Counter Operations . 48

Digital Input Operations . 52

Digital Output Operations . 53

Calibration. 54

Modifying the State of the User LEDs on the Module . 59

Sending Data to or Receiving Data from the Host USB Application 61
21

Chapter 2

22
Opening and Closing a File
The DT7837 device driver currently supports the following files for performing embedded
I/O operations on the module:

• /dev/dt7837-ain – Analog input subsystem. You can configure the parameters of each
analog input channel of the analog input subsystem and then read the continuous values
from the analog input subsystem using the input stream file (/dev/DT7837-stream-in).

• /dev/dt7837-aout – Analog output subsystem. You can configure the parameters of each
analog output channel of the analog output subsystem and then perform a synchronous
write operation to output a single value from the analog output subsystem or output
continuous values from the analog output subsystem using the output stream file
(/dev/DT7837-stream-out).

• /dev/dt7837-din – Digital input subsystem. This subsystem supports synchronous read
operations where a single value is read from the digital input port. To read the digital
input data with the analog input data in the input stream, use the /dev/DT7837-stream-in
file instead.

• /dev/dt7837-dout – Digital output subsystem. This subsystem supports synchronous write
operations where a single value is written to the digital output port.

• /dev/dt7837-tach – Tachometer input subsystem. You can configure the parameters of the
tachometer input channel. You can then read the value of the tachometer using a
synchronous read operation, or you can read the tachometer input with the analog input
data in the input stream using the /dev/DT7837-stream-in file instead.

• /dev/dt7837-measure – Measure counter subsystem. You can configure the parameters of
the measure counter. You can then read the value of the measure counter using a
synchronous read operation, or you can read the measure counter with the analog input
data in the input stream using the /dev/DT7837-stream-in file instead.

• /dev/dt7837-ctr-tmr – Counter/timer subsystem. You can configure the parameters of the
measure counter. You can then read the value of the measure counter using a synchronous
read operation, or you can read the measure counter with the analog input data in the
input stream using the /dev/DT7837-stream-in file instead.

• /dev/dt7837-stream-in – Input stream. Use this file to perform a continuous input
operation from each input channel specified in the input stream. Channels can include the
analog inputs, digital input port, tachometer input, measure counter, and counter/timer.

• /dev/dt7837-stream-out – Output stream. Use this file to perform a continuous output
operation from each input channel specified in the output stream. Channels can include
the analog output channels and the digital output port.

The DT78xx USB gadget driver supports these virtual files for sending data to and receiving
data from the USB host application:

• /dev/dt7837-ep1in – EP1 IN endpoint, address 0x81.

• /dev/dt7837-ep1out – EP1 OUT endpoint, address 0x01.

• /dev/dt7837-ep2in – EP2 IN endpoint, address 0x82.

• /dev/dt7837-ep2out – EP2 OUT endpoint, address 0x02.

• /dev/dt7837-ep3out – EP3 OUT endpoint, address 0x03.

Using the File I/O Commands
• /dev/dt7837-ep4out – EP4 OUT endpoint, address 0x04.

• /dev/dt7837-ep5out – EP5 OUT endpoint, address 0x05.

Before you can perform an I/O operation, you must open the file that you want to read from
or write to using the Linux file I/O command open.

You specify the pathname of the file to open and a flag that determines how to open the file,
and the command returns a file descriptor that is used in subsequent calls to the file. The
following flags determine how the file is opened:

• O_RDONLY –Read only

• O_WRONLY – Write only

• O_RDWR – Read and write

When you finished performing the I/O operation, you must close each subsystem and/or
stream that was opened using the Linux file I/O command close.
23

Chapter 2

24
Analog Input and Input Stream Operations
The DT7837 module supports continuous analog input operations using the input stream.

You can also acquire data from other input channels besides the analog input channels in the
input stream, including the digital input port, tachometer, and measure counter. This section
describes analog input and input stream operations on the DT7837 module.

Opening the Subsystem and Input Stream

To perform an analog input operation, open the file corresponding to the analog input
subsystem (/dev/dt7837-ain) and in the input stream (/dev/dt7837-stream-in) using the
Linux command open, described on page 22.

Configuring the Input Channels

To configure the analog input channels of the analog input subsystem, use the ioctl -
IOCTL_AIN_CFG_SET command.

You specify the file descriptor for the analog input subsystem and then specify the parameters
for each channel of the subsystem. Parameters include the following:

• Analog input channel to configure (ain) – Specify analog input channel 0, 1, 2, or 3.

• Gain (gain) – Specify either a gain of 1 for an effective input range of ±10 V or a gain of 10
for an effective input range of ±1 V.

• Coupling type (ac_coupling) – Specify either DC coupling or AC coupling for the analog
input channel.

• Current (current_on) – Specify either that the 4 mA current source is on or that it is off.

• Input type (differential) – Specify either the single-ended or differential input type for the
analog input channel. Currently, the DT7837 supports only single-ended inputs.

If you want to read the value of the tachometer measurement in the input stream, you must
also open and configure the tachometer subsystem; refer to page 39.

If you want to read the value of the counter/timer channel, you must open and configure the
counter/timer subsystem; refer to page 41 for more information.

If you want to read the value of the measure counter, you must open and configure the
measure counter subsystem; refer to page 48 for more information.

Note: The digital input port does not require configuration; therefore, you do not need to
open or configure this subsystem.

You can return the current configuration of the analog input subsystem using the ioctl -
IOCTL_AIN_CFG_GET command.

Using the File I/O Commands
Configuring the Channel Mask for the Input Stream

Once you have configured the input channel for each subsystem that you want to use, set up
the channel mask for the input stream using the ioctl - IOCTL_CHAN_MASK_SET
command. You specify the channels that you want to enable for acquisition. Channels can
include the analog input channels (bits 0 to 3 of the channel mask), tachometer (bit 8 of the
channel mask), measure counter (bit 10 of the channel mask), and/or digital input port (bit 11
of the channel mask).

You can return the current configuration of the channel mask using the ioctl -
IOCTL_CHAN_MASK_GET command.

Configuring the Sample Clock

Use the ioctl - IOCTL_SAMPLE_CLK_SET command to configure the sample clock for the
input stream. For the DT7837, only the internal clock source is supported. You must specify
the frequency at which to sample the specified channels in the input stream using the internal
clock. Supported values range from 195.3125 Hz to 105.469 kHz.

Note: According to sampling theory (Nyquist Theorem), specify a frequency that is at least
twice as fast as the input’s highest frequency component. For example, to accurately sample a
20 kHz signal, specify a sampling frequency of at least 40 kHz to avoid aliasing.

Once the sample clock is started, the module requires 39 conversions before the first A/D
sample is valid. The valid sample is aligned with the start trigger.

Note: The DT7837 module has two power modes: low power mode and high power mode.
Low power mode is used when you specify a sampling frequency less than 52.734 kHz. High
power mode is used when you specify a sampling frequency greater than or equal to
52.734 kHz.

If you change the power mode from low to high power or from high power to low power,
and then configure the device, the module is self-calibrated. You may notice that it takes time
after the device is configured to complete the calibration process.

The DT7837 driver sets the frequency of the internal clock as close as possible to the value that
you specify. However, the value that you specify may not be the actual value that is set. To
return the actual sample clock frequency that was set, use the ioctl -
IOCTL_SAMPLE_CLK_SET command.
25

Chapter 2

26
Configuring the Trigger that Starts Acquisition

Use the ioctl - IOCTL_START_TRIG_CFG_SET command to specify a start trigger that starts
acquisition for the input stream. The DT7837 module supports the following sources for the
start trigger:

• Software trigger (trig_src_sw) – When you specify this trigger source, the trigger event
occurs when you start the analog input operation using the ioctl -
IOCTL_START_SUBSYS command for the input stream, described on page 34.

• External digital (TTL) trigger (trig_src_ext)– When you specify this source, the trigger
event occurs when the module detects a rising- or falling-edge transition on the specified
general-purpose input pin on the Digital connector. Using software, you can specify
which edge is active and which of the following pins of the Digital connector to use for the
external trigger:

− Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

− Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

− Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

− Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

− Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

− Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

− Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

− Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Note: If you assigned a general-purpose input signal as an external trigger (or counter
clock or gate input), you can read the value of the signal as you would any other digital
input signal. Refer to page 52 for more information on reading digital input values.

• Threshold trigger (trig_src_threshold) – When you specify this source, the trigger event
occurs when the signal attached to a specified analog input channel rises above or falls
below a user-specified threshold value. Using software, you specify the following
parameters:

− Edge – Specify a rising-edge threshold trigger if you want to trigger when the signal
rises above a threshold level, or a falling-edge threshold trigger if you want to trigger
when the signal falls below a threshold level.

− Threshold channel – Specify any one of the analog input channels as the threshold
input channel.

− Threshold level – Specify a value between ±10 V for a gain of 1 or ±1 V for a gain of 10
as the threshold level. Note that in software, this value must be entered as counts.

To convert volts to raw counts, use the following formulas:

Gain of 1: counts = ((volts/10.0f) * (1 << (24 – 1)))

Gain of 10: counts = ((volts/1.0f) * (1 << (24 – 1)))

Using the File I/O Commands
To convert raw counts to volts (using two’s complement data encoding), use these
formulas:

Gain of 1: volts = ((counts * 10.0f)/(1 << (24 – 1)))

Gain of 10: volts = ((counts * 1.0f)/(1 << (24 – 1)))

Note: The DT7837 driver sets the threshold level as close as possible to the value that you
specify. However, the value that you specify may not be the actual value that is set. To
return the actual threshold level that was set, use the ioctl -
IOCTL_START_TRIG_CNF_GET command.

You can return the current configuration of the start trigger using the ioctl -
IOCTL_START_TRIG_CFG_GET command.

Submitting I/O Requests

The DT7837 module works with the Linux AIO (Asynchronous Input/Output) model to
submit I/O requests to the driver. The application can submit one or many requests from a
thread. Submitting a request does not cause the thread to block, and instead the thread can
proceed to do other computations and submit further requests to the device while the original
request is in process. The application is expected to process completions and organize logical
computations itself without depending on threads to organize the use of data.

For the DT7837, you must perform the following steps to set up and submit I/O requests to
the driver for an input operation:

1. Open an asynchronous I/O context using the Linux command io_setup.

2. Allocate an array of I/O control blocks (struct iocbs).

Each I/O control block is a structure with a number of parameters, one of which is the
buffer used to store the output waveform or pattern.

For the DT7837, buffers must be on a 32-byte boundary and the length of each buffer must
be a multiple of 32 bytes.

Each channel requires a value of four bytes. The buffer must contain a value for each
channel that is enabled in the output stream.

3. Submit I/O requests to the asynchronous I/O context using io_submit.

Refer to your Linux documentation, such as Refer to the following website for more
information about this model: https://code.google.com/p/kernel/wiki/AIOUserGuide, for
more information on these commands and the AIO model.
27

https://code.google.com/p/kernel/wiki/AIOUserGuide
https://code.google.com/p/kernel/wiki/AIOUserGuide
https://code.google.com/p/kernel/wiki/AIOUserGuide

Chapter 2

28
Arming and Starting Continuous Operations

Once you have configured all the parameters for the subsystems used in the input stream,
configured the input stream, and set up and submitted I/O requests, arm the input stream
using the ioctl - IOCTL_ARM_SUBSYS command.

If an external trigger or threshold trigger was configured as the start trigger, the continuous
input operation starts when the module detects the trigger condition.

If a software trigger was specified as the start trigger, you must explicitly start the continuous
input operation using the ioctl - IOCTL_START_SUBSYS command. The operation starts
immedately after the execution of this command.

When triggered, the DT7837 module simultaneously acquires data from all of the channels
specified in the input stream.

Note: You can start a continuous operation on both the input and output streams
simultaneously by specifying a non-zero value for the pSimultaneous variable of the
ioctl - IOCTL_START_SUBSYS command.

Getting the Status of Acquisition

Using the ioctl - IOCTL_ACQ_STATUS_GET command, you can determine if the input
operation has been armed or triggered, and whether the input FIFO is empty (contains no
data) or is full.

Processing I/O Requests

As I/O requests are processed, events are generated. Your application must process the I/O
requests as they are completed using the Linux command io_getevents. As each request is
completed, it is up to the application to retrieve the data from the buffers and manage the I/O
control blocks to ensure that buffers are available to be filled.

You can also set a timeout value for the io_getevents command so that the operation will stop
if the request is not completed within a specified time.

Refer to your Linux documentation for more information on the io_getevents command.

Dealing with Input Buffers

The order of the data in the input buffer is as follows, assuming that all channels are enabled
in the input stream:

• Analog input channels 0 through 3. Each analog input sample is a 32-bit, two’s
complement raw A/D value.

• Tachometer input. This is a 32-bit, unsigned value.

Using the File I/O Commands
• Counter/timer. This is a 32-bit, unsigned value.

• Measure/counter. This is a 32-bit, unsigned value.

• Digital input port. This is 32-bit, unsigned value. The digital input data is in the least
significant eight bits.

Refer to page 25 for more information on the channel mask for the input stream.

Enabling Buffer Error Reporting

By default, input stream buffer overrun are not reported to user programs. You can enable
error reporting so that these errors are reported from the kernel device driver to the user
program through signals.

To enable error reporting, perform the following steps:

1. Write your buffer error handler.

2. Open the input stream and then set the process ID or group ID that will receive the signal
for input stream events. By default, SIGIO is the signal that is used to report buffer
overrun errors. However, you can choose another signal, such as SIGUSR1, SIGUSR2, and
so on, for reporting errors.

Note: If you want to enable buffer error reporting for both the input and output streams,
it is recommended that you choose a different signal for each stream.

3. Get all the status flags for the input stream and then set the asynchronous flag (FASYNC)
for the input stream.

4. (Optional) If you want to use a different signal (SIGUSR1, SIGUSR2, and so on) instead of
the SIGIO signal, register the signal.

5. Register the signal handler for SIGIO or the signal that you register in step 4.

The following code show how to enable and handle buffer overrun errors from the input
stream device file; refer to your Linux documentation for more information:

//include files
#define __USE_GNU (1)
#include <signal.h>
#include <fcntl.h>

//Step 1
//Write an error handler. Note that the signal handler is
//registered in Step 5 below

void buff_overrun_handler(int sig)
{
//your code here
}

29

Chapter 2

30
//Step 2
//Open input stream file and set the process ID for the signal
//to use for reporting errors

int fd_in = open("/dev/dt7837-stream-in", O_RDWR);
if ((fcntl(fd_in, F_SETOWN, getpid())) < 0)
{

 //handle error
}

//Step 3
//Get the flags for the input stream and set the async flag (FASYNC)
int oflags = fcntl(fd_in, F_GETFL);
if ((fcntl(fd_in, F_SETFL, oflags | FASYNC)) < 0)
{

 //handle error
}

//Step 4
//This step is optional. By default buffer errors are reported
//using the signal SIGIO.
//To use a different signal, such as SIGUSR1, SIGUSR2, and so on,
//register the signal by specifying its number

if ((fcntl(fd_in, F_SETSIG, SIGUSR1)) < 0)
{

 //handle error

//Step 5
//Register a signal handler for the default signal, SIGIO, or the
//signal specified in Step 4

struct sigaction act;
memset (&act, 0, sizeof(act));
act.sa_handler = buff_overrun_handler; //signal handler
act.sa_flags = SA_NODEFER;
sigemptyset(&act.sa_mask);
if (sigaction(SIGUSR1, &act, NULL)) //Use SIGIO if you skip step 4
{

 //handle error
}

Using the File I/O Commands
Stopping Continuous Operations

Once started, a continuous operation repeats continuously until you stop it with the ioctl -
IOCTL_STOP_SUBSYS command.

This command stops an operation that was previously started with the ioctl -
IOCTL_START_SUBSYS command (a software trigger was specified) or was started when
the specified trigger condition was detected.

This command stops the DMA engine immediately and no further data is collected.
Asynchronous I/O control blocks that were submitted using io_submit are still in the AIO
queue and will not be completed. To cancel these control blocks, use io_cancel.

If you want to restart the operation for the input stream, you must rearm the input stream
using ioctl - IOCTL_ARM_SUBSYS, and, if a software trigger is specified, restart the
operation using ioctl - IOCTL_START_SUBSYS.

Cleaning up Resources

Once you are finished acquiring data, clean up the resources used by performing the
following steps:

1. Cancel any outstanding I/O requests using the Linux command io_cancel.

2. Destroy the asynchronous I/O context using the Linux command io_destroy.

3. Close the analog input subsystem, the input stream, and any other open subsystems used
in the input stream, using the close command, described on page 23.

Refer to your Linux documentation for more information on these commands.
31

Chapter 2

32
Analog Output and Output Stream Operations
The DT7837 has one analog output channel. You can write a single value to the analog output
channel using the analog output subsystem.

You can also update the analog output channel, and if desired, the digital output port
continuously using the output stream.

This section describes these operations.

Performing a Single Value Operation

This section describes how to perform a single value analog output operation.

Opening the Subsystem

To perform a single value operation, open the file corresponding to the analog output
subsystem (/dev/dt7837-aout) using the Linux command open, described on page 22.

Updating the Value of the Analog Output Channel

To update the analog output channel, perform a synchronous write operation using the Linux
command write, specifying the file descriptor for the analog output subsystem, the variable
that contains the value to write, and the size of the variable that contains the analog output
value.

The write operation is blocking, in that it does not return until the value is written. The
operation stops automatically once the value is written.

Closing the Subsystem

When finished, close the analog output subsystem using the close command, described on
page 23.

Performing a Continuous Output Operation

This section describes how to perform a continuous output operation.

Opening the Output Stream

To perform a continuous analog output operation, open the file corresponding to the output
stream (/dev/dt7837-stream-out) using the Linux command open, described on page 22.

Using the File I/O Commands
Configuring the Channel Mask for the Output Stream

Set up the channel mask for the output stream using the ioctl - IOCTL_CHAN_MASK_SET
command. You specify the channels that you want to enable for output. For the DT7837, you
can include the analog output channel (bit 16 of the channel mask) and/or the individual lines
of the digital output port (bits 24 to 31 of the channel mask) in the output stream.

You can return the current configuration of the channel mask using the ioctl -
IOCTL_CHAN_MASK_GET command.

Configuring the Sample Clock

Use the ioctl - IOCTL_SAMPLE_CLK_SET command to configure the clock source for the
output stream. For the DT7837, only the internal clock is supported. You must specify the
frequency at which to update the specified channels in the output stream using the internal
clock. For the DT7837, supported values range from 30 kHz to 216 kHz.

The DT7837 module requires 36 sample clock periods once the output subsystem has been
triggered before the first D/A conversion is completed. The clock is always running.

Note: The sample frequencies for the A/D and D/A subsystems on the DT7837 are
independently programmable and are derived from the same 48 MHz reference clock.
Therefore, it is possible to establish a fixed relationship between the A/D and D/A sample
frequencies, including setting them to the same frequency (30 kHz to 105.469 kHz). However,
the subsystems are not designed to be synchronous with each other.

The DT7837 driver sets the frequency of the internal clock as close as possible to the value that
you specify. However, the value that you specify may not be the actual value that is set. To
return the actual sample clock frequency that was set, use the ioctl -
IOCTL_SAMPLE_CLK_SET command.

Configuring the Trigger that Starts the Output Operation

Use the ioctl - IOCTL_START_TRIG_CFG_SET command to specify a start trigger that starts
the continuous operation for the output stream. The DT7837 module supports the following
sources for the start trigger:

• Software trigger (trig_src_sw) – When you specify this trigger source, the trigger event
occurs when you start the analog output operation using the ioctl -
IOCTL_START_SUBSYS command for the output stream, described on page 34.

• External digital (TTL) trigger (trig_src_ext)– When you specify this source, the trigger
event occurs when the module detects a rising- or falling-edge transition on the specified
general-purpose input pin on the Digital connector. Using software, you can specify
which edge is active and which of the following pins of the Digital connector to use for the
external trigger:

− Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

− Pin 2 corresponds to bit 1 of the digital input port (value 0x2).
33

Chapter 2

34
− Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

− Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

− Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

− Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

− Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

− Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

You can return the current configuration of the start trigger using the ioctl -
IOCTL_START_TRIG_CFG_GET command.

Submitting I/O Requests

The DT7837 module works with the Linux AIO (Asynchronous Input/Output) model to
submit I/O requests to the driver. The application can submit one or many requests from a
thread. Submitting a request does not cause the thread to block, and instead the thread can
proceed to do other computations and submit further requests to the device while the original
request is in process. The application is expected to process completions and organize logical
computations itself without depending on threads to organize the use of data.

For the DT7837, you must perform the following steps to set up and submit I/O requests to
the driver for an output operation:

1. Open an asynchronous I/O context using the Linux command io_setup.

2. Allocate an array of I/O control blocks (struct iocbs).

Each I/O control block is a structure with a number of parameters, one of which is the
buffer used to store the data that is acquired.

For the DT7837, buffers must be on a 32-byte boundary and the length of each buffer must
be a multiple of 32 bytes. Each sample requires four bytes.

3. Fill each buffer with the pattern that you want to output to the enabled channels in the
output stream.

4. Submit I/O requests to the asynchronous I/O context using io_submit.

Refer to your Linux documentation, such as Refer to the following website for more
information about this model: https://code.google.com/p/kernel/wiki/AIOUserGuide, for
more information on these commands and the AIO model.

Arming and Starting Continuous Operations

Once you have configured the output stream and set up and submitted I/O requests, arm the
output stream using the ioctl - IOCTL_ARM_SUBSYS command.

If an external trigger was configured as the start trigger, the continuous output operation
starts when the module detects the trigger condition.

If a software trigger was specified as the start trigger, you must explicitly start the continuous
input operation using the ioctl - IOCTL_START_SUBSYS command. The operation starts
immedately after the execution of this command.

https://code.google.com/p/kernel/wiki/AIOUserGuide

Using the File I/O Commands
When triggered, the DT7837 module simultaneously updates all of the channels specified in
the output stream.

Note: You can start a continuous operation on both the input and output streams
simultaneously by specifying a non-zero value for the pSimultaneous variable of the
ioctl - IOCTL_START_SUBSYS command.

Getting the Status of the Output Operation

Using the ioctl - IOCTL_ACQ_STATUS_GET command, you can determine if the output
operation has been armed or triggered, and whether the output FIFO is empty (contains no
data) or is full.

Processing I/O Requests

As I/O requests are processed, events are generated. Your application must process the I/O
requests as they are completed using the Linux command io_getevents. As each request is
completed, it is up to the application to retrieve the data from the buffers and manage the I/O
control blocks to ensure that buffers are filled and available.

You can also set a timeout value for the io_getevents command so that the operation will stop
if the request is not completed within a specified time.

Refer to your Linux documentation for more information on the io_getevents command.

Dealing with Output Buffers

The order of the data in the output buffer is as follows, assuming that all channels are enabled
in the output stream:

• Analog output channel 0. The analog output sample is a 32-bit, two’s complement value.

• Digital output port. This is 32-bit unsigned value. The digital output data is in the least
significant eight bits.

Refer to page 33 for more information on the channel mask for the output stream.

Enabling Buffer Error Reporting

By default, output stream buffer underrun errors are not reported to user programs. You can
enable error reporting so that these errors are reported from the kernel device driver to the
user program through signals.

To enable error reporting for the output stream, perform the following steps:

1. Write your buffer error handler.
35

Chapter 2

36
2. Open the output stream and then set the process ID or group ID that will receive the
signal for output stream events. By default, SIGIO is the signal that is used to report buffer
overrun errors. However, you can choose another signal, such as SIGUSR1, SIGUSR2, and
so on, for reporting errors.

Note: If you want to enable buffer error reporting for both the input and output streams,
it is recommended that you choose a different signal for each stream.

3. Get all the status flags for the output stream and then set the asynchronous flag
(FASYNC) for the output stream.

4. (Optional) If you want to use a different signal (SIGUSR1, SIGUSR2, and so on) instead of
the SIGIO signal, register the signal.

5. Register the signal handler for SIGIO or the signal that you register in step 4.

The following code show how to enable and handle buffer underrun errors from the output
stream device file.

//include files
#define __USE_GNU (1)
#include <signal.h>
#include <fcntl.h>

//Step 1
//Write an error handler. Note that the signal handler is
//registered in Step 5 below

void buff_underrun_handler(int sig)
{
//your code here
}

//Step 2
//Open output stream file and set the process ID for the signal
//to use for reporting errors

int fd_out = open("/dev/dt7837-stream-out", O_RDWR);
if ((fcntl(fd_out, F_SETOWN, getpid())) < 0)
{

 //handle error
}

//Step 3
//Get the flags for the output stream and set the async flag (FASYNC)
int oflags = fcntl(fd_out, F_GETFL);
if ((fcntl(fd_out, F_SETFL, oflags | FASYNC)) < 0)
{

 //handle error
}

Using the File I/O Commands
//Step 4
//This step is optional. By default buffer errors are reported
//using the signal SIGIO.
//To use a different signal, such as SIGUSR1, SIGUSR2, and so on,
//register the signal by specifying its number

if ((fcntl(fd_out, F_SETSIG, SIGUSR1)) < 0)
{

 //handle error
}

//Step 5
//Register a signal handler for the default signal, SIGIO, or the
//signal specified in Step 4

struct sigaction act;
memset (&act, 0, sizeof(act));
act.sa_handler = buff_underrun_handler; //signal handler
act.sa_flags = SA_NODEFER;
sigemptyset(&act.sa_mask);
if (sigaction(SIGUSR1, &act, NULL)) //Use SIGIO if you skip step 4
{

 //handle error
}

Stopping Continuous Operations

Once started, a continuous operation repeats continuously until you stop it with the ioctl -
IOCTL_STOP_SUBSYS command.

This command stops an operation that was previously started with the ioctl -
IOCTL_START_SUBSYS command (a software trigger was specified) or was started when
the specified trigger condition was detected.

This command stops the DMA engine immediately and no further data is output.
Asynchronous I/O control blocks that were submitted using io_submit are still in the AIO
queue and will not be completed. To cancel these control blocks, use io_cancel.

If you want to restart the operation for the output stream, you must rearm the output stream
using ioctl - IOCTL_ARM_SUBSYS, and, if a software trigger is specified, restart the
operation using ioctl - IOCTL_START_SUBSYS.
37

Chapter 2

38
Cleaning up Resources

Once you are finished outputting data, clean up the resources used by performing the
following steps:

1. Cancel any outstanding I/O requests using the Linux command io_cancel.

2. Destroy the asynchronous I/O context using the Linux command io_destroy.

3. Close the output stream using the close command, described on page 23.

Refer to your Linux documentation for more information on these commands.

Using the File I/O Commands
Tachometer Operations
The DT7837 module supports one tachometer input signal. You can measure the frequency or
period of the tachometer input signal to calculate the rotation speed for high-level (±30 V)
tachometer input signals. An internal 12 MHz counter is used for the measurement, yielding a
resolution of 83 ns (1/12 MHz). The value of the tachometer can be returned in the input
stream.

To read the tachometer measurement in the input stream, set bit 8 of the channel mask of the
input stream. Refer to page 32 for more information on analog input and input stream
operations.

This section describes how to configure the parameters of the tachometer subsystem.

Opening the Subsystem

Open the file corresponding to the tachometer subsystem (/dev/dt7837-tach using the Linux
command open, described on page 22.

Configuring the Tachometer Subsystem

To configure the tachometer subsystem, use the ioctl - IOCTL_TACH_CFG_SET command.

You specify the file descriptor for the tachometer subsystem and the following parameters:

• The edge (rising or falling) of the tachometer to use for the measurement. The number of
counts betweeen two consecutive edges of the tachometer input signal is used as the
tachometer measurement.

• The Stale flag (stale_flag) that indicates whether or not the data is new. If stale_flag is set as
Used (1), the most significant bit (MSB) of the value is set to 0 to indicate new data;
reading the value before the measurement is complete returns an MSB of 1. If stale_flag is
set to Not Used (0), the MSB is always set to 0.

When the input operation is started, the internal 12 MHz counter starts incrementing when it
detects the first starting edge of the tachometer input and stops incrementing when it detects
the next starting edge; at that point, the counter stores the count. The stored count is
maintained until it is read as part of the input data stream or until a new count is stored. The
next tachometer measurement operation is started automatically.

If the sample rate of the input subsystem is faster than the tachometer input frequency, then
the stored count retains the current value when the count is read by the input subsystem. The
operation of stale_flag in this case is described as follows:

• If another input subsystem sample occurs before another measure completes and stale_flag
is used, then the Stale flag is set and the stale measure count is written into the input data
stream.

• If another input subsystem sample occurs before another measure completes and stale_flag
is not used, then the Stale flag is not set and the stale measure count is written into the
input data stream.
39

Chapter 2

40
If the input sample rate is slower than the tachometer input frequency, then as each period
measurement completes, a new count value is stored. When the input subsystem sample
occurs, the most recently stored measure count is written into the input data stream.

A data pipeline is used in the hardware to compensate for the A/D group delay and
synchronizes the value of the tachometer input with the analog input measurements so that
all measurements are correlated in time.

When you read the value of the tachometer input as part of the input stream, you might see
results similar to the following:

Using the count that is returned from the tachometer input, you can determine the following:

• Frequency of a signal pulse (the number of periods per second). You can calculate the
frequency as follows:

− Frequency = 12 MHz/(Number of counts – 1)
where 12 MHz is the internal counter/timer clock frequency

For example, if the count is 21, the measured frequency is 600 kHz (12 MHz/20).

• Period of a signal pulse. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/12 MHz
where 12 MHz is the internal counter/timer clock frequency

You can return the current configuration of the tachometer subsystem using the ioctl -
IOCTL_TACH_CFG_GET command.

Table 3: An Example of Reading the Tachometer Input as Part of the Input Stream

Time A/D Value
Tachometer
Input Value Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete

70 5004 12373 Operation not complete

80 5003 14503 Operation complete

90 5002 14503 Next operation started, but is not complete

Using the File I/O Commands
Counter/Timer Operations
The DT7837 module supports one counter/timer channel. You can read the value of the
counter directly using a synchronous read of the counter/timer subsystem.

This section describes counter/timer operations.

Opening the Subsystem

To perform a synchronous read of the counter/timer, open the file corresponding to the
counter/timer subsystem (/dev/dt7837-ctr-tmr) using the Linux command open, described
on page 22.

Configuring the Counter/Timer Subsystem

To configure the counter/timer subsystem, use the ioctl - IOCTL_CT_CFG_SET command.

You specify the file descriptor for the counter/timer subsystem and then specify the
parameters specific to the counter/timer subsystem. This section describes each of the
configurable parameters of the counter/timer subsystem.

You can return the current configuration of the counter/timer subsystem using the ioctl -
IOCTL_CT_CFG_GET command.

Mode

The DT7837 module supports the following counter/timer modes:

• Event counting – described below.

• Rate generation – described on page 42

• Non-retriggerable one-shot mode – described on page 43

• Idle – described on page 44.

Event Counting Mode

Use event counting mode (ct_mode_counter) if you want to count the number of rising edges
that occur on the counter’s clock input when the counter’s gate signal is active (low-level or
high-level).

You can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts
counting again.
41

Chapter 2

42
Using software, you must specify the following parameters for the event counting operation:

• Active gate type (external low level or external high level). Refer to page 44 for more
information about the supported gate types.

• The general-purpose input pin (1 to 8) of the Digital connector to use for the external gate
signal. Ensure that you physically connect the gate signal to this input pin. Refer to the
DT7837 User’s Manual for the pin descriptions of the Digital connector.

• The C/T clock source (internal or external). Note that in event counting mode, the
external C/T clock is more useful than an internal C/T clock; refer to page 45 for more
information about the C/T clock sources.

• The general-purpose input pin (1 to 8) of the Digital connector to use for the external C/T
clock input. Ensure that you physically connect the clock input signal to this input pin.
Refer to the DT7837 User’s Manual for the pin descriptions of the Digital connector.

Rate Generation Mode

Use rate generation mode (ct_mode_divider) to generate a continuous pulse output signal from
the counter’s output signal. You can use this pulse output signal as an external clock to pace
other operations, such as an analog input or other counter/timer operations.

The pulse output operation is enabled whenever the counter’s gate signal is active. While the
pulse output operation is enabled, the counter outputs a pulse of the specified type and
frequency continuously. As soon as the operation is disabled, rate generation stops.

You can output pulses using a maximum frequency of 24 MHz (if using the internal C/T
clock) or 5 MHz (if using the external C/T clock).

Note: The integrity of the signal degrades at frequencies greater than 10 MHz.

Using software, you must specify the following parameters for the rate generation operation:

• Active gate type (external low level or external high level). Refer to page 44 for more
information about the supported gate types.

• The general-purpose input pin (1 to 8) of the Digital connector to use for the external gate
signal. Ensure that you physically connect the gate signal to this input pin. Refer to the
DT7837 User’s Manual for the pin descriptions of the Digital connector.

• The C/T clock source (internal or external). Refer to page 45 for more information about
the C/T clock sources.

• If you are using an external C/T clock source, the general-purpose input pin (1 to 8) of the
Digital connector to use for the external C/T clock input. Ensure that you physically
connect the clock input signal to this input pin. Refer to DT7837 User’s Manual for the pin
descriptions of the Digital connector.

• The period of the output pulse. Refer to page 46 for more information about the period of
the output pulse.

• The pulse width (duty cycle) of the active pulse. Refer to page 46 for more information
about the pulse width of the output pulse.

Using the File I/O Commands
• The polarity of the output signal (active high or active low). Refer to page 46 for more
information on the polarity of the output pulse.

• The general-purpose output pin (11 to 18) of the Digital connector to use for the external
C/T clock output signal. Ensure that you physically connect the C/T output signal to this
output pin. Refer to DT7837 User’s Manual for the pin descriptions of the Digital
connector.

Non-Retriggerable One-Shot Mode

Use non-retriggerable one-shot mode (ct_mode_1shot) to generate a single output pulse from
the counter whenever the specified edge is detected on the counter’s gate signal (after the
pulse period from the previous output pulse expires). Any gate signals that occur while the
pulse is being output are not detected by the module, as shown in Figure 3. The module
continues to output a pulse when the specified gate edge is detected until you stop the
operation. You can use this mode to clean up a poor clock input signal by changing its pulse
width, and then outputting it.

Figure 3: Non-Retriggerable One-Shot Mode

Using software, you must specify the following additional parameters to set up the
non-retriggerable one-shot operation:

• Active gate type that enables the output pulse. Refer to page 44 for more information
about the supported gate types.

• The general-purpose input pin (1 to 8) of the Digital connector to use for the external gate
signal. Ensure that you physically connect the gate signal to this input pin. Refer to the
DT7837 User’s Manual for the pin descriptions of the Digital connector.

• The C/T clock source (internal or external) used to generate the pulse. Note that in
non-retriggerable one-shot mode, the internal C/T clock is more useful than an external
C/T clock; refer to page 45 for more information about the C/T clock sources.

Gate Input (High)

Output Pulses*

Gate Signal is Ignored

*You can determine period, pulse width, and polarity of the output pulse using software.
43

Chapter 2

44
• If using the external C/T clock source, the general-purpose input pin (1 to 8) of the Digital
connector to use for the external C/T clock input. Ensure that you physically connect the
clock input signal to this input pin. Refer to the DT7837 User’s Manual for the pin
descriptions of the Digital connector.

• The period of the output pulse. Refer to page 46 for more information about the period of
the output pulse.

• The pulse width (duty cycle) of the output pulse. Refer to page 46 for more information
about the pulse width of the output pulse.

• The general-purpose output pin (11 to 18) of the Digital connector to use for the external
C/T clock output signal. Ensure that you physically connect the C/T output signal to this
output pin. Refer to the DT7837 User’s Manual for the pin descriptions of the Digital
connector.

• Retriggerable setting of 0 for non-retriggerable one-shot mode.

• The polarity of the output signal (active high or active low). Refer to page 46 for more
information on the polarity of the output pulse.

Idle Mode

When you use idle mode (ct_mode_idle), the counter no longer drives the clock output signal
that is assigned to one of the general-purpose output signals (pins 11 to 18) of the Digital
connector.

Note: The value of the counter output signal can also be overwritten by writing to the
digital output subsystem. Refer to page 53 for more information.

If you assigned a general-purpose input signal as a counter clock or gate input (or external
trigger), you can read the value of the signal as you would any other digital input signal.
Refer to page 52 for more information on reading digital input values.

Gate

The counter’s gate signal determines when a counter/timer operation is enabled.

DT7837 modules provide the following choices for the gate parameter:

• None (ct_gate_none) – A software start command enables the counter/timer operation
immediately after execution. (No general-purpose input signal is required if a gate type of
ct_gate_none is selected.)

• Low external gate input (ct_gate_ext_lo) – Specifies a logic low or falling edge gate type.
For event counting and rate generation mode, the operation is enabled when the counter’s
gate signal is low and is disabled when the counter’s gate signal is high. For one-shot or
repetitive one-shot mode, the operation is enabled when the counter’s gate signal goes
from a high to a low transition and is disabled when the counter’s gate signal goes from a
low to a high transition.

Using the File I/O Commands
Using software, you specify one of the general-purpose input pins of the Digital connector
on the DT7837 module as the external C/T gate input (ext_gate_din). Ensure that you
physically connect the external gate signal to the selected pin. (Refer to the DT7837 User’s
Manual for the pin descriptions of the Digital connector.)

• High external gate input (ct_gate_ext_hi) – Specifies a logic high or rising edge gate type.
For event counting and rate generation mode, the operation is enabled when the counter’s
gate signal is high and is disabled when the counter’s gate signal is low. For one-shot
mode and repetitive one-shot mode, the operation is enabled when the counter’s gate
signal goes from a low to a high transition and is disabled when the counter’s gate signal
goes from a high to a low transition.

You specify one of the general-purpose input pins of the Digital connector on the DT7837
module as the external C/T gate input (ext_gate_din). Ensure that you physically connect
the external gate signal to the selected pin. (Refer to the DT7837 User’s Manual for the pin
descriptions of the Digital connector.)

C/T Clock Input Sources

The following input clock sources are available for the general-purpose counter/timer:

• Internal C/T clock – The internal C/T clock on the DT7837 uses a 48 MHz time base. This
clock source is typically used for one-shot, repetitive one-shot, and rate generation
operations.

• External C/T clock – An external C/T clock is useful when you want to pace
counter/timer operations at rates not available with the internal C/T clock or if you want
to pace at uneven intervals. The frequency of the external C/T clock can range from
0.0112 Hz to 10 MHz.

This clock source is typically used for event counting operations or rate generation
operations.

You specify one of the general-purpose input pins (1 to 8) of the Digital connector on the
DT7837 module as the external C/T clock (ext_clk_din). Then, physically connect the
external clock signal to the selected general-purpose input pin. (Refer to the DT7837 User’s
Manual for the pin descriptions of the Digital connector.) Counter/timer operations start
on the rising edge of the clock input signal.

Note: If you specify a counter/timer in the input stream, the A/D sample clock
determines how often you want to read the counter value. Refer to page 33 for more
information about the A/D sample clock.
45

Chapter 2

46
Pulse Output Period, Pulse Width, and Polarity

If you want to perform a C/T output operation, use software to define one of the
general-purpose output pins (11 to 18) of the Digital connector on the DT7837 module as the
external C/T output signal. Then, connect the external C/T output signal to the selected
general-purpose output pin. (Refer to the DT7837 User’s Manual for the pin descriptions of the
Digital connector.)

For the DT7837 module, you can program the polarity of the output pulse (active high or
active low). For an active high pulse, the high portion of the total pulse output period is the
active portion of the counter/timer pulse output signal. For an active low pulse, the low
portion of the total pulse output period is the active portion of the counter/timer pulse output
signal.

You can specify the number of input clock cycles that are used to create one period of the
counter clock output signal. You can also specify the number of input clock cycles used to
create the active pulse width (or duty cycle) of the C/T output signal.

For example, if you are using an external C/T clock running at 10000 Hz as the input clock
source of the counter/timer, and you want to generate a output signal of 1000 Hz with a 20%
duty cycle, specify a period of 10 (10000 Hz divided by 10 is 1000 Hz) and a pulse width of 2
(the period of 10 multiplied by 20%). This is illustrated in Figure 4.

Figure 4: Example of a Pulse Output

Note: If you are using an internal C/T clock input source, you can output pulses using a
maximum frequency of 24 MHz. Note, however, that the integrity of the signal degrades at
frequencies greater than 10 MHz.

If you are using an external C/T clock input source, you can output pulses using a maximum
frequency of 5 MHz.

Total Pulse Period = 10
With an external C/T input clock of

10000 Hz and a period of 10, the
output signal is 1000 Hz.

Active Pulse Width = 2 for 20% duty cycle

low pulse

high pulse

Using the File I/O Commands
Starting the Counter/Timer Operation

Once you have configured all the parameters for the counter/timer subsystem, start the
counter/timer using the ioctl - IOCTL_START_SUBSYS command. If a software gate is
specified, the operation starts immedately after the execution of this command. For other gate
types, the operation starts when the specified gate type is enabled.

Reading the Counter/Timer

You can read the value of the counter using the Linux command read. You specify the file
descriptor for the counter/timer subsystem, the variable that will store the resulting value,
and the size of the variable that will store the counter value.

Stopping the Counter/Timer Operation

To stop the counter/timer operation, use the ioctl - IOCTL_STOP_SUBSYS command. When
this command is executed, the counter/timer operation stops immediately.

Closing the Subsystem

When you are finished reading the value of the counter/timer, close the counter/timer
subsystem using the close command, described on page 23.
47

Chapter 2

48
Measure Counter Operations
The DT7837 module supports one measure counter whose value can be returned in the input
stream. Using this counter, you can measure the frequency, period, or pulse width of a single
signal or the time period between two signals. The measure counter is useful for correlating
analog input data with digital positional data, measuring the frequency of a signal, or as a
tachometer. An internal 48 MHz counter is used for the measurement, yielding a resolution of
20.83 ns (1/48 MHz).

The read the value of the measure counter in the input stream, set bit 10 of the channel mask of
the input stream. Refer to page 25 for more information on analog input and input stream
operations.

This section describes how to configure the parameters of the measure counter.

Opening the Subsystem

Open the file corresponding to the measure counter subsystem (/dev/dt7837-measure) using
the Linux command open, described on page 22.

Configuring the Measure Counter Subsystem

To configure the measure counter subsystem, use the ioctl - IOCTL_MCTR_CFG_SET
command.

You specify the file descriptor for the measure counter subsystem and then specify the
following parameters:

• The signals that start and stop the measurement. Refer to Table 4 for the supported start
and stop signals.

Table 4: Possible Start and Stop Signals

Signal Connection Required

A/D conversion complete No connection required.

Tachometer input
(falling edge or rising edge)

Connect to the Tachometer input (pin 23).

Digital input 0
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 0 (pin 1) of the Digital
connector. By default, this is digital input 0.

Digital input 1
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 1 (pin 2) of the Digital
connector. By default, this is digital input 1.

Digital input 2
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 2 (pin 3) of the Digital
connector. By default, this is digital input 2.

Using the File I/O Commands
• A Stale flag (stale_flag) indicating whether or not the data is new. This flag is used only
when the start edge and the stop edge is set to use the same pin and edge (such as pin 0 -
DIN 0 rising as the start edge and pin 0 -DIN rising as the stop edge).

If stale_flag is set as Used (1), the most significant bit (MSB) of the value is set to 0 to
indicate new data; reading the value before the measurement is complete returns an MSB
of 1. If stale_flag is set to Not Used (0), the MSB is always set to 0.

When the selected start edge is the same as the selected stop edge, the internal 48 MHz
counter starts incrementing when it detects the first start edge of the selected input signal and
stops incrementing when it detects the selected stop edge (which is the same as the start edge,
in this case); at that point, the counter stores and resets the count. The stored count is
maintained until it is read as part of the input data stream or until a new count is stored. Since
the stop edge is the same as the start edge in this case, the stop edge for the current
measurement is the start edge for the next measurement; therefore, no waveform periods are
missed. The value of the measure count depends on the input subsystem sample frequency,
described as follows:

• If the input subsystem sample frequency is faster than the selected input frequency, then
the stored measure count retains the current value when it is read by the input subsystem.
The operation of the Stale flag in this case is described as follows:

− If another input subsystem sample occurs before another measure completes and the
Stale flag is used, then the Stale flag is set and the stale measure count is written into
the input data stream.

− If another input subsystem sample occurs before another measure completes and the
Stale flag is not used, then the Stale flag is not set and the stale measure count is
written into the input data stream.

Digital input 3
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 3 (pin 4) of the Digital
connector. By default, this is digital input 3.

Digital input 4
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 4 (pin 5) of the Digital
connector. By default, this is digital input 4.

Digital input 5
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 5 (pin 6) of the Digital
connector. By default, this is digital input 5.

Digital input 6
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 6 (pin 7) of the Digital
connector. By default, this is digital input 6.

Digital input 7
(falling edge or rising edge)

Connect a digital input, external A/D trigger, C/T clock input, or
C/T gate input to general-purpose input 7 (pin 8) of the Digital
connector. By default, this is digital input 7.

Table 4: Possible Start and Stop Signals

Signal Connection Required
49

Chapter 2

50
• If the input subsystem sample frequency is slower than the selected input frequency, then
the new measure count value is stored as each period measurement completes. When an
input subsystem sample occurs, then the most recently stored measure count is written
into the input data stream.

When the selected start edge is not the same as the selected stop edge, the internal 48 MHz
counter starts incrementing when it detects the selected start edge and stops incrementing
when it detects the next selected stop edge; at that point, the counter stores and resets the
count. The stored count is maintained until it is read as part of the input data stream or until a
new count is stored. The value of the measure count depends on the input subsystem sample
frequency, described as follows:

• If the input subsystem sample rate is faster than the selected measurement period, then
the stored count retains the current value when the count is read by the input subsystem.
The operation of stale_flag in this case is described as follows:

− If another input subsystem sample occurs before another measure completes and
stale_flag is used, then stale_flag is set and the stale measure count is written into the
input data stream.

− If another input subsystem sample occurs before another measure completes and
stale_flag is not used, then stale_flag is not set and the stale measure count is written
into the input data stream.

• If the input subsystem sample rate is slower than the selected measurement period, then a
new count value is stored as each period measurement completes. When an input
subsystem sample occurs, the most recently stored measure count is written into the input
data stream.

A data pipeline is used in the hardware to compensate for the A/D group delay and
synchronizes the value of the measure counter with the analog input measurements, so that all
measurements are correlated in time.

When you read the value of the measure counter as part of the input data stream, you might
see results similar to the following:

Table 5: An Example of Reading a Measure Counter as Part of the Input Stream

Time A/D Value
Measure Counter

Values Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete

Using the File I/O Commands
Using the count that is returned from the measure counter, you can determine the following:

• Frequency between the start and stop signals/edges. You can calculate the frequency as
follows:

− Frequency = 48 MHz/(Number of counts – 1)
where 48 MHz is the internal measure counter frequency

For example, if the count is 201, the measured frequency is 240 kHz (48 MHz/200).

• Period between the start and stop signals/edges. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/48 MHz
where 48 MHz is the internal measure counter frequency

• Pulse width of the start and stop signal/edges (rising to falling edge or falling edge to
rising edge). You can calculate the period as follows:

− Pulse width = 1/Frequency

− Pulse width = (Number of counts – 1)/48 MHz
where 48 MHz is the internal measure counter frequency

You can return the current configuration of the measure counter subsystem using the ioctl -
IOCTL_MCTR_CFG_GET command.

70 5004 12373 Operation not complete

80 5003 14503 Operation complete

90 5002 14503 Next operation started, but is not complete

Table 5: An Example of Reading a Measure Counter as Part of the Input Stream (cont.)

Time A/D Value
Measure Counter

Values Status of Operation
51

Chapter 2

52
Digital Input Operations
The DT7837 module supports synchronous reads of the digital input port. You can also read
the value of the digital port in the input stream by setting bit 11 of the channel mask of the
input stream; refer to page 25 for more information on input stream operations.

The digital input subsystem does not need to be configured. By default, general-purpose input
pins 1 to 8 of the Digital connector on the DT7837 module correspond to digital input signals 0
to 7.

Note: If you assigned a general-purpose input signal as a counter clock or gate input or as
an external trigger, you can read the value of the signal as you would any other digital input
signal, if desired.

A digital line is high if its value is 1; a digital line is low if its value is 0. On power up or reset,
a low value (0) is output from each of the digital output lines and a high value (1) is read from
each of the digital input lines if the lines are not connected.

This section describes synchronous read operations of the digital input port.

Opening the Subsystem

Open the file corresponding to the digital input subsystem (/dev/dt7837-din) using the Linux
command open, described on page 22.

Reading the Value

To perform a synchronous read of the digital input port, use the Linux command read,
specifying the file descriptor for the digital input subsystem, the variable that will store the
resulting value, and the size of the variable that will store the digital input value.

The read operation is blocking, in that it does not return until the value is read. The operation
stops automatically once the value is returned.

Closing the Subsystem

When finished, close the digital input subsystem using the close command, described on page
23.

Using the File I/O Commands
Digital Output Operations
The DT7837 module supports synchronous writes to the digital output port. You can also
update the individual lines of the digital output port through the output stream by setting bits
24 to 31 of the channel mask for the output stream; refer to page 33 for more information on
output stream operations.

The digital output subsystem does not need to be configured. By default, general-purpose
input pins 11 to 18 of the Digital connector on the DT7837 module correspond to digital output
signals 0 to 7.

Note: If the clock output signal of the counter/timer was assigned to one of the
general-purpose output signals, you can overwrite the value of the signal by writing to the
digital output subsystem. Therefore, ensure that you know the configuration of each output
pin of the Digital connector before writing to it or you could corrupt the signal on that pin.

A digital line is high if its value is 1; a digital line is low if its value is 0. On power up or reset,
a low value (0) is output from each of the digital output lines and a high value (1) is read from
each of the digital input lines if the lines are not connected.

This section describes synchronous write operations of the digital output port.

Opening the Subsystem

Open the file corresponding to the digital output subsystem (/dev/dt7837-dout) using the
Linux command open, described on page 22.

Updating the Value of the Port

To perform a synchronous write to the digital output port, use the Linux command write,
specifying the file descriptor for the digital output subsystem, the variable that contains the
value to write, and the size of the variable that contains the digital output value.

The write operation is blocking, in that it does not return until the value is written. The
operation stops automatically once the value is written.

Closing the Subsystem

When finished, close the digital output subsystem using the close command, described on
page 23.
53

Chapter 2

54
Calibration
This section describes the calibration process for the analog input and analog output circuitry
on the DT7837.

Note: DT7837 modules are calibrated at the factory and should not require calibration for
initial use. It is recommended that you check and, if necessary, readjust the calibration of the
analog circuitry every six months using the DT7837 calibration program. Refer to the DT7837
User’s Manual for more information on this program. This section describes the commands
that the DT7837 calibration program uses to calibrate the module. You can write your own
calibration program, if desired, using these commands.

Analog Input Calibration

Each analog input channel can be calibrated for offset (zero) and gain to compensate for
variances in the Analog-to-Digital Converter (ADC) and associated circuitry. To do this, each
analog input channel has an associated offset and gain potentiometer for each gain setting and
for sampling frequencies less than 52.734 kHz and greater than or equal to 52.734 kHz. As
shown in Table 6, user calibration registers correspond to different gain and sampling
frequency combinations.

Each potentiometer has three values: a "factory" calibration value that is programmed at the
factory and represents a known accurate configuration, a "user" calibration value that you can
modify, and a "wiper" value, which is the current value. In most cases, the wiper and user
calibration values are the same. They differ only during the actual calibration process when
the wiper value is modified until the desired value is reached.

Table 6: Analog Input Calibration Registers

Analog Input Calibration
Registers Gain Sampling Frequency

0 1 > 52.734 kHz

1 10 > 52.734 kHz

2 1 < = 52.734 kHz

3 10 < = 52.734 kHz

Using the File I/O Commands
Note: The DT7837 module has two power modes: low power mode and high power mode.
Low power mode is used when you specify a sampling frequency less than 52.734 kHz. High
power mode is used when you specify a sampling frequency greater than or equal to
52.734 kHz.

If you change the power mode from low to high power or from high power to low power,
and then configure the device, the module is self-calibrated. You may notice that it takes time
after the device is configured to complete the calibration process.

Also, if you change the sampling rate, you must wait a few milliseconds for the master clock
to settle before performing calibrating the module.

This section describes how to calibrate the analog input circuitry.

Opening the Subsystem

Open the file corresponding to the analog input subsystem (/dev/dt7837-ain) using the Linux
command open, described on page 22.

Calibrating the Offset

To calibrate the offset of an analog input channel, connect a precision voltage source of 0 V to
the specified analog input channel. Then, use the ioctl - IOCTL_OFFSET_POT_SET
command to specify the analog input channel that you want to calibrate, the value to write to
the potentiometer, whether the calibration type is a user (0) or factory (1) calibration, and the
calibration register to update (0 to 3) based on the gain and the sampling frequency used.

Adjust the potentiometer until you measure a value as close as possible to 0 V. You can
continue to adjust the offset values by calling this command with different values. The offset
calibration register is automatically written to the wiper of the associated potentiometer.

When you are satisfied that the offset calibration value is correct, call the ioctl -
IOCTL_OFFSET_POT_WIPER_SET command. You specify the analog input channel
(potentiometer) that you want to calibrate and the value to write to the potentiometer. The
value is written to a calibration register in non-volatile EEPROM.

These steps should be repeated until all the offset calibration registers (for all gains and
sampling frequencies) are calibrated for each analog input channel.

Note that you can read the value of the offset potentiometers using the ioctl -
IOCTL_OFFSET_POT_GET and ioctl - IOCTL_OFFSET_POT_WIPER_GET commands.
55

Chapter 2

56
Calibrating the Gain

To calibrate the gain of an analog input channel, connect a precision voltage source of +9.375 V
to the specified analog output channel.

Then, use the ioctl - IOCTL_GAIN_POT_SET command to specify the analog input channel
that you want to calibrate, the value to write to the potentiometer, whether the calibration type
is a user or factory calibration, and the calibration register to update (0 to 3) based on the gain
and sampling frequency used.

Note: This command will block all other operations for at least 5 ms.

You can continue to adjust the gain calibration values by calling this command with different
values. The gain calibration register is automatically written to the wiper of the associated
potentiometer.

When you are satisfied that the gain calibration value is correct, call the ioctl -
IOCTL_GAIN_POT_WIPER_SET command. You specify the analog input channel
(potentiometer) that you want to calibrate and the value to write to the potentiometer. The
value is written to a calibration register in non-volatile EEPROM.

These steps should be repeated until all the gain calibration registers (for all gains and
sampling frequencies) are calibrated for each analog input channel.

Note that you can read the value of the gain potentiometers using the ioctl -
IOCTL_GAIN_POT_GET and ioctl - IOCTL_GAIN_POT_WIPER_GET commands.

Closing the Subsystem

When finished, close the analog input subsystem using the close command, described on page
23.

Analog Output Calibration

Each analog output channel can be calibrated for offset (zero) and gain to compensate for
variances in the Digital-to-Analog Converter (DAC) and associated circuitry. To do this, each
analog output channel has an associated offset and gain potentiometer for three output
frequency ranges, as shown in Table 7.

Using the File I/O Commands
Each potentiometer has three values: a "factory" calibration value that is programmed at the
factory and represents a known accurate configuration, a "user" calibration value that you can
modify, and a "wiper" value, which is the current value. In most cases, the wiper and user
calibration values are the same. They differ only during the actual calibration process when
the wiper value is modified until the desired value is reached.

This section describes how to calibrate the analog output circuitry.

Opening the Subsystem

Open the file corresponding to the analog input subsystem (/dev/dt7837-aout) using the
Linux command open, described on page 22.

Calibrating the Offset

To calibrate the offset of an analog output channel, connect a digital multimeter (DMM) to the
specified analog output channel. Then, use the ioctl - IOCTL_OFFSET_POT_SET command
to specify the analog output channel that you want to calibrate, the value to write to the
potentiometer, whether the calibration type is a user (0) or factory (1) calibration, and the
calibration register to update (0 to 2) based on the output frequency used.

You can continue to adjust the offset values by calling this command with different values.
Adjust the potentiometer until you measure a value as close to 0 V as possible. The offset
calibration register is automatically written to the wiper of the associated potentiometer.

When you are satisfied that the offset calibration value is correct, call the ioctl -
IOCTL_OFFSET_POT_WIPER_SET command. You specify the analog input channel
(potentiometer) that you want to calibrate and the value to write to the potentiometer. The
value is written to a calibration register in non-volatile EEPROM.

These steps should be repeated until all the offset calibration registers (for all output
frequency ranges) are calibrated for each analog output channel.

Note that you can read the value of the offset potentiometers using the ioctl -
IOCTL_OFFSET_POT_GET and ioctl - IOCTL_OFFSET_POT_WIPER_GET commands.

Table 7: Analog Output Calibration Registers

Analog Output
Calibration Registers Sampling Frequency

0 > 54 kHz and < = 108 kHz

1 > 30 kHz and < = 54 kHz

2 > 108 kHz and < = 216 kHz
57

Chapter 2

58
Calibrating the Gain

To calibrate the gain of an analog output channel, connect a DMM to the specified analog
output channel.

Then, use the ioctl - IOCTL_GAIN_POT_SET command to specify the analog output channel
that you want to calibrate, the value to write to the potentiometer, whether the calibration type
is a user or factory calibration, and the calibration register to update (0 to 2) based on the
output frequency used.

Note: This command will block all other operations for at least 5 ms.

You can continue to adjust the gain calibration values by calling this command with different
values. Adjust the potentiometer until you measure a value as close to +9.375 V as possible.
The gain calibration register is automatically written to the wiper of the associated
potentiometer.

When you are satisfied that the gain calibration value is correct, call the ioctl -
IOCTL_GAIN_POT_WIPER_SET command. You specify the analog input channel
(potentiometer) that you want to calibrate and the value to write to the potentiometer. The
value is written to a calibration register in non-volatile EEPROM.

These steps should be repeated until all the gain calibration registers (for all output
frequencies) are calibrated for each analog output channel.

Note that you can read the value of the gain potentiometers using the ioctl -
IOCTL_GAIN_POT_GET and ioctl - IOCTL_GAIN_POT_WIPER_GET commands.

Closing the Subsystem

When finished, close the analog output subsystem using the close command, described on
page 23.

Using the File I/O Commands
Modifying the State of the User LEDs on the Module
The DT7837 has eight user LEDs, shown in Figure 5, on the ARM block (bottom board).
Header J10, also shown in Figure 5, provides debug pins that correspond to the user LEDs.
The value of a debug pin reflects the state of the corresponding user LED, where the pin has a
value of 0 if the LED is off or a value of 1 if the LED is on.

Figure 5: User LEDs on the DT7837 Module

Table 8 lists the pin descriptions of header J10 on the DT7837.

User LEDs
(LED 0 is
right-most;
LED 7 is
left-most)

Debug Pins
(Pin 10 is
right-most;
Pin 1 is
left-most)
59

Chapter 2

60
You can turn the LEDs either on or off using the ioctl - IOCTL_LED_SET command. You can
also return the state of the user LEDs using the ioctl - IOCTL_LED_GET command.

Note that to execute these commands, you must first open a file corresponding to any of the
supported subsystems of the DT7837 (/dev/dt7837-ain, dev/dt7837-din, /dev/dt7837-dout,
/dev/dt7837-tach, dev/dt7837-measure, /dev/dt7837-ctr-tmr, or /dev/dt7837_stream_in)
using the Linux command open, described on page 22. When finished, close the file using the
close, described on page 23.

Table 8: Debug Pins of Header J10

Pin Pin Description

1 Debug_D7; corresponds to user LED 7.

2 Debug_D6; corresponds to user LED 6.

3 Debug_D5; corresponds to user LED 5.

4 Debug_D4; corresponds to user LED 4.

5 Debug_D3; corresponds to user LED 3.

6 Debug_D2; corresponds to user LED 2.

7 Debug_D1; corresponds to user LED 1.

8 Debug_D0; corresponds to user LED 0.

9 Digital Ground

10 Digital Ground

Using the File I/O Commands
Sending Data to or Receiving Data from the Host USB
Application

The kernel module for the DT7837 USB gadget driver is a simplified version of gadgetfs and
has the same kind of functionality. When loaded, it enumerates as a USB gadget, creates a
specified number of bulk USB endpoints, and exposes each end point as a virtual file in the
/dev directory.

A user mode application can perform file operations on each virtual file to send data to the
USB host through an IN endpoint and receive data from the USB host through an OUT
endpoint. The module serves as a conduit for data and does not care about the data itself.

Note that the directions are relative to the USB host. Therefore, to send data to the host USB,
you must write to an IN endpoint. To receive data from a USB host, you must read data from
an OUT endpoint.

This section describes file I/O operations used by the USB gadget driver to send data to and
receive data from the USB host.

Opening the File

Open the file corresponding to the endpoint that you want to open using the Linux command
open, described on page 22.

The files are named as follows:

• /dev/dt7837-ep1in

• /dev/dt7837-ep1out

• /dev/dt7837-ep2in

• /dev/dt7837-ep2out

• /dev/dt7837-ep3out

• /dev/dt7837-ep4out

• /dev/dt7837-ep5out

A file can be opened by only one reader/writer at a time. However, different files can be
opened simultaneously. Once a file is closed, it can be re-opened.

Sending Data to the USB Host

To send data to the USB host, you must write to file corresponding to an IN endpoint.

If you want to perform a blocking write, use the Linux command write. Because it is blocking,
no other operation can be performed until the write operation is complete.

If you want to perform a non-blocking, asynchronous write operation, use the Linux
command aio_write. Because it is non-blocking, other operations can be performed while the
aio_write operation is in progress.
61

Chapter 2

62
Receiving Data from the USB Host

To receive data from a USB host, you must read data from a file corresponding to an OUT
endpoint.

If you want to perform a blocking read operation, use the Linux command read. Because it is
blocking, no other operation can be performed until the read operation is complete.

If you want to perform a non-blocking, asynchronous read operation, use the Linux command
aio_read. Because it is non-blocking, other operations can be performed while the aio_read
operation is in progress.

Eliminating Data from the Endpoint

To eliminate the data from either an IN or OUT endpoint, use the Linux command flush.

Closing the File

When you are finished using the file, close the file using the close command, described on
page 23.

3
File I/O Command Reference

close . 65

ioctl - IOCTL_ACQ_STATUS_GET . 66

ioctl - IOCTL_AIN_CNF_GET . 67

ioctl - IOCTL_AIN_CNF_SET. 69

ioctl - IOCTL_ARM_SUBSYS . 71

ioctl - IOCTL_CHAN_MASK_GET . 72

ioctl - IOCTL_CHAN_MASK_SET . 75

ioctl - IOCTL_CT_CFG_GET . 78

ioctl - IOCTL_CT_CFG_SET . 85

ioctl - IOCTL_GAIN_POT_GET. 92

ioctl - IOCTL_GAIN_POT_SET . 94

ioctl - IOCTL_GAIN_POT_WIPER_GET . 97

ioctl - IOCTL_GAIN_POT_WIPER_SET . 99

ioctl - IOCTL_LED_GET . 101

ioctl - IOCTL_LED_SET. 103

ioctl - IOCTL_MCTR_CFG_GET . 105

ioctl - IOCTL_MCTR_CFG_SET. 111

ioctl - IOCTL_OFFSET_POT_GET . 117

ioctl - IOCTL_OFFSET_POT_SET . 119

ioctl - IOCTL_OFFSET_POT_WIPER_GET . 121

ioctl - IOCTL_OFFSET_POT_WIPER_SET . 123

ioctl - IOCTL_SAMPLE_CLK_GET . 125

ioctl - IOCTL_SAMPLE_CLK_SET . 127

ioctl - IOCTL_START_SUBSYS. 129

ioctl - IOCTL_START_TRIG_CNF_GET . 131

ioctl - IOCTL_START_TRIG_CNF_SET . 135

ioctl - IOCTL_STOP_SUBSYS . 139

ioctl - IOCTL_TACH_CFG_GET . 140

ioctl - IOCTL_TACH_CFG_SET . 142

open . 144
63

Chapter 3

64
Note: Refer to your Linux documentation for information on all other Linux commands,
including read, write, aio_read, aio_write, io_setup, io_submit, io_getevents, io_cancel, and
io_destroy.

File I/O Command Reference
close

Description Closes a file descriptor that is associated with a subsystem, stream,
or endpoint of the DT7837 module.

Syntax int close(int fd);

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor of the subsystem, stream, or endpoint to close.

Returns 0 = Success; –1 = Failure

Notes You must open each subsystem, stream, or endpoint that you want
to use with the open command, described on page 144, before you
can configure its parameters and perform an I/O operation.

Example The following command closes the file associated with the input
stream of the DT7837:

#define DEV_STREAM_IN "/dev/dt7837-stream-in"

close(DEV_STREAM_IN);

See Also open, described on page 144.
65

Chapter 3

66
ioctl - IOCTL_ACQ_STATUS_GET

Description Returns the status of acquisition or the status of the output operation.

Syntax int ioctl(int fd, IOCTL_ACQ_STATUS_GET,
acq_status_t *pAcqStatus);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or the output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

pAcq_Status

acq_status_t enumeration

A pointer to a variable that specifies the status of acquisition (if the file
/dev/dt7837-stream-in was specified as the file descriptor) or the status of
the output operation (if the file /dev/dt7837-stream-out was specified as
the file descriptor).

The acq_status_t enumeration is described as follows:

typedef enum
{

acq_status_armed = 0x01,
acq_status_triggered = 0x02,
acq_status_fifo_empty = 0x04,
acq_status_fifo_full = 0x08,

}acq_status_t;

where,

• acq_status_armed specifies that the associated stream is armed and
waiting for a trigger (value 0x1).

• acq_status_triggered specifies that the associated stream has been
triggered and is active (value 0x2).

• acq_status_fifo_empty indicates that the FIFO is empty (no data) for the
associated stream (value 0x4).

• acq_status_fifo_full indicates that the FIFO is full of data for the
associated stream.

Returns 0 = Success; < 0 = Failure

Example The following example returns the status of acquisition for the input
stream:

acq_status_t Acq_Status;
if (ioctl(fd_instream, IOCTL_ACQ_STATUS_GET,

&Acq_Status))
return (printf_errno_html(conn, errno,

"IOCTL_ACQ_STATUS_GET"));

File I/O Command Reference
ioctl - IOCTL_AIN_CNF_GET

Description Returns the configuration of the analog input subsystem.

Syntax int ioctl(int fd, IOCTL_AIN_CFG_GET,
struct dt78xx_ain_config_t *pAIN_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain).

Name:

Data Type:

Description:

pAIN_config

dt78xx_ain_config_t structure

A pointer to a structure that defines the configuration of the analog input
subsystem.

dt78xx_ain_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint16_t ain;
uint16_t gain;
uint16_t ac_coupling;
uint16_t current_on;
uint16_t differential;
uint16_t unused;

} dt78xx_ain_config_t;

Structure Element Name:

Data Type:

Description:

ain

uint16_t

Specifies which analog input channel to configure, where 0 represents
analog input channel 0, 1 represents analog input channel 1, 2 represents
analog input channel 2, and 3 represents analog input channel 3.

Structure Element Name:

Data Type:

Description:

gain

uint16_t

Specifies the gain to use for the specified analog input channel. Values are 1
for a gain of 1 or 10 for a gain of 10.

Structure Element Name:

Data Type:

Description:

ac_coupling

uint16_t

Specifies the coupling type for the specified analog input channel. Values
are 0 for dc coupling or 1 for ac coupling.
67

Chapter 3

68
Structure Element Name:

Data Type:

Description:

current_on

uint16_t

Specifies whether the 4 mA current source is on or off for the specified
analog input channel. If this value is 0, the current source is off. If this value
is 1, the current source is on.

Structure Element Name:

Data Type:

Description:

differential

uint16_t

Specifies whether the specified analog input channel is a differential input
or a single-ended input. If this value is 0, the channel is configured for a
single-ended input. If this value is 1, the channel is configured for a
differential input. The DT7837 supports single-ended inputs only.

Structure Element Name:

Data Type:

Description:

unused

uint16_t

Reserved for future use.

Returns 0 = Success; < 0 = Failure

Example The following example returns the configuration of the analog input
subsystem:

dt78xx_ain_config_t AIN_cfg;
if (ioctl(fd_ain, IOCTL_AIN_CFG_GET, &AIN_cfg))
 {
 perror("IOCTL_AIN_CFG_GET");
 goto finish;
 }

See Also IOCTL_AIN_CFG_SET, described on page 69.

File I/O Command Reference
ioctl - IOCTL_AIN_CNF_SET

Description Specifies the configuration of the analog input subsystem.

Syntax int ioctl(int fd, IOCTL_AIN_CFG_SET,
struct dt78xx_ain_config_t *pAIN_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain).

Name:

Data Type:

Description:

pAIN_config

dt78xx_ain_config_t structure

A pointer to a structure that defines the configuration of the analog input
subsystem.

dt78xx_ain_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint16_t ain;
uint16_t gain;
uint16_t ac_coupling;
uint16_t current_on;
uint16_t differential;
uint16_t unused;

} dt78xx_ain_config_t;

Structure Element Name:

Data Type:

Description:

ain

uint16_t

Specifies which analog input channel to configure, where 0 represents
analog input channel 0, 1 represents analog input channel 1, 2 represents
analog input channel 2, and 3 represents analog input channel 3.

Structure Element Name:

Data Type:

Description:

gain

uint16_t

Specifies the gain to use for the specified analog input channel. Values are 1
for a gain of 1 or 10 for a gain of 10.

Structure Element Name:

Data Type:

Description:

ac_coupling

uint16_t

Specifies the coupling type for the specified analog input channel. Values
are 0 for dc coupling or 1 for ac coupling.
69

Chapter 3

70
Structure Element Name:

Data Type:

Description:

current_on

uint16_t

Specifies whether the 4 mA current source is on or off for the specified
analog input channel. If this value is 0, the current source is off. If this value
is 1, the current source is on.

Structure Element Name:

Data Type:

Description:

differential

uint16_t

Specifies whether the specified analog input channel is a differential input
or a single-ended input. If this value is 0, the channel is configured for a
single-ended input. If this value is 1, the channel is configured for a
differential input. The DT7837 supports single-ended inputs only.

Structure Element Name:

Data Type:

Description:

unused

uint16_t

Reserved for future use.

Returns 0 = Success; < 0 = Failure

Example The following example specifies the configuration of the analog input
subsystem. In this case, analog input channel 0 is configured with a gain of
1, dc coupling, and with the 4 mA current source off.

#define DEV_AIN "/dev/dt7837-ain"
fd_ain = open(DEV_AIN, O_RDWR);

dt78xx_ain_config_t AIN_cfg;
AIN_cfg.ain = 0;
AIN_cfg.gain = 1; //x1 gain
AIN_cfg.ac_coupling = 0; //dc coupling
AIN_cfg.current_on = 0; //current source off
if (ioctl(fd_ain, IOCTL_AIN_CFG_SET, &AIN_cfg))

{
fprintf(stderr, "IOCTL_AIN_CFG_SET ERROR

%d \"%s\"\n", errno, strerror(errno));
 goto finish;
 }

See Also IOCTL_AIN_CFG_GET, described on page 67.

File I/O Command Reference
ioctl - IOCTL_ARM_SUBSYS

Description Arms the input or output stream to detect the trigger that will start the
continuous operation.

Syntax int ioctl(int fd, IOCTL_ARM_SUBSYS, int unused);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

unused

int

Not used; reserved for future use.

Returns 0 = Success; < 0 = Failure

Example The following example arms the input stream, fd_instream, that was
previously opened:

tmp = 0;
if (ioctl(fd_in_stream, IOCTL_ARM_SUBSYS, &tmp))
 {

err = errno;
return (printf_errno(conn, err,

"IOCTL_ARM_SUBSYS"));
 }

See Also ioctl - IOCTL_START_SUBSYS, described on page 129.
71

Chapter 3

72
ioctl - IOCTL_CHAN_MASK_GET

Description Returns the channels that are enabled for acquisition in the input stream or
that are enabled for output in the output stream.

Syntax int ioctl(int fd, IOCTL_CHAN_MASK_GET,
chan_mask_t *pChannels);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

*pChannels

chan_mask_t enumeration

A pointer to a 32-bit value that specifies the channels that are enabled for
acquisition in the input stream or enabled for output in the output stream.
The channel_mask_t enumeration, described below, is used to specify the
values associated with the channels in the input stream and output stream:

typedef enum {
chan_mask_dout7 = (1<<31),
chan_mask_dout6 = (1<<30),
chan_mask_dout5 = (1<<29),
chan_mask_dout4 = (1<<28),
chan_mask_dout3 = (1<<27),
chan_mask_dout2 = (1<<26),
chan_mask_dout1 = (1<<25),
chan_mask_dout0 = (1<<24),
chan_mask_aout3 = (1<<19)
chan_mask_aout2 = (1<<18),
chan_mask_aout1 = (1<<17),
chan_mask_aout0 = (1<<16),
chan_mask_din = (1<<11),
chan_mask_meas_ctr = (1<<10),
chan_mask_ctr_timer = (1<<9),
chan_mask_tach = (1<<8),
chan_mask_ain7 = (1<<7),
chan_mask_ain6 = (1<<6),
chan_mask_ain5 = (1<<5),
chan_mask_ain4 = (1<<4),
chan_mask_ain3 = (1<<3),
chan_mask_ain2 = (1<<2),
chan_mask_ain1 = (1<<1),
chan_mask_ain0 = (1<<0),

} chan_mask_t

File I/O Command Reference
Description (cont.): where,

• chan_mask_dout7 is the line 7 of the digital output port (bit 31 - value
0x80000000).

• chan_mask_dout6 is the line 6 of the digital output port (bit 30 - value
0x40000000).

• chan_mask_dout5 is the line 5 of the digital output port (bit 29 - value
0x20000000).

• chan_mask_dout4 is the line4 of the digital output port (bit 28 - value
0x10000000).

• chan_mask_dout3 is the line3 of the digital output port (bit 27 - value
0x8000000).

• chan_mask_dout2 is the line1 of the digital output port (bit 26 - value
0x4000000).

• chan_mask_dout1 is the line1 of the digital output port (bit 25 - value
0x2000000).

• chan_mask_dout0 is the line 0 of the digital output port (bit 24 - value
0x1000000).

• chan_mask_aout3 is analog output 3 (bit 19 - value 0x80000). Note that
the DT7837 does not support this channel.

• chan_mask_aout2 is analog output 2 (bit 18 - value 0x40000). Note that
the DT7837 does not support this channel.

• chan_mask_aout1 is analog output 1 (bit 17 - value 0x20000). Note that
the DT7837 does not support this channel.

• chan_mask_aout0 is analog output 0 (bit 16 - value 0x10000).

• chan_mask_din is the digital input port (bit 11 - value 0x800).

• chan_mask_meas_ctr is the measure counter (bit 10 - value 0x400).

• chan_mask_tach is the tachometer input (bit 8 - value 0x100).

• chan_mask_ain7 is analog input channel 7 (bit 7 - value 0x80). Note that
the DT7837 does not support this channel.

• chan_mask_ain6 is analog input channel 6 (bit 6 - value 0x40). Note that
the DT7837 does not support this channel.

• chan_mask_ain5 is analog input channel 5 (bit 5 - value 0x20). Note that
the DT7837 does not support this channel.

• chan_mask_ain4 is analog input channel 4 (bit 4 - value 0x10). Note that
the DT7837 does not support this channel.

• chan_mask_ain3 is analog input channel 3 (bit 3 - value 0x8).

• chan_mask_ain2 is analog input channel 2 (bit 2 - value 0x4).

• chan_mask_ain1 is analog input channel 1 (bit 1 - value 0x2).

• chan_mask_ain0 is analog input channel 0 (bit 0 - value 0x1).
73

Chapter 3

74
Returns 0 = Success; < 0 = Failure

Example The following example returns the channels that were enabled in the input
stream, fd_instream:

ret = ioctl(fd_instream, IOCTL_CHAN_MASK_GET,
&chan_mask);

See Also IOCTL_CHAN_MASK_SET, described on page 75.

File I/O Command Reference
ioctl - IOCTL_CHAN_MASK_SET

Description Specifies the channels to enable for acquisition in the input stream or
enabled for output in the output stream.

Syntax int ioctl(int fd, IOCTL_CHAN_MASK_SET,
chan_mask_t *pChannels);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

*pChannels

chan_mask_t enumeration

A pointer to a 32-bit value that specifies the channels that are enabled for
acquisition in the input stream or enabled for output in the output stream.
The channel_mask_t enumeration, described below, is used to specify the
values associated with the channels in the input stream and output stream:

typedef enum {
chan_mask_dout7 = (1<<31),
chan_mask_dout6 = (1<<30),
chan_mask_dout5 = (1<<29),
chan_mask_dout4 = (1<<28),
chan_mask_dout3 = (1<<27),
chan_mask_dout2 = (1<<26),
chan_mask_dout1 = (1<<25),
chan_mask_dout0 = (1<<24),
chan_mask_aout3 = (1<<19)
chan_mask_aout2 = (1<<18),
chan_mask_aout1 = (1<<17),
chan_mask_aout0 = (1<<16),
chan_mask_din = (1<<11),
chan_mask_meas_ctr = (1<<10),
chan_mask_ctr_timer = (1<<9),
chan_mask_tach = (1<<8),
chan_mask_ain7 = (1<<7),
chan_mask_ain6 = (1<<6),
chan_mask_ain5 = (1<<5),
chan_mask_ain4 = (1<<4),
chan_mask_ain3 = (1<<3),
chan_mask_ain2 = (1<<2),
chan_mask_ain1 = (1<<1),
chan_mask_ain0 = (1<<0),

} chan_mask_t
75

Chapter 3

76
Description (cont.): where,

• chan_mask_dout7 is the line 7 of the digital output port (bit 31 - value
0x80000000).

• chan_mask_dout6 is the line 6 of the digital output port (bit 30 - value
0x40000000).

• chan_mask_dout5 is the line 5 of the digital output port (bit 29 - value
0x20000000).

• chan_mask_dout4 is the line4 of the digital output port (bit 28 - value
0x10000000).

• chan_mask_dout3 is the line3 of the digital output port (bit 27 - value
0x8000000).

• chan_mask_dout2 is the line1 of the digital output port (bit 26 - value
0x4000000).

• chan_mask_dout1 is the line1 of the digital output port (bit 25 - value
0x2000000).

• chan_mask_dout0 is the line 0 of the digital output port (bit 24 - value
0x1000000).

• chan_mask_aout3 is analog output 3 (bit 19 - value 0x80000). Note that
the DT7837 does not support this channel.

• chan_mask_aout2 is analog output 2 (bit 18 - value 0x40000). Note that
the DT7837 does not support this channel.

• chan_mask_aout1 is analog output 1 (bit 17 - value 0x20000). Note that
the DT7837 does not support this channel.

• chan_mask_aout0 is analog output 0 (bit 16 - value 0x10000).

• chan_mask_din is the digital input port (bit 11 - value 0x800).

• chan_mask_meas_ctr is the measure counter (bit 10 - value 0x400).

• chan_mask_tach is the tachometer input (bit 8 - value 0x100).

• chan_mask_ain7 is analog input channel 7 (bit 7 - value 0x80). Note that
the DT7837 does not support this channel.

• chan_mask_ain6 is analog input channel 6 (bit 6 - value 0x40). Note that
the DT7837 does not support this channel.

• chan_mask_ain5 is analog input channel 5 (bit 5 - value 0x20). Note that
the DT7837 does not support this channel.

• chan_mask_ain4 is analog input channel 4 (bit 4 - value 0x10). Note that
the DT7837 does not support this channel.

• chan_mask_ain3 is analog input channel 3 (bit 3 - value 0x8).

• chan_mask_ain2 is analog input channel 2 (bit 2 - value 0x4).

• chan_mask_ain1 is analog input channel 1 (bit 1 - value 0x2).

• chan_mask_ain0 is analog input channel 0 (bit 0 - value 0x1).

File I/O Command Reference
Returns 0 = Success; < 0 = Failure

Example The following example specifies the channels to enable in the input stream.
In this example, analog input channels 0 and 2 are enabled in the input
stream; this equivalent to value 0x5:

chan_mask_t chan_mask = chan_mask_ain0|chan_mask_ain2;
if (ioctl(fd_stream, IOCTL_CHAN_MASK_SET, &chan_mask))
 {

fprintf(stderr, "IOCTL_CHAN_MASK_SET ERROR
%d \"%s\"\n", errno, strerror(errno));

 goto _cleanup;

See Also IOCTL_CHAN_MASK_GET, described on page 72.
77

Chapter 3

78
ioctl - IOCTL_CT_CFG_GET

Description Returns the configuration of the counter/timer channel.

Syntax int ioctl(int fd, IOCTL_CT_CFG_GET,
struct dt78xx_ct_config_t *pCT_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the counter/timer subsystem
(/dev/dt7837-ctr-tmr).

Name:

Data Type:

Description:

pCT_config

dt78xx_ct_config_t structure

A pointer to a structure that defines the configuration of the counter/timer
channel.

dt78xx_ct_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

ct_mode_t mode;
ct_gate_t gate;
uint8_t ext_gate_din;
uint8_t ext_clk;
uint8_t ext_clk_din;
uint8_t unused;
union
{

struct __attribute__ ((__packed__))
{
uint32_t period;
uint32_t pulse;
uint8_t out;
uint8_t out_hi;

}divider;

struct __attribute__ ((__packed__))
{
uint32_t period;
uint32_t pulse;
uint8_t out;
uint8_t out_hi;
uint8_t retriggerable;

}one_shot;
};

}dt78xx_ct_config_t;

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

mode

ct_mode_t

This enumeration defines the operation mode of the counter/timer
channel. It is defined as follows:

typedef enum
{

ct_mode_idle,
ct_mode_1shot,
ct_mode_divider,
ct_mode_counter,
ct_mode_measure,

}ct_mode_t;

where,

• ct_mode_idle specifies idle mode. If you specify this mode, the counter
no longer drives the clock output signal that is assigned to one of the
general-purpose output signal (pins 11 to 18) of the Digital connector.

• ct_mode_1shot specifies one-shot mode. If you specify this mode, values
for the one_shot structure specified in dt78xx_ct_config_t are required.
Specify one-shot mode if you want to generate non-retriggerable
one-shot pulses.

• ct_mode_divider specifies rate generation mode. If you specify this mode,
values for the divider structure specified in dt78xx_ct_config_t are
required. In rate generation mode, a continuous, active high, pulse
output signal is generated from the counter’s output signal. You can use
this pulse output signal as an external clock to pace other operations,
such as analog input, analog output, or other counter/timer operations.
The pulse output operation starts whenever the counter’s gate signal is
at the specified level.

• ct_mode_counter specifies event counting mode. In event counting mode,
the number of rising edges that occur on the counter’s clock input
signal are counted when the counter’s gate signal is active. The module
can count a maximum of 4,294,967,296 events before the counter rolls
over to 0 and starts counting again.

• ct_mode_measure is currently not supported.
79

Chapter 3

80
Structure Element Name:

Data Type:

Description:

gate

ct_gate_t enumeration

Defines the gate type to use for the specified counter/timer operation
mode. It is defined as follows:

typedef enum
{

ct_gate_none = 0x1,
ct_gate_ext_hi = 0x2,
ct_gate_ext_lo = 0x3

}ct_gate_t;

where,

• ct_gate_none specifies a software gate type. With this gate type, the ioctl
- IOCTL_START_SUBSYS command, described on page 129, starts the
counter/timer operation immediately after execution. (No
general-purpose input signal is required if this gate type is selected.) To
stop the operation, use the ioctl - IOCTL_START_SUBSYS command,
described on page 139.

• ct_gate_ext_hi specifies a logic high or rising edge gate type. For event
counting (counter) and rate generation (divider) mode, the operation is
enabled when the counter’s gate signal is high and is disabled when the
counter’s gate signal is low. For one-shot and repetitive one-shot (1shot)
mode, the operation is enabled when the counter’s gate signal goes
from a low to a high transition and is disabled when the counter’s gate
signal goes from a high to a low transition.

• ct_gate_ext_lo specifies a logic low or falling edge gate type. For event
counting (counter) and rate generation (divider) mode, the operation is
enabled when the counter’s gate signal is low and is disabled when the
counter’s gate signal is high. For one-shot and repetitive one-shot mode
(1shot) mode, the operation is enabled when the counter’s gate signal
goes from a high to a low transition and is disabled when the counter’s
gate signal goes from a low to a high transition.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

ext_gate_din

uint8_t

Specifies which general-purpose input signal (pins 1 to 8) on the Digital
connector to use for the external C/T gate input signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

ext_clk

uint8_t

Specifies whether to use the internal C/T clock or an external C/T clock.
When this value is 0, the internal C/T clock is used. When this value is 1,
an external C/T clock is used.

Note that in one-shot mode, the internal C/T clock is more useful than an
external C/T clock. However, in event counting mode, up/down counting,
and measure mode, an external C/T clock source is generally used.

Structure Element Name:

Data Type:

Description:

ext_clk_din

uint8_t

Specifies which general-purpose input signal (pins 1 to 8) on the Digital
connector to use for the external C/T clock input signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

unused

uint8_t

This variable is reserved for future use.
81

Chapter 3

82
Structure Element Name:

Data Type:

Description:

period

uint32_t

Used by the divider and one_shot structures, specifies the number of input
clock cycles used to create one period of the C/T output signal.

The period of the output pulse is determined by the C/T clock source
(ext_clk element of the dt78xx_ct_config_t structure, described on page 81.)
You can output pulses using a maximum frequency of 24 MHz (if using the
internal C/T clock) or 5 MHz (if using the external C/T clock). Note,
however, that the integrity of the signal degrades at frequencies greater
than 10 MHz.

For example, if you are using an external C/T clock of10000 Hz as the input
clock source of the counter/timer, and you want to generate a output signal
of 1000 Hz with a 20% duty cycle, specify a period of 10 (10000 Hz divided
by 10 is 1000 Hz) and a pulse width of 2 (the period multiplied by 20%).
This is illustrated in Figure 6.

Note that the polarity of the output pulse can be programmed using the
out_hi element of the divider or one_shot structure.

Figure 6: Example of a Pulse Width and Period

Structure Element Name:

Data Type:

Description:

pulse

uint32_t

Used by the divider and one_shot structures, specifies the number of input
clock cycles used to create the active pulse width (or duty cycle) of the C/T
output signal. This value must be less than the period. See Figure 6 for an
example.

Total Pulse Period = 10
With an external C/T input clock of

10000 Hz and a period of 10, the
output signal is 1000 Hz.

Active Pulse Width = 2 for 20% duty cycle

low pulse

high pulse

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

out

uint8_t

Used by the divider and one_shot structures, specifies which
general-purpose output signal (pins 11 to 18) on the Digital connector to
use for the external C/T clock output signal.

Pin 11 corresponds to bit 0 of the digital output port (value 0x1).

Pin 12 corresponds to bit 1 of the digital output port (value 0x2).

Pin 13 corresponds to bit 2 of the digital output port (value 0x4).

Pin 14 corresponds to bit 3 of the digital output port (value 0x8).

Pin 15 corresponds to bit 4 of the digital output port (value 0x10).

Pin 16 corresponds to bit 5 of the digital output port (value 0x20).

Pin 17 corresponds to bit 6 of the digital output port (value 0x40).

Pin 18 corresponds to bit 7 of the digital output port (value 0x80).

Structure Element Name:

Data Type:

Description:

out_hi

uint8_t

Used by the divider and one_shot structures, specifies whether the output
pulse for a rate generation or non-retriggerable one-shot operation is active
high (1) or active low (0).

Structure Element Name:

Data Type:

Description:

retriggerable

uint8_t

Used by the one-shot structure, specifies whether or not to repeat the
one-shot output pulse.

Currently, only a value of 0 is supported.

When retriggerable is 0, the counter generates a single pulse output signal
whenever it detects the active gate signal (after the pulse period from the
previous output pulse expires). Any gate signals that occur while the pulse
is being output are not detected by the module. The module continues to
output pulses until you stop the operation with ioctl -
IOCTL_STOP_SUBSYS, described on page 139. You can use this mode to
clean up a poor clock input signal by changing its pulse width, and then
outputting it.

Returns 0 = Success; < 0 = Failure

Notes The value of the counter clock output signal (assigned to one of the
general-purpose output signals) can be overwritten by writing to the
digital output subsystem. Refer to page 53 for more information.

If you assigned a general-purpose input signal as a counter clock or gate
input (or external trigger), you can read the value of the signal as you
would any other digital input signal. Refer to page 52 for more information
on reading digital input values.
83

Chapter 3

84
Example The following example returns the configuration of the counter/timer
channel:

if (ioctl(ct_file, IOCTL_CT_CFG_GET, &ct_cfg))
 {
 perror("IOCTL_CT_CFG_GET");
 goto finish;
 }

See Also IOCTL_CT_CFG_SET, described on page 85.

File I/O Command Reference
ioctl - IOCTL_CT_CFG_SET

Description Specifies the configuration of the counter/timer channel.

Syntax int ioctl(int fd, IOCTL_CT_CFG_SET,
struct dt78xx_ct_config_t *pCT_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the counter/timer subsystem
(/dev/dt7837-ctr-tmr).

Name:

Data Type:

Description:

pCT_config

dt78xx_ct_config_t structure

A pointer to a structure that defines the configuration of the counter/timer
channel.

dt78xx_ct_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

ct_mode_t mode;
ct_gate_t gate;
uint8_t ext_gate_din;
uint8_t ext_clk;
uint8_t ext_clk_din;
uint8_t unused;
union
{

struct __attribute__ ((__packed__))
{
uint32_t period;
uint32_t pulse;
uint8_t out;
uint8_t out_hi;

}divider;

struct __attribute__ ((__packed__))
{
uint32_t period;
uint32_t pulse;
uint8_t out;
uint8_t out_hi;
uint8_t retriggerable;

}one_shot;
};

}dt78xx_ct_config_t;
85

Chapter 3

86
Structure Element Name:

Data Type:

Description:

mode

ct_mode_t

This enumeration defines the operation mode of the counter/timer
channel. It is defined as follows:

typedef enum
{

ct_mode_idle,
ct_mode_1shot,
ct_mode_divider,
ct_mode_counter,
ct_mode_measure,

}ct_mode_t;

where,

• ct_mode_idle specifies idle mode. If you specify this mode, the counter
no longer drives the clock output signal that is assigned to one of the
general-purpose output signals (pins 11 to 18) of the Digital connector.

• ct_mode_1shot specifies one-shot mode. If you specify this mode, values
for the one_shot structure specified in dt78xx_ct_config_t are required.
Specify one-shot mode if you want to generate non-retriggerable
one-shot pulses.

• ct_mode_divider specifies rate generation mode. If you specify this mode,
values for the divider structure specified in dt78xx_ct_config_t are
required. In rate generation mode, a continuous pulse output signal is
generated from the counter’s output signal. You can use this pulse
output signal as an external clock to pace other operations, such as
analog input, analog output, or other counter/timer operations. The
pulse output operation starts whenever the counter’s gate signal is at
the specified level.

• ct_mode_counter specifies event counting mode. In event counting mode,
the number of rising edges that occur on the counter’s clock input
signal are counted when the counter’s gate signal is active. The module
can count a maximum of 4,294,967,296 events before the counter rolls
over to 0 and starts counting again.

• ct_mode_measure is currently not supported.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

gate

ct_gate_t enumeration

Defines the gate type to use for the specified counter/timer operation
mode. It is defined as follows:

typedef enum
{

ct_gate_none = 0x1,
ct_gate_ext_hi = 0x2,
ct_gate_ext_lo = 0x3

}ct_gate_t;

where,

• ct_gate_none specifies a software gate type. With this gate type, the ioctl
- IOCTL_START_SUBSYS command, described on page 129, starts the
counter/timer operation immediately after execution. (No
general-purpose input signal is required if this gate type is selected.) To
stop the operation, use the ioctl - IOCTL_START_SUBSYS command,
described on page 139.

• ct_gate_ext_hi specifies a logic high or rising edge gate type. For event
counting (counter) and rate generation (divider) mode, the operation is
enabled when the counter’s gate signal is high and is disabled when the
counter’s gate signal is low. For one-shot and repetitive one-shot (1shot)
mode, the operation is enabled when the counter’s gate signal goes
from a low to a high transition and is disabled when the counter’s gate
signal goes from a high to a low transition.

• ct_gate_ext_lo specifies a logic low or falling edge gate type. For event
counting (counter) and rate generation (divider) mode, the operation is
enabled when the counter’s gate signal is low and is disabled when the
counter’s gate signal is high. For one-shot and repetitive one-shot
(1shot) mode, the operation is enabled when the counter’s gate signal
goes from a high to a low transition and is disabled when the counter’s
gate signal goes from a low to a high transition.
87

Chapter 3

88
Structure Element Name:

Data Type:

Description:

ext_gate_din

uint8_t

Specifies which general-purpose input signal (pins 1 to 8) on the Digital
connector to use for the external C/T gate input signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

ext_clk

uint8_t

Specifies whether to use the internal C/T clock or an external C/T clock.
When this value is 0, the internal C/T clock is used. When this value is 1,
an external C/T clock is used.

Note that in one-shot and repetitive one-shot modes (1shot), the internal
C/T clock is more useful than an external C/T clock. In event counting
(counter) mode, an external C/T clock source is generally used.

Either clock source can be used for rate generation mode (divider)
depending on the application.

Structure Element Name:

Data Type:

Description:

ext_clk_din

uint8_t

Specifies which general-purpose input signal (pins 1 to 8) on the Digital
connector to use for the external C/T clock input signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

unused

uint8_t

This variable is reserved for future use.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

period

uint32_t

Used by the divider and one_shot structures, specifies the number of input
clock cycles used to create one period of the C/T output signal.

The period of the output pulse is determined by the C/T clock source
(ext_clk element of the dt78xx_ct_config_t structure, described on page 88.)
You can output pulses using a maximum frequency of 24 MHz (if using the
internal C/T clock) or 5 MHz (if using the external C/T clock). Note,
however, that the integrity of the signal degrades at frequencies greater
than 10 MHz.

For example, if you are using an external C/T clock of10000 Hz as the input
clock source of the counter/timer, and you want to generate a output signal
of 1000 Hz with a 20% duty cycle, specify a period of 10 (10000 Hz divided
by 10 is 1000 Hz) and a pulse width of 2 (the period multiplied by 20%).
This is illustrated in Figure 7.

Note that the polarity of the output pulse can be programmed using the
out_hi element of the divider or one_shot structure.

Figure 7: Example of a Pulse Width and Period

Structure Element Name:

Data Type:

Description:

pulse

uint32_t

Used by the divider and one_shot structures, specifies the number of input
clock cycles used to create the active pulse width (or duty cycle) of the C/T
output signal. This value must be less than the period. See Figure 6 for an
example.

Total Pulse Period = 10
With an external C/T input clock of

10000 Hz and a period of 10, the
output signal is 1000 Hz.

Active Pulse Width = 2 for 20% duty cycle

low pulse

high pulse
89

Chapter 3

90
Structure Element Name:

Data Type:

Description:

out

uint8_t

Used by the divider and one_shot structures, specifies which
general-purpose output signal (pins 11 to 18) on the Digital connector to
use for the external C/T clock output signal.

Pin 11 corresponds to bit 0 of the digital output port (value 0x1).

Pin 12 corresponds to bit 1 of the digital output port (value 0x2).

Pin 13 corresponds to bit 2 of the digital output port (value 0x4).

Pin 14 corresponds to bit 3 of the digital output port (value 0x8).

Pin 15 corresponds to bit 4 of the digital output port (value 0x10).

Pin 16 corresponds to bit 5 of the digital output port (value 0x20).

Pin 17 corresponds to bit 6 of the digital output port (value 0x40).

Pin 18 corresponds to bit 7 of the digital output port (value 0x80).

Structure Element Name:

Data Type:

Description:

out_hi

uint8_t

Used by the divider and one_shot structures, specifies whether the output
pulse for a rate generation or non-retriggerable one-shot operation is active
high (1) or active low (0).

Structure Element Name:

Data Type:

Description:

retriggerable

uint8_t

Used by the one-shot structure, specifies whether or not to repeat the
one-shot output pulse.

Currently, only a value of 0 is supported.

When retriggerable is 0, the counter generates a single pulse output signal
whenever it detects the active gate signal (after the pulse period from the
previous output pulse expires). Any gate signals that occur while the pulse
is being output are not detected by the module. The module continues to
output pulses until you stop the operation with ioctl -
IOCTL_STOP_SUBSYS, described on page 139. You can use this mode to
clean up a poor clock input signal by changing its pulse width, and then
outputting it.

Returns 0 = Success; < 0 = Failure

Notes The value of the counter clock output signal (assigned to one of the
general-purpose output signals) can be overwritten by writing to the
digital output subsystem. Refer to page 53 for more information.

If you assigned a general-purpose input signal as a counter clock or gate
input (or external trigger), you can read the value of the signal as you
would any other digital input signal. Refer to page 52 for more information
on reading digital input values.

File I/O Command Reference
Example The following example sets up the counter/timer channel to generate a rate
on the C/T clock output signal. In this example, the period of the output
signal is 2 clock input signals of the internal 48 MHz C/T clock to generate
a 24 MHz output signal and the pulse width of 1 clock input signal to
generate a duty cycle of 50%.The operation is enabled when a logic high
external gate signal is detected on general-purpose input signal 7.
General-purpose output signal 7 is used for the C/T clock output signal.
The output signal is active high.

#define CT_DEV_FILE "//dev/dt7837-ctr-tmr"
ct_file = open(CT_DEV_FILE, O_RDWR);
dt78xx_ct_config_t ct_cfg;

ct_cfg.mode = ct_mode_divider;
ct_cfg.gate = ct_gate_ext_hi
ct_cfg.ext_gate_din = 0x80;
ct_cfg.ext_clk = 0;
ct_cfg.divider.period = 2;
ct_cfg.divider.pulse = 1;
ct_cfg.divider.out = 0x80;
ct_cfg.divider.out_high = 1;

if (ioctl(ct_file, IOCTL_CT_CFG_SET, &ct_cfg))
 {
 perror("IOCTL_CT_CFG_SET");
 goto finish;
 }

See Also IOCTL_CT_CFG_GET, described on page 78.
91

Chapter 3

92
ioctl - IOCTL_GAIN_POT_GET

Description Returns the value of a specific potentiometer used for calibrating the gain.

Syntax int ioctl(int fd, IOCTL_GAIN_POT_GET,
struct dt78xx_cal_pot_t *pGainCalPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pGainCalPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel to calibrate. For the analog input subsystem,
values range from 0 to 3. For the analog output subsystem, this value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Identifies the calibration type, where 1 is factory calibration and 0 is user
calibration.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Identifies the calibration register. Values range from 0 to 15.

For analog input calibration, the DT7837 uses registers 0 to 3, described as
follows:

• Register 0 – Stores the calibration factors when using a gain of 1 and a
sampling frequency less than 52.734 kHz.

• Register 1 – Stores the calibration factors when using a gain of 10 and a
sampling frequency less than 52.734 kHz.

• Register 2 – Stores the calibration factors when using a gain of 1 and a
sampling frequency equal to or greater than 52.734 kHz.

• Register 3 – Stores the calibration factors when using a gain of 10 and a
sampling frequency equal to or greater than 52.734 kHz.

For the analog output subsystem, the DT7837 uses registers 0 to 2,
described as follows:

• Register 0 – Stores the calibration factors when using an output
frequency greater than 54 kHz and less than or equal to 108 kHz.

• Register 1 – Stores the calibration factors when using an output
frequency greater than 30 kHz and less than or equal to 54 kHz.

• Register 2 – Stores the calibration factors when using an output
frequency greater than 108 kHz and less than or equal to 216 kHz.

Returns 0 = Success; < 0 = Failure

Example The following example returns the value of the user calibration value of
register 1 of the gain potentiometer for analog input 0.

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t gain_pot;

gain_pot.pot = 0;
gain_pot.value = 0;
gain_pot.factory = 0;
gain_pot.reg = 1;
if (ain_file, IOCTL_GAIN_POT_GET, &gain_pot)

{
fprintf(stdout, "*** ERROR reading calibration

pot eeprom from driver\n");
return false;

}

*value = gain_pot.value;
return true;

See Also IOCTL_GAIN_POT_SET, described on page 94.
93

Chapter 3

94
ioctl - IOCTL_GAIN_POT_SET

Description Sets the value of a specific potentiometer used to calibrate the gain.

Syntax int ioctl(int fd, IOCTL_GAIN_POT_SET,
struct dt78xx_cal_pot_t *pGainCalPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pGainCalPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel to calibrate. For the analog input subsystem,
values range from 0 to 3. For the analog output subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Identifies the calibration type, where 1 is factory calibration and 0 is user
calibration. Typically, you want to modify the user calibration value;
therefore, a value of 0 is recommended.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Identifies the calibration register. Values range from 0 to 15.

For the analog input subsystem, the DT7837 uses registers 0 to 3, described
as follows:

• Register 0 – Stores the calibration factors when using a gain of 1 and a
sampling frequency less than 52.734 kHz.

• Register 1 – Stores the calibration factors when using a gain of 10 and a
sampling frequency less than 52.734 kHz.

• Register 2 – Stores the calibration factors when using a gain of 1 and a
sampling frequency equal to or greater than 52.734 kHz.

• Register 3 – Stores the calibration factors when using a gain of 10 and a
sampling frequency equal to or greater than 52.734 kHz.

For the analog output subsystem, the DT7837 uses registers 0 to 2,
described as follows:

• Register 0 – Stores the calibration factors when using an output
frequency greater than 54 kHz and less than or equal to 108 kHz.

• Register 1 – Stores the calibration factors when using an output
frequency greater than 30 kHz and less than or equal to 54 kHz.

• Register 2 – Stores the calibration factors when using an output
frequency greater than 108 kHz and less than or equal to 216 kHz.

Returns 0 = Success; < 0 = Failure

Notes You can continue to adjust the gain calibration values by calling this
command with different values. The gain calibration register is
automatically written to the wiper value of the associated potentiometer.

This command will block all other operations for at least 5 ms.

Example The following example sets the user calibration value for calibration
register 0 of the gain potentiometer associated with analog input channel 0.
In this example, the value is set to 255.

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t gain_pot;
gain_pot.pot = 0;
gain_pot.value = 255;
gain_pot.factory = 0;
gain_pot.reg =0;
if (ioctl(ain_file, IOCTL_GAIN_POT_SET, &gain_pot))
 {

fprintf(stdout, "*** ERROR writing calibration
pot eeprom to driver\n");

 return false;
}

95

Chapter 3

96
See Also IOCTL_GAIN_POT_GET, described on page 92.

File I/O Command Reference
ioctl - IOCTL_GAIN_POT_WIPER_GET

Description Returns the value of the wiper for a channel in a specific gain
potentiometer.

Syntax int ioctl(int fd, IOCTL_GAIN_POT_WIPER_GET,
struct dt78xx_cal_pot_t *pGainCalWiperPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pGainCalWiperPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometers.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Not used for this command.
97

Chapter 3

98
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Not used for this command.

Returns 0 = Success; < 0 = Failure

Example The following example returns the wiper value of the gain potentiometer
for analog input channel 0:

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t gain_wiper_pot;

gain_wiper_pot.pot = 0;
gain_wiper_pot.value = 0;
if (ain_file, IOCTL_GAIN_POT_WIPER_GET,

&gain_wiper_pot)
{

fprintf(stdout, "*** ERROR reading calibration
pot eeprom from driver\n");

return false;
}

*value = gain_wiper_pot.value;
return true;

See Also IOCTL_GAIN_POT_WIPER_SET, described on page 99.

File I/O Command Reference
ioctl - IOCTL_GAIN_POT_WIPER_SET

Description Sets the value of the wiper for a channel in a specific gain potentiometer.

Syntax int ioctl(int fd, IOCTL_GAIN_POT_WIPER_SET,
struct dt78xx_cal_pot_t *pGainCalWiperPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pGainCalWiperPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Not used for this command.

Structure Element Name:

Data Type:

Description:

reg

uint32_t

Not used for this command.
99

Chapter 3

100
Returns 0 = Success; < 0 = Failure

Notes When you are satisfied that the gain calibration value is correct, call this
command to update the calibration register in non-volatile EEPROM.

Example The following example sets the wiper value for the gain potentiometer
associated with analog input channel 0 to a value of 255:

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t gain_wiper_pot;

gain_wiper_pot.pot = 0;
gain_wiper_pot.value = 255;
if (ioctl(ain_file, IOCTL_GAIN_POT_WIPER_SET,

&gain_wiper_pot))
 {
 perror("IOCTL_GAIN_POT_WIPER_SET");
 goto finish;
 }

See Also IOCTL_GAIN_POT_WIPER_GET, described on page 97.

File I/O Command Reference
ioctl - IOCTL_LED_GET

Description Returns the configuration of the user LEDs on the DT7837 module.

Syntax int ioctl(int fd, IOCTL_LED_GET,
struct dt78xx_led_t *pLED_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with any of the subsystems on the DT7837
(/dev/dt7837-ain, /dev/dt7837-aout, /dev/dt7837-din,
/dev/dt7837-dout, /dev/dt7837-tach, /dev/dt7837-measure,
/dev/dt7837-ctr-tmr, /dev/dt7837-stream-in, or /dev/dt7837-stream-out).

Name:

Data Type:

Description:

pLED_config

dt78xx_led_t structure

A pointer to a structure that defines the configuration of the user LEDs on
the DT7837 module.

dt78xx_led_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t mask;
uint8_t state;

} dt78xx_led_t;

Structure Element Name:

Data Type:

Description:

mask

unit_8_t

An 8-bit unsigned value used by the ioctl - IOCTL_LED_SET command,
described on page 103, to specify which user LEDs to modify. It is not used
by the ioctl - IOCTL_LED_GET command.
101

Chapter 3

102
Structure Element Name:

Data Type:

Description:

state

uint8_t

An 8-bit unsigned value indicating the status of the eight user LEDs on the
DT7837 module.

Each LED corresponds to a bit of the 8-bit value, as follows:

• LED 7 corresponds to bit 7 (value 0x80).

• LED 6 corresponds to bit 6 (value 0x40).

• LED 5 corresponds to bit 5 (value 0x20).

• LED 4 corresponds to bit 4 (value 0x10).

• LED 3 corresponds to bit 3 (value 0x8).

• LED 2 corresponds to bit 2 (value 0x4).

• LED 1 corresponds to bit 1 (value 0x2).

• LED 0 corresponds to bit 0 (value 0x1).

A value of 0 indicates that the LED is off, and a value of 1 indicates that the
LED is on.

Returns 0 = Success; < 0 = Failure

Notes Refer to Figure 5 on page 59 for the location of the user LEDs on the
DT7837 module.

Example The following example returns the configuration of the user LEDs on the
DT7837 module:

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_led_t LED_cfg;

if (ioctl(ain_file, IOCTL_LED_GET, &LED_cfg))
 {
 perror("IOCTL_LED_GET");
 goto finish;
 }

See Also IOCTL_LED_SET, described on page 103.

File I/O Command Reference
ioctl - IOCTL_LED_SET

Description Specifies the configuration of the user LEDs on the DT7837 module.

Syntax int ioctl(int fd, IOCTL_LED_SET,
struct dt78xx_led_t *pLED_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with any of the subsystems on the DT7837
(/dev/dt7837-ain, /dev/dt7837-aout, /dev/dt7837-din,
/dev/dt7837-dout, /dev/dt7837-tach, /dev/dt7837-measure,
/dev/dt7837-ctr-tmr, /dev/dt7837-stream-in, or /dev/dt7837-stream-out).

Name:

Data Type:

Description:

pLED_config

dt78xx_led_t structure

A pointer to a structure that defines the configuration of the user LEDs on
the DT7837 module.

dt78xx_led_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t mask;
uint8_t state;

} dt78xx_led_t;

Structure Element Name:

Data Type:

Description:

mask

unit_8_t

An 8-bit unsigned value that specifies which of the eight user LEDs on the
DT7837 module to modify. Each LED corresponds to a bit of the 8-bit value,
as follows:

• LED 7 corresponds to bit 7 (value 0x80).

• LED 6 corresponds to bit 6 (value 0x40).

• LED 5 corresponds to bit 5 (value 0x20).

• LED 4 corresponds to bit 4 (value 0x10).

• LED 3 corresponds to bit 3 (value 0x8).

• LED 2 corresponds to bit 2 (value 0x4).

• LED 1 corresponds to bit 1 (value 0x2).

• LED 0 corresponds to bit 0 (value 0x1).

Specify a value of 0 for the bit to keep the state of the LED unchanged.
Specify a value of 1 if you want to modify the state of the LED.
103

Chapter 3

104
Structure Element Name:

Data Type:

Description:

state

uint8_t

An 8-bit unsigned value indicating the state of the eight user LEDs on the
DT7837 module. Each LED corresponds to a bit of the 8-bit value, as
follows:

• LED 7 corresponds to bit 7 (value 0x80).

• LED 6 corresponds to bit 6 (value 0x40).

• LED 5 corresponds to bit 5 (value 0x20).

• LED 4 corresponds to bit 4 (value 0x10).

• LED 3 corresponds to bit 3 (value 0x8).

• LED 2 corresponds to bit 2 (value 0x4).

• LED 1 corresponds to bit 1 (value 0x2).

• LED 0 corresponds to bit 0 (value 0x1).

Specify a value of 0 if you want to turn the LED off. Specify a value of 1 if
you want to turn the LED on.

Returns 0 = Success; < 0 = Failure

Notes Refer to Figure 5 on page 59 for the location of the user LEDs on the
DT7837 module.

Example The following example modifies the state of user LEDs 0 and 2 on the
DT7837 module (for a value of 0x5). LED 0 is turned off and LED 2 is
turned on (for a value of 0x4):

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_led_t LED_cfg;

led_cfg.mask = 0x5;
led_cfg.state = 0x4;

if (ioctl(ain_file, IOCTL_LED_SET, &LED_cfg))
 {

perror("IOCTL_LED_SET");
goto finish;

 }

See Also IOCTL_LED_GET, described on page 101.

File I/O Command Reference
ioctl - IOCTL_MCTR_CFG_GET

Description Returns the configuration of the measure counter.

Syntax int ioctl(int fd, IOCTL_MCTR_CFG_GET,
struct dt78xx_mctr_config_t *pMCTR_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the measure counter subsystem
(/dev/dt7837-measure).

Name:

Data Type:

Description:

pMCTR_config

dt78xx_mctr_config_t structure

A pointer to a structure that defines the configuration of the measure
counter.

dt78xx_mctr_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

mctr_sel_t start_sel;
mctr_sel_t stop_sel;
uint8_t stale_flag;
};

}dt78xx_mctr_config_t;
105

Chapter 3

106
Structure Element Name:

Data Type:

Description:

start_sel

mctr_sel_t

This enumeration defines the signal and edge that starts the measure
counter. It is defined as follows:

typedef enum
{

mctr_sel_adc_complete = 0x00,
mctr_sel_tach_falling = 0x10,
mctr_sel_tach_rising = 0x11,
mctr_sel_din0_falling = 0x20,
mctr_sel_din0_rising = 0x21,
mctr_sel_din1_falling = 0x22,
mctr_sel_din1_rising = 0x23,
mctr_sel_din2_falling = 0x24,
mctr_sel_din2_rising = 0x25,
mctr_sel_din3_falling = 0x26,
mctr_sel_din3_rising = 0x27,
mctr_sel_din4_falling = 0x28,
mctr_sel_din4_rising = 0x29,
mctr_sel_din5_falling = 0x2a,
mctr_sel_din5_rising = 0x2b,
mctr_sel_din6_falling = 0x2c,
mctr_sel_din6_rising = 0x2d,
mctr_sel_din7_falling = 0x2e,
mctr_sel_din7_rising = 0x2f,

} mctr_sel_t;

where,

• mctr_sel_adc_complete (value 0x00) – The measure counter starts when
the A/D conversion is complete.

• mctr_sel_tach_falling (value 0x10) – The measure counter starts on the
falling edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_tach_rising (value 0x11) – The measure counter starts on the
rising edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_din0_falling (value 0x20) – The measure counter starts on the
falling edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din0_rising (value 0x21) – The measure counter starts on the
rising edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din1_falling (value 0x22) – The measure counter starts on the
falling edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

File I/O Command Reference
Description (cont): • mctr_sel_din1_rising (value 0x23) – The measure counter starts on the
rising edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

• mctr_sel_din2_falling (value 0x24) – The measure counter starts on the
falling edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din2_rising (value 0x25) – The measure counter starts on the
rising edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din3_falling (value 0x26) – The measure counter starts on the
falling edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din3_rising (value 0x27) – The measure counter starts on the
rising edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din4_falling (value 0x28) – The measure counter starts on the
falling edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din4_rising (value 0x29) – The measure counter starts on the
rising edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din5_falling (value 0x2a) – The measure counter starts on the
falling edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din5_rising (value 0x2b) – The measure counter starts on the
rising edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din6_falling (value 0x2c) – The measure counter starts on the
falling edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din6_rising (value 0x2d) – The measure counter starts on the
rising edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din7_falling (value 0x2e) – The measure counter starts on the
falling edge of general-purpose input signal 7 (pin 8 of the Digital
connector).

• mctr_sel_din7_rising (value 0x2f) – The measure counter starts on the
rising edge of general-purpose input signal 7 (pin 8 of the Digital
connector).
107

Chapter 3

108
Structure Element Name:

Data Type:

Description:

stop_sel

mctr_sel_t

This enumeration defines the signal and edge that stops the measure
counter. It is defined as follows:

typedef enum
{

mctr_sel_adc_complete = 0x00,
mctr_sel_tach_falling = 0x10,
mctr_sel_tach_rising = 0x11,
mctr_sel_din0_falling = 0x20,
mctr_sel_din0_rising = 0x21,
mctr_sel_din1_falling = 0x22,
mctr_sel_din1_rising = 0x23,
mctr_sel_din2_falling = 0x24,
mctr_sel_din2_rising = 0x25,
mctr_sel_din3_falling = 0x26,
mctr_sel_din3_rising = 0x27,
mctr_sel_din4_falling = 0x28,
mctr_sel_din4_rising = 0x29,
mctr_sel_din5_falling = 0x2a,
mctr_sel_din5_rising = 0x2b,
mctr_sel_din6_falling = 0x2c,
mctr_sel_din6_rising = 0x2d,
mctr_sel_din7_falling = 0x2e,
mctr_sel_din7_rising = 0x2f,

} mctr_sel_t;

where,

• mctr_sel_adc_complete (value 0x00) – The measure counter stops when
the A/D conversion is complete.

• mctr_sel_tach_falling (value 0x10) – The measure counter stops on the
falling edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_tach_rising (value 0x11) – The measure counter stops on the
rising edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_din0_falling (value 0x20) – The measure counter stops on the
falling edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din0_rising (value 0x21) – The measure counter stops on the
rising edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din1_falling (value 0x22) – The measure counter stops on the
falling edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

File I/O Command Reference
Description (cont.): • mctr_sel_din1_rising (value 0x23) – The measure counter stops on the
rising edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

• mctr_sel_din2_falling (value 0x24) – The measure counter stops on the
falling edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din2_rising (value 0x25) – The measure counter stops on the
rising edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din3_falling (value 0x26) – The measure counter stops on the
falling edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din3_rising (value 0x27) – The measure counter stops on the
rising edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din4_falling (value 0x28) – The measure counter stops on the
falling edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din4_rising (value 0x29) – The measure counter stops on the
rising edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din5_falling (value 0x2a) – The measure counter stops on the
falling edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din5_rising (value 0x2b) – The measure counter stops on the
rising edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din6_falling (value 0x2c) – The measure counter stops on the
falling edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din6_rising (value 0x2d) – The measure counter stops on the
rising edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din7_falling (value 0x2e) – The measure counter stops on the
falling edge of general-purpose input signal 7 (pin 8 of the Digital
connector).

• mctr_sel_din7_rising (value 0x2f) – The measure counter stops on the
rising edge of general-purpose input signal 7 (pin 8 of the Digital
connector).
109

Chapter 3

110
Structure Element Name:

Data Type:

Description:

stale_flag

uint8_t

Indicates whether or not the data is new. This flag is used only when the
start edge and the stop edge is set to use the same pin and edge (such as pin
0 - DIN 0 rising as the start edge and pin 0 -DIN rising as the stop edge).

If the stale_flag is 1 (Used), the most significant bit (MSB) of the value is set
to 0 to indicate new data; reading the value before the measurement is
complete returns an MSB of 1.

If stale_flag is 0 (Not Used), the MSB is always set to 0.

Returns 0 = Success; < 0 = Failure

Notes By default, the general-purpose input signals are configured as digital
input signals.

You read the value of the measure counter through the input stream by
setting bit 10 of the channel mask using the ioctl -
IOCTL_CHAN_MASK_SET command, described on page 75.

Example The following example returns the configuration of the measure counter to
start on the rising edge of the tachometer and stop on the falling edge of
general-purpose input signal 5. In this example, the general-purpose input
signal is configured as a digital input line. The stale flag is not used.

#define MCTR_DEV_FILE "//dev/dt7837-measure"
mctr_file = open(MCTR_DEV_FILE, O_RDWR);
dt78xx_mctr_config_t mctr_cfg;

if (ioctl(mctr_file, IOCTL_MCTR_CFG_GET, &mctr_cfg))
 {
 perror("IOCTL_MCTR_CFG_GET");
 goto finish;
 }

See Also IOCTL_MCT_CFG_SET, described on page 111.

File I/O Command Reference
ioctl - IOCTL_MCTR_CFG_SET

Description Specifies the configuration of the measure counter.

Syntax int ioctl(int fd, IOCTL_MCTR_CFG_SET,
struct dt78xx_mctr_config_t *pMCTR_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the measure counter subsystem
(/dev/dt7837-measure).

Name:

Data Type:

Description:

pMCTR_config

dt78xx_mctr_config_t structure

A pointer to a structure that defines the configuration of the measure
counter.

dt78xx_mctr_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

mctr_sel_t start_sel;
mctr_sel_t stop_sel;
uint8_t stale_flag;
};

}dt78xx_mctr_config_t;
111

Chapter 3

112
Structure Element Name:

Data Type:

Description:

start_sel

mctr_sel_t

This enumeration defines the signal and edge that starts the measure
counter. It is defined as follows:

typedef enum
{

mctr_sel_adc_complete = 0x00,
mctr_sel_tach_falling = 0x10,
mctr_sel_tach_rising = 0x11,
mctr_sel_din0_falling = 0x20,
mctr_sel_din0_rising = 0x21,
mctr_sel_din1_falling = 0x22,
mctr_sel_din1_rising = 0x23,
mctr_sel_din2_falling = 0x24,
mctr_sel_din2_rising = 0x25,
mctr_sel_din3_falling = 0x26,
mctr_sel_din3_rising = 0x27,
mctr_sel_din4_falling = 0x28,
mctr_sel_din4_rising = 0x29,
mctr_sel_din5_falling = 0x2a,
mctr_sel_din5_rising = 0x2b,
mctr_sel_din6_falling = 0x2c,
mctr_sel_din6_rising = 0x2d,
mctr_sel_din7_falling = 0x2e,
mctr_sel_din7_rising = 0x2f,

} mctr_sel_t;

where,

• mctr_sel_adc_complete (value 0x00) – The measure counter starts when
the A/D conversion is complete.

• mctr_sel_tach_falling (value 0x10) – The measure counter starts on the
falling edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_tach_rising (value 0x11) – The measure counter starts on the
rising edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_din0_falling (value 0x20) – The measure counter starts on the
falling edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din0_rising (value 0x21) – The measure counter starts on the
rising edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din1_falling (value 0x22) – The measure counter starts on the
falling edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

File I/O Command Reference
Description (cont): • mctr_sel_din1_rising (value 0x23) – The measure counter starts on the
rising edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

• mctr_sel_din2_falling (value 0x24) – The measure counter starts on the
falling edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din2_rising (value 0x25) – The measure counter starts on the
rising edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din3_falling (value 0x26) – The measure counter starts on the
falling edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din3_rising (value 0x27) – The measure counter starts on the
rising edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din4_falling (value 0x28) – The measure counter starts on the
falling edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din4_rising (value 0x29) – The measure counter starts on the
rising edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din5_falling (value 0x2a) – The measure counter starts on the
falling edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din5_rising (value 0x2b) – The measure counter starts on the
rising edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din6_falling (value 0x2c) – The measure counter starts on the
falling edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din6_rising (value 0x2d) – The measure counter starts on the
rising edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din7_falling (value 0x2e) – The measure counter starts on the
falling edge of general-purpose input signal 7 (pin 8 of the Digital
connector).

• mctr_sel_din7_rising (value 0x2f) – The measure counter starts on the
rising edge of general-purpose input signal 7 (pin 8 of the Digital
connector).
113

Chapter 3

114
Structure Element Name:

Data Type:

Description:

stop_sel

mctr_sel_t

This enumeration defines the signal and edge that stops the measure
counter. It is defined as follows:

typedef enum
{

mctr_sel_adc_complete = 0x00,
mctr_sel_tach_falling = 0x10,
mctr_sel_tach_rising = 0x11,
mctr_sel_din0_falling = 0x20,
mctr_sel_din0_rising = 0x21,
mctr_sel_din1_falling = 0x22,
mctr_sel_din1_rising = 0x23,
mctr_sel_din2_falling = 0x24,
mctr_sel_din2_rising = 0x25,
mctr_sel_din3_falling = 0x26,
mctr_sel_din3_rising = 0x27,
mctr_sel_din4_falling = 0x28,
mctr_sel_din4_rising = 0x29,
mctr_sel_din5_falling = 0x2a,
mctr_sel_din5_rising = 0x2b,
mctr_sel_din6_falling = 0x2c,
mctr_sel_din6_rising = 0x2d,
mctr_sel_din7_falling = 0x2e,
mctr_sel_din7_rising = 0x2f,

} mctr_sel_t;

where,

• mctr_sel_adc_complete (value 0x00) – The measure counter stops when
the A/D conversion is complete.

• mctr_sel_tach_falling (value 0x10) – The measure counter stops on the
falling edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_tach_rising (value 0x11) – The measure counter stops on the
rising edge of the tachometer input signal (pin 23 of the Digital
connector).

• mctr_sel_din0_falling (value 0x20) – The measure counter stops on the
falling edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din0_rising (value 0x21) – The measure counter stops on the
rising edge of general-purpose input signal 0 (pin 1 of the Digital
connector).

• mctr_sel_din1_falling (value 0x22) – The measure counter stops on the
falling edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

File I/O Command Reference
Description (cont.): • mctr_sel_din1_rising (value 0x23) – The measure counter stops on the
rising edge of general-purpose input signal 1 (pin 2 of the Digital
connector).

• mctr_sel_din2_falling (value 0x24) – The measure counter stops on the
falling edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din2_rising (value 0x25) – The measure counter stops on the
rising edge of general-purpose input signal 2 (pin 3 of the Digital
connector).

• mctr_sel_din3_falling (value 0x26) – The measure counter stops on the
falling edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din3_rising (value 0x27) – The measure counter stops on the
rising edge of general-purpose input signal 3 (pin 4 of the Digital
connector).

• mctr_sel_din4_falling (value 0x28) – The measure counter stops on the
falling edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din4_rising (value 0x29) – The measure counter stops on the
rising edge of general-purpose input signal 4 (pin 5 of the Digital
connector).

• mctr_sel_din5_falling (value 0x2a) – The measure counter stops on the
falling edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din5_rising (value 0x2b) – The measure counter stops on the
rising edge of general-purpose input signal 5 (pin 6 of the Digital
connector).

• mctr_sel_din6_falling (value 0x2c) – The measure counter stops on the
falling edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din6_rising (value 0x2d) – The measure counter stops on the
rising edge of general-purpose input signal 6 (pin 7 of the Digital
connector).

• mctr_sel_din7_falling (value 0x2e) – The measure counter stops on the
falling edge of general-purpose input signal 7 (pin 8 of the Digital
connector).

• mctr_sel_din7_rising (value 0x2f) – The measure counter stops on the
rising edge of general-purpose input signal 7 (pin 8 of the Digital
connector).
115

Chapter 3

116
Structure Element Name:

Data Type:

Description:

stale_flag

uint8_t

Indicates whether or not the data is new. This flag is used only when the
start edge and the stop edge is set to use the same pin and edge (such as pin
0 - DIN 0 rising as the start edge and pin 0 -DIN rising as the stop edge).

If the stale_flag is 1 (Used), the most significant bit (MSB) of the value is set
to 0 to indicate new data; reading the value before the measurement is
complete returns an MSB of 1.

If stale_flag is 0 (Not Used), the MSB is always set to 0.

Returns 0 = Success; < 0 = Failure

Notes By default, the general-purpose input signals are configured as digital
input signals.

You read the value of the measure counter through the input stream by
setting bit 10 of the channel mask using the ioctl -
IOCTL_CHAN_MASK_SET command, described on page 75

Example The following example sets up the measure counter to start on the rising
edge of the tachometer and stop on the falling edge of general-purpose
input signal 5. In this example, the general-purpose input signal is
configured as a digital input line. The stale flag is not used.

#define MCTR_DEV_FILE "//dev/dt7837-measure"
mctr_file = open(MCTR_DEV_FILE, O_RDWR);
dt78xx_mctr_config_t mctr_cfg;

mctr_cfg.start_sel = mctr_sel_tach_rising;
mctr_cfg.stop_sel = mctr_sel_din5_falling;
mctr_cfg.stale_flag = o;

if (ioctl(mctr_file, IOCTL_MCTR_CFG_SET, &mctr_cfg))
 {
 perror("IOCTL_MCTR_CFG_SET");
 goto finish;
 }

See Also IOCTL_MCT_CFG_GET, described on page 105.

File I/O Command Reference
ioctl - IOCTL_OFFSET_POT_GET

Description Returns the value of a specific potentiometer used to calibrate the offset
value associated with a specific channel.

Syntax int ioctl(int fd, IOCTL_OFFSET_POT_GET,
struct dt78xx_cal_pot_t *pOffetCalPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pOffsetCalPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Identifies the calibration type, where 1 is factory calibration and 0 is user
calibration.
117

Chapter 3

118
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Identifies the calibration register. Values range from 0 to 15.

For the analog input subsystem, the DT7837 uses registers 0 to 3, described
as follows:

• Register 0 – Stores the calibration factors when using a gain of 1 and a
sampling frequency less than 52.734 kHz.

• Register 1 – Stores the calibration factors when using a gain of 10 and a
sampling frequency less than 52.734 kHz.

• Register 2 – Stores the calibration factors when using a gain of 1 and a
sampling frequency equal to or greater than 52.734 kHz.

• Register 3 – Stores the calibration factors when using a gain of 10 and a
sampling frequency equal to or greater than 52.734 kHz.

For the analog output subsystem, the DT7837 uses registers 0 to 2,
described as follows:

• Register 0 – Stores the calibration factors when using an output
frequency greater than 54 kHz and less than or equal to 108 kHz.

• Register 1 – Stores the calibration factors when using an output
frequency greater than 30 kHz and less than or equal to 54 kHz.

• Register 2 – Stores the calibration factors when using an output
frequency greater than 108 kHz and less than or equal to 216 kHz.

Returns 0 = Success; < 0 = Failure

Example The following example returns the user calibration value of register 1 of the
offset calibration potentiometer associated with analog input channel 0.

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t offset_pot;

offset_pot.pot = 0;
offset_pot.value = 0;
offset_pot.factory = 0;
offset_pot.reg = 1;
if (ain_file, IOCTL_OFFSET_POT_GET, &offset_pot)

{
fprintf(stdout, "*** ERROR reading calibration

pot eeprom from driver\n");
return false;

}

*value = offset_pot.value;
return true;

See Also IOCTL_OFFSET_POT_SET, described on page 119.

File I/O Command Reference
ioctl - IOCTL_OFFSET_POT_SET

Description Sets the value of a specific potentiometer used to calibrate the offset value
associated with a specific channel.

Syntax int ioctl(int fd, IOCTL_OFFSET_POT_SET,
struct dt78xx_cal_pot_t *pOffetCalPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pOffsetCalPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from to 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Identifies the calibration type, where 1 is factory calibration and 0 is user
calibration.
119

Chapter 3

120
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Identifies the calibration register. Values range from 0 to 15.

For the analog input subsystem, the DT7837 uses registers 0 to 3, described
as follows:

• Register 0 – Stores the calibration factors when using a gain of 1 and a
sampling frequency less than 52.734 kHz.

• Register 1 – Stores the calibration factors when using a gain of 10 and a
sampling frequency less than 52.734 kHz.

• Register 2 – Stores the calibration factors when using a gain of 1 and a
sampling frequency equal to or greater than 52.734 kHz.

• Register 3 – Stores the calibration factors when using a gain of 10 and a
sampling frequency equal to or greater than 52.734 kHz.

For the analog output subsystem, the DT7837 uses registers 0 to 2,
described as follows:

• Register 0 – Stores the calibration factors when using an output
frequency greater than 54 kHz and less than or equal to 108 kHz.

• Register 1 – Stores the calibration factors when using an output
frequency greater than 30 kHz and less than or equal to 54 kHz.

• Register 2 – Stores the calibration factors when using an output
frequency greater than 108 kHz and less than or equal to 216 kHz.

Returns 0 = Success; < 0 = Failure

Notes You can continue to adjust the offset calibration values by calling this
command with different values. The offset calibration register is
automatically written to the wiper of the associated potentiometer.

Example The following example sets the user calibration value for calibration
register 0 of the offset potentiometer associated with analog input channel
0. In this example, the value is set to 254.

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t offset_pot;
offset_pot.pot = 0;
offset_pot.value = 254;
offset_pot.factory = 0;
offset_pot.reg = 0;

if (ioctl(ain_file, IOCTL_OFFSET_POT_SET, &offset_pot))
{

fprintf(stdout, "*** ERROR writing calibration
pot eeprom \n");

return false;
}

See Also IOCTL_OFFSET_POT_GET, described on page 117.

File I/O Command Reference
ioctl - IOCTL_OFFSET_POT_WIPER_GET

Description Returns the value of the wiper for a channel in a specific offset
potentiometer.

Syntax int ioctl(int fd, IOCTL_OFFSET_POT_WIPER_GET,
struct dt78xx_cal_pot_t *pOffsetCalWiperPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pOffsetCalWiperPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometers.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Not used for this command.
121

Chapter 3

122
Structure Element Name:

Data Type:

Description:

reg

uint32_t

Not used for this command.

Returns 0 = Success; < 0 = Failure

Example The following example returns the wiper value of the offset potentiometer
for analog input channel 0:

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t offset_wiper_pot;

offset_wiper_pot.pot = 0;
offset_wiper_pot.value = 0;
if (ain_file, IOCTL_OFFSET_POT_WIPER_GET,

&offset_wiper_pot)
{

fprintf(stdout, "*** ERROR reading calibration
pot eeprom from driver\n");

return false;
}

*value = offset_wiper_pot.value;
return true;

See Also IOCTL_OFFSET_POT_WIPER_SET, described on page 123.

File I/O Command Reference
ioctl - IOCTL_OFFSET_POT_WIPER_SET

Description Sets the value of the wiper for a channel in a specific offset potentiometer.

Syntax int ioctl(int fd, IOCTL_OFFSET_POT_WIPER_SET,
struct dt78xx_cal_pot_t *pOffsetCalWiperPot);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem (/dev/dt7837-aout).

Name:

Data Type:

Description:

pOffsetCalWiperPot

dt78xx_cal_pot_t structure

A pointer to a structure that defines the configuration of the calibration
potentiometer.

dt78xx_cal_pot_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

int pot;
uint32_t value;
struct
{

int factory;
uint32_t reg;

}cal;
}dt78xx_cal_pot_t;

Structure Element Name:

Data Type:

Description:

pot

int

The number of the channel/potentiometer to calibrate. For the analog
input subsystem, values range from 0 to 3. For the analog output
subsystem, the value is 0.

Structure Element Name:

Data Type:

Description:

value

uint32_t

The value of the potentiometer. Values range from 0 to 255.

Structure Element Name:

Data Type:

Description:

factory

int

Not used for this command.

Structure Element Name:

Data Type:

Description:

reg

uint32_t

Not used for this command.
123

Chapter 3

124
Returns 0 = Success; < 0 = Failure

Notes When you are satisfied that the offset calibration value is correct, call this
command to update the calibration register in non-volatile EEPROM.

Example The following example sets the wiper for the offset potentiometer
associated with analog input channel 0 to a value of 254:

#define AIN_DEV_FILE "//dev/dt7837-ain"
ain_file = open(AIN_DEV_FILE, O_RDWR);
dt78xx_cal_pot_t offset_wiper_pot;

offset_wiper_pot.pot = 0;
offset_wiper_pot.value = 254;
if (ioctl(ain_file, IOCTL_OFFSET_POT_WIPER_SET,

&offset_wiper_pot))
{

fprintf(stdout, "*** ERROR writing calibration
pot eeprom \n");

return false;
}

See Also IOCTL_OFFSET_POT_WIPER_GET, described on page 121.

File I/O Command Reference
ioctl - IOCTL_SAMPLE_CLK_GET

Description Returns the configuration of the sample clock for the specified stream.

Syntax int ioctl(int fd, IOCTL_SAMPLE_CLK_GET,
dt78xx_clk_config_t *pClk_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

pClk_config

dt78xx_clk_config_t

A pointer to a structure that defines the configuration of the clock.

dt78xx_clk_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t ext_clk;
uint8_t ext_clk_din;
uint8_t unused[2];
float clk_freq;

} dt78xx_clk_config_t;

Structure Element Name:

Data Type:

Description:

ext_clk

uint8_t

For the DT7837, this element is ignored as only an internal clock source is
supported.

Structure Element Name:

Data Type:

Description:

ext_clk_din

uint8_t

For the DT7837 this element is ignored as only an internal clock is
supported.

Structure Element Name:

Data Type:

Description:

unused[2]

uint8_t

Reserved for future use.

Structure Element Name:

Data Type:

Description:

clk_freq

float

Contains the actual sampling frequency that was set, in Hertz. For the
input stream, values range from 195.3125 Hz to 105.469 kHz. For the output
stream, values range from 30 kHz to 216 kHz.

Returns 0 = Success; < 0 = Failure
125

Chapter 3

126
Notes The actual sampling frequency that can be achieved may be different that
the value that was set using the ioctl - IOCTL_SAMPLE_CLK_SET
command, described on page 127, due to the granularity of the clock.

Example The following example returns the configuration of the sample clock,
including the actual sampling frequency that was set for the input stream,
fd_instream:

dt78xx_clk_config_t clk_cfg;
if (ioctl(fd_instream, IOCTL_SAMPLE_CLK_GET,

&clk_config))
 {
 perror("IOCTL_SAMPLE_CLK_GET");
 goto finish;
 }

See Also IOCTL_SAMPLE_CLK_SET, described on page 127.

File I/O Command Reference
ioctl - IOCTL_SAMPLE_CLK_SET

Description Specifies the configuration of the sample clock for the specified stream.

Syntax int ioctl(int fd, IOCTL_SAMPLE_CLK_SET,
dt78xx_clk_config_t *pClk_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

pClk_config

dt78xx_clk_config_t

A pointer to a structure that defines the configuration of the clock.

dt78xx_clk_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t ext_clk;
uint8_t ext_clk_din;
uint8_t unused[2];
float clk_freq;

} dt78xx_clk_config_t;

Structure Element Name:

Data Type:

Description:

ext_clk

uint8_t

For the DT7837, this element is ignored as only an internal clock is
supported.

Structure Element Name:

Data Type:

Description:

ext_clk_din

uint8_t

For the DT7837, this element is ignored as only an internal clock is
supported.

Structure Element Name:

Data Type:

Description:

unused[2]

uint8_t

Reserved for future use.

Structure Element Name:

Data Type:

Description:

clk_freq

float

Specifies the sampling frequency, in Hertz. For the input stream, values
range from 195.3125 Hz to 105.469 kHz. For the output stream, values
range from 30 kHz to 216 kHz.

Returns 0 = Success; < 0 = Failure
127

Chapter 3

128
Notes The DT7837 driver sets the frequency of the internal clock as close as
possible to the value that you specify. However, the value that you specify
may not be the actual value that is set. To return the actual sample clock
frequency that was set, use the ioctl - IOCTL_SAMPLE_CLK_SET
command.

Example The following example specifies a sampling frequency of 100 kHz for the
internal clock used by the input stream, fd_instream:

dt78xx_clk_config_t clk_cfg;
clk_cfg.clk_freq = 100000.0f;

if (ioctl(fd_instream, IOCTL_SAMPLE_CLK_SET, &clk_cfg))
 {
 perror("IOCTL_SAMPLE_CLK_SET");
 goto finish;
 }

See Also IOCTL_SAMPLE_CLK_GET, described on page 125.

File I/O Command Reference
ioctl - IOCTL_START_SUBSYS

Description Starts the I/O operation on the DT7837 module.

When the file descriptor is associated with an input stream or output
stream, this command starts the operation when a software trigger is
specified; it has no effect if any other trigger source is specified.

When the file descriptor is associated with a counter/timer subsystem, this
command starts the counter/timer operation. If a software gate type is
specified, the operation starts immediately. If the gate type is an external
gate, the operation starts when the specified gate signal is detected. See the
ioctl - IOCTL_CT_CFG_SET command, described on page 85, for more
information.

Syntax int ioctl(int fd, IOCTL_START_SUBSYS,
unint32_t *pSimultaneous);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the file for the input stream
(/dev/dt7837-stream-in), output stream (/dev/dt7837-stream-out), or
counter/timer subsystem (/dev/dt7837-ctr-tmr) of the DT7837.

Name:

Data Type:

Description:

*pSimultaneous

unint32_t

A pointer to a variable that specifies whether or not to start the operations
on the input and output streams simultaneously. By default, this value is
NULL and operations on the input and output streams are not started
simultaneously.

If the file descriptor for the input stream is specified, a non-zero value
starts operations on the input stream and the output stream
simultaneously. If the file descriptor for the output stream is specified, a
non-zero value starts the output stream and the input stream
simultaneously.

If the file descriptor for the counter/timer subsystem is specified, this value
is NULL.

Returns 0 = Success; < 0 = Failure

Notes Once an operation is started, you can stop the operation using the ioctl -
IOCL_STOP_SUBSYS command, described on page 139.
129

Chapter 3

130
Example The following example configures the input stream, fd_instream, for a
software trigger, arms the input stream, and then starts acquisition on the
input stream.

dt78xx_trig_config_t trig_cfg;
 trig_cfg.src = trig_src_sw;
 if (ioctl(fd_stream, IOCTL_START_TRIG_CFG_SET,

&trig_cfg))
 {
 perror("IOCTL_START_TRIG_CFG_SET");
 goto finish;
 }

ret = ioctl(fd_instream, IOCTL_ARM_SUBSYS, 0);

uint32_t simultaneous = 0;
ret = ioctl(fd_instream, IOCTL_START_SUBSYS,

&simultaneous);

See Also ioctl - IOCTL_STOP_SUBSYS, described on page 139.

File I/O Command Reference
ioctl - IOCTL_START_TRIG_CNF_GET

Description Returns the configuration of the start trigger used by the specified stream.

Syntax int ioctl(int fd, IOCTL_START_TRIG_CFG_GET,
struct dt78xx_trig_config_t *pStartTrig_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

pStartTrig_config

dt78xx_trig_config_t structure

A pointer to a structure that defines the configuration of the start trigger.

dt78xx_trig_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

trig_src_t src;
union
{

struct __attribute__ ((__packed__))
{

uint16_t edge_rising;
uint16_t din;

}ext;

struct __attribute__ ((__packed__))
{

uint16_t edge_rising;
uint16_t ain;
int32_t level;

}threshold;

} src_cfg;
} dt78xx_trig_config_t;
131

Chapter 3

132
Structure Element Name:

Data Type:

Description:

src

trig_src_t

This enumeration defines the source of the start trigger. It is defined as
follows:

typedef enum
{

trig_src_sw,
trig_src_ext,
trig_src_threshold

}trig_src_t;

where,

• trig_src_sw specifies a software trigger as the source of the start trigger.
When this trigger source is specified, the operation starts when the ioctl
- IOCTL_START_SUBSYS command, described on page 129, is
executed.

• trig_src_ext specifies the external, digital (TTL) trigger as the source of
the start trigger. The start trigger occurs when the device detects a
transition on the active edge of the external digital (TTL) trigger signal.
If you specify this trigger source, the values for the elements of the ext
structure of dt78xx_trig_config_t, described below, are required.

• trig_src_threshold specifies the threshold trigger as the source of the start
trigger. The start trigger occurs when the signal attached to a specified
analog input channel rises above or falls below a user-specified
threshold value. If you specify this trigger source, the values for the
elements of the threshold structure of dt78xx_trig_config_t, described on
below, are required.

Structure Element Name:

Data Type:

Description:

edge_rising

uint16_t

Used by the ext and threshold structures, specifies which edge of the trigger
signal is the active edge, where 0 is falling edge and 1 is rising edge.

If this element is specified in the ext structure, the trigger signal refers the
external digital (TTL) trigger.

If this element is specified in the threshold structure, the trigger signal refers
the threshold trigger.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

din

uint16_t

Used by the ext structure, specifies which general-purpose input signal
(pins 1 to 8) on the Digital connector to use for the external trigger input
signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

ain

uint16_t

Used by the threshold structure, specifies which analog input channel to use
for the threshold trigger, where 0 represents analog input channel 0, 1
represents analog input channel 1, 2 represents analog input channel 2, and
3 represents analog input channel 3.

Structure Element Name:

Data Type:

Description:

level

int32_t

Specifies the level at which the threshold trigger occurs. Values depend on
the resolution of the module. Since the DT7837 module has a 24-bit A/D
converter and uses two’s complement data encoding, the positive full-scale
range (+10 V or +1 V depending on the gain) is 0x007fffff, one code above 0
is 0x0, one code below 0 is 0xff800000, and the negative full-scale range
(–10 V or –1 V depending on the gain) is 0xffffffff.

Returns 0 = Success; < 0 = Failure

Notes The threshold trigger is supported for the input stream only.

The DT7837 driver sets the threshold level as close as possible to the value
that you specify. However, the value that you specify may not be the actual
value that is set. This command returns the actual threshold level that was
set using the ioctl - IOCTL_START_TRIG_CNF_SET command.
133

Chapter 3

134
Example The following example returns the configuration of the start trigger for the
input stream, fd_instream:

dt78xx_trig_config_t StartTrig_cfg;
if (ioctl(fd_instream, IOCTL_START_TRIG_CFG_GET,

&StartTrig_cfg))
 {
 perror("IOCTL_START_TRIG_CFG_GET");
 goto finish;
 }

See Also IOCTL_START_TRIG_CFG_SET, described on page 135.

File I/O Command Reference
ioctl - IOCTL_START_TRIG_CNF_SET

Description Specifies the configuration of the start trigger used by the specified stream.

Syntax int ioctl(int fd, IOCTL_START_TRIG_CFG_SET,
struct dt78xx_trig_config_t *pStartTrig_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in) or output stream (/dev/dt7837-stream-out).

Name:

Data Type:

Description:

pStartTrig_config

dt78xx_trig_config_t structure

A pointer to a structure that defines the configuration of the start trigger.

dt78xx_trig_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

trig_src_t src;
union
{

struct __attribute__ ((__packed__))
{

uint16_t edge_rising;
uint16_t din;

}ext;

struct __attribute__ ((__packed__))
{

uint16_t edge_rising;
uint16_t ain;
int32_t level;

}threshold;

} src_cfg;
} dt78xx_trig_config_t;
135

Chapter 3

136
Structure Element Name:

Data Type:

Description:

src

trig_src_t

This enumeration defines the source of the start trigger. It is defined as
follows:

typedef enum
{

trig_src_sw,
trig_src_ext,
trig_src_threshold

}trig_src_t;

where,

• trig_src_sw specifies a software trigger as the source of the start trigger.
When this trigger source is specified, the operation starts when the ioctl
- IOCTL_START_SUBSYS command, described on page 129, is
executed.

• trig_src_ext specifies the external, digital (TTL) trigger as the source of
the start trigger. The start trigger occurs when the device detects a
transition on the active edge of the external digital (TTL) trigger signal.
If you specify this trigger source, the values for the elements of the ext
structure of dt78xx_trig_config_t, described below, are required.

• trig_src_threshold specifies the threshold trigger as the source of the start
trigger. The start trigger occurs when the signal attached to a specified
analog input channel rises above or falls below a user-specified
threshold value. If you specify this trigger source, the values for the
elements of the threshold structure of dt78xx_trig_config_t, described on
below, are required.

Structure Element Name:

Data Type:

Description:

edge_rising

uint16_t

Used by the ext and threshold structures, specifies which edge of the trigger
signal is the active edge, where 0 is falling edge and 1 is rising edge.

If this element is specified in the ext structure, the trigger signal refers the
external digital (TTL) trigger.

If this element is specified in the threshold structure, the trigger signal refers
the threshold trigger.

File I/O Command Reference
Structure Element Name:

Data Type:

Description:

din

uint16_t

Used by the ext structure, specifies which general-purpose input signal
(pins 1 to 8) on the Digital connector to use for the external trigger input
signal.

Pin 1 corresponds to bit 0 of the digital input port (value 0x1).

Pin 2 corresponds to bit 1 of the digital input port (value 0x2).

Pin 3 corresponds to bit 2 of the digital input port (value 0x4).

Pin 4 corresponds to bit 3 of the digital input port (value 0x8).

Pin 5 corresponds to bit 4 of the digital input port (value 0x10).

Pin 6 corresponds to bit 5 of the digital input port (value 0x20).

Pin 7 corresponds to bit 6 of the digital input port (value 0x40).

Pin 8 corresponds to bit 7 of the digital input port (value 0x80).

Structure Element Name:

Data Type:

Description:

ain

uint16_t

Used by the threshold structure, specifies which analog input channel to use
for the threshold trigger, where 0 represents analog input channel 0, 1
represents analog input channel 1, 2 represents analog input channel 2, and
3 represents analog input channel 3.

Structure Element Name:

Data Type:

Description:

level

uint32_t

Specifies the level at which the threshold trigger occurs. Values depend on
the resolution of the module. Since the DT7837 module has a 24-bit A/D
converter and uses two’s complement data encoding, the positive full-scale
range (+10 V or +1 V depending on the gain) is 0x007fffff, one code above 0
is 0x0, one code below 0 is 0xff800000, and the negative full-scale range
(–10 V or –1 V depending on the gain) is 0xffffffff.

Returns 0 = Success; < 0 = Failure

Notes The threshold trigger is supported for the input stream only.

The DT7837 driver sets the threshold level as close as possible to the value
that you specify. However, the value that you specify may not be the actual
value that is set. To return the actual threshold level that was set, use the
ioctl - IOCTL_START_TRIG_CNF_GET command.
137

Chapter 3

138
Example The following example specifies the configuration of the start trigger for
the input stream, fd_instream. In this example, a rising-edge threshold
trigger on analog input channel 0 is used with a threshold level of
approximately +0.5 V (a two’s complement value of 0x0066667):

dt78xx_trig_config_t StartTrig_cfg;
StartTrig_cfg.src = trig_src_threshold;
StartTrig_cfg.src_cfg.threshold.edge_rising = 1;
StartTrig_cfg.src_cfg.threshold.ain = 0;
StartTrig_cfg.src_cfg.threshold.level = 0x0066667;
if (ioctl(fd_instream, IOCTL_START_TRIG_CFG_SET,

&StartTrig_cfg))
 {
 perror("IOCTL_START_TRIG_CFG_SET");
 goto finish;
 }

See Also IOCTL_START_TRIG_CFG_GET, described on page 131.

File I/O Command Reference
ioctl - IOCTL_STOP_SUBSYS

Description Stops the I/O operation on the DT7837 module immediately.

Syntax int ioctl(int fd, IOCTL_STOP_SUBSYS, int unused);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the input stream
(/dev/dt7837-stream-in), output stream (/dev/dt7837-stream-out), or
counter/timer subsystem (/dev/dt7837-ctr-tmr) of the DT7837.

Name:

Data Type:

Description:

unused

int

Not used; reserved for future use.

Returns 0 = Success; < 0 = Failure

Notes When the file descriptor is associated with a counter/timer subsystem, this
command stops an operation that was previously started with the ioctl -
IOCTL_START_SUBSYS command, described on page 129.

When the file descriptor is associated with an input stream or output
stream, this command stops an operation that was previously started with
the ioctl - IOCTL_START_SUBSYS command (a software trigger was
specified) or was started when the specified trigger condition was detected.
Refer to page 129 for more information on ioctl -
IOCTL_START_SUBSYS. This command stops the DMA engine
immediately and no further data is collected. Asynchronous I/O control
blocks that were submitted using io_submit are still in the AIO queue and
will not be completed. To cancel these control blocks, use io_cancel.

If you want to restart the operation for the input stream or output stream,
you must rearm the stream using ioctl - IOCTL_ARM_SUBSYS, described
on page 71, and, if a software trigger is specified, restart the operation
using ioctl - IOCTL_START_SUBSYS, described on page 129.

Before terminating the application, use free to free any events and I/O
control blocks and io_destroy to destroy the asynchronous I/O context
used by the stream.

Example The following example stops acquisition on the input stream, fd_instream:

ioctl(fd_instream, IOCTL_STOP_SUBSYS, 0);

See Also ioctl - IOCTL_START_SUBSYS, described on page 129.
139

Chapter 3

140
ioctl - IOCTL_TACH_CFG_GET

Description Returns the configuration of the tachometer subsystem.

Syntax int ioctl(int fd, IOCTL_TACH_CFG_GET,
struct dt78xx_tach_config_t *pTach_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the tachometer subsystem
(/dev/dt7837-tach).

Name:

Data Type:

Description:

pTach_config

dt78xx_tach_config_t structure

A pointer to a structure that defines the configuration of the tachometer
subsystem.

dt78xx_tach_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t edge_rising;
uint8_t stale_flag;
};

}dt78xx_tach_config_t;

Structure Element Name:

Data Type:

Description:

edge_rising

uint8_t

Specifies whether the rising edge or falling edge of the tachometer is used
for the measurement. The number of counts between two consecutive
edges of the tachometer input signal is used as the measurement.

If edge_rising is 0, the falling edge of the tachometer input signal is used for
the measurement.

If edge_rising is 1, the rising edge of the tachometer input signal is used for
the measurement.

Structure Element Name:

Data Type:

Description:

stale_flag

uint8_t

Indicates whether or not the data is new.

If the stale_flag is 1 (Used), the most significant bit (MSB) of the value is set
to 0 to indicate new data; reading the value before the measurement is
complete returns an MSB of 1.

If stale_flag is 0 (Not Used), the MSB is always set to 0.

Returns 0 = Success; < 0 = Failure

File I/O Command Reference
Notes You read the tachometer measurement through the input stream by setting
bit 8 of the channel mask using the ioctl - IOCTL_CHAN_MASK_SET
command, described on page 75.

Example The following example returns the configuration of the tachometer
subsystem, tach_file:

if (ioctl(tach_file, IOCTL_TACH_CFG_GET, &tach_cfg))
 {
 perror("IOCTL_TACH_CFG_GET");
 goto finish;
 }

See Also IOCTL_TACH_CFG_SET, described on page 142.
141

Chapter 3

142
ioctl - IOCTL_TACH_CFG_SET

Description Specifies the configuration of the tachometer subsystem.

Syntax int ioctl(int fd, IOCTL_TACH_CFG_SET,
struct dt78xx_tach_config_t *pTACH_config);

Include File DT78XX_IOCTL.H

Arguments

Name:

Data Type:

Description:

fd

int

The file descriptor associated with the tachometer subsystem
(/dev/dt7837-tach).

Name:

Data Type:

Description:

pTach_config

dt78xx_tach_config_t structure

A pointer to a structure that defines the configuration of the tachometer
subsystem.

dt78xx_tach_config_t is defined as follows:

typedef struct __attribute__ ((__packed__))
{

uint8_t edge_rising;
uint8_t stale_flag;
};

}dt78xx_tach_config_t;

Structure Element Name:

Data Type:

Description:

edge_rising

uint8_t

Specifies whether the rising edge or falling edge of the tachometer is used
for the measurement. The number of counts between two consecutive
edges of the tachometer input signal is used as the measurement.

If edge_rising is 0, the falling edge of the tachometer input signal is used for
the measurement.

If edge_rising is 1, the rising edge of the tachometer input signal is used for
the measurement.

Structure Element Name:

Data Type:

Description:

stale_flag

uint8_t

Indicates whether or not the data is new.

If the stale_flag is 1 (Used), the most significant bit (MSB) of the value is set
to 0 to indicate new data; reading the value before the measurement is
complete returns an MSB of 1.

If stale_flag is 0 (Not Used), the MSB is always set to 0.

Returns 0 = Success; < 0 = Failure

File I/O Command Reference
Notes You read the tachometer measurement through the input stream by setting
bit 8 of the channel mask using the ioctl - IOCTL_CHAN_MASK_SET
command, described on page 75.

Example The following example sets up the tachometer subsystem to measure
between two consecutive rising edges of the tachometer signal. In this
example, the stale flag is used.

#define TACH_DEV_FILE "//dev/dt7837-tach"
tach_file = open(TACH_DEV_FILE, O_RDWR);
dt78xx_tach_config_t tach_cfg;

tach_cfg.edge_rising = 1;
tach_cfg.stale_flag = 1;

if (ioctl(tach_file, IOCTL_TACH_CFG_SET, &tach_cfg))
 {
 perror("IOCTL_TACH_CFG_SET");
 goto finish;
 }

See Also IOCTL_TACH_CFG_GET, described on page 140.
143

Chapter 3

144
open

Description Given a pathname to a file that represents a subsystem, stream, or
endpoint of the DT7837 module, opens the file and returns an
associated file descriptor for use in subsequent calls.

Syntax int open(const char *pathname, int flags);

Arguments

Name:

Data Type:

Description:

*pathname

const char

A pointer to a filename that specifies the file to open. The following
pathnames are supported by the DT7837 module:

• /dev/dt7837-ain – Analog input subsystem

• /dev/dt7837-aout – Analog output subsystem

• /dev/dt7837-din – Digital input subsystem

• /dev/dt7837-dout – Digital output subsystem

• /dev/dt7837-tach – Tachometer subsystem

• /dev/dt7837-measure – Measure counter subsystem

• /dev/dt7837-ctr-tmr – Counter/timer subsystem

• /dev/dt7837-stream-in – Input stream

• /dev/dt7837-stream-out – Output stream

• /dev/dt7837-ep1in – EP1 IN endpoint, address 0x81

• /dev/dt7837-ep1out – EP1 OUT endpoint, address 0x01

• /dev/dt7837-ep2in – EP2 IN endpoint, address 0x82

• /dev/dt7837-ep2out – EP2 OUT endpoint, address 0x02

• /dev/dt7837-ep3out – EP3 OUT endpoint, address 0x03

• /dev/dt7837-ep4out – EP4 OUT endpoint, address 0x04

• /dev/dt7837-ep5out – EP5 OUT endpoint, address 0x05

Name:

Data Type:

Description:

flags

int

The access mode of the file to open. The following access modes are
supported:

• O_RDONLY – Open the file for read only.

• O_WRONLY – Open the file for write only.

• O_RDWR – Open the file for read and write.

Returns The new file descriptor for the file or –1 if an error occurred.

File I/O Command Reference
Notes You must open the file corresponding to each subsystem, stream, or
endpoint that you want to use before you can configure its
parameters and perform an I/O read or write operation.

A file can be opened by only one reader/writer at a time. However,
different files can be opened simultaneously. Once a file is closed, it
can be re-opened.

The file descriptor remains open until is closed with the close
command, described on page 65.

Example The following command opens the file associated with the input
stream of the DT7837 for read only and returns a file descriptor that
is associated with the input stream:

#define DEV_STREAM_IN "/dev/dt7837-stream-in"
fd_instream = open(DEV_STREAM_IN, O_RDONLY);

See Also close, described on page 65.
145

Chapter 3

146

4
Programming Flowcharts

Using the File I/O Commands
Input Stream Asynchronous Read Operations . 148

Analog Output Synchronous Write Operation . 151

Output Stream Asynchronous Write Operations . 152

Digital Input Synchronous Read Operation. 154

Digital Output Synchronous Write Operation . 155

Counter/Timer Operation . 156

Calibration. 157

User LED Modifications . 158

Sending Data to a USB Host . 159

Receiving Data from a USB Host . 160
147

Chapter 4

148
Input Stream Asynchronous Read Operations

Specify the channels to acquire in the input stream
using ioctl - IOCTL_CHAN_MASK_SET.

Set up the parameters for the analog input subsystem
using ioctl - IOCTL_AIN_CFG_SET.

Open the file for the input stream
(/dev/dt7837-stream-in) using open

Open the file for the analog input subsystem
(/dev/dt7837-ain) using open.

If you want to read the tachometer in the input
stream, configure the tachometer parameters using

ioctl - IOCTL_TACH_CFG_SET.

Yes

No

Acquiring
analog input
channels?

Acquiring
tachometer

data?

Yes
Open the file for the tachometer subsystem

(/dev/dt7837-tach) using open.

No

Go to next page.

If you want to read the measure counter in the input
stream, configure the measure counter parameters

using ioctl - IOCTL_MCTR_CFG_SET.

Acquiring
measure
counter
data?

Yes
Open the file for the measure counter subsystem

(/dev/dt7837-measure) using open.

No

Programming Flowcharts Using the File I/O Commands
Continued from previous page.

Open an asynchronous I/O context using io_setup (see your Linux
documentation for details).

Allocate an array of I/O control blocks (struct iocbs) for the input
operation (see your Linux documentation for details).

Submit I/O requests to the asynchronous I/O context using
io_submit (see your Linux documentation for details).

Arm the input stream using
ioctl - IOCLT_ARM_SUBSYS.

Go to next page.

Set up the sample clock for the input stream using
ioctl - IOCTL_SAMPLE_CLK_SET.

Set up the start trigger for the input stream using
ioctl - IOCTL_START_TRIG_CFG_SET.

If using a software trigger, start the operation for the input stream
using ioctl - IOCTL_START_SUBSYS.

To start a continuous input operation
and a continuous output operation
simultaneously, specify a non-zero
value for the pSimultaneous variable

When you are finished acquiring data, stop continuous acquisition
of the input stream using ioctl - IOCTL_STOP_SUBSYS.

Process the completed blocks using
io_getevents (see your Linux documentation for details).

If desired, get the status of acquisition using ioctl -
IOCTL_ACQ_STATUS_GET.
149

Chapter 4

150
Continued from previous page.

Close the input stream using close.

Close each of the subsystems that were opened
using close.

Destroy the asynchronous I/O context using io_destroy (see
your Linux documentation for details).

Cancel I/O control blocks that were aborted using
io_cancel (see your Linux documentation for details).

Programming Flowcharts Using the File I/O Commands
Analog Output Synchronous Write Operation

Open the file for the analog output subsystem
(/dev/dt7837-aout) using open.

Write a single value to the analog output subsystem
using the synchronous write command (see your

Linux documentation for details).

When finished, close the analog output subsystem
using close.
151

Chapter 4

152
Output Stream Asynchronous Write Operations

Specify the channels to update in the output stream
using ioctl - IOCTL_CHAN_MASK_SET.

Open the file for the output stream
(/dev/dt7837-stream-out) using open

Go to next page.

Open an asynchronous I/O context using io_setup
(see your Linux documentation for details).

Allocate an array of I/O control blocks (struct iocbs) for
the output operation (see your Linux documentation for

details).

Set up the clock rate for the output stream using
ioctl - IOCTL_SAMPLE_CLK_SET.

Fill the buffers with the pattern to write to the enabled
output channels.

Submit I/O requests to the asynchronous I/O context
using io_submit (see your Linux documentation for

details).

Arm the output stream using
ioctl - IOCLT_ARM_SUBSYS.

If using a software trigger, start the output operation using
ioctl - IOCTL_START_SUBSYS.

If desired, get the status of the output operation using
ioctl - IOCTL_ACQ_STATUS_GET.

To start a continuous input operation and a
continuous output operation simultaneously, specify
a non-zero value for the pSimultaneous variable

Set up the start trigger for the output stream using
ioctl - IOCTL_START_TRIG_CFG_SET.

Programming Flowcharts Using the File I/O Commands
Continued from previous page.

Close the output stream using close.

Destroy the asynchronous I/O context using io_destroy (see
your Linux documentation for details).

When you are finished outputting data, stop the continuous output
operation using ioctl - IOCTL_STOP_SUBSYS.

Cancel I/O control blocks that were aborted using
io_cancel (see your Linux documentation for details).

Process the completed blocks using
io_getevents (see your Linux documentation for details).
153

Chapter 4

154
Digital Input Synchronous Read Operation

Open the file for the digital input subsystem
(/dev/dt7837-din) using open.

Read a single value from the digital input port using
the synchronous read command (see your Linux

documentation for details).

When finished, close the digital input subsystem
using close.

Programming Flowcharts Using the File I/O Commands
Digital Output Synchronous Write Operation

Open the file for the digital output subsystem
(/dev/dt7837-dout) using open.

Write a single value to the digital output port using the
synchronous write command (see your Linux

documentation for details).

When finished, close the digital output subsystem
using close.
155

Chapter 4

156
Counter/Timer Operation

Open the file for the counter/timer subsystem
(/dev/dt7837-ctr-tmr) using open.

If desired, read the value of the counter/timer using
the synchronous read command (see your Linux

documentation for details).

When finished, close the counter/timer subsystem
using close.

Configure the counter/timer subsystem using
ioctl - IOCTL_CT_CFG_SET.

Start the counter/timer using
ioctl - IOCTL_START_SUBSYS.

Stop the counter/timer using
ioctl - IOCTL_STOP_SUBSYS.

Programming Flowcharts Using the File I/O Commands
Calibration

Open the file for the analog input subsystem
(/dev/dt7837-ain) or analog output subsystem

(/dev/dt7837-aout) using open.

Calibrate the offset value for a specific calibration register
associated with a specific analog input channel using the ioctl -

IOCTL_OFFSET_POT_SET command. Call this command using
different values, if needed, until the offset value is correct.

When finished, close the analog input or analog output
subsystem using close.

When the offset value is correct, use the ioctl -
IOCTL_OFFSET_POT_WIPER_SET command.

Calibrate the gain value for a specific calibration register
associated with a specific analog input channel using the ioctl -
IOCTL_GAIN_POT_SET command. Call this command using
with different values, if needed, until the gain value is correct.

When the gain value is correct, use the ioctl -
IOCTL_GAIN_POT_WIPER_SET command.

Calibrate
another
register?

Yes

No

Calibrate
another

channel?

Yes

No
157

Chapter 4

158
User LED Modifications

Open a file for any of the supported subsystems
(/dev/dt7837-ain, dev/dt7837-din, /dev/dt7837-dout,

/dev/dt7837-tach, dev/dt7837-measure, /dev/dt7837-ctr-tmr, or
/dev/dt7837_stream_in) using open.

Turn the specified LEDs on or off using the
ioctl - IOCTL_LED_SET command.

Programming Flowcharts Using the File I/O Commands
Sending Data to a USB Host

Open the file for a USB IN endpoint
(/dev/dt7837-ep1in or /dev/dt7837-ep2in)

using open.

Write the data to the USB host using the
asynchronous aio_write command (see your Linux

documentation for details).

When finished, close the file using close.

If desired, eliminate the data from the IN endpoint
using the flush command (see your Linux

documentation for details).

Want a
Synchronous

Write?

Yes

No

Write the data using the synchronous write command
(see your Linux documentation for details).
159

Chapter 4

160
Receiving Data from a USB Host

Open the file for a USB OUT endpoint
(/dev/dt7837-ep1out, /dev/dt7837-ep2out,

/dev/dt7837-ep3out, /dev/dt7837-ep4out, or
/dev/dt7837-ep5out) using open.

Read data from the USB host using the asynchronous
aio_read command (see your Linux documentation

for details).

When finished, close the file using close.

If desired, eliminate the data from the OUT
endpoint using the flush command (see your

Linux documentation for details).

Want a
Synchronous

Read?

Yes

No

Read the data from the host using the synchronous
read command (see your Linux documentation for

details).

5
Product Support
161

Chapter 5

162
Should you experience problems using the file I/O commands to program a DT7837 module,
follow these steps:

1. Read all the appropriate sections of this manual and the DT7837 User’s Manual.

2. Refer to the supplied example programs for clarification.

3. Check that you have installed your hardware devices properly. For information, refer to
the DT7837 User’s Manual.

4. Check that you have installed the software properly. For information, refer to the DT7837
User’s Manual.

If you are still having problems, Data Translation’s Technical Support Department is available
to provide technical assistance. To request technical support, go to our web site at
http://www.mccdaq.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

• Your product serial number

• The hardware/software product you need help on

If you are located outside the USA, contact your local distributor; see our web site
(www.mccdaq.com) for the name and telephone number of your nearest distributor.

Index

Index
A
acquisition status 28
AIO model 27, 34
aio_read 62

USB gadget 160
aio_write 61

USB gadget 159
aliasing 25
analog input calibration 54
analog input channels 24
analog input operations 24

configuring input channels 24
flowchart 148
opening the subsystem 24

analog output calibration 56
analog output operations 32, 152

flowchart 151
opening the subsystem 32

asynchronous I/O context 27, 34
asynchronous I/O requests 31, 38
asynchronous read operations 148
asynchronous write operations 152

B
blocks, I/O control 27, 28, 34, 35
buffer error reporting 29, 35
buffers

input 28
output 35

C
calibration 54

analog input 54
analog output 56
flowchart 157
gain 56, 58
offset 55, 57
opening the subsystem 55, 57

channel mask 25, 33
clock sources

counter/timer 45
input stream 25
output stream 33

close 23, 60, 65, 150
analog input 31, 38, 56, 58, 157
analog output 151
counter/timer 47, 156
digital input 52, 154
digital output 32, 53, 155
input stream 31, 38, 150
output stream 153
USB gadget 62, 159, 160

control blocks 27, 28, 34, 35
counter/timer operations 41

clock sources 45
closing the subsystem 47
configuring the subsystem 41
flowchart 156
flowchart for input stream operations 148
gate types 44
mode 41
opening the subsystem 41
polarity of the output signal 46
pulse output period 46
pulse width 46
reading the counter/timer 47
starting the operation 47
stopping the operation 47

coupling type 24
current source 24

D
debug pins on header J10 59
digital input operations 52

closing the subsystem 52
flowchart for a single read operation 154
flowchart for input stream operations 148
opening the subsystem 52
reading the value 52

digital output operations 53, 152
closing the subsystem 32, 53, 56, 58
flowchart 155
opening the subsystem 32, 53
updating the value 32, 53

digital trigger 26, 33
DT7837 device driver 10, 22
duty cycle 46
163

Index

164
E
enabling buffer error reporting 29, 35
endpoint files 22
endpoints, USB 61
error reporting 29, 35
event counting mode 41
events 28, 35
external C/T clock source 45
external digital trigger 26, 33

F
files, I/O 22
flowcharts

analog input operations 148
analog output operations 151, 152
calibration 157
counter/timer operations 156
digital input single read operations 154
digital output operations 155
input stream operations 148
output stream operations 152
receiving data from a USB host 160
sending data to a USB host 159
user LEDs 158

flush 62
USB gadget 159, 160

flushing data 62
frequency

external C/T clock 45
sample clock 25, 33

G
gain 24
gain calibration 56, 58
gate type 44
group delay 25, 33

H
header J10 59
help 8

I
I/O control blocks 27, 28, 34, 35
I/O files 22
I/O requests 27, 28, 34, 35
idle mode 44

input stream operations 24
arming the operation 28
cleaning up resources 31
configuring the channel mask 25
configuring the sample clock 25
configuring the start trigger 26
flowchart 148
opening the input stream 24
processing I/O requests 28, 35
starting the operation 28
stopping the operation 31
submitting I/O requests 27, 34

input type 24
internal C/T clock source 45
io_cancel 31, 38, 150, 153
io_destroy 31, 38, 150, 153
io_getevents 28, 35, 149, 153
io_setup 27, 34, 149, 152
io_submit 27, 34, 149, 152
ioctl - IOCTL_ACQ_STATUS_GET 28, 35, 66, 149,

152
ioctl - IOCTL_AIN_CFG_GET 24, 67
ioctl - IOCTL_AIN_CFG_SET 24, 69, 148
ioctl - IOCTL_ARM_SUBSYS 28, 34, 71, 149, 152
ioctl - IOCTL_CHAN_MASK_GET 25, 33, 72
ioctl - IOCTL_CHAN_MASK_SET 25, 33, 75, 148,

152
ioctl - IOCTL_CT_CFG_GET 41, 78
ioctl - IOCTL_CT_CFG_SET 41, 85, 148, 156
ioctl - IOCTL_GAIN_POT_GET 56, 58, 92
ioctl - IOCTL_GAIN_POT_SET 56, 58, 94, 157
ioctl - IOCTL_GAIN_POT_WIPER_GET 56, 58,

97
ioctl - IOCTL_GAIN_POT_WIPER_SET 56, 58,

99, 157
ioctl - IOCTL_LED_GET 60, 101
ioctl - IOCTL_LED_SET 60, 103, 158
ioctl - IOCTL_MCTR_CFG_GET 51, 105
ioctl - IOCTL_MCTR_CFG_SET 48, 111, 148
ioctl - IOCTL_OFFSET_POT_GET 55, 57, 117
ioctl - IOCTL_OFFSET_POT_SET 55, 57, 119, 157
ioctl - IOCTL_OFFSET_POT_WIPER_GET 55, 57,

121
ioctl - IOCTL_OFFSET_POT_WIPER_SET 55, 57,

123, 157
ioctl - IOCTL_SAMPLE_CLK_GET 25, 33, 125,

128
ioctl - IOCTL_SAMPLE_CLK_SET 25, 33, 127,

149, 152

Index
ioctl - IOCTL_START_SUBSYS 28, 34, 129
counter/timer 47, 156
input stream 26, 33, 149
output stream 152

ioctl - IOCTL_START_TRIG_CFG_GET 27, 34,
131, 137

ioctl - IOCTL_START_TRIG_CFG_SET 26, 33,
135, 149, 152

ioctl - IOCTL_STOP_SUBSYS 31, 37, 139
counter/timer 47, 156
input stream 149
output stream 153

ioctl - IOCTL_TACH_CFG_GET 40, 140
ioctl - IOCTL_TACH_CFG_SET 39, 142

J
J10 header 59

L
LEDs, user 59

flowcharts 158

M
mask, channel 25, 33
measure counter operations 48

configuring the subsystem 48
flowchart for input stream operations 148
opening the subsystem 48

N
non-retriggerable one-shot mode 43
Nyquist Theorem 25

O
offset calibration 55, 57
open 23, 60, 144

analog input 24, 32, 55, 57, 148, 157, 158
analog output 151
counter/timer 41, 156, 159, 160
digital input 52, 154
digital output 32, 53, 155
input stream 24, 32, 148
measure counter 48, 148
output stream 152
tachometer 39, 148
USB gadget 61

output operation status 35
output stream operations 32

arming the operation 34
cleaning up resources 38
configuring the channel mask 33
configuring the sample clock 33
configuring the start trigger 33
flowchart 152
opening the output stream 32
starting the operation 34
stopping the operation 37

overrun errors 29

P
polarity of the counter output signal 46
processing requests 27, 28, 34, 35
pulse output

period 46
pulse width 46

R
rate generation mode 42
read

counter/timer 47, 156
digital input 52, 154
USB gadget 62, 160

receiving data from a USB host 160
receiving data from the USB host 62
related documents 8
removing data 62
requests 27, 28, 34, 35

S
sample clock frequency 25, 33
sending data to a USB host 159
sending data to the USB host 61
service and support procedure 162
software trigger 26, 33
start trigger

external digital (TTL) trigger 26, 33
software 26, 33
threshold trigger 26

status of acquisition 28
status of output operation 35
stream files 22
submitting requests 27, 34
subsystem files 22
165

Index

166
synchronous read operation
counter/timer 156
digital input 154

synchronous write operations 151, 155

T
tachometer operations 39

configuring the tachometer subsystem 39
flowchart for input stream operations 148
opening the subsystem 39

technical support 8, 162
threshold trigger 26
triggers

external 26, 33
software 26, 33
threshold 26

troubleshooting checklist 162
troubleshooting procedure 162
TTL trigger 26, 33

U
underrun errors 35
USB endpoints 61
USB gadget

closing the file 62
flowchart for receiving data from a USB host 160
flowchart for sending data to a USB host 159
opening the file 61
receiving data from the USB host 62
removing data 62
sending data to the USB host 61

USB gadget driver 10, 22
USB host 61, 62
user LEDs 59

flowchart 158

W
write

analog output 151
digital output 32, 53, 155
USB gadget 61, 159

	Title Page
	Copyright Page
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Conventions Used in this Manual
	Related Documents
	Where to Get Help

	Overview
	Introduction
	Installing the Software
	Examples
	Summary of Supported File I/O Operations

	Using the File I/O Commands
	Opening and Closing a File
	Analog Input and Input Stream Operations
	Opening the Subsystem and Input Stream
	Configuring the Input Channels
	Configuring the Channel Mask for the Input Stream
	Configuring the Sample Clock
	Configuring the Trigger that Starts Acquisition
	Submitting I/O Requests
	Arming and Starting Continuous Operations
	Getting the Status of Acquisition
	Processing I/O Requests
	Dealing with Input Buffers
	Enabling Buffer Error Reporting
	Stopping Continuous Operations
	Cleaning up Resources

	Analog Output and Output Stream Operations
	Performing a Single Value Operation
	Opening the Subsystem
	Updating the Value of the Analog Output Channel
	Closing the Subsystem

	Performing a Continuous Output Operation
	Opening the Output Stream
	Configuring the Channel Mask for the Output Stream
	Configuring the Sample Clock
	Configuring the Trigger that Starts the Output Operation
	Submitting I/O Requests
	Arming and Starting Continuous Operations
	Getting the Status of the Output Operation
	Processing I/O Requests
	Dealing with Output Buffers
	Enabling Buffer Error Reporting
	Stopping Continuous Operations
	Cleaning up Resources

	Tachometer Operations
	Opening the Subsystem
	Configuring the Tachometer Subsystem

	Counter/Timer Operations
	Opening the Subsystem
	Configuring the Counter/Timer Subsystem
	Mode
	Event Counting Mode
	Rate Generation Mode
	Non-Retriggerable One-Shot Mode
	Idle Mode

	Gate
	C/T Clock Input Sources
	Pulse Output Period, Pulse Width, and Polarity

	Starting the Counter/Timer Operation
	Reading the Counter/Timer
	Stopping the Counter/Timer Operation
	Closing the Subsystem

	Measure Counter Operations
	Opening the Subsystem
	Configuring the Measure Counter Subsystem

	Digital Input Operations
	Opening the Subsystem
	Reading the Value
	Closing the Subsystem

	Digital Output Operations
	Opening the Subsystem
	Updating the Value of the Port
	Closing the Subsystem

	Calibration
	Analog Input Calibration
	Opening the Subsystem
	Calibrating the Offset
	Calibrating the Gain
	Closing the Subsystem

	Analog Output Calibration
	Opening the Subsystem
	Calibrating the Offset
	Calibrating the Gain
	Closing the Subsystem

	Modifying the State of the User LEDs on the Module
	Sending Data to or Receiving Data from the Host USB Application
	Opening the File
	Sending Data to the USB Host
	Receiving Data from the USB Host
	Eliminating Data from the Endpoint
	Closing the File

	File I/O Command Reference
	close
	ioctl - IOCTL_ACQ_STATUS_GET
	ioctl - IOCTL_AIN_CNF_GET
	ioctl - IOCTL_AIN_CNF_SET
	ioctl - IOCTL_ARM_SUBSYS
	ioctl - IOCTL_CHAN_MASK_GET
	ioctl - IOCTL_CHAN_MASK_SET
	ioctl - IOCTL_CT_CFG_GET
	ioctl - IOCTL_CT_CFG_SET
	ioctl - IOCTL_GAIN_POT_GET
	ioctl - IOCTL_GAIN_POT_SET
	ioctl - IOCTL_GAIN_POT_WIPER_GET
	ioctl - IOCTL_GAIN_POT_WIPER_SET
	ioctl - IOCTL_LED_GET
	ioctl - IOCTL_LED_SET
	ioctl - IOCTL_MCTR_CFG_GET
	ioctl - IOCTL_MCTR_CFG_SET
	ioctl - IOCTL_OFFSET_POT_GET
	ioctl - IOCTL_OFFSET_POT_SET
	ioctl - IOCTL_OFFSET_POT_WIPER_GET
	ioctl - IOCTL_OFFSET_POT_WIPER_SET
	ioctl - IOCTL_SAMPLE_CLK_GET
	ioctl - IOCTL_SAMPLE_CLK_SET
	ioctl - IOCTL_START_SUBSYS
	ioctl - IOCTL_START_TRIG_CNF_GET
	ioctl - IOCTL_START_TRIG_CNF_SET
	ioctl - IOCTL_STOP_SUBSYS
	ioctl - IOCTL_TACH_CFG_GET
	ioctl - IOCTL_TACH_CFG_SET
	open

	Programming Flowcharts Using the File I/O Commands
	Input Stream Asynchronous Read Operations
	Analog Output Synchronous Write Operation
	Output Stream Asynchronous Write Operations
	Digital Input Synchronous Read Operation
	Digital Output Synchronous Write Operation
	Counter/Timer Operation
	Calibration
	User LED Modifications
	Sending Data to a USB Host
	Receiving Data from a USB Host

	Product Support
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

