
DataAcq SDK

UM-18326-AC

User’s Manual

Title Page

Copyright Page
Trademark and Copyright Inf
Measurement Computing Corporation, In
either trademarks or registered trademar
Trademarks section on mccdaq.com/lega
Other product and company names ment
companies.

© 2015 Measurement Computing Corpo
reproduced, stored in a retrieval system,
photocopying, recording, or otherwise w
Corporation.

Notice
Measurement Computing Corporation do
use in life support systems and/or device
Corporation. Life support devices/system
into the body, or b) support or sustain life
injury. Measurement Computing Corpora
not subject to the testing required to ensu
people.
ormation
staCal, Universal Library, and the Measurement Computing logo are
ks of Measurement Computing Corporation. Refer to the Copyrights &
l for more information about Measurement Computing trademarks.
ioned herein are trademarks or trade names of their respective

ration. All rights reserved. No part of this publication may be
or transmitted, in any form by any means, electronic, mechanical, by
ithout the prior written permission of Measurement Computing

es not authorize any Measurement Computing Corporation product for
s without prior written consent from Measurement Computing
s are devices or systems that, a) are intended for surgical implantation
 and whose failure to perform can be reasonably expected to result in
tion products are not designed with the components required, and are
re a level of reliability suitable for the treatment and diagnosis of

http://www.mccdaq.com/legal.aspx

Table of Contents

Table of Contents
About this Manual . 9

Intended Audience. 9

What You Should Learn from this Manual. 9

Organization of this Manual. 9

Conventions Used in this Manual . 10

Related Information . 10

Where to Get Help . 10

Chapter 1: Getting Started . 11

What is the DataAcq SDK? . 12

Quick Start. 13

What You Need . 13

Installing the Software . 13

Creating 32-Bit and 64-Bit Application Programs Using the DataAcq SDK 13

Creating 32-Bit Native Windows Applications . 14

Creating 64-Bit Native Windows Applications . 14

Using the DataAcq SDK Online Help . 15

About the Example Programs . 16

About the Library Function Calling Conventions . 18

Chapter 2: Function Summary . 19

Data Acquisition Functions. 20

Information Functions . 20

Subsystem Capability Queries . 21

Initialization and Termination Functions . 30

Configuration Functions . 31

Operation Functions . 39

Data Conversion Functions . 41

Data Management Functions . 42

Buffer Management Functions . 42

Buffer List Management Functions . 43

Chapter 3: Using the DataAcq SDK . 45

System Operations . 47

Initializing a Device . 47

Specifying a Subsystem . 47

Configuring a Subsystem. 48

Calibrating a Subsystem. 48

Handling Errors. 49
3

Contents

4

Handling Messages. 49

Releasing the Subsystem and the Driver . 49

Analog and Digital I/O Operations . 50

Channels . 50

Specifying the Channel Type . 51

Specifying a Single Channel . 52

Specifying One or More Channels . 52

Specifying the Channel List Size . 52

Specifying the Channels in the Channel List . 53

Inhibiting Channels in the Channel List . 53

Specifying Synchronous Digital I/O Values in the Channel List 54

MultiSensor Inputs . 55

Voltage Inputs . 56

Current Measurements. 56

Resistance Measurements . 57

Sensor Wiring . 57

Excitation Current Sources and Values . 57

IEPE Inputs. 58

Coupling Type . 58

Excitation Current Sources and Values . 58

Thermocouples . 58

Thermocouple Input Types . 59

Thermocouple Correction and Linearization . 60

RTD Inputs . 61

Thermistor Inputs . 62

Strain Gage and Bridge-Based Sensor Inputs . 63

Excitation Voltage . 63

Strain Gage Type . 64

Bridge-Based Sensor Type . 64

Shunt Calibration . 64

TEDS . 65

Data Encoding . 65

Resolution. 65

Ranges. 66

Gains . 66

Specifying the Gain for a Single Channel . 67

Specifying the Gain for One or More Channels . 67

Filters. 68

FIlter Per Channel . 68

Filter Types . 68

Data Flow Modes . 69

Contents
Single-Value Operations . 69

Typical Single-Value Operations . 69

Simultaneous Single-Value Operations . 70

Continuous Operations . 71

Continuous Pre- and Post-Trigger Mode Using a Start and Reference
Trigger . 72

Continuous Post-Trigger Mode . 73

Continuous Pre-Trigger Mode (Legacy Devices) . 74

Continuous About-Trigger Mode (Legacy Devices) . 75

Triggered Scan Mode . 76

Scan-Per-Trigger Mode . 77

Internal Retrigger Mode . 77

Retrigger Extra Mode . 78

Interrupts . 79

Clock Sources. 79

Internal Clock Source . 80

External Clock Source . 80

Extra Clock Source . 81

Trigger Source . 81

Software (Internal) Trigger Source . 82

External Digital (TTL) Trigger Source . 82

External Analog Threshold (Positive) Trigger Source . 82

External Analog Threshold (Negative) Trigger Source . 83

Sync Bus Trigger Source . 84

Analog Event Trigger Source . 85

Digital Event Trigger Source . 85

Timer Event Trigger Source . 85

Extra Trigger Source . 85

Post-Trigger Scan Count. 85

Synchronization Mode . 86

Buffers . 86

Ready Queue . 87

Inprocess Queue . 88

Done Queue . 89

Buffer and Queue Management . 90

Buffer Wrap Modes . 91

DMA Resources. 93

Counter/Timer Operations . 94

User Counter/Timers . 94

Counter/Timer Operation Mode . 94

Event Counting . 95

Up/Down Counting . 96
5

Contents

6

Frequency Measurement . 97

Using the Windows Timer. 97

Using a Pulse of a Known Duration . 98

Edge-to-Edge Measurement . 100

Continuous Edge-to-Edge Measurement . 103

Rate Generation . 107

One-Shot . 109

Repetitive One-Shot . 111

C/T Clock Sources . 112

Internal C/T Clock . 113

External C/T Clock . 113

Internally Cascaded Clock . 113

Extra C/T Clock Source . 114

Gate Types . 114

Software Gate Type . 114

High-Level Gate Type . 115

Low-Level Gate Type . 115

Low-Edge Gate Type . 115

High-Edge Gate Type . 115

Any Level Gate Type . 115

High-Level, Debounced Gate Type . 116

Low-Level, Debounced Gate Type . 116

High-Edge, Debounced Gate Type . 116

Low-Edge, Debounced Gate Type . 116

Level, Debounced Gate Type . 117

Pulse Output Types and Duty Cycles . 117

Measure Counter Operations . 119

Quadrature Decoder Operations . 123

Tachometer Operations . 124

Simultaneous Startup . 126

Chapter 4: Programming Flowcharts. 127

Single-Value Input Operations . 129

Single-Value Output Operations . 131

Continuous Analog Input Operations . 132

Continuous Analog Output Operations . 133

Continuous Digital Input Operations . 134

Continuous Digital Output Operations . 136

Event Counting Operations . 137

Up/Down Counting Operations . 138

Frequency Measurement Operations . 139

Contents
Edge-to-Edge Measurement Operations. 140

Continuous Edge-to-Edge Measurement Operations. 141

Pulse Output Operations. 142

Measure Counter Operations . 143

Tachometer Operations . 144

Quadrature Decoder Operations . 145

Simultaneous Operations . 146

Chapter 5: Product Support . 167

Appendix A: Sample Code . 169

Single-Value Analog Input . 170

Declare Variables and User Functions . 170

Initialize the Driver . 170

Get a Handle to the Subsystem . 171

Set the DataFlow to Single Value . 171

Configure the Subsystem . 171

Acquire a Single Value . 172

 Convert the Value to Voltage . 172

Release the Subsystem and Terminate the Session. 172

Handle Errors . 172

Continuous Analog Input . 174

Declare Variables and User Functions . 174

Initialize the Driver . 175

Get a Handle to the Subsystem . 176

Set the DataFlow to Continuous . 176

Specify the Channel List and Channel Parameters . 176

Specify the Clocks . 176

Specify DMA Usage . 177

Set Up Window Handle and Buffering . 177

Configure the Subsystem . 177

Start the Continuous Analog Input Operation . 177

Deal with Messages and Buffers . 178

Convert Values to Voltage . 179

Clean Up. 180

Handle Errors . 180

Index . 183
7

Contents

8

About this Manual
This manual describes how to get started using the DataAcq SDKTM (Software Development
Kit) to develop application programs for data acquisition devices that conform to the
DT-Open LayersTM standard.

Intended Audience

This document is intended for engineers, scientists, technicians, OEMs, system integrators, or
others responsible for developing application programs using Microsoft® Developer’s Studio
(version 6.0 and higher) to perform data acquisition operations.

It is assumed that you are a proficient programmer, that you are experienced programming in
the Microsoft® Windows® XP, or Windows Vista®, Windows 7, or Windows 8 operating
environment on the PC or compatible computer platform, and that you have familiarity with
data acquisition principles and the requirements of your application.

What You Should Learn from this Manual

This manual summarizes the functions provided by the DataAcq SDK, and describes how to
use the functions to develop a data acquisition program. Using this manual, you should be
able to successfully install the DataAcq SDK and get started writing an application program
for data acquisition.

This manual is intended to be used with the online help for the DataAcq SDK, which you can
find in the same program group as the DataAcq SDK software. The online help for the
DataAcq SDK contains all of the specific reference information for each of the functions, error
codes, and Windows messages.

Organization of this Manual

This manual is organized as follows:

• Chapter 1, “Getting Started,” tells how to install the DataAcq SDK.

• Chapter 2, “Function Summary,” summarizes the functions provided in the DataAcq
SDK.

• Chapter 3, “Using the DataAcq SDK,” describes the operations that you can perform
using the DataAcq SDK.

• Chapter 4, “Programming Flowcharts,” provides programming flowcharts for using the
functions provided in the DataAcq SDK.

• Chapter 5, “Product Support,” describes how to get help if you have trouble using the
DataAcq SDK.

• Appendix A, “Sample Code,” provides code fragments that illustrate the use of the
functions in the DataAcq SDK.

• An index completes this manual.
9

About this Manual

10
Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information that requires special emphasis, cautions provide
information to help you avoid losing data or damaging your equipment, and warnings
provide information to help you avoid catastrophic damage to yourself or your
equipment.

• Items that you select or type are shown in bold. Function names also appear in bold.

• Code fragments are shown in courier font.

Related Information

Refer to the following documentation for more information on using the DataAcq SDK:

• DataAcq SDK Online Help. This Windows help file is located in the same program group
as the DataAcq SDK software and contains all of the specific reference information for
each of the functions, error codes, and Windows messages provided by the DataAcq SDK.
Refer to page 15 for information on how to open this help file.

• Device-specific manuals that describe how to get started using your device, the features of
the device, and the capabilities supported by the driver for the device. These manuals are
on your Data Acquisition OMNI CDTM CD.

• Windows XP, Windows Vista, Windows 7, or Windows 8 documentation.

• For C programmers, refer to Microsoft C Reference, Document Number LN06515-1189,
Microsoft Corporation, and The C Programming Language, Brian W. Kernighan and Dennis
Ritchie, Prentice Hall, 1988, 1987 Bell Telephone Laboratories, Inc,
ISBN 0-13-109950-7.

Where to Get Help

Should you run into problems installing or using the DataAcq SDK, our Technical Support
Department is available to provide prompt, technical assistance. Refer to Chapter 5 for more
information. If you are outside the U.S. or Canada, call your local distributor; see our web
site (www.mccdaq.com) for the name and telephone number of your nearest distributor.

1
Getting Started

What is the DataAcq SDK? . 12

Quick Start. 13

Using the DataAcq SDK Online Help . 15

About the Example Programs . 16

About the Library Function Calling Conventions. 18
11

Chapter 1

12
What is the DataAcq SDK?
The DataAcq SDK is a DLL (Dynamic Linked Library) that supports Data Translation’s most
popular data acquisition devices under Microsoft Windows XP (32-bit), Windows Vista (32-bit
and 64-bit), Windows 7 (32-bit and 64-bit), and Windows 8 (32-bit and 64-bit).

The DataAcq SDK functions are fully compatible with DT-Open Layers™, which is a set of
standards for developing integrated, modular application programs under Windows.

Because DT-Open Layers is modular and uses Windows DLLs, you can add support for a new
data acquisition device at any time. Just add the new DT-Open Layers device driver, modify
your code to incorporate the features of the new device, and then recompile the code. All calls
to DataAcq SDK functions currently in your application program can remain untouched.

The list of supported data acquisition devices is constantly expanding. For the most
up-to-date information, refer to the Data Translation web site (www.mccdaq.com).

Getting Started
Quick Start
The following is an overview of the tasks required to install and use the DataAcq SDK; the
following sections describe these steps in more detail:

1. Make sure that your system meets the requirements for installing the DataAcq SDK. For
more information, refer to the next section.

2. Install the DataAcq SDK.

3. Create your 32-bit or 64-bit application program. For more information, refer to the
Microsoft Developer’s Studio documentation and to the sample code provided in
Appendix A starting on page 169.

If you have problems installing or using the DataAcq SDK, refer to page 15 for information on
opening the online help, or refer to Chapter 5 starting on page 167 for information on
contacting the Data Translation Technical Support Department.

What You Need

To use the DataAcq SDK, you need the following:

• Pentium-based computer. For Windows XP, 233 MHz or higher with Service Pack 2.

• Windows XP, Windows Vista, Windows 7, or Windows 8

• Minimum RAM requirements depend on the operating system you are using; consult
your operating system documentation for details

• CD-ROM drive

• One or more of the supported Data Translation data acquisition devices

• Any language that has the ability to call DLLs and receive callbacks

Installing the Software

The DataAcq SDK is installed automatically when you install the device driver for the
module. Refer to your board manual for more information.

Creating 32-Bit and 64-Bit Application Programs Using the
DataAcq SDK

Two platform-specific versions of the DataAcq SDK native libraries are provided: one version
supports applications that target x86 platforms, and the other version supports applications
that target x64 platforms.

Libraries oldaapi32.lib, olmem32.lib, and graph32.lib target x86 platforms and are located in
Program Files\Data Translation\Win32\SDK\Lib.

Libraries oldaapi64.lib, olmem64.lib, and graph64.lib target x64 platforms and are located in
Program Files (x86)\Data Translation\Win32\SDK\Lib64.
13

Chapter 1

14
Creating 32-Bit Native Windows Applications

To build 32-bit native Windows applications, reference the Win32 import libraries
(oldaapi32.lib and olmem32.lib). The libraries are located under Program Files\Data
Translation\Win32\SDK\Lib.

The 32-bit native Windows applications will run under x86 and x64 platforms. Note that 32-bit
applications will run under the WOW64 emulator on x64 platforms.

Creating 64-Bit Native Windows Applications

To build 64-bit native Windows applications, reference the Win64 import libraries
(oldaapi64.lib and olmem64.lib). The libraries are located under Program Files (x86)\Data
Translation\Win32\SDK\Lib64.

The 64-bit native Windows applications will run under x64 platforms only.

Getting Started
Using the DataAcq SDK Online Help
The DataAcq SDK User’s Manual is intended to be used with the online help for the DataAcq
SDK. The online help contains all of the specific reference information for each of the
functions, error codes, and Windows messages not included in this manual.

To open the online help file, select the following from the Windows Task Bar: Start |Programs
| Data Translation, Inc |DT-Open Layers for Win32 |SDK |Data Acquisition SDK Help
from the Windows Start menu.
15

Chapter 1

16
About the Example Programs
To help you understand more about using the functions of the DataAcq SDK in an actual
program, the DataAcq SDK provides a C example program (CEXMPL32.EXE). This example
program allows you to configure any of the subsystems on the data acquisition device. The
source code is located in the following directory: C:\Program Files\Data Translation\Win32\
SDK\ Examples\CExample. Resource files are also provided.

Additionally, the DataAcq SDK provides the following simple example programs. These
programs are designed to use minimum Windows user interface code, while demonstrating
the functions of the DataAcq SDK. Source code and resource files are provided for each of
these programs:

Note: These examples are provided as 32-bit applications. You can rebuild them as 64-bit
applications, if desired, by referencing the Win64 import libraries (oldaapi64.lib and
olmem64.lib). The libraries are located under Program Files (x86)\Data
Translation\Win32\SDK\Lib64. Refer to page 14 for more information.

• ContAdc – Opens the first available DT-Open Layers device, opens and configures an
A/D subsystem, and performs continuous operations. Displays results in a dialog box.

• ContDac – Opens the first available DT-Open Layers device, opens and configures a D/A
subsystem, and performs continuous operations outputting a square wave. Displays
results in a dialog box.

• DtConsole – Opens the first available DT-Open Layers device, opens and configures an
A/D subsystem, and performs a continuous A/D operation on a console screen.

• IepContAdc – Opens the first available DT-Open Layers device, opens and configures an
A/D subsystem, configures a channel to use AC coupling and an internal excitation
current source for an IEPE input, and performs a continuous A/D operation. Displays
results in a dialog box.

• GenerateFreq – Opens the first available DT-Open Layers device, opens and configures a
C/T subsystem, and continuously outputs a pulse. Displays results in a dialog box.

• MeasureFreq – Opens the first available DT-Open Layers device, opens and configures a
C/T subsystem, and continuously measures a pulse. Displays results in a dialog box.

• SvAdc – Opens the first available DT-Open Layers device, opens and configures an A/D
subsystem, and performs a single-value operation. Displays results in a message box.

• SvDac – Opens the first available DT-Open Layers device, opens and configures a D/A
subsystem, and performs a single-value operation with maximum positive and maximum
negative range. Displays results in a message box.

• SvDin – Opens the first available DT-Open Layers device, opens and configures a DIN
subsystem, and performs a single-value operation. Displays results in a message box.

• SvDout – Opens the first available DT-Open Layers device, opens and configures a DOUT
subsystem, and performs a single-value operation. Displays results in a message box.

Getting Started
• ThermoAdc – Opens the first available DT-Open Layers device, opens and configures an
A/D subsystem, and performs a thermocouple measurement. Displays results in a dialog
box.

• VBTempPoint – Written in Visual Basic, this program continuously displays the values of
all 48 analog input channels of the TEMPpoint temperature instrument.

Each example program provided in the DataAcq SDK comes with the workspace and project
files for use in the integrated development environment provided by the Microsoft
Developer’s Studio. No special switches are necessary beyond instructing the IDE to create a
Windows EXE or DLL.

Note: The DataAcq SDK installation program automatically includes an environment
variable (DA_SDK). All the example programs use this environment variable; therefore, you
can build the example programs without adding any include or library files to your projects.
17

Chapter 1

18
About the Library Function Calling Conventions
The DataAcq SDK functions adhere to the Microsoft Pascal calling conventions. You can find
prototypes for these functions in the include files OLDAAPI.H and OLMEM.H. We
recommend that you follow these calling conventions for proper operation.

DataAcq SDK functions return an ECODE value, which is an unsigned long value indicating
the status of the requested function. Check the return status value for an error condition using
the symbolic constants defined in the include files. This practice is illustrated in the C example
program (CEXMPL32.EXE).

Note: For detailed information on the error codes, refer to the DataAcq SDK online help.

2
Function Summary

Data Acquisition Functions. 20

Data Management Functions . 42
19

Chapter 2

20
Data Acquisition Functions
The following groups of data acquisition functions are available:

• Information functions

• Initialization and termination functions

• Configuration functions

• Operation functions

• Data conversion functions

These functions are briefly described in the following subsections.

Note: For specific information about each of these functions, refer to the DataAcq SDK
online help. See page 15 for information on opening the online help file.

Information Functions

To determine the capabilities of your installed devices, subsystems on each device, and
software, use the Information functions listed in Table 1.

Table 1: Information Functions

Query about Function Description

Devices olDaEnumBoards Lists all currently installed DT-Open Layers data acquisition
devices, drivers, and driver parameters.

olDaEnumBoardsEx Lists all currently-installed DT-Open Layers DataAcq
devices and returns registry information for each device.

olGetBoardInfo Gets the driver name, model name, and instance number of
the specified board, based on its board name.

olDaGetDeviceName Gets the full name of the specified device (this name is set
by the driver as part of the installation procedure).

Subsystems olDaEnumSubSystems Lists the names, types, and element number for each
subsystem supported by the specified device.

olDaGetDevCaps Returns the number of elements available for the specified
subsystem on the specified device.

olDaGetSSCaps Returns information about whether the specified subsystem
capability is supported and/or the number of capabilities
supported. Refer to Table 2 for a list of possible capabilities
and return values.

Function Summary
Subsystem Capability Queries

Table 2 lists the subsystem capabilities that you can query using the olDaGetSSCaps function;
this function returns values as integers.

Table 3 lists the subsystem capabilities that you can query using the olDaGetSSCapsEx
function; this function returns values as floating-point numbers.

Note that capabilities may be added as new devices are developed; for the most recent set of
capabilities, refer to the DataAcq SDK online help.

Subsystems
(cont.)

olDaGetSSCapsEx Returns information about extended subsystem
capabilities. Refer to Table 3 for a list of possible
capabilities and return values.

olDaEnumSSCaps Lists the possible settings for the specified subsystem
capabilities, including filters, ranges, gains, resolution, and
threshold channels for the start and reference trigger.

olDaGetDASSInfo Returns the subsystem type and element number of the
specified subsystem with the specified device handle.

olDaIsRunning This function returns a Boolean value indicating whether
the specified subsystem is currently running.

olDaGetQueueSize Returns the size of the specified queue (ready, done or
inprocess) for the specified subsystem. The size indicates
the number of buffers on the specified queue.

olDaEnumSSList Lists all subsystems on the simultaneous start list.

Software olDaGetDriverVersion Returns the device driver version number.

olDaGetVersion Returns the software version of the DataAcq SDK.

olDaGetErrorString Returns the string that corresponds to a device error code
value.

Channels olDaEnumChannelCaps Enumerates the capabilities of a specified channel.

olDaGetChannelCaps Returns whether the capability is supported for the
specified channel.

Table 1: Information Functions (cont.)

Query about Function Description
21

Chapter 2

22

Table 2: Capabilities to Query with olDaGetSSCaps

Query about Capability Function Returns

Data Flow Mode OLSSC_SUP_SINGLEVALUE Nonzero if subsystem supports single-value
operations.

OLSSC_SUP_CONTINUOUS Nonzero if subsystem supports continuous
post-trigger operations.

OLSSC_SUP_CONTINUOUS_PRETRIG Nonzero if subsystem supports continuous
pre-trigger operations.

OLSSC_SUP_CONTINUOUS_ABOUTTRIG Nonzero if subsystem supports continuous
about-trigger (both pre- and post-trigger)
operations.

Simultaneous
Operations

OLSSC_SUP_SIMULTANEOUS_START Nonzero if subsystem can be started
simultaneously with another subsystem on
the device.

Synchronization
Operations

OLSSC_SUP_SYNCHRONIZATION Non-zero if subsystem supports
programmable synchronization modes.

Pausing Operations OLSSC_SUP_PAUSE Nonzero if subsystem supports pausing
during continuous operation.

Windows
Messaging

OLSSC_SUP_POSTMESSAGE Nonzero if subsystem supports
asynchronous operations.

Buffering OLSSC_SUP_BUFFERING Nonzero if subsystem supports buffering.

OLSSC_SUP_WRPSINGLE Nonzero if subsystem supports single-buffer
wrap mode.

OLSSC_SUP_WRPMULTIPLE Nonzero if subsystem supports
multiple-buffer wrap mode.

OLSSC_SUP_INPROCESSFLUSH Nonzero if subsystem supports transferring
data from a buffer on a subsystem’s
inprocess queue.

OLSSC_SUP_WAVEFORM_MODE Nonzero if subsystem supports waveform
generation.

OLSSC_SUP_WRPWAVEFORM_ONLY Nonzero if the subsystem supports
waveform-based operations using the
onboard FIFO only. If this capability is
nonzero, the buffer wrap mode must be set
to single. In addition, the buffer size must be
less than or equal to the FIFO size.

DMA OLSSC_NUMDMACHANS Number of DMA channels supported.

OLSSC_SUP_GAPFREE_NODMA Nonzero if subsystem supports gap-free
continuous operation with no DMA.

OLSSC_SUP_GAPFREE_SINGLEDMA Nonzero if subsystem supports gap-free
continuous operation with a single DMA
channel.

OLSSC_SUP_GAPFREE_DUALDMA Nonzero if subsystem supports gap-free
continuous operation with two DMA
channels.

Function Summary
Triggered Scan
Mode

OLSSC_SUP_TRIGSCAN Nonzero if subsystem supports triggered
scans.

OLSSC_MAXMULTISCAN Maximum number of scans per trigger or
retrigger supported by the subsystem.

OLSS_SUP_RETRIGGER_SCAN_PER_
TRIGGER

Nonzero if subsystem supports
scan-per-trigger triggered scan mode
(retrigger is the same as the initial trigger
source).

OLSS_SUP_RETRIGGER_INTERNAL Nonzero if subsystem supports internal
retriggered scan mode. (retrigger source is
on the device; initial trigger is any available
trigger source).

OLSSC_SUP_RETRIGGER_EXTRA Nonzero if subsystem supports
retrigger-extra triggered scan mode
(retrigger can be any supported trigger
source; initial trigger is any available trigger
source).

Channel-Gain List OLSSC_CGLDEPTH Number of entries in channel-gain list.

OLSSC_SUP_RANDOM_CGL Nonzero if subsystem supports random
channel-gain list setup.

OLSSC_SUP_SEQUENTIAL_CGL Nonzero if subsystem supports sequential
channel-gain list setup.

OLSSC_SUP_ZEROSEQUENTIAL_CGL Nonzero if subsystem supports sequential
channel-gain list setup starting with channel
zero.

OLSSC_SUP_SIMULTANEOUS_SH Nonzero if subsystem supports
simultaneous operations.

OLSSC_SUP_CHANNELLIST_INHIBIT Nonzero if subsystem supports channel-gain
list entry inhibition.

Gain OLSSC_SUP_PROGRAMGAIN Nonzero if subsystem supports
programmable gain.

OLSSC_NUMGAINS Number of gain selections.

OLSSC_NONCONTIGUOUS_
CHANNELNUM

Number of random-order entries allowed in
the channel-gain list.

OLSSC_SUP_SINGLEVALUE_
AUTORANGE

Nonzero if subsystem supports autoranging
operations.

Synchronous
Digital I/O

OLSSC_SUP_SYNCHRONOUS_DIGITALIO Nonzero if subsystem supports synchronous
digital output operations.

OLSSC_MAXDIGITALIOLIST_VALUE Maximum value for synchronous digital
output channel list entry.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
23

Chapter 2

24
I/O Channels OLSSC_NUMCHANNELS Number of I/O channels.

OLSSC_SUP_EXP2896 Nonzero if subsystem supports channel
expansion with DT2896.

OLSSC_SUP_EXP727 Nonzero if subsystem supports channel
expansion with DT727.

Channel Type OLSSC_SUP_SINGLEENDED Nonzero if subsystem supports single-ended
inputs.

OLSSC_MAXSECHANS Number of single-ended channels.

OLSSC_SUP_DIFFERENTIAL Nonzero if subsystem supports differential
inputs.

OLSSC_MAXDICHANS Number of differential channels.

Filters OLSSC_SUP_FILTERPERCHAN Nonzero if subsystem supports filtering per
channel.

OLSSC_NUMFILTERS Number of filter selections.

OLSSC_SUP_DATA_FILTERS Nonzero if subsystem supports
programmable filter types.

Ranges OLSSC_NUMRANGES Number of range selections.

OLSSC_SUP_RANGEPERCHANNEL Nonzero if subsystem supports different
range settings for each channel.

OLSSC_SUP_CURRENT_OUTPUTS Non-zero if subsystem supports current
outputs.

Resolution OLSSC_SUP_SWRESOLUTION Nonzero if subsystem supports
software-programmable resolution.

OLSSC_NUMRESOLUTIONS Number of different resolutions that you can
program for the subsystem.

Data Encoding OLSSC_SUP_BINARY Nonzero if subsystem supports binary
encoding.

OLSSC_SUP_2SCOMP Nonzero if subsystem supports twos
complement encoding.

OLSSC_RETURNS_FLOATS Non-zero if the subsystem returns
floating-point rather than integer values.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary
Triggers OLSSC_SUP_SOFTTRIG Nonzero if subsystem supports an internal
software trigger for the start trigger.

OLSSC_SUP_EXTERNTRIG Nonzero if subsystem supports an external
digital (TTL) trigger for the start trigger.

OLSSC_SUP_SV_POS_EXTERN_TTLTRIG Nonzero if subsystem supports a positive,
external digital (TTL) trigger for a
single-value operation.

OLSSC_SUP_SV_NEG_EXTERN_TTLTRIG Nonzero if subsystem supports a negative,
external digital (TTL) trigger for a
single-value operation.

OLSSC_SUP_THRESHTRIGPOS Nonzero if subsystem supports a positive
analog threshold trigger for a start trigger.

OLSSC_SUP_THRESHTRIGNEG Nonzero if subsystem supports a negative
analog threshold trigger for a start trigger.

OLSSC_SUP_ANALOGEVENTTRIG Nonzero if subsystem supports analog event
trigger.

OLSSC_SUP_DIGITALEVENTTRIG Nonzero if subsystem supports digital event
trigger.

OLSSC_SUP_TIMEREVENTTRIG Nonzero if subsystem supports timer event
trigger.

OLSSC_NUMEXTRATRIGGERS Number of extra trigger sources supported.

OLSSC_SUP_EXTERNTTLPOS_
REFERENCE_TRIG

Nonzero if subsystem supports a positive,
external digital (TTL) trigger for a reference
trigger.

OLSSC_SUP_EXTERNTTLNEG_
REFERENCE_TRIG

Nonzero if subsystem supports a negative,
external digital (TTL) trigger for a reference
trigger.

OLSSC_SUP_THRESHPOS_
REFERENCE_TRIG

Nonzero if subsystem supports a positive
threshold trigger for the reference trigger.

OLSSC_SUP_THRESHNEG_
REFERENCE_TRIG

Nonzero if subsystem supports a negative
threshold trigger for the reference trigger.

OLSSC_SUP_SYNCBUS_REFERNCE_
TRIG

Nonzero if subsystem supports a Sync Bus
trigger for the reference trigger.

OLSSC_SUP_POST_REFERENCE_TRIG_
SCANCOUNT

Non-zero if subsystem supports specifying
the number of samples to acquire after the
reference trigger.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
25

Chapter 2

26
Clocks OLSSC_SUP_INTCLOCK Nonzero if subsystem supports internal
clock.

OLSSC_SUP_EXTCLOCK Nonzero if subsystem supports external
clock.

OLSSC_NUMEXTRACLOCKS Number of extra clock sources.

OLSSC_SUP_SIMULTANEOUS_
CLOCKING

Non-zero if subsystem supports
simultaneous clocking of all channels.

Multiple Sensor
Support

OLSSC_SUP_MULTISENSOR Non-zero if the subsystem supports multiple
sensor types for each channel; otherwise,
returns False.

Current OLSSC_SUP_CURRENT Non-zero if the subsystem supports current
measurements; otherwise, returns False.

Resistance OLSSC_SUP_RESISTANCE Non-zero if the subsystem supports
resistance measurements; otherwise,
returns False.

IEPE OLSSC_SUP_IEPE Non-zero is subsystem supports IEPE
(accelerometer) inputs.

OLSSC_SUP_AC_COUPLING Non-zero if subsystem supports
programmable AC coupling for an IEPE
input.

OLSSC_SUP_DC_COUPLING Non-zero if subsystem supports
programmable DC coupling for an IEPE
input.

Excitation Current
Source

OLSSC_SUP_INTERNAL_EXCITATION_
CURRENT_SOURCE

Non-zero if subsystem supports a
programmable internal excitation current
source for an IEPE input.

OLSSC_SUP_EXTERNAL_EXCITATION_
CURRENT_SOURCE

Non-zero if subsystem supports a
programmable external excitation current
source for an IEPE input.

OLSSC_NUM_EXCITATION_CURRENT_
VALUES

Number of different values for the internal
excitation current source that can be
programmed for the subsystem.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary
RTDs and
Thermocouples

OLSSC_SUP_RTDS Non-zero if subsystem supports RTD inputs.

OLSSC_RETURNS_OHMS Non-zero if the subsystem can return
resistance values, in Ohms.

OLSSC_SUP_THERMOCOUPLES Non-zero if subsystem supports
thermocouple inputs.

OLSSC_SUP_TEMPERATURE_DATA_IN_
STREAM

(Has meaning only if OLSSC_SUP_RTDS or
OLSSC_SUP_THERMOCOUPLES is
non-zero.) Non-zero if the device performs
correction and linearization in the hardware
and returns temperature values in the data
stream. If zero, the device returns only raw
counts and the application must perform all
linearization and correction.

OLSSC_SUP_INTERLEAVED_CJC_IN_
STREAM

(Has meaning only if OLSSC_SUP_
TEMPERATURE_DATA_IN_STREAM is
non-zero.) Non-zero if the device can
optionally interleave CJC data with A/D data
in the data stream.

OLSSC_SUP_CJC_SOURCE_CHANNEL (Has meaning only if OLSSC_SUP_
TEMPERATURE_DATA_IN_STREAM is 0.)
Non-zero if one of the analog input channels
on the device is used as the CJC input.

OLSSC_SUP_CJC_SOURCE_INTERNAL (Has meaning only if OLSSC_SUP_
TEMPERATURE_DATA_IN_STREAM is
non-zero.) Non-zero if the CJC is measured
internally on the device rather than using one
of the analog input channels as the CJC
input.

Thermistors OLSSC_SUP_THERMISTOR Non-zero if the subsystem supports
thermistor inputs; otherwise, returns False.

Strain Gages and
Bridge-Based
Sensors

OLSSC_SUP_STRAIN_GAGE Non-zero if subsystem supports strain gage
inputs.

OLSSC_SUP_BRIDGEBASEDSENSORS Non-zero if subsystem supports
bridge-based sensor inputs.

OLSSC_SUP_SHUNT_CALIBRATION Non-zero if subsystem supports shunt
calibration for strain gage and bridge-based
sensors.

OLSSC_SUP_REMOTE_SENSE Non-zero if subsystem supports remote
sensing for strain gage and bridge-based
sensors.

OLSSC_SUP_INTERNAL_EXCITATION_
VOLTAGE_SOURCE

Non-zero if subsystem supports a
programmable internal excitation voltage
source for strain gage and bridge-based
sensors.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
27

Chapter 2

28
Strain Gages and
Bridge-Based
Sensors (cont.)

OLSSC_SUP_EXTERNAL_EXCITATION_
VOLTAGE_SOURCE

Non-zero if subsystem supports a
programmable external excitation voltage
source for strain gage and bridge-based
sensors.

Mute and UnMute OLSSC_SUP_MUTE Non-zero if subsystem supports the ability to
mute and unmute the output voltage.

Counter/Timer
Modes

OLSSC_SUP_CASCADING Nonzero if subsystem supports cascading.

OLSSC_SUP_CTMODE_COUNT Nonzero if subsystem supports event
counting mode.

OLSSC_SUP_CTMODE_RATE Nonzero if subsystem supports rate
generation (continuous pulse output) mode.

OLSSC_SUP_CTMODE_ONESHOT Nonzero if subsystem supports (single)
one-shot mode.

OLSSC_SUP_CTMODE_ONESHOT_RPT Nonzero if subsystem supports repetitive
one-shot mode.

OLSSC_SUP_CTMODE_UP_DOWN Nonzero if subsystem supports up/down
counting mode.

OLSSC_SUP_CTMODE_MEASURE Returns a value indicating how edge-to-edge
measurement mode is supported (see page
100 for more information).

OLSSC_SUP_CTMODE_CONT_MEASURE Returns a value indicating how continuous
edge-to-edge measurement mode is
supported (see page 100 for more
information).

OLSSC_SUP_QUADRATURE_DECODER Nonzero if subsystem supports taking input
from quadrature encoders.

Counter/Timer
Pulse Output Types

OLSSC_FIXED_PULSE_WIDTH Nonzero if subsystem supports fixed output
pulse widths.

OLSSC_SUP_PLS_HIGH2LOW Nonzero if subsystem supports high-to-low
output pulses.

OLSSC_SUP_PLS_LOW2HIGH Nonzero if subsystem supports low-to-high
output pulses

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns

Function Summary
Counter/Timer
Gates

OLSSC_SUP_GATE_NONE Nonzero if subsystem supports an internal
(software) gate type.

OLSSC_SUP_GATE_HIGH_LEVEL Nonzero if subsystem supports high-level
gate type.

OLSSC_SUP_GATE_LOW_LEVEL Nonzero if subsystem supports low-level
gate type.

OLSSC_SUP_GATE_HIGH_EDGE Nonzero if subsystem supports high-edge
gate type.

OLSSC_SUP_GATE_LOW_EDGE Nonzero if subsystem supports low-edge
gate type.

OLSSC_SUP_GATE_LEVEL Nonzero if subsystem supports level change
gate type.

OLSSC_SUP_GATE_HIGH_LEVEL_
DEBOUNCE

Nonzero if subsystem supports high-level
gate type with input debounce.

OLSSC_SUP_GATE_LOW_LEVEL_
DEBOUNCE

Nonzero if subsystem supports low-level
gate type with input debounce.

OLSSC_SUP_GATE_HIGH_EDGE_
DEBOUNCE

Nonzero if subsystem supports high-edge
gate type with input debounce.

OLSSC_SUP_GATE_LOW_EDGE_
DEBOUNCE

Nonzero if subsystem supports low-edge
gate type with input debounce.

OLSSC_SUP_GATE_LEVEL_DEBOUNCE Nonzero if subsystem supports level change
gate type with input debounce.

Tachometer OLSSC_SUP_PLS_HIGH2LOW Nonzero if subsystem supports high-to-low
(falling) tachometer edges.

OLSSC_SUP_PLS_LOW2HIGH Nonzero if subsystem supports low-to-high
(rising) tachometer edges.

OLSSC_SUP_STALE_DATA_FLAG Nonzero if subsystem supports the stale
data flag.

Interrupt OLSSC_SUP_INTERRUPT Nonzero if subsystem supports
interrupt-driven I/O.

FIFOs OLSSC_SUP_FIFO Nonzero if subsystem has a FIFO in the data
path.

OLSSC_FIFO_SIZE_IN_K Size of the output FIFO, in kilobytes.

Processors OLSSC_SUP_PROCESSOR Nonzero if subsystem has a processor on
device.

Software Calibration OLSSC_SUP_SWCAL Nonzero if subsystem supports software
calibration.

OLSSC_SUP_AUTOCAL Nonzero if subsystem supports
self-calibration.

Table 2: Capabilities to Query with olDaGetSSCaps (cont.)

Query about Capability Function Returns
29

Chapter 2

30
Initialization and Termination Functions

Once you have identified the available devices, use the Initialization functions described in
Table 4.

When you are finished with your program, use the Termination functions listed in Table 5.

Table 3: Capabilities to Query with olDaGetSSCapsEx

Query about Capability Function Returns

Triggered Scan Mode OLSSCE_MAXRETRIGGER Maximum retrigger frequency supported by
the subsystem.

OLSSCE_MINRETRIGGER Minimum retrigger frequency supported by
the subsystem.

Clocks OLSSCE_BASECLOCK Base clock frequency supported by the
subsystem.

OLSSCE_MAXCLOCKDIVIDER Maximum external clock divider supported
by the subsystem.

OLSSCE_MINCLOCKDIVIDER Minimum external clock divider supported by
the subsystem.

OLSSCE_MAXTHROUGHPUT Maximum throughput supported by the
subsystem.

OLSSCE_MINTHROUGHPUT Minimum throughput supported by the
subsystem.

Thermocouples OLSSCE_CJC_MILLIVOLTS_PER_
DEGREE_C

(Has meaning only if OLSSC_SUP_
THERMOCOUPLES is non-zero.) Number of
millivolts per degree C for the CJC input.

Excitation Voltage OLSSC_MIN_EXCITATION_VOLTAGE The minimum value for the internal excitation
voltage source that can be programmed for
the subsystem.

OLSSC_MAX_EXCITATION_VOLTAGE The maximum value for the internal
excitation voltage source that can be
programmed for the subsystem.

Table 4: Initialization Functions

Function Description

olDaInitialize Provides the means for the software to associate specific requests with a
particular device; it must be called before any other function. This function
loads a specified device's software support and provides a “device
handle” value. This value is used to identify the device, and must be
supplied as an argument in all subsequent function calls that reference
the device.

olDaGetDASS Allocates a subsystem for use by returning a handle to the subsystem.

Function Summary
Configuration Functions

Once you have initialized a subsystem and determined what its capabilities are, set or get the
value of the subsystem’s parameters by calling the Configuration functions listed in Table 6.

Table 5: Termination Functions

Function Description

olDaReleaseDASS Releases the specified subsystem and relinquishes all
resources associated with it.

olDaTerminate Ends a session between your application and the specified
device. The device is returned to an inactive state and all
resources are returned to the system.

Table 6: Configuration Functions

Feature Function Description

Data Flow Mode olDaSetDataFlow Sets the data flow mode.

olDaGetDataFlow Gets the data flow mode.

Windows Messaging olDaSetNotificationProcedure Specifies the notification procedure to call for
information messages from the subsystem.

olDaGetNotificationProcedure Gets the address of the notification procedure.

olDaSetWndHandle Sets the window to which information
messages are sent.

olDaGetWndHandle Gets the window handle.

Buffer Wrap Mode olDaSetWrapMode Sets the buffer processing wrap mode.

olDaGetWrapMode Gets the buffer processing wrap mode.

DMA olDaSetDmaUsage Sets the number of DMA channels to be used.

olDaGetDmaUsage Gets the number of DMA channels to be used.
31

Chapter 2

32
Triggered Scans olDaSetTriggeredScanUsage Enables or disables triggered scan mode.

olDaGetTriggeredScanUsage Gets the triggered scan mode setting.

olDaSetMultiscanCount Sets the number of times to scan per
trigger/retrigger.

olDaGetMultiscanCount Gets the number of times to scan per
trigger/retrigger.

olDaSetRetriggerMode Sets the retrigger mode.

olDaGetRetriggerMode Gets the retrigger mode.

olDaSetRetriggerFrequency Sets the frequency of the internal retrigger
when using internal retrigger mode.

olDaGetRetriggerFrequency Gets the frequency of the internal retrigger
when using internal retrigger mode.

Channel-Gain List olDaSetChannelListSize Sets the size of the channel-gain list.

olDaGetChannelListSize Gets the size of the channel-gain list.

olDaSetChannelListEntry Sets the channel number of a channel-gain list
entry.

olDaGetChannelListEntry Gets the channel number of a channel-gain list
entry.

olDaSetGainListEntry Sets a gain value for a channel-gain list entry.

olDaGetGainListEntry Gets the gain value of a channel-gain list
entry.

olDaSetChannelListEntryInhibit Enables/disables channel entry inhibition for a
channel-gain list entry.

olDaGetChannelListEntryInhibit Gets the channel entry inhibition setting of a
channel-gain list entry.

olDaSetDigitalIOListEntry Sets the digital value to output for the
channel-gain list entry.

olDaGetDigitalIOListEntry Gets the digital value to output for the
channel-gain list entry.

SynchronousDigital
I/O

olDaSetSynchronousDigitalIOUsage Enables or disables synchronous digital I/O
operations.

olDaGetSynchronousDigitalIOUsage Gets the synchronous digital
I/O setting.

Channel Type olDaSetChannelType Sets the channel configuration type of a
channel.

olDaGetChannelType Gets the channel configuration type of a
channel.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary
Filters olDaSetChannelFilter Sets the filter cut-off frequency for a channel.

olDaGetChannelFilter Gets the filter cut-off frequency for a channel.

olDaSetDataFilterType Sets the filter type for a subsystem that
supports programmable filter types.

olDaGetDataFilterType Gets the filter type for a subsystems that
support programmable filters.

Ranges olDaSetRange Sets the voltage range for a subsystem.

olDaGetRange Gets the voltage range for a subsystem.

olDaSetChannelRange Sets the voltage range for a channel.

olDaGetChannelRange Gets the voltage range for a channel.

Resolution olDaSetResolution Sets the number of bits of resolution.

olDaGetResolution Gets the number of bits of resolution.

Data Encoding olDaSetEncoding Sets the data encoding type.

olDaGetEncoding Gets the data encoding type.

Triggers olDaSetTrigger Sets the trigger source used for the start
trigger.

olDaGetTrigger Gets the trigger source used for the start
trigger.

olDaSetTriggerThresholdChannel Sets the number of the channel that is
monitored for the start trigger event
(OL_TRG_THRESHPOS or
OL_TRG_THRESHNEG).

olDaGetTriggerThresholdChannel Gets the number of the channel that is
monitored for the start trigger event
(OL_TRG_THRESHPOS or
OL_TRG_THRESHNEG).

olDaSetTriggerThresholdLevel Sets the threshold level for the start threshold
trigger.

olDaGetTriggerThresholdLevel Gets the threshold level for the start threshold
trigger.

olDaSetReferenceTrigger Sets the trigger source used for the reference
trigger.

olDaGetReferenceTrigger Gets the trigger source used for the reference
trigger.

Table 6: Configuration Functions (cont.)

Feature Function Description
33

Chapter 2

34
Triggers (cont.) olDaSetReferenceTriggerThreshold
Channel

Sets the number of the channel that is
monitored for the reference trigger event
(OL_REFERENCE_TRG_THRESHPOS or
OL_REFERENCE_TRG_THRESHNEG).

olDaGetReferenceTriggerThreshold
Channel

Gets the number of the channel that is
monitored for the reference trigger event
(OL_REFERENCE_TRG_THRESHPOS or
OL_REFERENCE_TRG_THRESHNEG).

olDaSetReferenceTriggerThreshold
Level

Sets the threshold level for the reference
threshold trigger.

olDaGetReferenceTriggerThreshold
Level

Gets the threshold level for the reference
threshold trigger.

olDaSetReferenceTriggerPostScan
Count

Sets the number of samples per channel to
acquire after the reference trigger event
occurs.

olDaGetReferenceTriggerPostScan
Count

Gets the number of samples per channel to
acquire after the reference trigger event
occurs.

olDaSetPretriggerSource Sets the pre-trigger source.

olDaGetPretriggerSource Gets the pre-trigger source.

olDaSetRetrigger Sets the retrigger source for retrigger-extra
retrigger mode.

olDaGetRetrigger Gets the retrigger source for retrigger-extra
retrigger mode.

Clocks olDaSetClockSource Sets the clock source.

olDaGetClockSource Gets the clock source.

olDaSetClockFrequency Sets the frequency of the internal clock or a
counter/timer’s output frequency.

olDaGetClockFrequency Gets the frequency of the internal clock or a
counter/timer’s output frequency.

olDaSetExternalClockDivider Sets the input divider value of the external
clock.

olDaGetExternalClockDivider Gets the input divider value of the external
clock.

Multiple Sensor Types olDaSetMultiSensorType Sets the measurement type for the specified
channel.

olDaGetMultiSensorType Gets the measurement type for the specified
channel.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary
IEPE Support olDaSetCouplingType Sets the coupling type to use or the specified
channel.

olDaGetCouplingType Gets the coupling type that is used by the
specified channel.

olDaSetExcitationCurrentSource Sets the excitation current source for the
specified channel.

olDaGetExcitationCurrentSource Gets the excitation current source that is used
by the specified channel.

olDaSetExcitationCurrentValue Sets the value of the internal excitation current
source to use for the specified channel.

olDaGetExcitationCurrentValue Gets the value of the internal excitation current
source that is used by the specified channel.

Strain Gage and
Bridge-Based Sensor
Support

olDaSetStrainBridgeConfiguration Sets the configuration of the strain gage for
the channel.

olDaGetStrainBridgeConfiguraiton Gets the configuration of the strain gage for
the channel.

olDaSetBridgeConfiguration Sets the configuration of the bridge-based
sensor for the channel.

olDaGetBridgeConfiguraiton Gets the configuration of the bridge-based
sensor for the channel.

olDaSetStrainExcitationVoltage
Source

Sets the excitation voltage source for the
subsystem.

olDaGetStrainExcitationVoltage
Source

Gets the excitation voltage source for the
subsystem.

olDaSetStrainExcitationVoltage Sets the value of the internal excitation voltage
source to use for the subsystem.

olDaGetStrainExcitationVoltage Gets the value of the internal excitation
voltage source to use for the subsystem.

olDaSetStrainShuntResistor Specifies whether the shunt resistor for the
channel is enabled or disabled.

olDaGetStrainShuntResistor Returns whether the shunt resistor for the
channel is enabled or disabled.

RTDs olDaSetRtdType Sets the type of RTD to use for the input
channel of the specified subsystem.

olDaGetRtdType Gets the currently configured RTD type for the
input channel of the specified subsystem.

olDaSetRtdR0 Sets the nominal resistance of the RTD, in
ohms at 0 degrees C, for the specified
channel.

olDaGetRtdR0 Gets the nominal resistance of the RTD, in
ohms at 0 degrees C, for the specified
channel.

Table 6: Configuration Functions (cont.)

Feature Function Description
35

Chapter 2

36
RTDs (cont.) olDaSetRtdA Sets the A coefficient for the RTD that is
connected to the specified channel.

olDaGetRtdA Gets the A coefficient for the RTD that is
connected to the specified channel.

olDaSetRtdB Sets the B coefficient for the RTD that is
connected to the specified channel.

olDaGetRtdB Gets the B coefficient for the RTD that is
connected to the specified channel.

olDaSetRtdC Sets the C coefficient for the RTD that is
connected to the specified channel.

olDaGetRtdC Gets the C coefficient for the RTD that is
connected to the specified channel.

Thermocouples olDaSetThermocoupleType Sets the type of thermocouple to use for the
input channel of the specified subsystem.

olDaGetThermocoupleType Gets the currently configured thermocouple
type for the input channel of the specified
subsystem.

olDaSetReturnCjcTemperature
InStream

Enables or disables the specified subsystem
from returning CJC values in the data stream.

olDaGetReturnCjcTemperature
InStream

Returns whether the specified subsystem has
been enabled or disabled from returning CJC
values in the data stream.

Thermistors olDaSetThermistorA Sets the A coefficient for the thermistor that is
connected to the specified channel.

olDaGetThermistorA Gets the A coefficient for the thermistor that is
connected to the specified channel.

olDaSetThermistorB Sets the B coefficient for the thermistor that is
connected to the specified channel.

olDaGetThermistorB Gets the B coefficient for the thermistor that is
connected to the specified channel.

olDaSetThermistorC Sets the C coefficient for the thermistor that is
connected to the specified channel.

olDaGetThermistorC Gets the C coefficient for the thermistor that is
connected to the specified channel.

Sensor Wiring
Configuration

olDaSetSensorWiringConfiguration Sets the wiring configuration (two-wire,
three-wire, or four-wire) for the specified
channel.

olDaGetSensorWiringConfiguration Gets the wiring configuration (two-wire,
three-wire, or four-wire) for the specified
channel.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary
Input Termination
Resistor

olDaSetInputTerminationEnabled Sets the state of the input termination resistor
for the specified channel.

olDaGetInputTerminationEnabled Gets the state of the input termination resistor
for the specified channel.

Sync Mode olDaSetSyncMode Sets the synchronization mode for devices
that provide a synchronization connector.

olDaGetSyncMode Gets the synchronization mode for devices
that provide a synchronization connector.

Counter/Timers olDaSetCTMode Sets the counter/timer mode.

olDaGetCTMode Gets the counter/timer mode.

olDaSetCascadeMode Sets the counter/timer cascade mode.

olDaGetCascadeMode Gets the counter/timer cascade mode.

olDaSetGateType Sets the gate type for the counter/timer mode.

olDaGetGateType Gets the gate type for the counter/timer mode.

olDaSetPulseType Sets the pulse type for the counter/timer
mode.

olDaGetPulseType Gets the pulse type for the counter/timer
mode.

olDaSetPulseWidth Sets the pulse output width for the
counter/timer mode.

olDaGetPulseWidth Gets the pulse width for the counter/timer
mode.

olDaSetMeasureStartEdge Sets the start edge for edge-to-edge
measurement operations.

olDaGetMeasureStartEdge Gets the start edge for edge-to-edge
measurement operations.

olDaSetMeasureStopEdge Sets the stop edge for edge-to-edge
measurement operations.

olDaGetMeasureStopEdge Gets the stop edge for edge-to-edge
measurement operations.

olDaSetQuadDecoder Sets various aspects of a quadrature decoder.

Table 6: Configuration Functions (cont.)

Feature Function Description
37

Chapter 2

38
Tachometer olDaSetEdgeType Sets the edge type (Falling or Rising) for the
tachometer subsystem.

olDaGetEdgeType Gets the edge type (Falling or Rising) for the
tachometer subsystem.

olDaSetStaleDataFlagEnabled Sets the flag indicating whether or not the
value of the tachometer is new.

If StaleDataFlagEnabled is True, the most
significant bit (MSB) of the value is set to 0 to
indicate new data; reading the value before
the measurement is complete returns an MSB
of 1.

If the StaleDataFlagEnabled is False, the MSB
is always set to 0.

olDaGetStaleDataFlagEnabled Gets the flag indicating whether or not the
value of the tachometer is new.

If StaleDataFlagEnabled is True, the most
significant bit (MSB) of the value is set to 0 to
indicate new data; reading the value before
the measurement is complete returns an MSB
of 1.

If the StaleDataFlagEnabled is False, the MSB
is always set to 0.

Table 6: Configuration Functions (cont.)

Feature Function Description

Function Summary
Operation Functions

Once you have set the parameters of a subsystem, use the Operation functions listed in
Table 7.

Table 7: Operation Functions

Operation Function Description

Single-Value Operations olDaGetSingleValue Reads a single input value from the specified
channel of a subsystem (using a specified gain),
and returns the data as a 32-bit integer (long).

olDaGetSingleValues For subsystems that support simultaneous
operations, reads a single input value from all of
the input channels of the specified subsystem
(using a specified gain), and returns the data as
32-bit integers (longs).

olDaGetSingleFloat Reads a single input value from the specified
channel of a subsystem (using a specified gain)
and returns the data as a floating-point value.

olDaGetSingleFloats For subsystems that support simultaneous
operations, reads a single input value from all of
the input channels of the specified subsystem
(using the specified gain), and returns the data as
floating-point values.

olDaGetCjcTemperature Reads the CJC temperature of an input channel
on the specified subsystem, and returns the
temperature, in degrees C, as a floating-point
value.

olDaGetCjcTemperatures For subsystems that support simultaneous
operations, this function reads the CJC
temperature of each input channel on the specified
subsystem, and returns the temperatures, in
degrees C, as floating-point values.

olDaGetSingleValueEx Determines the appropriate gain for the range
(called autoranging), if desired, reads a single
input value from the specified subsystem channel,
and returns the value as both a code and a
voltage.

olDaPutSingleValue Writes a single output value to the specified
channel of a subsystem.

olDaPutSingleValues For subsystems that support simultaneous
operations, writes a single value to each output
channel of the specified subsystem.

Configure Operation olDaConfig After setting up a specified subsystem using the
configuration functions, configures the subsystem
with new parameter values.
39

Chapter 2

40
Start/Stop Operations olDaStart Starts the operation for which the subsystem has
been configured.

olDaPause Pauses a continuous operation on the subsystem.

olDaContinue Continues the previously paused operation on the
subsystem.

olDaStop Stops the operation and returns the subsystem to
the ready state.

olDaAbor Stops the subsystem’s operation immediately.

olDaReset Causes the operation to terminate immediately,
and re-initializes the subsystem.

Mute and Unmute
Operations

olDaMute Attenuates the output voltage of the subsystem to
0 V over a hardware-dependent number of
samples.

olDaUnMute Returns the output voltage of the subsystem to its
current level over a hardware-dependent number
of samples.

Calibration Operations olDaAutoCalibrate Initiates the internal self-calibration process of the
specified subsystem, if supported by the device.

Buffer Operations olDaGetBuffer Gets a completed buffer from the done queue of
the specified subsystem.

olDaPutBuffer Assigns a data buffer for the subsystem to the
ready queue.

olDaFlushBuffers Transfers all data buffers held by the subsystem to
the done queue.

olDaFlushFromBufferInprocess Copies all valid samples, up to a given number of
samples, from the inprocess buffer to a specified
buffer. It also sets the logical size of the buffer with
flushed data to the number of samples copied and
places the inprocess buffer on the done queue
when it has been filled with the remaining
samples.

Counter/Timer Operations olDaReadEvents Gets the number of events that have been counted
since the subsystem was started with olDaStart.

olDaMeasureFrequency Measures the frequency of the input clock source
for the selected counter/timer.

Table 7: Operation Functions (cont.)

Operation Function Description

Function Summary
Data Conversion Functions

Once you have acquired data, you can use the functions listed in Table 8 to convert the data, if
desired.

Simultaneous Operations olDaGetSSList Gets a handle to a simultaneous start list.

olDaPutDassToSSList Puts the specified subsystem on the simultaneous
start list.

olDaSimultaneousPreStart Simultaneously prestarts (performs setup
operations on) all subsystems on the specified
simultaneous start list.

olDaSimultaneousStart Simultaneously starts all subsystems on the
specified simultaneous start list.

olDaReleaseSSList Releases the specified simultaneous start list and
relinquishes all resources associated with it.

Table 8: Data Conversion Functions

Function Description

olDaCodeToVolts Converts a code value to voltage value, using the range, gain,
resolution, and encoding you specify.

olDaVoltsToCode Converts a voltage value to code value, using the range, gain,
resolution, and encoding you specify.

olDaVoltsToStrain Converts a raw A/D count value to a strain value based on the
specified configuration.

olDaVoltsToBridgeBasedSensor Converts a raw A/D count value to a value for a bridge-based
sensor based on the specified configuration.

Table 7: Operation Functions (cont.)

Operation Function Description
41

Chapter 2

42
Data Management Functions
Data management functions link the various layers of the DT-Open Layers architecture
together. The fundamental data object in the DataAcq SDK is a buffer. All functions that
create, manipulate, and delete buffers are encapsulated in the data management portion of the
DataAcq SDK.

The following groups of data management functions are available:

• Buffer management functions

• List management functions

The following subsections summarize these functions.

Note: For specific information about each of these functions, refer to the DataAcq SDK
online help. See page 15 for information on launching the online help file.

Buffer Management Functions

The Buffer Management functions, listed in Table 9, are a set of object-oriented tools intended
for both application and system programmers. When a buffer object is created, a buffer handle
(HBUF) is returned. This handle is used in all subsequent buffer manipulation.

Table 9: Buffer Management Functions

Function Description

olDmAllocBuffer Creates a buffer object of a specified number of
samples, where each sample is 2 bytes.

olDmCallocBuffer Creates a buffer object of a specified number of
samples of a specified size.

olDmCopyBuffer Copies data from the buffer to the specified array.

olDmCopyFromBuffer Copies data from the buffer to the specified array.

olDmCopyToBuffer Copies data from the specified array to the buffer.

olDmFreeBuffer Deletes a buffer object.

olDmGetBufferPtr Gets a pointer to the buffer data.

olDmGetBufferSize Gets the physical buffer size (in bytes).

olDmGetDataBits Gets the number of valid data bits.

olDmSetDataBits Sets the number of valid data bits.

olDmSetDataWidth Sets the width of each data sample.

olDmGetDataWidth Gets the width of each data sample.

Function Summary
Buffer List Management Functions

Buffer List Management functions, described in Table 10, provide a straightforward
mechanism for handling buffer lists, called queues, that the software creates internally as well
as other lists that you might want to create. You are not required to use these functions;
however, you may find them helpful in your application.

Buffer List Management functions are particularly useful when dealing with a device that
acquires or outputs continuous data. Refer to Chapter 5 for more information on queues and
other lists.

olDmGetErrorString Gets the string corresponding to a data management
error code value.

olDmGetMaxSamples Gets the physical size of the buffer (in samples).

olDmGetTimeDateStamp Gets the time and date of the buffer's data.

olDmSetValidSamples Sets the number of valid samples in the buffer.

olDmGetValidSamples Gets the number of valid samples.

olDmGetVersion Gets the version of the data management library.

olDmMallocBuffer Creates a buffer object of a specified number of bytes.

olDmReAllocBuffer Reallocates a buffer object (alloc() interface).

olDmReCallocBuffer Reallocates a buffer object (calloc() interface).

olDmReMallocBuffer Reallocates a buffer object (malloc() interface).

Table 10: Buffer List Management Functions

Function Description

olDmCreateList Creates a user-defined list object.

olDmEnumBuffers Enumerates all buffers on a queue or on a list you created.

olDmEnumLists Enumerates all queues or lists.

olDmFreeList Deletes a user-defined list.

olDmGetBufferFromList Removes a buffer from the start of a queue or user-defined
list.

olDmGetListCount Gets the number of buffers on a queue or user-defined list.

olDmGetListHandle Finds the queue or user-defined list that a buffer is on.

Table 9: Buffer Management Functions (cont.)

Function Description
43

Chapter 2

44
olDmGetListIds Gets a description of the queue or list.

olDmPeekBufferFromList Gets the handle of the first buffer in the queue or list but
does not remove the buffer from the queue or list.

olDmPutBufferToList Adds a buffer to the end of a queue or list.

Table 10: Buffer List Management Functions (cont.)

Function Description

3
Using the DataAcq SDK

System Operations . 47

Analog and Digital I/O Operations . 50

Counter/Timer Operations. 94

Measure Counter Operations . 119

Quadrature Decoder Operations . 123

Tachometer Operations . 124

Simultaneous Startup. 126
45

Chapter 3

46
This chapter provides conceptual information to describe the following operations provided
by the DataAcq SDK:

• System operations, described starting on page 47

• Analog and digital I/O operations, described starting on page 50

• Counter/timer operations, described starting on page 94

• Simultaneous startup, described starting on page 126

Use this information with the reference information provided in the DataAcq SDK online help
when programming your data acquisition devices; refer to page 15 for more information on
launching this help file.

Using the DataAcq SDK
System Operations
The DataAcq SDK provides functions for the following general system operations:

• Initializing a device

• Specifying a subsystem

• Configuring a subsystem

• Calibrating a subsystem

• Handling errors

• Handling messages

• Releasing a subsystem and driver

The following subsections describe these operations in more detail.

Initializing a Device

To perform a data acquisition operation, your application program must initialize the device
driver for the device you are using with the olDaInitialize function. This function returns a
device handle, called HDEV. You need one device handle for each device. Device handles
allow you to access more than one device in your system.

If you are unsure of the DT-Open Layers devices in your system, use the olDaEnumBoards
function, which lists the device name, device driver name, and system resources used by each
DT-Open Layers device in your system, or the olDaGetBoardInfo function, which returns the
driver name, model name, and instance number of the specified board, based on its board
name.

Once you have initialized a device, you can specify a subsystem, as described in the next
section.

Specifying a Subsystem

The DataAcq SDK allows you to define the following subsystems:

• Analog input (A/D subsystem)

• Analog output (D/A subsystem)

• Digital input (DIN subsystem)

• Digital output (DOUT subsystem)

• Counter/timer (C/T subsystem)

• Tachometer (TACH subsystem)
47

Chapter 3

48
A device can have multiple elements of the same subsystem type. Each of these elements is a
subsystem of its own and is identified by a subsystem type and element number. Element
numbering is zero-based; that is, the first instance of the subsystem is called element 0, the
second instance of the subsystem is called element 1, and so on. For example if two digital I/O
ports are on your device, two DIN or DOUT subsystems are available, differentiated as
element 0 and element 1.

Once you have initialized the device driver for the specified device, you must specify the
subsystem/element on the specified device using the olDaGetDASS function. This function
returns a subsystem handle, called HDASS. To access a subsystem, you need one subsystem
handle for each subsystem. Subsystem handles allow you to access more than one subsystem
on a device.

If you are unsure of the subsystems on a device, use the olDaEnumSubSystems or
olDaGetDevCaps function. olDaEnumSubSystems lists the names, types, and number of
elements for all subsystems supported by the specified device. olDaGetDevCaps returns the
number of elements for a specified subsystem type on a specified device.

Note: You can call any function that contains HDASS as a parameter for any subsystem. In
some cases, however, the subsystem may not support the particular capability. If this occurs,
the subsystem returns an error code indicating that it does not support that function.

Once you have specified a subsystem/element, you can configure the subsystem and perform
a data acquisition operation, as described in the following section.

Configuring a Subsystem

You configure a subsystem by setting its parameters or capabilities. For more information on
the capabilities you can query and specify, refer to the following:

• For analog and digital I/O operations, refer to page 50

• For the counter/timer operations, refer to page 94

• For tachometer operations, refer to page 119

• For quadrature decoder operations, refer to page 123

• For simultaneous operations, refer to page 126

Once you have set up the parameters appropriately for the operation you want to perform,
call the olDaConfig function to configure the parameters before performing the operation.

Calibrating a Subsystem

Some devices provide an self-calibrating feature, where a specified subsystem performs an
auto-zero function. To determine if the specified subsystem supports this capability, call the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_AUTOCAL. If this function
returns a nonzero value, the capability is supported.

Using the DataAcq SDK
To calibrate the subsystem, call the olDaAutoCalibrate function. Note that the subsystem
must be stopped before calling this function, or an error is returned.

Handling Errors

An error code is returned by each function in the DataAcq SDK. An error code of 0 indicates
that the function executed successfully (no error). Any other error code indicates that an error
occurred. Your application program should check the value returned by each function and
perform the appropriate action if an error occurs.

Refer to the DataAcq SDK online help for detailed information on the returned error codes
and how to proceed should they occur.

Handling Messages

The data acquisition device notifies your application of buffer movement and other events by
generating messages.

To determine if the subsystem can post messages, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_POSTMESSAGE. If this function returns a nonzero
value, the capability is supported.

Specify the window to receive messages using the olDaSetWndHandle function or the
procedure to handle these messages using the olDaSetNotificationProcedure function.

Note: The lParam parameter specified in this call is included in all messages, except in the
case of an OLDA_WM_IO_COMPLETE, OLDA_WM_EVENT_DONE, or
OLDA_WM_MEASURE_DONE message where the value of lParam is device-dependent.
Refer to page 89 for more information on these messages.

Refer to the DataAcq SDK online help for more information on the messages that can be
generated and how to proceed should they occur.

Releasing the Subsystem and the Driver

When you are finished performing data acquisition operations, release the simultaneous start
list, if used, using the olDaReleaseSSList function. Then, release each subsystem using the
olDaReleaseDASS function. Release the driver and terminate the session using the
olDaTerminate function.
49

Chapter 3

50
Analog and Digital I/O Operations
The DataAcq SDK defines the following capabilities that you can query and/or specify for
analog and/or digital I/O operations:

• Channels (including channel type, channel list, channel inhibit list, and synchronous
digital I/O list)

• Multisensor inputs

• Voltage inputs

• Current measurements

• Resistance measurements

• IEPE sensor inputs

• Thermocouple inputs

• RTD inputs

• Thermistor inputs

• Strain gage and bridge-based sensor inputs

• Data encoding

• Resolution

• Ranges

• Gains

• Filters

• Data flow modes

• Triggered scan mode

• Interrupts

• Clock sources

• Trigger sources

• Post trigger count

• Synchronization mode

• Buffers

• DMA resources

The following subsections describe these capabilities in more detail.

Channels

Each subsystem (or element of a subsystem type) can have multiple channels. To determine
how many channels the subsystem supports, use the olDaGetSSCaps function, specifying the
OLSSC_NUMCHANNELS capability.

Using the DataAcq SDK
Some subsystems on the DT2896 and DT727 devices also provide channel expansion. To
determine if the subsystem supports channel expansion, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_EXP2896 capability (for the DT2896) or the OLSSC_SUP_EXP727
capability (for the DT727). If this function returns a nonzero value, the capability is supported.

Specifying the Channel Type

The DataAcq SDK supports the following channel types:

• Single-ended – Use this configuration when you want to measure high-level signals,
noise is insignificant, the source of the input is close to the device, and all the input signals
are referred to the same common ground.

To determine if the subsystem supports the single-ended channel type, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_SINGLEENDED capability. If this
function returns a nonzero value, the capability is supported.

To determine how many single-ended channels are supported by the subsystem, use the
olDaGetSSCaps function, specifying the OLSSC_MAXSECHANS capability.

Specify the channel type as single-ended for each channel using the olDaSetChannelType
function.

• Differential – Use this configuration when you want to measure low-level signals (less
than 1 V), you are using an A/D converter with high resolution (greater than 12 bits),
noise is a significant part of the signal, or common-mode voltage exists.

To determine if the subsystem supports the differential channel type, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_DIFFERENTIAL capability. If this
function returns a nonzero value, the capability is supported.

To determine how many differential channels are supported by the subsystem, use the
olDaGetSSCaps function, specifying the OLSSC_MAXDICHANS capability.

Specify the channel type as differential for each channel using the olDaSetChannelType
function.

Note: For pseudo-differential analog inputs, specify the single-ended channel type; in this
case, how you wire these signals determines the configuration. This option provides less
noise rejection than the differential configuration, but twice as many analog input channels.

For older model devices, this setting is jumper-selectable and must be specified in the driver
configuration dialog.

The channel list is not used to set the channel type.

 The following subsections describe how to specify channels.
51

Chapter 3

52
Specifying a Single Channel

The simplest way to acquire data from or output data to a single channel is to specify the
channel for a single-value operation; refer to page 69 for more information on single-value
operations.

You can also specify a single channel using a channel list, described in the next section.

Specifying One or More Channels

You acquire data from or output data to one or more channels using a channel list.

The DataAcq SDK provides features that allow you to group the channels in the list
sequentially (either starting with 0 or with any other analog input channel) or randomly. In
addition, the DataAcq SDK allows you to specify a single channel or the same channel more
than once in the list. Your device, however, may limit the order in which you can enter a
channel in the channel list.

To determine how the channels can be ordered in the channel list for your subsystem, use the
olDaGetSSCaps function, specifying the OLSSC_RANDOM_CGL capability. If this function
returns a nonzero value, the capability is supported; you can order the channels in the channel
list in any order, starting with any channel.

If this capability is not supported, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_SEQUENTIAL_CGL capability. If this function returns a nonzero value, the
capability is supported; you must order the channels in the channel list in sequential order,
starting with any channel.

If this capability is not supported, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_ZEROSEQUENTIAL_CGL capability. If this function returns a nonzero value,
the capability is supported; you must order the channels in the channel list in sequential order,
starting with channel 0.

To determine if the subsystem supports simultaneous sample-and-hold mode use the
olDaGetSSCaps function, specifying the OLSSC_SUP_SIMULTANEOUS_SH capability. If
this function returns a nonzero value, the capability is supported. You must enter at least two
channels in the channel list. Generally, the first channel is the sample channel and the
remaining channels are the hold channels.

The following subsections describe how to specify channels in a channel list.

Specifying the Channel List Size

To determine the maximum size of the channel list for the subsystem, use the olDaGetSSCaps
function, specifying the OLSSC_CGLDEPTH capability.

Use the olDaSetChannelListSize function to specify the size of the channel list.

Using the DataAcq SDK
Note: The OLSSC_CGLDEPTH capability specifies the maximum size of the channel list,
channel inhibit list, synchronous digital I/O list, and gain list.

Specifying the Channels in the Channel List

Use the olDaSetChannelListEntry function to specify the channels in the channel list in the
order you want to sample them or output data from them. (For simultaneous sampling
modules, order does not matter, and you cannot enter a particular channel more than once.)

The channels are sampled or output in order from the first entry to the last entry in the
channel list. Channel numbering is zero-based; that is, the first entry in the channel list is entry
0, the second entry is entry 1, and so on.

For example, if you want to sample channel 4 twice as frequently as channels 5 and 6, you
could program the channel list as follows:

In this example, channel 4 is sampled first, followed by channel 5, channel 4 again, and then
channel 6.

Inhibiting Channels in the Channel List

If supported, you can set up a channel-inhibit list; this feature is useful if you want to discard
values acquired from specific channels, as is typical in simultaneous sample-and-hold
applications.

To determine if a subsystem supports a channel-inhibit list, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_CHANNELLIST_INHIBIT capability. If this function returns a
nonzero value, the capability is supported.

Using the olDaSetChannelListEntryInhibit function, you can enable or disable inhibition for
each entry in the channel list. If enabled, the acquired value is discarded after the channel
entry is sampled; if disabled, the acquired value is stored after the channel entry is sampled.

In the following example, the values acquired from channels 11 and 9 are discarded and the
values acquired from channels 10 and 8 are stored.

Channel-List Entry Channel Description

0 4 Sample channel 4.

1 5 Sample channel 5.

2 4 Sample channel 4 again.

3 6 Sample channel 6.
53

Chapter 3

54
Specifying Synchronous Digital I/O Values in the Channel List

If supported, you can set up a synchronous digital I/O list; this feature is useful if you want to
write a digital output value to dynamic digital output channels when an analog input channel
is sampled.

To determine if the subsystem supports synchronous (dynamic) digital output operations, use
the olDaGetSSCaps function, specifying the OLSSC_SUP_SYNCHRONOUS_DIGITALIO
capability. If this function returns a nonzero value, the capability is supported.

Use the olDaSetSynchronousDigitalIOUsage function to enable or disable synchronous
(dynamic) digital output operation for a specified subsystem.

Once you enable a synchronous digital output operation, specify the values to write to the
synchronous (dynamic) digital output channels using the olDaSetDigitalIOListEntry
function for each entry in the channel list.

To determine the maximum digital output value that you can specify, use the olDaGetSSCaps
function, specifying the OLSSC_MAXDIGITALIOLIST_VALUE capability.

As each entry in the channel list is scanned, the corresponding value in the synchronous
digital I/O list is output to the dynamic digital output channels.

In the following example, when channel 7 is sampled, a value of 1 is output to the dynamic
digital output channels. When channel 5 is sampled, a value of 1 is output to the dynamic
digital output channels. When channels 6 and 4 are sampled, a value of 0 is output to the
dynamic digital output channels.

Channel-List Entry Channel Channel Inhibit Value Description

0 11 True Sample channel 11 and discard the value.

1 10 False Sample channel 10 and store the value.

2 9 True Sample channel 9 and discard the value.

3 8 False Sample channel 8 and store the value.

Using the DataAcq SDK
If your device had two dynamic digital output channels and a value of 1 is output (01 in
binary format), a value of 1 is written to dynamic digital output channel 0 and a value of 0 is
written to dynamic digital output channel 1. Similarly, if a value of 2 is output (10 in binary
format), a value of 0 is written to dynamic digital output channel 0 and a value of 1 is written
to dynamic digital output channel 1.

Note: If you are controlling sample-and-hold devices with these channels, you may need to
program the first channel at the sample logic level and the following channels at the hold
logic level; see your device/device driver documentation for details.

MultiSensor Inputs

Some subsystems support multiple sensor types for each channel. To determine if the
subsystem supports multiple sensor inputs, use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_MULTISENSOR.

To determine which sensor types are supported for a given channel, query the channel using
the olDaEnumChannelCaps function with the
OL_ENUM_CHANNEL_SUPPORTED_MULTISENSOR_TYPES capability. All the supported
sensor types are returned for the channel. The following sensor types may be supported:

• VOLTAGEIN

• VOLTAGEOUT

• DIGITALINPUT

• DIGITALOUTPUT

• QUADRATUREDECODER

• COUNTERTIMER

• TACHOMETER

Channel-List Entry Channel Synchronous Digital I/O Value Description

0 7 1 Sample channel 7 and output a value
of 1 to the dynamic digital output
channels.

1 5 1 Sample channel 5 and output a value
of 1 to the dynamic digital output
channels.

2 6 0 Sample channel 6 and output a value
of 0 to the dynamic digital output
channels.

3 4 0 Sample channel 4 and output a value
of 0 to the dynamic digital output
channels.
55

Chapter 3

56
• CURRENT_

• THERMOCOUPLE

• RTD

• STRAINGAGE

• ACCELEROMETER

• BRIDGE

• THERMISTOR

• RESISTANCE

Use the olDaSetMultiSensorType function to specify the sensor or measurement type to use
for the specified channel.

You can determine which sensor type was configured for the specified channel using the
olDaGetMultiSensorType function.

Voltage Inputs

Some voltage input channels support a bias return termination resistor. To determine if the
channel supports input termination, use the olDaGetChannelCaps function, specifying the
capability OLCHANNELCAP_SUP_INPUT_TERMINATION.

The bias return termination resistor is typically enabled for floating and grounded voltage
sources. It is typically disabled for voltage sources with grounded references. Refer to the
documentation for your device for wiring information.

You can enable or disable the bias return termination resistor for a given channel using the
olDaSetInputTerminationEnabled function. You can return the configuration of the input
termination resistor for a given channel using the olDaGetInputTerminationEnabled
function.

Current Measurements

To determine if your analog input subsystem supports current measurements, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_CURRENT.

Some current channels support a bias return termination resistor. To determine if the channel
supports input termination, use the olDaGetChannelCaps function, specifying the capability
OLCHANNELCAP_SUP_INPUT_TERMINATION.

The bias return termination resistor is typically enabled for floating and grounded current
sources. It is typically disabled for current sources with grounded references. Refer to the
documentation for your device for wiring information.

You can enable or disable the bias return termination resistor for a given channel using the
olDaSetInputTerminationEnabled function. You can return the configuration of the input
termination resistor for a given channel using the olDaGetInputTerminationEnabled
function.

Using the DataAcq SDK
Resistance Measurements

To determine if your analog input subsystem supports resistance measurements, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_RESISTANCE.

You can set the following parameters for resistance measurements:

• Sensor Wiring

• Excitation current source

Sensor Wiring

Verify how the resistance measurement is wired to the analog input channel, and then use the
olDaSetSensorWiringConfiguration function to specify the wiring configuration that is used
(two-wire, three-wire, or four-wire). Ensure that the software configuration matches the
hardware configuration.

Use the olDaGetSensorWiringConfiguration function to return the configured wiring
configuration for a specified channel.

Excitation Current Sources and Values

To determine if the analog input channel supports an internal excitation current source, use
the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_INTERNAL_EXCITATION_CURRENT_SOURCE. To determine if the analog
input channel supports an external excitation current source, use the olDaGetSSCaps
function, specifying the capability
OLSSC_SUP_EXTERNAL_EXCITATION_CURRENT_SOURCE.

To set the excitation current source for the channel, use the olDaSetExcitationCurrentSource
function.

If you specify an internal excitation current source, you can set the value of the current source
using the olDaSetExcitationCurrentValue function. If the specified value is not supported by
the device, an error is reported.

To determine how many values the subsystem supports for the internal excitation current
source, use the OLSSC_NUM_EXCITATION_CURRENT_VALUES capability with the
olDaGetSSCaps function.

To determine the actual values that are available for the internal excitation current source,
query the subsystem using the olDaEnumSSCaps function with the
OL_ENUM_EXCITATION_CURRENT_VALUES capability.
57

Chapter 3

58
IEPE Inputs

To determine if your analog input subsystem supports IEPE (accelerometer) inputs, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_IEPE.

You can set the following parameters for IEPE inputs:

• Coupling type

• Excitation current source

Coupling Type

To determine if AC coupling is supported by a specified analog input channel, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_AC_COUPLING.

To determine if DC coupling is supported by the analog input channel, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_DC_COUPLING.

To set the coupling type for the channel, use the olDaSetCouplingType function.

Excitation Current Sources and Values

To determine if the analog input channel supports an internal excitation current source, use
the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_INTERNAL_EXCITATION_CURRENT_SOURCE. To determine if the analog
input channel supports an external excitation current source, use the olDaGetSSCaps
function, specifying the capability
OLSSC_SUP_EXTERNAL_EXCITATION_CURRENT_SOURCE.

To set the excitation current source for the channel, use the olDaSetExcitationCurrentSource
function.

If you specify an internal excitation current source, you can set the value of the current source
using the olDaSetExcitationCurrentValue function. If the specified value is not supported by
the device, an error is reported.

To determine how many values the subsystem supports for the internal excitation current
source, use the OLSSC_NUM_EXCITATION_CURRENT_VALUES capability with the
olDaGetSSCaps function.

To determine the actual values that are available for the internal excitation current source,
query the subsystem using the olDaEnumSSCaps function with the
OL_ENUM_EXCITATION_CURRENT_VALUES capability.

Thermocouples

Some A/D subsystems support thermocouple inputs. To determine if your subsystem
supports thermocouple inputs, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_THERMOCOUPLES capability.

Using the DataAcq SDK
Thermocouple Input Types

If the subsystem supports thermocouple inputs, specify the type of thermocouple that is
connected to the input channel using the olDaSetThermocoupleType function. The following
thermocouple types are defined:

• OL_THERMOCOUPLE_TYPE_NONE – Specifies voltage rather than temperature

• OL_THERMOCOUPLE_TYPE_J – Specifies a J thermocouple type

• OL_THERMOCOUPLE_TYPE_K – Specifies a K thermocouple type

• OL_THERMOCOUPLE_TYPE_B – Specifies a B thermocouple type

• OL_THERMOCOUPLE_TYPE_E – Specifies a E thermocouple type

• OL_THERMOCOUPLE_TYPE_N – Specifies a N thermocouple type

• OL_THERMOCOUPLE_TYPE_R – Specifies a R thermocouple type

• OL_THERMOCOUPLE_TYPE_S – Specifies a S thermocouple type

• OL_THERMOCOUPLE_TYPE_T – Specifies a T thermocouple type

If the thermocouple type is set to OL_THERMOCOUPLE_TYPE_NONE, data is returned in
voltage rather than temperature. If the thermocouple type is set for any of the other defined
thermocouple types, the data is returned in degrees C.

On some devices, thermocouple data is returned as integer values. On other devices,
thermocouple data is returned as floating-point values (4 bytes). To determine if your
subsystem returns floating-point values, use the olDaGetSSCaps function, specifying the
capability OLSSC_RETURNSFLOATS.

Notes: If a channel that was configured for a thermocouple input has an open thermocouple
or no thermocouple connected to it, the value SENSOR_IS_OPEN (99999 decimal) is
returned. This value is returned anytime a voltage greater than 100 mV is measure on the
input, since this value is greater than any legitimate thermocouple voltage.

If the channel was configured for a voltage input (not a thermocouple type), the
SENSOR_IS_OPEN value is not returned. Instead, the voltage value is returned. If no input is
connected to the channel, the software returns a value of approximately 0.7 V due to the open
thermocouple detection pull-up circuit.

If the input voltage is less than the legal voltage range for the selected thermocouple type, the
software returns the value TEMP_OUT_OF_RANGE_LOW (–88888 decimal). If the input
voltage is greater than the legal voltage range for the selected thermocouple type, the
software returns the value TEMP_OUT_OF_RANGE_HIGH (88888 decimal).
59

Chapter 3

60
Thermocouple Correction and Linearization

Some devices do thermocouple correction and linearization in hardware based on the value of
an internal CJC (cold junction compensation) channel. Every sample in the data stream
corresponds to a single (typically, floating-point) value that represents either the temperature
(in degrees C) or the voltage of the input channel, based on its thermocouple type.

Other devices return A/D input values in raw counts and the application program is
responsible for correcting and linearizing the data based on the value of the CJC channel.

To determine if your subsystem does thermocouple correction and linearization in hardware,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_TEMPERATURE_DATA_IN_STREAM. If this query returns a nonzero value,
correction and linearization is done in hardware. If this query returns a value of 0, your
application program is responsible for correcting and linearizing thermocouple values.

Use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CJC_SOURCE_INTERNAL, to determine whether the CJC value is measured
internally on the device (rather than using one of the analog input channels).

To determine if one of the analog input channels is used as the CJC channel, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_CJC_SOURCE_CHANNEL.

Notes: Some devices that support correcting and linearizing thermocouple data in hardware
also provide the option of returning CJC values in the data stream. This option is seldom
used, but is provided if you want to linearize thermocouple values in your application (rather
than in hardware) when using continuous operations.

To determine if the subsystem supports interleaving CJC values with A/D values in the data
stream, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_INTERLEAVED_CJC_IN_STREAM.

By default, the subsystem is disabled from returning CJC values in the data stream. To enable
the subsystem to return CJC values in the data stream, use the
olDaSetReturnCjcTemperatureInStream function. When enabled, two (typically
floating-point) values are returned in the data stream: the first value represents the
temperature or voltage of the input channel (based on the thermocouple type of the input),
and the second value represents the CJC temperature, in degrees C. Generally, in this
configuration, a thermocouple type of OL_THERMOCOUPLE_TYPE_NONE is specified for
each channel to allow direct linearization of voltage values into temperature. If you return
CJC values in the data stream, ensure that you allocate a buffer that is twice as large to
accommodate the CJC values (buffer size = number of channels x 2 x the number of samples).

Using the DataAcq SDK
RTD Inputs

Some A/D subsystems support RTD inputs. To determine if your subsystem supports RTD
inputs, use the olDaGetSSCaps function, specifying the OLSSC_SUP_RTDS capability.

In an RTD measurement, the measurement device reads the voltage drop across the RTD as
the resistance changes and converts the voltage to the appropriate temperature using the
Callendar-Van Dusen transfer function:

where,

• RT is the resistance at temperature.

• R0 is the resistance at 0° C.

• A, B, and C are the Callendar-Van Dusen coefficients for a particular RTD type. (The value
of C is 0 for temperatures above 0° C.)

For channels that support RTD inputs, you must specify the type of RTD that is connected to
the input channel using the olDaSetRtdType function. To specify the R0 coefficient, use the
olDaSetRtdR0 function. To specify the A coefficient, use the olDaSetRtdA function. To
specify the B coefficient, use the olDaSetRtdB function. To specify the C coefficient, use the
olDaSetRtdC function.

Table 11 lists the values that are supported for these parameters:

Table 11: Values Supported for RTD Parameters

Values for the
RTD Type

Values for the
R0 Coefficient

(Ω)
Values for the
A Coefficient

Values for the
B Coefficient

Values for the
C Coefficient

Pt3850a

(the default)

a. Uses a Temperature Coefficient of Resistance (TCR) value of 0.003850 Ω / Ω /° C as specified in the DIN/IEC 60751
ASTM-E1137 standard.

100 (the default), 500,
or 1000

3.9083 x 10–3 –5.775 x 10–7 –4.183 x 10–12

Pt3920b

b. Uses a TCR value of 0.003920 Ω / Ω /° C as specified in the SAMA RC21-4-1966 standard.

98.129 3.9787 x 10–3 –5.869 x 10–7 –4.167 x 10–12

Pt3911c

c. Uses a TCR value of 0.003911 Ω / Ω /° C as specified in the US Industrial Standard standard.

100 3.9692 x 10–3 –5.8495 x 10–7 –4.233 x 10–12

Pt3750d

d. Uses a TCR value of 0.003750 Ω / Ω /° C as specified in the Low Cost standard.

1000 3.81 x 10–3 –6.02 x 10–7 –6.0 x 10–12

Pt3916e

e. Uses a TCR value of 0.003916 Ω / Ω /° C as specified in the Japanese JISC 1604-1989 standard.

100 3.9739 x 10–3 –5.870 x 10–7 –4.4 x 10–12

Pt3928f

f. Uses a TCR value of 0.003928 Ω / Ω /° C as specified in the ITS-90 standard.

100 3.9888 x 10–3 –5.915 x 10–7 –3.85 x 10–12

Custom User-defined User-defined User-defined User-defined

RT R0 1 AT BT
2

CT
3

T 100–()+ + +[]=
61

Chapter 3

62
If you specify a value of Pt3850 for the RTD type, you must also specify R0 value, unless you
are using a 100 Ω RTD (the default value). If you specify a value of Custom for the RTD type,
you must specify the values for R0, A, B, and C coefficients. Otherwise, the software
automatically sets the appropriate value for R0, A, B, and C based on the selected RTD type.
You can determine the configured settings for an RTD input using the DaGetRtdType,
olDaGetRtdR0, olDaGetRtdA, olDaGetRtdB, and olDaGetRtdC functions.

Use the olDaSetSensorWiringConfiguration function to specify the wiring configuration
(two-wire, three-wire, or four-wire) for the RTD input. Ensure that the software configuration
matches the hardware configuration. You can use the olDaGetSensorWiringConfiguration
function to return the configured wiring configuration for a specified channel.

RTD data is returned as floating-point values (4 bytes). To determine if your subsystem
returns floating-point values, use the olDaGetSSCaps function, specifying the capability
OLSSC_RETURNSFLOATS.

Notes: If the input voltage is less than the legal voltage range for the selected RTD type, the
software returns the value TEMP_OUT_OF_RANGE_LOW (–88888 decimal). If the input
voltage is greater than the legal voltage range for the selected RTD type, the software returns
the value TEMP_OUT_OF_RANGE_HIGH (88888 decimal). If the device detects an open
circuit on the input (no connection to the Current and Return wires of a 4-wire RTD
connection), the software returns the value OPEN_SENSOR (99999.0 decimal).

Thermistor Inputs

To determine if your subsystem supports thermistor inputs, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_THERMISTOR capability.

The resistance of NTC thermistors increases with decreasing temperature. The resistance to
temperature relationship is characterized by the Steinhart-Hart equation:

where,

• T is the temperature, in degrees Kelvin.

• R is the resistance at T, in ohms.

• A, B, and C are the Steinhart-Hart coefficients for a particular thermistor type and value,
and are supplied by the thermistor manufacturer.

For channels that support thermistors, you must specify the A coefficient using the
olDaSetThermistorA function, the B coefficient using the olDaSetThermistorB function, and
the C coefficient using the olDaSetThermistorC function.

You can determine the configured settings for a thermistor input using the
olDaGetThermistorA, olDaGetThermistorB, and olDaGetThermistorC functions.

1
T
--- A BlnR Cln R()3+ +=

Using the DataAcq SDK
Use the olDaSetSensorWiringConfiguration function to specify the wiring configuration
(two-wire, three-wire, or four-wire) for the thermistor input. Ensure that the software
configuration matches the hardware configuration. You can use the
olDaGetSensorWiringConfiguration function to return the configured wiring configuration
for a specified channel.

Thermistor data is returned as floating-point values (4 bytes). To determine if your subsystem
returns floating-point values, use the olDaGetSSCaps function, specifying the capability
OLSSC_RETURNSFLOATS.

Strain Gage and Bridge-Based Sensor Inputs

Some A/D subsystems support strain gage inputs. To determine if your subsystem supports
strain gage inputs, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_STRAIN_GAGE capability.

To determine if your analog input subsystem supports bridge-based sensors, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_BRIDGEBASEDSENSORS.

Once you acquire a voltage value from a channel that was configured for a strain gage input,
you can convert the value to strain using the olDaVoltsToStrain function or to a bridge-based
sensor value using the olDaVoltsToBridgeBasedSensor function.

These functions take a number of parameters specific to the sensor type, such as the gage type,
gage resistance, transducer capacity, and so on.

Excitation Voltage

If your subsystem supports strain gage or bridge-based sensors, you can determine if your
A/D subsystem supports an external excitation voltage source by using the olDaGetSSCaps
function, specifying the OLSSC_SUP_EXTERNAL_EXCITATION_VOLTAGE_SOURCE
capability. To determine if your A/D subsystem supports an internal excitation voltage
source, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_INTERNAL_EXCITATION_VOLTAGE_SOURCE capability. You can specify
whether the subsystem uses the internal excitation voltage source on the device or an external
excitation voltage source using the olDaSetStrainExcitationVoltageSource function.

If the subsystem supports an internal excitation voltage source, you can determine the
minimum value that you can program for the internal excitation voltage source by using the
olDaGetSSCapsEx function, specifying the OLSSCE_MIN_EXCITATION_VOLTAGE
capability. To determine the maximum value that you can program for the internal excitation
voltage source, use the olDaGetSSCapsEx function, specifying the
OLSSCE_MAX_EXCITATION_VOLTAGE capability. You can specify the value of the
excitation voltage source using the olDaSetStrainExcitationVoltage function.
63

Chapter 3

64
Strain Gage Type

If the subsystem supports strain gage inputs, you can specify the configuration of the strain
gage for each input channel using the olDaSetStrainBridgeConfiguration function. The
following types are defined:

• FULL_BRIDGE_BENDING

• FULL_BRIDGE_BENDING_POISSON

• FULL_BRIDGE_AXIAL

• HALF_BRIDGE_POISSON

• HALF_BRIDGE_BENDING

• QUARTER_BRIDGE

• QUARTER_BRIDGETEMPCOMPENSATION

You can return the strain gage type that is configured for the channel using the
olDaGetStrainBridgeConfiguration function.

Bridge-Based Sensor Type

If the subsystem supports bridge-based sensors, you can specify the configuration of the
bridge-based sensor or general-purpose bridge for each input channel using the
olDaSetBridgeConfiguration function. The following types are defined:

• FULL_BRIDGE

• HALF_BRIDGE

• QUARTER_BRIDGE

You can return the bridge type that is configured for the channel using the
olDaGetBridgeConfiguration function.

Shunt Calibration

You can determine if your A/D subsystem supports shunt calibration by using the
olDaGetSSCaps function, specifying the OLSSC_SUP_SHUNT_CALIBRATION capability.
You can use shunt calibration to correct span errors in the measurement path.

If you want to use the internal shunt resistor provided by the device, ensure that the internal
RSHUNT+ and RSHUNT– lines are connected across the gage and that no strain is applied to
the specimen. Then, enable the shunt resistor for the specified analog input channel by setting
the state of the resistor to TRUE using the olDaSetStrainShuntResistor function. (Be sure to
set this value back to False when the shunt calibration procedure is complete.)

Once the internal shunt resistor is enabled or you have connected your own shunt resistor to
the bridge, read the value of the bridge, and then divide the expected value of the bridge by
the actual value that you read. Internally, the software multiplies the channel measurement
with this value to adjust the gain of the device.

Using the DataAcq SDK
TEDS

If your strain gage provides a TEDS (Transducer Electronic Data Sheet) interface, you can read
the TEDS data from the strain gage directly using the olDaReadStrainGageHardwareTeds
function or from a data file for the strain gage using the olDaReadStrainGageVirtualTeds
function.

If you are using a bridge-based sensor or transducer, such as a load cell, that provides a TEDS
interface, you can read the TEDS data from the sensor directly using the
olDaReadBridgeSensorHardwareTeds function or from a data file for the bridge-based
sensor using the olDaReadBridgeSensorVirtualTeds function.

Note: The TEDS information is read-only. These functions help you determine the
appropriate settings for your sensor.

Data Encoding

For A/D and D/A subsystems only, the DataAcq SDK defines two data encoding types:
binary and twos complement.

To determine the data encoding types supported by the subsystem, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_BINARY for binary data encoding or
OLSSC_SUP_2SCOMP for twos complement data encoding. If this function returns a nonzero
value, the capability is supported. Use the olDaSetEncoding function to specify the data
encoding type.

Resolution

To determine if the subsystem supports software-programmable resolution, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_SWRESOLUTION. If this
function returns a nonzero value, the capability is supported.

To determine the number of resolution settings supported by the subsystem, use the
olDaGetSSCaps function, specifying the capability OLSSC_NUMRESOLUTION. To list the
actual bits of resolution supported, use the olDaEnumSSCaps function, specifying the
OL_ENUM_RESOLUTION capability.

Use the olDaSetResolution function to specify the number of bits of resolution to use for the
subsystem.
65

Chapter 3

66
Ranges

The range capability applies to A/D and D/A subsystems only.

Note: Some D/A subsystems support both voltage and current output channels. To
determine whether your subsystem supports current output channels, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_CURRENT_OUTPUT capability. If
this function returns a nonzero value, current output channels are supported.

Depending on your subsystem, you can set the range for the entire subsystem or the range for
each channel; the range is typically specified in voltage. (If you are using a current output
channel, determine how the voltage range maps to your current output range and write the
appropriate voltage to the output channel.)

To determine if the subsystem supports the range-per-channel capability, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_RANGEPERCHANNEL capability. If
this function returns a nonzero value, the capability is supported.

To determine how many ranges the subsystem supports, use the olDaGetSSCaps function,
specifying the OLSSC_NUMRANGES capability.

To list the minimum and maximum ranges supported by the subsystem, use the
olDaEnumSSCaps function, specifying the OL_ENUM_RANGES capability.

Use olDaSetRange to specify the range for a subsystem. If your subsystem supports the
range-per-channel capability, use olDaSetChannelRange to specify the range for each
channel.

Notes: The channel list is not used to set the range for a channel.

For older device models, the range is jumper-selectable and must be specified in the driver
configuration dialog.

Gains

The range divided by the gain determines the effective range for the entry in the channel list.
For example, if your device provides a range of ±10 V and you want to measure a ±1.5 V
signal, specify a range of ±10 V and a gain of 4; the effective input range for this channel is
then ±2.5 V (10/4), which provides the best sampling accuracy for that channel.

The way you specify gain depends on how you specified the channels, as described in the
following subsections.

Using the DataAcq SDK
Note: If your device supports autoranging for single-value operations, the device can
determine the appropriate gain for your range rather than you having to specify it. Refer to
page 69 for more information on autoranging.

Specifying the Gain for a Single Channel

The simplest way to specify gain for a single channel is to specify the gain in a single-value
operation; refer to page 69 for more information on single-value operations.

You can also specify the gain for a single channel using a gain list, described in the next
section.

Specifying the Gain for One or More Channels

You can specify the gain for one or more channels using a gain list. The gain list parallels the
channel list. (The two lists together are often referred to as the channel-gain list or CGL.)

To determine if the subsystem supports programmable gain, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_PROGRAMGAIN capability. If this function returns a
nonzero value, the capability is supported.

To determine how many gains the subsystem supports, use the olDaGetSSCaps function,
specifying the OLSSC_NUMGAINS capability.

To list the gains supported by the subsystem, use the olDaEnumSSCaps function, specifying
the OL_ENUM_GAINS capability.

Specify the gain for each entry in the channel list using the olDaSetGainListEntry function.

In the following example, a gain of 2 is applied to channel 5, a gain of 4 is applied to channel 6,
and a gain of 1 is applied to channel 7.

Note: If your subsystem does not support programmable gain, enter a value of 1 for all
entries.

If your subsystem does not support the gain-per-channel capability, set all entries in the gain
list to the same value.

Channel-List Entry Channel Gain Description

0 5 2 Sample channel 5 using a gain of 2.

1 6 4 Sample channel 6 using a gain of 4.

2 7 1 Sample channel 7 using a gain of 1.
67

Chapter 3

68
Filters

Some subsystems support a filter per channel, while others may support programmable filter
types. These capabilities are described in the following subsections.

FIlter Per Channel

This capability applies to A/D and D/A subsystems only.

Depending on your subsystem, you can specify a filter for each channel. To determine if the
subsystem supports a filter for each channel, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_FILTERPERCHAN capability. If this function returns a nonzero value, the
capability is supported.

To determine how many filters the subsystem supports, use the olDaGetSSCaps function,
specifying the OLSSC_NUMFILTERS capability.

To list the cut-off frequency of all filters supported by the subsystem, use the
olDaEnumSSCaps function, specifying the OL_ENUM_FILTERS capability.

If the subsystem supports filtering per channel, specify the filter for each channel using the
olDaSetChannelFilter function. The filter is equal to or greater than a cut-off frequency that
you supply.

Notes: The channel list is not used to set the filter for a channel.

If the subsystem supports more than one filter but does not support a filter per channel, the
filter specified for channel 0 is used for all channels.

Filter Types

This capability applies to A/D subsystems only that support temperature measurements and
programmable filter types. To determine if the subsystem supports programmable filter types,
use the olDaGetSSCaps function, specifying the OLSSC_SUP_DATA_FILTERS capability. If
this function returns a nonzero value, the capability is supported.

If the subsystem supports programmable filter types, specify the filter for each channel using
the olDaSetDataFilterType function. The following filter types are available:

• OL_DATA_FILTER_RAW – No filter. Provides fast response times, but the data may be
difficult to interpret. Use when you want to filter the data yourself.

This filter type returns the data exactly as it comes out of the Delta-Sigma A/D converters.
Note that Delta-Sigma converters provide substantial digital filtering above the Nyquist
frequency.

Generally, the only time it is desirable to use this filter type is if you are using fast
responding inputs, sampling them at higher speeds (> 1 Hz), and need as much response
speed as possible.

Using the DataAcq SDK
• OL_DATA_FILTER_MOVING_AVERAGE – Provides a compromise of filter functionality
and response time. This filter can be used in any application.

This low-pass filter takes the previous 16 samples, adds them together, and divides by 16.

You can return the currently configured filter type using the olDaGetDataFilterType function.

Note: In previous versions of the DataAcq SDK, these functions were called
olDaSetTempFilterType and olDaGetTempFilterType, the capability was called
OLSSC_SUP_TEMP_FILTERS, and the constants were called OL_TEMP_FILTER_RAW and
OL_TEMP_FILTER_MOVING_AVERAGE. These function remain as supported, deprecated
functions within the Win32 library.

Data Flow Modes

The DataAcq SDK defines the following data flow modes for A/D, D/A, DIN, and DOUT
subsystems:

• Single value

• Continuous

The following subsections describe these data flow modes in detail.

Single-Value Operations

Single-value operations are the simplest to use but offer the least flexibility and efficiency. In a
single-value operation, a single data value is read or written at a time. The result is returned
immediately. You cannot specify a channel-gain list, clock source, trigger source, DMA
channel, or buffer for a single-value operation. Single-value operations stop automatically
when finished; you cannot stop a single-value operation manually.

To determine if the subsystem supports single-value operations, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_SINGLEVALUE. If this function returns a
nonzero value, the capability is supported.

Specify the operation mode as OL_DF_SINGLEVALUE using the olDaSetDataFlow function.

Typical Single-Value Operations

Use one of the following functions to read a single value from or write a single-value to a
specified channel; the device performs the operation immediately:

• olDaGetSingleValue – Acquires a count value from a single input channel using a
specified gain, and returns the data as a 32-bit integer.

If you later want to convert the count value to engineering units, you can use the
olDaCodeToVolts function. Similarly, if you want to convert the engineering units to
counts, you can use the olDaVoltsToCode function.
69

Chapter 3

70
• olDaGetSingleFloat – Typically used with RTD or thermocouple inputs, acquires a single
voltage or temperature value (depending on the RTD or thermocouple type) from a single
input channel, and returns the data as a floating-point value. Refer to page 61 for more
information on RTDs; refer to page 58 for more information on thermocouples.

• olDaGetCjcTemperature – If you want to correct and linearize thermocouple values in
the application rather than in hardware, this function acquires the CJC temperature for a
specified input channel, and returns the data as a floating-point value. Refer to page 58 for
more information on thermocouple and CJC values.

• olDaGetSingleValueEx – Some devices support autoranging for single-value analog
input operations, where the device determines the best gain for the specified range. If
autoranging is supported, this function allows you to specify the range and analog input
channel; the driver then acquires the value from the specified channel using the best gain
for the range, and returns the result immediately in both counts and engineering units
(such as voltage).

To determine if the subsystem supports autoranging for single-value operations, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_SINGLEVALUE_
AUTORANGE. If this function returns a nonzero value, the capability is supported.

• olDaPutSingleValue function – Outputs a single count value to a single output channel
using the specified gain.

Simultaneous Single-Value Operations

Some devices support simultaneous single-value operations, allowing you to read a single
value from each input channel of an A/D subsystem or to write a single value to each output
channel of a D/A subsystem. To determine if your device supports simultaneous operations,
use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_SIMULTANEOUS_SH. If this function returns a nonzero value, the capability is
supported.

Use one of the following functions to read a single value from or write a single value to all the
channels of the subsystem simultaneously; the device performs the operation immediately:

• olDaGetSingleValues – Acquires a single count value from each of the channels of the
subsystem simultaneously and returns the data as 32-bit integers.

• olDaGetSingleFloats – Typically used with RTD or thermocouple inputs, acquires a
single voltage or temperature value (depending on the RTD or thermocouple type) from
each of the input channels of the subsystem simultaneously, and returns the data as
floating-point values. Refer to page 61 for more information on RTDs; refer to page 58 for
more information on thermocouples.

• olDaGetCjcTemperatures – If you want to correct and linearize thermocouple values in
the application rather than in hardware, this function acquires a single CJC temperature
from each of the input channels supported by the subsystem, and returns them as
floating-point values. Refer to page 58 for more information on thermocouples and CJC
values.

• olDaPutSingleValues function – Outputs a single count value to each of the channels of
the subsystem simultaneously, using the specified gain. If you do not want to update a
particular output channel, specify the constant DONT_UPDATE for the channel value; in
this case, the channel maintains the last value that was written to it.

Using the DataAcq SDK
Continuous Operations

For a continuous operation, you can specify any supported subsystem capability, such as a
channel-gain list, clock source, trigger source, buffer, and so on, and then configure the
subsystem using the olDaConfig function.

Call the olDaStart function to start a continuous operation.

To stop a continuous operation, perform either an orderly stop using the olDaStop function or
an abrupt stop using the olDaAbort or olDaReset function.

In an orderly stop (olDaStop), the device finishes acquiring the specified number of samples,
stops all subsequent acquisition, and transfers the acquired data to a buffer on the done queue;
all subsequent triggers or retriggers are ignored. (Refer to page 86 for more information on
buffers and queues.)

In an abrupt stop (olDaAbort), the device stops acquiring samples immediately; the acquired
data is transferred to a buffer and put on the done queue; however, the buffer may not be
completely filled. All subsequent triggers or retriggers are ignored.

Note: olDaStop always waits for the current buffer to be filled before stopping the
subsystem. Therefore, if you are using an external trigger or a threshold trigger and the
trigger is never received, do not call olDaStop as the subsystem will not be stopped if it is
waiting for a trigger. Instead, call olDaAbort, which stops the subsystem immediately.

The olDaReset function reinitializes the subsystem after stopping it abruptly.

For analog output operations, you can also stop the operation by not sending new data to the
device. The operation stops when no more data is available.

If your device supports it, you can mute the output, which attenuates the output voltage to
0 V by using olDaMute. This does not stop the analog output operation; instead, the analog
output voltage is reduced to 0 V over a hardware-dependent number of samples. You can
unmute the output voltage to its current level by using olDaUnMute. To determine if muting
and unmuting are supported by your device, use the olDaGetSSCaps function, specifying the
OLSSC_SUP_MUTE capability. If this function returns a nonzero value, the capability is
supported.

Some subsystems also allow you to pause the operation using the olDaPause function and to
resume the paused operation using the olDaContinue function. To determine if pausing is
supported, use the olDaGetSSCaps function, specifying the OLSSC_SUP_PAUSE capability.
If this function returns a nonzero value, the capability is supported.

Note: To determine whether a subsystem is currently running, use the olDaIsRunning
function. If TRUE is returned, the subsystem is currently running; if FALSE is returned, the
subsystem is not currently running.
71

Chapter 3

72
The following continuous modes are supported by the DataAcq SDK:

• Continuous pre- and post-trigger operations that use a start and reference trigger

• Continuous post-trigger operations (does not use a reference trigger)

• Continuous pre-trigger operations (does not use a reference trigger)

• Continuous about-trigger operations (does not use a reference trigger)

These modes are described in the following subsections.

Continuous Pre- and Post-Trigger Mode Using a Start and Reference Trigger

Use this mode when you want to acquire pre-trigger data from multiple analog input channels
continuously when a specified trigger occurs and, when a reference trigger occurs, acquire a
specified number of post-trigger samples.

Refer to the documentation for your device to determine if a reference trigger is supported.

To determine if the subsystem supports continuous operations, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_CONTINUOUS. If this function returns a
nonzero value, the capability is supported. Using the olDaSetDataFlow function, specify the
operation mode as OL_DF_CONTINUOUS.

Use the olDaSetTrigger function to specify the trigger source that starts acquisition of
pre-trigger data. Use the olDaSetReferenceTrigger function to specify the trigger source that
stops pre-trigger acquisition and starts post-trigger acquisition. Refer to page 81 for more
information on supported trigger sources.

If the trigger source for the start trigger is a threshold trigger, specify the channel to use for the
threshold trigger using the olDaSetTriggerThresholdChannel function, and specify the
voltage value for the threshold level using the olDaSetTriggerThresholdLevel function. Refer
to page 82 for more information.

If the trigger source for the reference trigger is a threshold trigger, specify the channel to use
for the threshold trigger using the olDaSetReferenceTriggerThresholdChannel function, and
specify the voltage value for the threshold level using the
olDaSetReferenceTriggerThresholdLevel function. Refer to page 82 for more information.

Specify the number of samples to acquire after the reference trigger occurs using the
olDaSetReferenceTriggerPostScanCount property. Refer to page 85 for more information on
the post-trigger scan count.

Using the DataAcq SDK
Pre-trigger acquisition begins when the start trigger is detected. When the reference trigger
occurs, pre-trigger acquisition stops and post-trigger acquisition begins until the number of
samples specified by olDaSetReferenceTriggerPostScanCount has been acquired. At that
point, you will get the last buffer that has valid samples; the remainder of the buffers are
cancelled.

Figure 1 illustrates continuous scan mode (using a start and reference trigger) on a
simultaneous board using a channel list of five entries: channel 0 through channel 4. In this
example, pre-trigger analog input data is acquired for each channel simultaneously when the
start trigger is detected. When the reference trigger occurs, the specified number of
post-trigger samples (3, in this example) are acquired simultaneously for each channel.

Figure 1: Continuous Pre- and Post-Trigger Operations Using a Start and Reference Trigger

Continuous Post-Trigger Mode

Note: This mode does not support use of a reference trigger. To use a reference trigger, refer
to page 72.

Use continuous post-trigger when you want to acquire or output data continuously when a
trigger occurs.

To determine if the subsystem supports continuous (post-trigger) operations, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_CONTINUOUS. If this
function returns a nonzero value, the capability is supported.

For continuous (post-trigger) mode, specify the operation mode as OL_DF_CONTINUOUS
using the olDaSetDataFlow function.

Chan 0

Chan 1

Chan 2

Input
Sample
Clock

Chan 3

Chan 4

Chan 0

Chan 1

Chan 2

Chan 3

Chan 4

Chan 0

Chan 1

Chan 2

Chan 3

Chan 4

Chan 0

Chan 1

Chan 2

Chan 3

Chan 4

Start Trigger occurs Reference Trigger occurs

3 Post-trigger samples acquiredPre-trigger data acquired

Chan 0

Chan 1

Chan 2

Chan 3

Chan 4

Post-Trigger Scan Count = 3
73

Chapter 3

74
Use the olDaSetTrigger function to specify the trigger source that starts the operation. Refer to
page 81 for more information on supported trigger sources.

When the post-trigger event is detected, the device cycles through the channel list, acquiring
and/or outputting the value for each entry in the channel list; this process is defined as a scan.
The device then wraps to the start of the channel list and repeats the process continuously
until either the allocated buffers are filled or you stop the operation. Refer to page 52 for more
information on channel lists; refer to page 86 for more information on buffers.

Figure 2 illustrates continuous post-trigger mode using a channel list of three entries: channel
0, channel 1, and channel 2. In this example, post-trigger analog input data is acquired on each
clock pulse of the A/D sample clock; refer to page 79 for more information on clock sources.
The device wraps to the beginning of the channel list and repeats continuously.

Figure 2: Continuous Post-Trigger Mode

Continuous Pre-Trigger Mode (Legacy Devices)

Note: This mode does not support use of a reference trigger. To use a reference trigger, refer
to page 72.

Some older, legacy, devices support pre-trigger mode. Use continuous pre-trigger mode when
you want to acquire data before a specific external event occurs.

To determine if the subsystem supports continuous pre-trigger mode, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_CONTINUOUS_PRETRIG capability.
If this function returns a nonzero value, the capability is supported.

Specify the operation mode as OL_DF_CONTINUOUS_PRETRIG using the
olDaSetDataFlow function.

Pre-trigger acquisition starts when the device detects the pre-trigger source and stops when
the device detects an external post-trigger source, indicating that the first post-trigger sample
was acquired (this sample is ignored).

Post-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D Sample
Clock

Post-trigger data acquired
continuously

Using the DataAcq SDK
Use the olDaSetPretriggerSource function to specify the trigger source that starts the
pre-trigger operation (generally this is a software trigger). Specify the post-trigger source that
stops the operation using olDaSetTrigger. Refer to page 81 and to your device/driver
documentation for supported pre-trigger and post-trigger sources.

Figure 3 illustrates continuous pre-trigger mode using a channel list of three entries: channel 0,
channel 1, and channel 2. In this example, pre-trigger analog input data is acquired on each
clock pulse of the A/D sample clock; refer to page 79 for more information on clock sources.
The device wraps to the beginning of the channel list and the acquisition repeats continuously
until the post-trigger event occurs. When the post-trigger event occurs, acquisition stops.

Figure 3: Continuous Pre-Trigger Mode

Continuous About-Trigger Mode (Legacy Devices)

Note: This mode does not support use of a reference trigger. To use a reference trigger, refer
to page 72.

Some older, legacy, devices support about-trigger mode. Use continuous about-trigger mode
when you want to acquire data both before and after a specific external event occurs. This
operation is equivalent to doing both a pre-trigger and a post-trigger acquisition.

To determine if the subsystem supports continuous about-trigger mode, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_CONTINUOUS_ABOUTTRIG
capability. If this function returns a nonzero value, the capability is supported.

Specify the operation mode as OL_DF_CONTINUOUS_ABOUTTRIG using the
olDaSetDataFlow function.

The about-trigger acquisition starts when the device detects the pre-trigger source. When it
detects an external post-trigger source, the device stops acquiring pre-trigger data and starts
acquiring post-trigger data.

Use the olDaSetPretriggerSource function to specify the pre-trigger source that starts the
pre-trigger operation (this is generally a software trigger) and olDaSetTrigger to specify the
trigger source that stops the pre-trigger acquisition and starts the post-trigger acquisition.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 2 Chan 0
Chan 1

Chan 2

A/D
Sample
Clock

Post-trigger event occurs

Chan 0

Pre-trigger data acquired
Acquisition stops
75

Chapter 3

76
Refer to page 81 and to your device/driver documentation for supported pre-trigger and
post-trigger sources.

The about-trigger operation stops when the specified number of post-trigger samples has
been acquired or when you stop the operation.

Figure 4 illustrates continuous about-trigger mode using a channel list of three entries:
channel 0, channel 1, and channel 2. In this example, pre-trigger analog input data is acquired
on each clock pulse of the A/D sample clock. The device wraps to the beginning of the
channel list and the acquisition repeats continuously until the post-trigger event occurs. When
the post-trigger event occurs, post-trigger acquisition begins on each clock pulse of the A/D
sample clock; refer to page 79 for more information on clock sources. The device wraps to the
beginning of the channel list and acquires post-trigger data continuously.

Figure 4: Continuous About-Trigger Mode

Triggered Scan Mode

In triggered scan mode, the device scans the entries in a channel-gain list a specified number
of times when it detects the specified trigger source, acquiring the data for each entry that is
scanned.

To determine if the subsystem supports triggered scan mode, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_TRIGSCAN capability. If this function returns a nonzero
value, the capability is supported. Note that you cannot use triggered scan mode with
single-value operations.

To enable (or disable) triggered scan mode, use the olDaSetTriggeredScanUsage function.

To determine the maximum number of times that the device can scan the channel-gain list per
trigger, use the olDaGetSSCaps function, specifying the OLSSC_MAXMULTISCAN
capability.

Use the olDaSetMultiscanCount function to specify the number of times to scan the
channel-gain list per trigger.

Pre-trigger event occurs

Chan 0
Chan 1

Chan 0

. . .

A/D
Sample
Clock

Post-trigger event occurs

Pre-trigger data acquired Post-trigger data acquired

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Chan 0
Chan 1

Chan 0

Chan 1

Using the DataAcq SDK
The DataAcq SDK defines the following retrigger modes for a triggered scan; these retrigger
modes are described in the following subsections:

• Scan-per-trigger

• Internal retrigger

• Retrigger extra

Note: If your device driver supports it, retrigger extra is the preferred triggered scan mode.

Scan-Per-Trigger Mode

Use scan-per-trigger mode if you want to accurately control the period between conversions
of individual channels and retrigger the scan based on an internal or external event. In this
mode, the retrigger source is the same as the initial trigger source.

To determine if the subsystem supports scan-per-trigger mode, use the olDaGetSSCaps
function, specifying the OLSS_SUP_RETRIGGER_SCAN_PER_TRIGGER capability. If this
function returns a nonzero value, the capability is supported.

Specify the retrigger mode as scan-per-trigger using the olDaSetRetriggerMode function.

When it detects an initial trigger (post-trigger mode only), the device scans the channel-gain
list a specified number of times (determined by the olDaSetMultiscanCount function), then
stops. When the external retrigger occurs, the process repeats.

The conversion rate of each channel in the scan is determined by the frequency of the A/D
sample clock; refer to page 79 for more information on clock sources. The conversion rate of
each scan is determined by the period between retriggers; therefore, it cannot be accurately
controlled. The device ignores external triggers that occur while it is acquiring data. Only
retrigger events that occur when the device is waiting for a trigger are detected and acted on.
Some devices may generate an OLDA_WM_TRIGGER_ERROR message.

Internal Retrigger Mode

Use internal retrigger mode if you want to accurately control both the period between
conversions of individual channels in a scan and the period between each scan.

To determine if the subsystem supports internal retrigger mode, use the olDaGetSSCaps
function, specifying the OLSS_SUP_RETRIGGER_INTERNAL capability. If this function
returns a nonzero value, the capability is supported.

Specify the retrigger mode as internal using the olDaSetRetriggerMode function.

The conversion rate of each channel in the scan is determined by the frequency of the A/D
sample clock; refer to page 79 for more information on clock sources. The conversion rate
between scans is determined by the frequency of the internal retrigger clock on the device.
You specify the frequency on the internal retrigger clock using the
olDaSetRetriggerFrequency function.
77

Chapter 3

78
When it detects an initial trigger (pre-trigger source or post-trigger source), the device scans
the channel-gain list a specified number of times (determined by the olDaSetMultiscanCount
function), then stops. When the internal retrigger occurs, determined by the frequency of the
internal retrigger clock, the process repeats.

We recommend that you set the retrigger frequency as follows:

Min. Retrigger = # of CGL entries x # of CGLs per trigger + 2 μs
Period A/D sample clock frequency

Max. Retrigger = 1
Frequency Min. Retrigger Period

For example, if you are using 512 channels in the channel-gain list (CGL), scanning the
channel-gain list 256 times every trigger or retrigger, and using an A/D sample clock with a
frequency of 1 MHz, set the maximum retrigger frequency to 7.62 Hz, since

7.62 Hz = 1_______
(512 * 256) +2 μs

1 MHz

Retrigger Extra Mode

Use retrigger extra mode if you want to accurately control the period between conversions of
individual channels and retrigger the scan on a specified retrigger source; the retrigger source
can be any of the supported trigger sources.

To determine if the subsystem supports retrigger extra mode, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_RETRIGGER_EXTRA capability. If this function returns
a nonzero value, the capability is supported.

Specify the retrigger mode as retrigger extra using the olDaSetRetriggerMode function.

Use the olDaSetRetrigger function to specify the retrigger source. Refer to page 81 and to
your device/device driver documentation for supported retrigger sources.

The conversion rate of each channel in the scan is determined by the frequency of the A/D
sample clock; refer to page 79 for more information on clock sources. The conversion rate of
each scan is determined by the period between retriggers.

If you are using an internal retrigger, specify the period between retriggers using
olDaSetRetriggerFrequency (see page 77). If you are using an external retrigger, the period
between retriggers cannot be accurately controlled. The device ignores external triggers that
occur while it is acquiring data. Only retrigger events that occur when the device is waiting
for a trigger are detected and acted on. Some devices may generate an
OLDA_WM_TRIGGER_ERROR message.

Using the DataAcq SDK
Interrupts

Some devices can generate an interrupt when an event occurs, such as when a digital input
line changes state (also known as interrupt-on-change). Interrupts are useful when you want
to monitor critical signals or when you want to signal the host computer to transfer data to or
from the device. You enable interrupts when you configure the driver for the device using the
Open Layers Control Panel applet; refer to your device documentation for details.

To determine if your subsystem supports interrupts, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_INTERRUPT. If this function returns a nonzero value,
the capability is supported.

To monitor interrupt-on-change events on a digital input port, use software to set up the
subsystem for a continuous digital input operation and start the operation; refer to page 134
for more information.

Note: Single-value operations do not support interrupt-on-change.

An event done message (OLDA_WM_EVENT_DONE) is generated whenever an
interrupt-on-change event is detected.

Use the olDaSetWndHandle or olDaSetNotificationProcedure function to handle event done
messages; you can read the IParam parameter of these functions to determine which digital
line(s) changed state.

Note: For Data Translation PCI boards that support interrupt-on-change, the low word of
lParam contains the DIO lines (bits) that caused the event and the high word of lParam
contains the status of the digital input port when the interrupt occurred.

For Data Translation USB modules that support interrupt-on-change, the meaning of lParam
depends on the module you are using.

Refer to your device documentation for more information.

Clock Sources

The DataAcq SDK defines internal, external, and extra clock sources, described in the
following subsections. Note that you cannot specify a clock source for single-value operations.

Note: Some subsystems allow you to read or update multiple channels on a single clock
pulse. You can determine whether multiple channels are read or updated on a single clock
pulse by using the query OLSSC_SUP_SIMULTANEOUS_CLOCKING.
79

Chapter 3

80
Internal Clock Source

The internal clock is the clock source on the device that paces data acquisition or output for
each entry in the channel-gain list.

To determine if the subsystem supports an internal clock, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_INTCLOCK capability. If this function returns a nonzero value,
the capability is supported.

Specify the clock source as internal using the olDaSetClockSource function. Then, use the
olDaSetClockFrequency function to specify the frequency at which to pace the operation.

To determine the maximum frequency that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MAXTHROUGHPUT capability. To
determine the minimum frequency that the subsystem supports, use the olDaGetSSCapsEx
function, specifying the OLSSCE_MINTHROUGHPUT capability.

Note: According to sampling theory (Nyquist Theorem), you should specify a frequency for
an A/D signal that is at least twice as fast as the input’s highest frequency component. For
example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least
40 kHz. Doing so avoids an error condition called aliasing, in which high frequency input
components erroneously appear as lower frequencies after sampling.

External Clock Source

The external clock is a clock source attached to the device that paces data acquisition or output
for each entry in the channel-gain list. This clock source is useful when you want to pace at
rates not available with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external clock, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_EXTCLOCK capability. If this function returns a nonzero value,
the capability is supported.

Specify the clock source as external using the olDaSetClockSource function. Then, use the
olDaSetExternalClockDivider to specify the clock divider used to determine the frequency at
which to pace the operation; the clock input source divided by the clock divider determines
the frequency of the clock signal.

To determine the maximum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MAXCLOCKDIVIDER capability. To
determine the minimum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MINCLOCKDIVIDER capability.

Using the DataAcq SDK
Extra Clock Source

Your device driver may define extra clock sources that you can use to pace acquisition or
output operations.

To determine how many extra clock sources are supported by your subsystem, use the
olDaGetSSCaps function, specifying the OLSSC_NUMEXTRACLOCKS capability. Refer to
your device/driver documentation for a description of the extra clock sources.

The extra clock sources may be internal or external. Refer to the previous sections for
information on how to specify internal and external clocks and their frequencies or clock
dividers.

Trigger Source

The DataAcq SDK defines the following trigger sources:

• Software (internal) trigger

• External digital (TTL) trigger

• External analog threshold (positive) trigger

• External analog threshold (negative) trigger

• Analog event trigger

• Digital event trigger

• Timer event trigger

• Extra trigger

For devices that support a start trigger and reference trigger for performing continuous
pre-and post-trigger analog input operations, specify the start trigger type using the
olDaSetTrigger function, and specify the reference trigger type using the
olDaSetReferenceTrigger function.

For devices that support continuous post-trigger and about-trigger operations without using a
reference trigger, specify the post-trigger source using the olDaSetTrigger function; refer to
page 73 for more information on post-trigger operations and page 75 for more information on
about-trigger operations.

For devices that support a pre-trigger source without using a reference trigger, use the
olDaSetPretriggerSource function; see page 74 for more information. To specify a retrigger
source, use the olDaSetRetrigger function; see page 78 for more information.

The following subsections describe these trigger sources. Note that you cannot specify a
trigger source for single-value operations.
81

Chapter 3

82
Software (Internal) Trigger Source

A software trigger occurs when you start the operation; internally, the computer writes to the
device to begin the operation.

To determine if the subsystem supports a software trigger for a start trigger, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_SOFTTRIG. If this function
returns a nonzero value, the capability is supported.

External Digital (TTL) Trigger Source

An external digital trigger is a digital (TTL) signal attached to the device.

To determine if the subsystem supports an external digital trigger for a start trigger, use the
olDaGetSSCaps function, specifying the capability OLSSC_SUP_EXTERNTRIG. If this
function returns a nonzero value, the capability is supported.

To determine if the subsystem supports a positive external digital trigger for a reference
trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_EXTERNTTLPOS_REFERENCE_TRIG. If this function returns a nonzero value,
the capability is supported.

To determine if the subsystem supports a negative external digital trigger for a reference
trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_EXTERNTTLNEG_REFERENCE_TRIG. If this function returns a nonzero value,
the capability is supported.

To determine if the subsystem supports a positive, external digital trigger for a single-value
operation, use the olDaGetSSCaps function, specifying the capability OLSSC_SUP_SV_POS_
EXTERN_TTLTRIG. If this function returns a nonzero value, the capability is supported.

To determine if the subsystem supports a negative, external digital trigger for a single-value
operation, use the olDaGetSSCaps function, specifying the capability OLSSC_SUP_SV_NEG_
EXTERN_TTLTRIG. If this function returns a nonzero value, the capability is supported.

External Analog Threshold (Positive) Trigger Source

An external analog threshold (positive) trigger is generally either an analog signal from an
analog input channel or an external analog signal attached to the device. An analog trigger
occurs when the device detects a transition from a negative to positive value that crosses a
threshold value. The threshold level is generally set using a D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering (positive polarity) for a
start trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_THRESHTRIGPOS. If this function returns a nonzero value, the capability is
supported.

To determine if the subsystem supports analog threshold triggering (positive polarity) for a
reference trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_THRESHPOS_REFERENCE_TRIG. If this function returns a nonzero value, the
capability is supported.

Using the DataAcq SDK
To list the actual channel numbers that support a threshold channel, use the
olDaEnumSSCaps function, specifying the capability
OL_ENUM_THRESHOLD_START_TRIGGER_CHANNELS for the start trigger or
OL_ENUM_THRESHOLD_REFERENCE_TRIGGER_CHANNELS for the reference trigger.

To set the channel that you want to use for the threshold trigger for the start trigger, use the
olDaSetTriggerThresholdChannel function. To set the channel that you want to use for the
threshold trigger for the reference trigger, use the
olDaSetReferenceTriggerThresholdChannel function. By default, channel 0 is used for the
threshold channel.

To return the channel that is currently set for the start threshold trigger, use the
olDaGetTriggerThresholdChannel function. To return the channel that is currently set for the
stop threshold trigger, use the olDaGetReferenceTriggerThresholdChannel function.

On some devices, the threshold level is set using an analog output subsystem on the device.
On other devices, you set the threshold level for the start trigger using the
olDaSetTriggerThresholdLevel function, and for the reference trigger using the
olDaSetReferenceTriggerThresholdLevel function. By default, the trigger threshold value is
in voltage unless specified otherwise for the device; see the user’s manual for your device for
valid threshold value settings.

Note: The threshold level set by the olDaSetTriggerThresholdLevel or
olDaSetReferenceTriggerThresholdLevel function depends on the voltage range and the
gain of the subsystem. For example, if the voltage range of the analog input subsystem is
±10 V, and the specified gain is 1, specify a threshold voltage level within ±10 V. Likewise, if
the voltage range of the analog input subsystem is ±10 V, and the specified gain is 10, specify
a threshold voltage level within ±1 V. Refer to your device documentation for details on how
to specify the threshold value for your device.

To return the currently set threshold level for the start trigger, use the
olDaGetTriggerThresholdLevel function. To return the currently set threshold level for the
reference trigger, use the olDaGetReferenceTriggerThresholdLevel function.

External Analog Threshold (Negative) Trigger Source

An external analog threshold (negative) trigger is generally either an analog signal from an
analog input channel or an external analog signal attached to the device. An analog trigger
event occurs when the device detects a transition from a positive to negative value that crosses
a threshold value. The threshold level is generally set using a D/A subsystem on the device.

To determine if the subsystem supports analog threshold triggering (negative polarity) for a
start trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_THRESHTRIGNEG. If this function returns a nonzero value, the capability is
supported.
83

Chapter 3

84
To determine if the subsystem supports analog threshold triggering (negative polarity) for a
reference trigger, use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_THRESHNEG_REFERENCE_TRIG. If this function returns a nonzero value, the
capability is supported.

To list the actual channel numbers that support a threshold channel, use the
olDaEnumSSCaps function, specifying the capability
OL_ENUM_THRESHOLD_START_TRIGGER_CHANNELS for the start trigger or
OL_ENUM_THRESHOLD_REFERENCE_TRIGGER_CHANNELS for the reference trigger.

To set the channel that you want to use for the threshold trigger for the start trigger, use the
olDaSetTriggerThresholdChannel function. To set the channel that you want to use for the
threshold trigger for the reference trigger, use the
olDaSetReferenceTriggerThresholdChannel function. By default, channel 0 is used for the
threshold channel.

To return the channel that is currently set for the start threshold trigger, use the
olDaGetTriggerThresholdChannel function. To return the channel that is currently set for the
stop threshold trigger, use the olDaGetReferenceTriggerThresholdChannel function.

On some devices, the threshold level is set using an analog output subsystem on the device.
On other devices, you set the threshold level for the start trigger using the
olDaSetTriggerThresholdLevel function, and for the reference trigger using the
olDaSetReferenceTriggerThresholdLevel function. By default, the trigger threshold value is
in voltage unless specified otherwise for the device; see the user’s manual for your device for
valid threshold value settings.

Note: The threshold level set by the olDaSetTriggerThresholdLevel or
olDaSetReferenceTriggerThresholdLevel function depends on the voltage range and gain
of the subsystem. For example, if the voltage range of the analog input subsystem is ±10 V,
and the specified gain is 1, specify a threshold voltage level within ±10 V. Likewise, if the
voltage range of the analog input subsystem is ±10 V, and the specified gain is 10, specify a
threshold voltage level within ±1 V. Refer to your device documentation for details on how to
specify the threshold value for your device.

To return the currently set threshold level for the start trigger, use the
olDaGetTriggerThresholdLevel function. To return the currently set threshold level for the
reference trigger, use the olDaGetReferenceTriggerThresholdLevel function.

Sync Bus Trigger Source

For devices that support connecting multiple devices together in a master/slave relationship
using Sync Bus (RJ45) connectors, the slave device may support the ability to configure a Sync
Bus trigger source as the reference trigger.

To determine if the subsystem supports a Sync Bus trigger source as the reference trigger, use
the olDaGetSSCaps function, specifying the capability OLSSC_SUP_SYNCBUS_
REFERENCE_TRIG. If this function returns a nonzero value, the capability is supported.

Using the DataAcq SDK
Use the Sync Bus trigger source as the reference trigger if you want the slave device to receive
a Sync Bus trigger from one of the other devices to stop pre-trigger acquisition and start
post-trigger acquisition.

If you want to set the slave module to receive a Sync Bus trigger as the start trigger source, set
the synchronization mode of the device to Slave using the olDaSetSyncMode function,
described on page 86; the Sync Bus trigger is used by the slave module as the start trigger
source by default.

Analog Event Trigger Source

For this trigger source, a trigger is generated when an analog event occurs. To determine if the
subsystem supports an analog event trigger, use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_ANALOGEVENTTRIG. If this function returns a nonzero value, the
capability is supported.

Digital Event Trigger Source

For this trigger source, a trigger is generated when a digital event occurs. To determine if the
subsystem supports a digital event trigger, use the olDaGetSSCaps function, specifying the
capability OLSSC_SUP_DIGITALEVENTTRIG. If this function returns a nonzero value, the
capability is supported.

Timer Event Trigger Source

For this trigger source, a trigger is generated when a counter/timer event occurs. To
determine if the subsystem supports a timer event trigger, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_TIMEREVENTTRIG. If this function returns a nonzero
value, the capability is supported.

Extra Trigger Source

Extra trigger sources may be defined by your device driver. To determine how many extra
triggers are supported by the subsystem, use the olDaGetSSCaps function, specifying the
capability OLSSC_NUMEXTRATRIGGERS. Refer to your device/driver documentation for a
description of these triggers.

The extra trigger sources may be internal or external. Refer to the previous sections for
information on how to specify internal and external triggers.

Post-Trigger Scan Count

On devices that support a reference trigger for performing continuous pre- and post-trigger
analog input operations, you can specify how many samples to acquire after the reference
trigger occurs using the olDaSetReferenceTriggerPostTriggerScanCount function.

To determine if your device supports the ability to specify the number of post-trigger samples
to acquire, use the use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_POST_REFERENCE_TRIG_SCANCOUNT.
85

Chapter 3

86
To return the currently set number of samples to acquire after the reference trigger, use the
olDaGetReferenceTriggerPostTriggerScanCount function.

Synchronization Mode

Some devices support one or more synchronization connectors (such as an LVDS RJ45 or Sync
Bus connector) that allows you to synchronize operations on multiple devices. In this
configuration, the subsystem on one device is configured as the master and the subsystem on
the other device is configured as a slave. When the specified subystem of the master module is
triggered, the subsystem on both the master device and the slave device start operating at the
same time.

To determine if your subsystem supports the ability to program the synchronization mode,
use the olDaGetSSCaps function, specifying the OLSSC_SUP_SYNCHRONIZATION
capability.

If the subsystem supports programmable synchronization modes, use the olDaSetSyncMode
function to set the synchronization mode to one of the following values:

• OL_SYNC_MODE_MASTER – Sets the subsystem as a master; the synchronization
connector on the device is configured to output a synchronization signal.

• OL_SYNC_MODE_SLAVE – Sets the subsystem as a slave; the synchronization connector
on the device is configured to accept a synchronization signal as an input.

• OL_SYNC_MODE_NONE – The subsystem is configured to ignore the synchronization
circuit.

Refer to your hardware documentation to determine how synchronizing multiple devices
works on for your device.

Buffers

The buffering capability usually applies to A/D and D/A subsystems only. Note that you
cannot use a buffer with single-value operations.

A data buffer is a memory location that you allocate in host memory. This memory location is
used to store data for continuous input and output operations.

To determine if the subsystem supports buffers, use the olDaGetSSCaps function, specifying
the capability OLSSC_SUP_BUFFERING. If this function returns a nonzero value, the
capability is supported.

Buffers are stored on one of three queues: the ready queue, the inprocess queue, or the done
queue. These queues are described in more detail in the following subsections.

Using the DataAcq SDK
Ready Queue

For input operations, the ready queue holds buffers that are empty and ready for input. For
output operations, the ready queue holds buffers that you have filled with data and that are
ready for output.

Allocate the buffers using the olDmMallocBuffer, olDmAllocBuffer, or olDmCallocBuffer
function. olDmAllocBuffer allocates a buffer of samples, where each sample is 2 bytes;
olDmCallocBuffer allocates a buffer of samples of a specified size; olDmMallocBuffer
allocates a buffer in bytes.

Note: If you use the olDaSetReturnCjcTemperatureInStream function, described on page
60, to return CJC values in the data stream, ensure that you allocate a buffer with
olDmCallocBuffer that is twice as large to accommodate the returned CJC values for each
channel (buffer size = number of channels x 2 x the number of samples).

For analog input operations, it is recommended that you allocate a minimum of three buffers;
for analog output operations, you can allocate one or more buffers. The size of the buffers
should be at least as large as the sampling or output rate; for example, if you are using a
sampling rate of 100 ksamples/s (100 kHz), specify a buffer size of 100,000 samples.

Once you have allocated the buffers (and, for output operations, filled them with data), put
the buffers on the ready queue using the olDaPutBuffer function.

For example, assume that you are performing an analog input operation, that you allocated
three buffers, and that you put these buffers on the ready queue. The queues appear on the
ready queue as shown in Figure 5.

Figure 5: Example of the Ready Queue

Ready Queue

Inprocess Queue

Done Queue

Buffer 1 Buffer 2 Buffer 3
87

Chapter 3

88
Inprocess Queue

When you start a continuous (post-trigger, pre-trigger, or about-trigger) operation, the data
acquisition device takes the first available buffer from the ready queue and places it on the
inprocess queue.

The inprocess queue holds the buffer that the specified data acquisition device is currently
filling (for input operations) or outputting (for output operations). The buffer is filled or
emptied at the specified clock rate.

Continuing with the previous example, when you start the analog input operation, the driver
takes the first available buffer (Buffer 1, in this case), puts it on the inprocess queue, and starts
filling it with data. The queues appear as shown in Figure 6.

Figure 6: Example of the Inprocess Queue

If required, you can use the olDaFlushFromBufferInprocess function to transfer data from a
partially-filled buffer on an inprocess queue to a buffer you create (if this capability is
supported). Typically, you would use this function when your data acquisition operation is
running slowly.

To determine if the subsystem supports transferring data from a buffer on the inprocess
queue, use the olDaGetSSCaps function, specifying the OLSSC_SUP_INPROCESSFLUSH
capability. If this function returns a nonzero value, this capability is supported.

Note: Some devices transfer data to the host in segments instead of one sample at a time. For
example, data from the DT3010 device is transferred to the host in 64 byte segments; the
number of valid samples is always a multiple of 64 depending on the number of samples
transferred to the host when olDaFlushFromBufferInprocess was called. It is up to your
application to take this into account when flushing an inprocess buffer. Refer to your device
documentation for more information.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2 Buffer 3

Using the DataAcq SDK
Done Queue

Once the data acquisition device has filled the buffer (for input operations) or emptied the
buffer (for output operations), the buffer is moved from the inprocess queue to the done
queue. Then, either the OLDA_WM_BUFFER_DONE message is generated when the buffer
contains post-trigger data, or in the case of pre-trigger and about-trigger acquisitions, an
OLDA_WM_PRETRIGGER_BUFFER_DONE message is generated when the buffer contains
pre-trigger data.

Note: For analog input operations that use a reference trigger whose trigger type is
something other than software (none), the OLDA_WM_IO_COMPLETE message is
generated when the last post-trigger sample is copied into the user buffer. This message
includes the total number of samples per channel that were acquired from the time
acquisition was started (with the start trigger) to the last post-trigger sample. For example, a
value of 100 indicates that a total of 100 samples (samples 0 to 99) were acquired. In some
cases, this message is generated well before the OLDA_WM_BUFFER_DONE messages are
generated. You can determine when the reference trigger occurred and the number of
pre-trigger samples that were acquired by subtracting the post trigger scan count, described
on page 85, from the total number of samples that were acquired. Devices that do not support
a reference trigger will never receive the OLDA_WM_IO_COMPLETE message for analog
input operations.

For pre-trigger acquisitions that do not use a reference trigger, the
OLDA_WM_QUEUE_STOPPED message is also generated when the operation completes or
you stop a pre-trigger acquisition.

For analog output operations only, the OLDA_WM_IO_COMPLETE message is generated
when the last data point has been output from the analog output channel. In some cases, this
message is generated well after the data is transferred from the buffer (when the
OLDA_WM_BUFFER_DONE and OLDA_WM_QUEUE_DONE messages are generated.

Continuing with the previous example, the queues appear as shown in Figure 7 when you get
the first OLDA_WM_BUFFER_DONE message.

Figure 7: Example of the Done Queue

Ready Queue

Inprocess Queue

Done Queue
Buffer 1

Buffer 2 Buffer 3
89

Chapter 3

90
Then, the driver moves Buffer 2 from the ready queue to the inprocess queue and starts filling
it with data. When Buffer 2 is filled, Buffer 2 is moved to the done queue and another
OLDA_WM_BUFFER_DONE message is generated.

The driver then moves Buffer 3 from the ready queue to the inprocess queue and starts filling
it with data. When Buffer 3 is filled, Buffer 3 is moved to the done queue and another
OLDA_WM_BUFFER_DONE message is generated. Figure 8 shows how the buffers are
moved.

Figure 8: How Buffers are Moved to the Done Queue

If you transferred data from an inprocess queue to a new buffer using
olDaFlushFromBufferInprocess, the new buffer is put on the done queue for your
application to process. When the buffer on the inprocess queue finishes being filled, this buffer
is also put on the done queue; the buffer contains only the samples that were not previously
transferred.

Buffer and Queue Management

Each time it gets an OLDA_WM_BUFFER_DONE message, your application program should
remove the buffers from the done queue using the olDaGetBuffer buffer management
function.

Your application program can then process the data in the buffer. For an input operation, you
can copy the data from the buffer to an array in your application program using the
olDmGetBufferPtr function. For continuously paced analog output operations, you can fill
the buffer with new output data using the olDaGetBufferPtr function.

If you want to convert the count value to engineering units, you can use the olDaCodeToVolts
function. Similarly, if you want to convert the engineering units to counts, you can use the
olDaVoltsToCode function.

For channels that support strain gage inputs, you can convert the value in voltage to a strain
value by using the olDaVoltsToStrain function or to a value for a bridge-based sensor using
the olDaVoltsToBridgeBasedSensor function.

When you are finished processing the data, you can put the buffer back on the ready queue
using the olDaPutBuffer function if you want your operation to continue.

Ready Queue

Inprocess Queue

Done Queue Buffer 1 Buffer 2 Buffer 3

Using the DataAcq SDK
For example, assume that you processed the data from Buffer 1 and put it back on the ready
queue. The queues would appear as shown in Figure 9.

Figure 9: Putting Buffers Back on the Ready Queue

When the data acquisition operation is finished, use the olDaFlushBuffers function to transfer
any data buffers left on the subsystem’s ready queue to the done queue.

Once you have processed the data in the buffers, remove the buffers from the done queue
using the olDaFreeBuffer function.

Buffer Wrap Modes

Most Data Translation data acquisition devices can provide gap-free data, meaning no
samples are missed when data is acquired or output. You can acquire gap-free data by
manipulating data buffers so that no gaps exist between the last sample of the current buffer
and the first sample of the next buffer.

Note: The number of DMA channels, number of buffers, and buffer size are critical to the
device’s ability to provide gap-free data. It is also critical that the application process the data
in a timely fashion.

If you want to acquire gap-free input data, we recommend that you specify a buffer wrap
mode of none using the olDaSetWrapMode buffer management function. When a buffer wrap
mode of none is selected, the operation continues indefinitely if you process the buffers and
put them back on the ready queue in a timely manner. When no buffers are available on the
ready queue, the operation stops, and an OLDA_WM_QUEUE_DONE message is generated.

If you want to continuously reuse the buffers in the queues and you are not concerned with
gap-free data, specify multiple buffer wrap mode using olDaSetWrapMode. When multiple
wrap mode is selected and no buffers are available on the ready queue, the driver overwrites
the data in the current buffer. This process continues indefinitely until you stop it. When it
reuses a buffer on the done queue, the driver generates an OLDA_WM_BUFFER_REUSED
message.

Ready Queue

Inprocess Queue

Done Queue

Buffer 1

Buffer 2

Buffer 3
91

Chapter 3

92
If you want to output gap-free waveforms from your analog output channels, specify single
wrap mode using olDaSetWrapMode. When single wrap mode is specified, a single buffer is
used.

If the device has a FIFO and the buffer fits into the FIFO, the buffer is downloaded to the FIFO
on the device. The driver (or device) outputs the data starting from the first location in the
buffer. When it reaches the end of the buffer, the driver (or device) continues outputting data
from the first location of the buffer, and the process continues indefinitely until you stop it.
Typically, no messages are posted in this mode until you stop the operation.

Note: If the size of your buffer is less than the FIFO size and you stop the analog output
operation, the operation stops after the current buffer and the next buffer have been output.

If you query the subsystem with the OLSSC_SUP_WRPWAVEFORM_ONLY capability and
the olDaGetSSCaps function returns a nonzero value, the subsystem supports
waveform-based operations using the onboard FIFO only. In this case, the buffer wrap mode
must be set to single. In addition, the buffer size must be less than or equal to the FIFO size.
You can determine whether the subsystem supports a FIFO using the olDaGetSSCaps
function with the capability OLSSC_SUP_FIFO. If this function returns a nonzero value, a
FIFO is supported. You can determine the size of the FIFO using the capability
OLSSC_FIFO_SIZE_IN_K. This query returns the actual FIFO size in kilobytes.

To determine the buffer wrap modes available for the subsystem, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_WRPSINGLE (for single wrap mode) or
OLSSC_SUP_WRPMULTIPLE (for multiple wrap mode). If this function returns a nonzero
value, the capability is supported.

Using the DataAcq SDK
DMA Resources

You cannot use DMA resources for single-value operations.

To determine if gap-free data acquisition is supported, use the olDaGetSSCaps function,
specifying OLSSC_SUP_GAPFREE_NODMA (for gap free data using no DMA channels),
OLSSC_SUP_GAPFREE_SINGLEDMA (for gap free data using one DMA channel), or
OLSSC_SUP_GAPFREE_DUALDMA (for gap free data using two DMA channels). If this
function returns a nonzero value, the capability is supported.

To determine how many DMA channels are supported, use the olDaGetSSCaps function,
specifying the capability OLSSC_NUMDMACHANS.

Use the olDaSetDmaUsage function to specify the number of DMA channels to use. These
channels must also be specified in the driver configuration dialog.

Note: DMA channels are a limited resource and the request may not be honored if the
requested number of channels is unavailable. For example, suppose that a device that
supports both A/D and
D/A subsystems provides hardware for two DMA channels, and that one DMA channel is
currently allocated to the A/D subsystem. In this case, a request to the D/A subsystem to use
two DMA channels will fail.
93

Chapter 3

94
Counter/Timer Operations
The counter/timer subsystem supports general-purpose user counter/timers and may
support measure counters and quadrature decoders. Refer to page 123 for more information
on measure counters. Refer to page 123 for more information on quadrature decoders. The rest
of this section describes the operation of general-purpose counter/timers.

User Counter/Timers

Each user counter/timer channel accepts a clock input signal and gate input signal and
outputs a clock output signal (also called a pulse output signal), as shown in Figure 10.

Figure 10: Counter/Timer Channel

Each counter/timer channel corresponds to a counter/timer (C/T) subsystem. To specify the
counter to use in software, specify the appropriate C/T subsystem. For example, counter 0
corresponds to C/T subsystem element 0; counter 3 corresponds to C/T subsystem element 3.

The DataAcq SDK defines the following capabilities that you can query and/or configure for
user counter/timer operations:

• Counter/timer operation mode

• Clock source

• Gate source

• Pulse output type

• Pulse output duty cycle

The following sections describe these capabilities in more detail.

Counter/Timer Operation Mode

The DataAcq SDK supports the following counter/timer operations:

• Event counting

• Up/down counting

• Frequency measurement

Clock Input SIgnal
(internal, external, or
internally cascaded)

Counter/Timer

Gate Input Signal
(software or external input)

Pulse Output Signal

Using the DataAcq SDK
• Edge-to-edge measurement

• Continuous edge-to-edge measurement

• Rate generation (continuous pulse output)

• One-shot

• Repetitive one-shot

The following subsections describe these counter/timer operations.

Event Counting

Use event counting mode to count events from the counter’s associated clock input source.

To determine if the subsystem supports event counting, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_CTMODE_COUNT. If this function returns a nonzero
value, the capability is supported.

To specify an event counting operation, use the olDaSetCTMode function, specifying the
OL_CTMODE_COUNT parameter.

Specify the C/T clock source for the operation. In event counting mode, an external C/T clock
source is more useful than the internal C/T clock source; refer to page 112 for more
information on specifying the C/T clock source.

Also specify the gate type that enables the operation; refer to page 114 for more information on
specifying the gate type.

Start an event counting operation using the olDaStart function. To read the current number of
events counted, use the olDaReadEvents function.

To stop the event counting operation, call olDaStop, olDaAbort, or olDaReset; olDaReset
function stops the operation and reinitializes the subsystem after stopping it.

Figure 11 shows an example of an event counting operation. In this example the gate type is
low level.
95

Chapter 3

96
Figure 11: Example of Event Counting

Up/Down Counting

Use up/down counting mode to increment or decrement the number of rising edges that
occur on the counter’s associated clock input, depending on the level of the counter’s
associated gate signal. If the gate signal is high, the C/T increments; if the gate signal is low,
the C/T decrements.

To determine if the subsystem supports up/down counting, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_CTMODE_UP_DOWN. If this function
returns a nonzero value, the capability is supported.

To specify an up/down counting operation, use the olDaSetCTMode function, specifying the
OL_CTMODE_UP_DOWN parameter.

Specify the C/T clock source for the operation as external. Note that you do not specify the
gate type in software.

Start an up/down counting operation using the olDaStart function. To read the current
number of rising edges counted, use the olDaReadEvents function.

To stop the event counting operation, call olDaStop, olDaAbort, or olDaReset; olDaReset
function stops the operation and reinitializes the subsystem after stopping it.

Figure 12 shows an example of an up/down counting operation. The counter increments
when the gate signal is high and decrements when the gate signal is low.

Gate Input
Signal Low level

enables operation

High level
disables operation

External C/T
Clock

Input Signal

Event counting
operation starts

Event counting
operation stops

3 events are counted while
the operation is enabled

Using the DataAcq SDK
Figure 12: Example of Up/Down Counting

Frequency Measurement

You can also use event counting mode to measure the frequency of the clock input signal for
the counter, since frequency is the number of events divided by a specified duration.

To determine if the subsystem supports event counting (and therefore, frequency
measurement), use the olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_COUNT. If this function returns a nonzero value, the capability is
supported.

You can perform a frequency measurement operation in one of two ways: using the Windows
timer to specify the duration or using a pulse of a known duration as the gate input signal to a
counter/timer configured for event counting mode. The following subsections describe these
ways of measuring frequency.

Using the Windows Timer

To perform a frequency measurement operation on a single C/T subsystem using the
Windows timer to specify the duration, do the following:

1. Use the olDaSetCTMode function, specifying the OL_CTMODE_COUNT parameter.

2. Specify the input clock source using olDaSetClockSource. In frequency measurement
mode, an external C/T clock source is more useful than the internal C/T clock source;
refer to page 112 for more information on the external C/T clock source.

3. Use the olDaSetGateType function, specifying the OL_GATE_NONE parameter, to set
the gate type to software.

4. Use the olDaMeasureFrequency function to specify the duration of the Windows timer
(which has a resolution of 1 ms) and to start the frequency measurement operation.

Gate Input
Signal

High-level gate;
count increments
on rising edges

Low-level gate;
count decrements

on rising edges

External C/T
Clock

Input Signal

Up/down counting
operation starts

Up/down counting
operation stops

3 rising edges are
counted while the gate

is high; count = 0 + 3 = 3

2 rising edges
are counted while

the gate is low;
count = 3 - 2 = 1
97

Chapter 3

98
Frequency is determined using the following equation:

Frequency = Number of Events
Duration of the Windows Timer

When the operation is complete, the OLDA_WM_MEASURE_DONE message is
generated. Use the LongtoFreq (lParam) macro, described in the DataAcq SDK online
help, to return the measured frequency value.

Figure 13 shows an example of a frequency measurement operation. Three events are counted
from the clock input signals during a duration of 300 ms. The frequency is 10 Hz (3/.3).

Figure 13: Example of Frequency Measurement

Using a Pulse of a Known Duration

If you need more accuracy than the Windows timer provides, you can connect a pulse of a
known duration to the external gate input of a counter/timer configured for event counting;
refer to the device user manual for wiring details.

The following example describes how to use the DataAcq SDK to measure frequency using
two C/T subsystems: one that generates a variable-width one-shot pulse as the gate input to a
second C/T subsystem configured for event counting mode:

1. Set up one C/T subsystem for one-shot mode as follows:

a. Use the olDaSetCTMode function, specifying the OL_CTMODE_ONESHOT
parameter.

b. For this C/T subsystem, specify the clock source (with olDaSetClockSource), the
clock frequency (with olDaSetClockFrequency if using an internal clock source, or
olDaSetExternalClockDivider if using an external clock source), the gate type (with
olDaSetGateType), the type of output pulse (with olDaSetPulseType), and the pulse
width (with olDaSetPulseWidth). The pulse width and period are used to determine
the time that the gate is active.

c. Configure this C/T subsystem with olDaConfig.

External C/T
Clock

Input Signal

frequency measurement
starts

frequency
measurement stops

Duration over which the
frequency is measured = 300 ms

3 Events Counted

Using the DataAcq SDK
d. Get the actual clock frequency used by this C/T subsystem with
olDaGetClockFrequency or olDaGetExternalClockDivider. You will use this value
in the measurement period calculation.

e. Get the actual pulse width used by this C/T subsystem with olDaGetPulseWidth.
You will use this value in the measurement period calculation.

2. Set up another C/T subsystem for event counting mode:

a. Use the olDaSetCTMode function, specifying the OL_CTMODE_COUNT parameter,
to set up this C/T subsystem for event counting mode (and, therefore, a frequency
measurement operation).

b. For this C/T subsystem, use olDaSetClockSource to specify the clock source you
want to measure. For frequency measurement operations, an external C/T clock
source is more useful than the internal C/T clock source; refer to page 112 for more
information on the external C/T clock source.

c. For this C/T subsystem, use the olDaSetGateType function to specify the gate type;
ensure that the gate type for this C/T subsystem matches the active period of the
output pulse from the C/T subsystem configured for one-shot mode.

d. Configure this C/T subsystem with olDaConfig.

3. Start the counter/timer configured for event counting mode with olDaStart.

4. Start the counter/timer configured for one-shot mode with olDaStart.

5. Allow a delay approximately equal to the measurement period to allow the one-shot to
finish; events are counted only during the active period of the one-shot pulse.

6. For the event-counting C/T subsystem, read the number of events counted with
olDaReadEvents.

7. Determine the measurement period using the following equation:

Measurement = 1 * Active Pulse Width of
Period Actual Clock Frequency One-Shot C/T

8. Determine the frequency of the clock input signal using the following equation:

Frequency Measurement = Number of Events
Measurement Period
99

Chapter 3

100
Edge-to-Edge Measurement

Use edge-to-edge measurement to measure the time interval between a specified start edge
and a specified stop edge. The start edge and the stop edge can occur on the rising edge of the
counter’s associated gate input, the falling edge of the counter’s associated gate input, the
rising edge of the counter’s associated clock input, or the falling edge of the counter’s
associated clock input. When the start edge is detected, the counter starts incrementing, and
continues incrementing until the stop edge is detected.

To determine if the subsystem supports edge-to-edge measurement, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_CTMODE_MEASURE. This function returns
a bit value indicating how edge-to-edge measurement mode is supported for the specified
device. For example, if edge-to-edge measurements are supported on the gate signal only
(using both rising and falling edges), a bit value of 3 is returned. Table 12 lists the possible bit
values.

Table 12: Values for OLSCC_SUP_CTMODE_MEASURE

Value Name Description

0x00 − Edge-to-edge measurements are not
supported.

0x01 SUP_GATE_RISING_BIT Rising edge of the gate signal is supported
for edge-to-edge measurement mode.

0x02 SUP_GATE_FALLING_BIT Falling edge of the gate signal is supported
for edge-to-edge measurement mode.

0x04 SUP_CLOCK_RISING_BIT Rising edge of the clock signal is supported
for edge-to-edge measurement mode.

0x08 SUP_CLOCK_FALLING_BIT Falling edge of the clock signal is supported
for edge-to-edge measurement mode.

0x10 SUP_ADC_CONVERSION_COMPLETE_BIT A/D conversion is complete is supported as
an edge type for edge-to-edge measurement
mode.

0x20 SUP_TACHOMETER_INPUT_FALLING_BIT Falling edge of the tachometer input signal is
supported for edge-to-edge measurement
mode.

0x40 SUP_TACHOMETER_INPUT_RISING_BIT Rising edge of the tachometer input signal is
supported for edge-to-edge measurement
mode.

0x80 SUP_DIGITAL_INPUT_0_FALLING_BIT Falling edge of digital input 0 is supported for
edge-to-edge measurement mode.

0x100 SUP_DIGITAL_INPUT_0_RISING_BIT Rising edge of digital input 0 is supported for
edge-to-edge measurement mode.

0X200 SUP_DIGITAL_INPUT_1_FALLING_BIT Falling edge of digital input 1 is supported for
edge-to-edge measurement mode.

0X400 SUP_DIGITAL_INPUT_1_RISING_BIT Rising edge of digital input 1 is supported for
edge-to-edge measurement mode.

Using the DataAcq SDK
To specify an edge-to-edge measurement operation, use the olDaSetCTMode function,
specifying the OL_CTMODE_MEASURE parameter.

Specify the C/T clock source for the operation as internal. Specify the start edge with the
olDaSetMeasureStartEdge function and the stop edge with olDaSetMeasureStopEdge
function. Configure the counter/timer with olDaConfig.

0X800 SUP_DIGITAL_INPUT_2_FALLING_BIT Falling edge of digital input 2 is supported for
edge-to-edge measurement mode.

0X1000 SUP_DIGITAL_INPUT_2_RISING_BIT Rising edge of digital input 2 is supported for
edge-to-edge measurement mode.

0X2000 SUP_DIGITAL_INPUT_3_FALLING_BIT Falling edge of digital input 3 is supported for
edge-to-edge measurement mode.

0X4000 SUP_DIGITAL_INPUT_3_RISING_BIT Rising edge of digital input 3 is supported for
edge-to-edge measurement mode.

0X8000 SUP_DIGITAL_INPUT_4_FALLING_BIT Falling edge of digital input 4 is supported for
edge-to-edge measurement mode.

0X10000 SUP_DIGITAL_INPUT_4_RISING_BIT Rising edge of digital input 4 is supported for
edge-to-edge measurement mode.

0X20000 SUP_DIGITAL_INPUT_5_FALLING_BIT Falling edge of digital input 5 is supported for
edge-to-edge measurement mode.

0X40000 SUP_DIGITAL_INPUT_5_RISING_BIT Rising edge of digital input 5 is supported for
edge-to-edge measurement mode.

0X80000 SUP_DIGITAL_INPUT_6_FALLING_BIT Falling edge of digital input 6 is supported for
edge-to-edge measurement mode.

0X100000 SUP_DIGITAL_INPUT_6_RISING_BIT Rising edge of digital input 6 is supported for
edge-to-edge measurement mode.

0X200000 SUP_DIGITAL_INPUT_7_FALLING_BIT Falling edge of digital input 7 is supported for
edge-to-edge measurement mode.

0X400000 SUP_DIGITAL_INPUT_7_RISING_BIT Rising edge of digital input 7 is supported for
edge-to-edge measurement mode.

0X800000 SUP_CT0_CLOCK_INPUT_FALLING_BIT Falling edge of the clock input signal
associated with counter/timer 0 is supported
for edge-to-edge measurement mode.

0X1000000 SUP_CT0_CLOCK_INPUT_RISING_BIT Rising edge of the clock input signal
associated with counter/timer 0 is supported
for edge-to-edge measurement mode.

0X2000000 SUP_CT0_GATE_INPUT_FALLING_BIT Falling edge of the gate input signal
associated with counter/timer 0 is supported
for edge-to-edge measurement mode.

0X4000000 SUP_CT0_GATE_INPUT_RISING_BIT Rising edge of the gate input signal
associated with counter/timer 0 is supported
for edge-to-edge measurement mode.

Table 12: Values for OLSCC_SUP_CTMODE_MEASURE

Value Name Description
101

Chapter 3

102
Start an edge-to-edge measurement operation using the olDaStart function. To read the
current counter value, use the olDaReadEvents function.

To stop the edge-to-edge measurement operation, call olDaStop, olDaAbort, or olDaReset;
olDaReset function stops the operation and reinitializes the subsystem after stopping it.

Figure 14 shows an example of an edge-to-edge measurement operation. The start edge is a
rising edge on the gate signal; the stop edge is a falling edge on the gate signal.

Figure 14: Example of Edge-to-Edge Measurement

You can use edge-to-edge measurement to measure the following:

• Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low
state, or the amount of time between a rising edge and a falling edge or between a falling
edge and a rising edge). You can calculate the pulse width as follows:

− Pulse width = Number of counts/Internal C/T Clock Freq

• Period of a signal pulse (the time between two occurrences of the same edge - rising edge
to rising edge or falling edge to falling edge). You can calculate the period as follows:

− Period = 1/Frequency

− Period = Number of counts/Internal C/T Clock Freq

• Frequency of a signal pulse (the number of periods per second). You can calculate the
frequency as follows:

− Frequency = Internal C/T Clock Freq/Number of Counts

Gate Input
Signal

Rising-edge on gate;
count starts

Falling-edge on gate;
count stop

External C/T
Clock

Input Signal

Edge-to-edge measurement
operation starts

Edge-to-edge measurement
operation stops

3 rising edges are counted
between the start edge and

the stop edge

Using the DataAcq SDK
Continuous Edge-to-Edge Measurement

In continuous edge-to-edge measurement mode, the counter automatically performs an
edge-to-edge measurement operation, where the counter starts incrementing when it detects
the specified start edge and stops incrementing when it detects the specified stop edge. (Refer
to the description of edge-to-edge measurement mode on page 100 for more information on
start and stop edges.) When the operation completes, the counter remains idle until it is next
read. On the next read, the current value of the counter (from the previous edge-to-edge
measurement operation) is returned and the next edge-to-edge measurement operation is
started automatically.

Note: If you read the counter before the measurement is complete, 0 is returned.

To determine if the subsystem supports continuous edge-to-edge measurement, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_CONT_MEASURE. This function returns a bit value indicating how
edge-to-edge measurement mode is supported for the specified device. For example, if
edge-to-edge measurements are supported on the gate signal only (using both rising and
falling edges), a bit value of 3 is returned. Table 13 lists the possible bit values.

Table 13: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description

0x00 − Continuous edge-to-edge measurements
are not supported.

0x01 SUP_GATE_RISING_BIT Rising edge of the gate signal is supported
for continuous edge-to-edge measurement
mode.

0x02 SUP_GATE_FALLING_BIT Falling edge of the gate signal is supported
for continuous edge-to-edge measurement
mode.

0x04 SUP_CLOCK_RISING_BIT Rising edge of the clock signal is supported
for continuous edge-to-edge measurement
mode.

0x08 SUP_CLOCK_FALLING_BIT Falling edge of the clock signal is supported
for continuous edge-to-edge measurement
mode.

0x10 SUP_ADC_CONVERSION_COMPLETE_BIT A/D conversion is complete is supported as
an edge type for continuous edge-to-edge
measurement mode.

0x20 SUP_TACHOMETER_INPUT_FALLING_BIT Falling edge of the tachometer input signal is
supported for continuous edge-to-edge
measurement mode.

0x40 SUP_TACHOMETER_INPUT_RISING_BIT Rising edge of the tachometer input signal is
supported for continuous edge-to-edge
measurement mode.
103

Chapter 3

104
0x80 SUP_DIGITAL_INPUT_0_FALLING_BIT Falling edge of digital input 0 is supported for
continuous edge-to-edge measurement
mode.

0x100 SUP_DIGITAL_INPUT_0_RISING_BIT Rising edge of digital input 0 is supported for
continuous edge-to-edge measurement
mode.

0X200 SUP_DIGITAL_INPUT_1_FALLING_BIT Falling edge of digital input 1 is supported for
continuous edge-to-edge measurement
mode.

0X400 SUP_DIGITAL_INPUT_1_RISING_BIT Rising edge of digital input 1 is supported for
continuous edge-to-edge measurement
mode.

0X800 SUP_DIGITAL_INPUT_2_FALLING_BIT Falling edge of digital input 2 is supported for
continuous edge-to-edge measurement
mode.

0X1000 SUP_DIGITAL_INPUT_2_RISING_BIT Rising edge of digital input 2 is supported for
continuous edge-to-edge measurement
mode.

0X2000 SUP_DIGITAL_INPUT_3_FALLING_BIT Falling edge of digital input 3 is supported for
continuous edge-to-edge measurement
mode.

0X4000 SUP_DIGITAL_INPUT_3_RISING_BIT Rising edge of digital input 3 is supported for
continuous edge-to-edge measurement
mode.

0X8000 SUP_DIGITAL_INPUT_4_FALLING_BIT Falling edge of digital input 4 is supported for
continuous edge-to-edge measurement
mode.

0X10000 SUP_DIGITAL_INPUT_4_RISING_BIT Rising edge of digital input 4 is supported for
continuous edge-to-edge measurement
mode.

0X20000 SUP_DIGITAL_INPUT_5_FALLING_BIT Falling edge of digital input 5 is supported for
continuous edge-to-edge measurement
mode.

0X40000 SUP_DIGITAL_INPUT_5_RISING_BIT Rising edge of digital input 5 is supported for
continuous edge-to-edge measurement
mode.

0X80000 SUP_DIGITAL_INPUT_6_FALLING_BIT Falling edge of digital input 6 is supported for
continuous edge-to-edge measurement
mode.

0X100000 SUP_DIGITAL_INPUT_6_RISING_BIT Rising edge of digital input 6 is supported for
continuous edge-to-edge measurement
mode.

0X200000 SUP_DIGITAL_INPUT_7_FALLING_BIT Falling edge of digital input 7 is supported for
continuous edge-to-edge measurement
mode.

Table 13: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description

Using the DataAcq SDK
To specify a continuous edge-to-edge measurement operation, use the olDaSetCTMode
function, specifying the OL_CTMODE_CONT_MEASURE parameter.

Specify the C/T clock source for the operation as internal. Specify the start edge with the
olDaSetMeasureStartEdge function and the stop edge with olDaSetMeasureStopEdge
function.

When you configure the counter/timer with olDaConfig, the continuous edge-to-edge
measurement operation starts immediately.

0X400000 SUP_DIGITAL_INPUT_7_RISING_BIT Rising edge of digital input 7 is supported for
continuous edge-to-edge measurement
mode.

0X800000 SUP_CT0_CLOCK_INPUT_FALLING_BIT Falling edge of the clock input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X1000000 SUP_CT0_CLOCK_INPUT_RISING_BIT Rising edge of the clock input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X2000000 SUP_CT0_GATE_INPUT_FALLING_BIT Falling edge of the gate input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X4000000 SUP_CT0_GATE_INPUT_RISING_BIT Rising edge of the gate input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

Table 13: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description
105

Chapter 3

106
To read the current counter value, use the olDaReadEvents function or read the
counter/timer channel as part of the analog input channel-gain list, if the device supports this
capability. For example, you might see results similar to the following if you read the
counter/timer channel as part of the analog input channel list:

You can use a continuous edge-to-edge measurement to measure the following:

• Pulse width of a signal pulse (the amount of time that a signal pulse is in a high or a low
state, or the amount of time between a rising edge and a falling edge or between a falling
edge and a rising edge). You can calculate the pulse width as follows:

− Pulse width = Number of counts/Internal C/T Clock Freq

• Period of a signal pulse (the time between two occurrences of the same edge - rising edge
to rising edge or falling edge to falling edge). You can calculate the period as follows:

− Period = 1/Frequency

− Period = Number of counts/Internal C/T Clock Freq

• Frequency of a signal pulse (the number of periods per second). You can calculate the
frequency as follows:

− Frequency = Internal C/T Clock Freq/Number of Counts

To stop a continuous edge-to-edge measurement operation, call olDaStop, olDaAbort, or
olDaReset; olDaReset function stops the operation and reinitializes the subsystem after
stopping it.

Time A/D Value Counter/Timer Value
Status of Continuous Edge-to-Edge

Measurement Mode

10 5002 0 Operation started when the C/T subsystem
was configured, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete

40 5002 12373 Operation complete

50 5000 0 Next operation started, but is not complete

60 5002 0 Operation not complete

70 5004 0 Operation not complete

80 5003 12403 Operation complete

90 5002 0 Next operation started, but is not complete

Using the DataAcq SDK
Rate Generation

Use rate generation mode to generate a continuous pulse output signal from the counter; this
mode is sometimes referred to as continuous pulse output or pulse train output. You can use
this pulse output signal as an external clock to pace analog input, analog output, or other
counter/timer operations.

To determine if the subsystem supports rate generation, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_CTMODE_RATE. If this function returns a nonzero
value, the capability is supported.

To specify a rate generation mode, use the olDaSetCTMode function, specifying the
OL_CTMODE_RATE parameter.

Specify the C/T clock source for the operation. In rate generation mode, either the internal or
external C/T clock input source is appropriate depending on your application; refer to page
112 for information on specifying the C/T clock source.

Specify the frequency of the C/T clock output signal. For an internal C/T, the
olDaSetClockFrequency function determines the frequency of the output pulse. For an
external C/T clock source, the frequency of the clock input source divided by the clock divider
(specified with the olDaSetExternalClockDivider function) determines the frequency of the
output pulse.

Specify the polarity of the output pulses (high-to-low transitions or low-to-high transitions)
and the duty cycle of the output pulses; refer to page 117 for more information.

Also specify the gate type that enables the operation; refer to page 114 for more information on
specifying the gate type.

Start rate generation mode using the olDaStart function. While rate generation mode is
enabled, the counter outputs a pulse of the specified type and frequency continuously. As
soon as the operation is disabled, the pulse output operation stops.

To stop rate generation if it is in progress, call olDaStop, olDaAbort, or olDaReset; olDaReset
stops the operation and reinitializes the subsystem after stopping it.

Figure 15 shows an example of an enabled rate generation operation using an external C/T
clock source with an input frequency of 4 kHz, a clock divider of 4, a low-to-high pulse type,
and a duty cycle of 50%. (The gate type does not matter for this example.) A 1 kHz square
wave is the generated output.
107

Chapter 3

108
Figure 15: Example of Rate Generation Mode with a 50% Duty Cycle

Figure 16 shows the same example using a duty cycle of 75%.

Figure 16: Example of Rate Generation Mode with a 75% Duty Cycle

Figure 17 shows the same example using a duty cycle of 25%.

Pulse
Output
Signal

External C/T
Clock

Input Signal
(4 kHz)

50% duty cycle

Continuous Pulse
Output Operation Starts

Pulse
Output
Signal

External C/T
Clock

Input Signal
(4 kHz)

75% duty cycle

Continuous Pulse
Output Operation Starts

Using the DataAcq SDK
Figure 17: Example of Rate Generation Mode with a 25% Duty Cycle

One-Shot

Use one-shot mode to generate a single pulse output signal from the counter when the
operation is triggered (determined by the gate input signal). You can use this pulse output
signal as an external digital (TTL) trigger to start analog input, analog output, or other
operations.

To determine if the subsystem supports one-shot mode, use the olDaGetSSCaps function,
specifying the capability OLSSC_SUP_CTMODE_ONESHOT. If this function returns a
nonzero value, the capability is supported.

To specify a one-shot operation, use the olDaSetCTMode function, specifying the
OL_CTMODE_ONESHOT parameter.

Specify the C/T clock source for the operation. Refer to page 112 for more information on
specifying the C/T clock source.

Specify the polarity of the output pulse (high-to-low transition or low-to-high transition) and
the duty cycle of the output pulse; refer to page 117 for more information.

Note: In the case of a one-shot operation, set the duty cycle to 100% to output a pulse
immediately. Using a duty cycle less then 100% acts as a pulse output delay.

Also specify the gate type that triggers the operation; refer to page 114 for more information.

Configure the operation with the olDaConfig function.

Pulse
Output
Signal

External C/T
Clock

Input Signal
(4 kHz)

25% duty cycle

Continuous Pulse
Output Operation Starts
109

Chapter 3

110
To start a one-shot pulse output operation, use the olDaStart function. When the one-shot
operation is triggered (determined by the gate input signal), a single pulse is output; then, the
one-shot operation stops. All subsequent clock input signals and gate input signals are
ignored.

Use software to specify the counter/timer mode as one-shot and wire the signals
appropriately.

Figure 18 shows an example of a one-shot operation using an external gate input (rising edge),
a clock output frequency of 1 kHz (one pulse every 1 ms), a low-to-high pulse type, and a duty
cycle of 100%. Figure 19 shows the same example using a duty cycle of less than or equal to
1%.

Figure 18: Example of One-Shot Mode Using a Duty Cycle of 100%

Figure 19: Example of One-Shot Mode Using a Duty Cycle Less Than or Equal to 1%

Pulse
Output
Signal

External
Gate

Signal

100% duty cycle

One-Shot Operation Starts

1 ms period

Pulse
Output
Signal

External
Gate

Signal

< 1% duty cycle

One-Shot Operation Starts

1 ms period

-

Using the DataAcq SDK
Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal each time the device detects a
trigger (determined by the gate input signal). You can use this mode to clean up a poor clock
input signal by changing its pulse width, then outputting it.

To determine if the subsystem supports repetitive one-shot mode, use the olDaGetSSCaps
function, specifying the capability OLSSC_SUP_CTMODE_ONESHOT_RPT. If this function
returns a nonzero value, the capability is supported.

To specify a repetitive one-shot operation, use the olDaSetCTMode function, specifying the
OL_CTMODE_ONESHOT_RPT parameter.

Specify the C/T clock source for the operation. In repetitive one-shot mode, the internal C/T
clock source is more useful than an external C/T clock source; refer to page 112 for more
information on specifying the C/T clock source.

Specify the polarity of the output pulses (high-to-low transitions or low-to-high transitions)
and the duty cycle of the output pulses; refer to page 117 for more information. Also specify
the gate type that triggers the operation; refer to page 114 for more information.

Configure the operation with the olDaConfig function.

To start a repetitive one-shot pulse output operation, use the olDaStart function. When the
one-shot operation is triggered (determined by the gate input signal), a pulse is output. When
the device detects the next trigger, another pulse is output.

This operation continues until you stop the operation using olDaStop, olDaAbort, or
olDaReset; olDaReset stops the operation and reinitializes the subsystem after stopping it.

Note: Triggers that occur while the pulse is being output are not detected by the device.

Figure 20 shows an example of a repetitive one-shot operation using an external gate (rising
edge); a clock output frequency of 1 kHz (one pulse every 1 ms), a low-to-high pulse type, and
a duty cycle of 100%.
111

Chapter 3

112
Figure 20: Example of Repetitive One-Shot Mode Using a Duty Cycle of 100%

Figure 21 shows the same example using a duty cycle of 50%.

Figure 21: Example of Repetitive One-Shot Mode Using a Duty Cycle of 50%

C/T Clock Sources

The DataAcq SDK defines the following clock sources for counter/timers:

• Internal C/T clock

• External C/T clock

• Internally cascaded clock

• Extra C/T clocks

Pulse
Output
Signal

External
Gate

Signal

100% duty cycle

Repetitive One-Shot
Operation Starts

1 ms period

100% duty cycle 100% duty
cycle

1 ms period

Pulse
Output
Signal

External
Gate

Signal

50% duty
cycle

Repetitive One-Shot
Operation Starts

1 ms period

50% duty
cycle

1 ms period

Using the DataAcq SDK
The following subsections describe these clock sources.

Internal C/T Clock

The internal C/T clock is the clock source on the device that paces a counter/timer operation
for a C/T subsystem.

To determine if the subsystem supports an internal C/T clock, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_INTCLOCK capability. If this function returns a nonzero
value, the capability is supported.

To specify the clock source, use the olDaSetClockSource function.

Using the olDaSetClockFrequency function, specify the frequency of the clock output signal.

To determine the maximum frequency that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MAXTHROUGHPUT capability. To
determine the minimum frequency that the subsystem supports, use the olDaGetSSCapsEx
function, specifying the OLSSCE_MINTHROUGHPUT capability.

External C/T Clock

The external C/T clock is a clock source attached to the device that paces counter/timer
operations for a C/T subsystem. The external C/T clock is useful when you want to pace at
rates not available with the internal clock or if you want to pace at uneven intervals.

To determine if the subsystem supports an external C/T clock, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_EXTCLOCK capability. If this function returns a
nonzero value, the capability is supported.

Specify the clock source using the olDaSetClockSource function. Specify the clock divider
using the olDaSetExternalClockDivider function; the clock input signal divided by the clock
divider determines the frequency of the clock output signal.

To determine the maximum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MAXCLOCKDIVIDER capability. To
determine the minimum clock divider that the subsystem supports, use the
olDaGetSSCapsEx function, specifying the OLSSCE_MINCLOCKDIVIDER capability.

Internally Cascaded Clock

You can also internally connect or cascade the clock output signal from one counter/timer to
the clock input signal of the next counter/timer in software. In this way, you can create a 32-bit
counter out of two 16-bit counters.

To determine if the subsystem supports internal cascading, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_CASCADING capability. If this function returns a nonzero value,
the capability is supported.

Specify whether the subsystem is internally cascaded or not (single) using the
olDaSetCascadeMode function.
113

Chapter 3

114
Note: If a counter/timer is cascaded, you specify the clock input and gate input for the first
counter in the cascaded pair. For example, if counters 1 and 2 are cascaded, specify the clock
input and gate input for counter 1.

Extra C/T Clock Source

Extra C/T clock sources may be defined by your device driver.

To determine how many extra clock sources are supported by your subsystem, use the
olDaGetSSCaps function, specifying the OLSSC_NUMEXTRACLOCKS capability. Refer to
your device/driver documentation for a description of these clocks.

To specify internal or external extra clock sources and their frequencies and/or clock dividers,
refer to the previous subsections.

Gate Types

The active edge or level of the gate input to the counter enables or triggers counter/timer
operations. The DataAcq SDK defines the following gate input types:

• Software

• High level

• Low level

• High edge

• Low edge

• Any level

• High level debounced

• Low level debounced

• High edge debounced

• Low edge debounced

• Any level debounced

To specify the gate type, use the olDaSetGateType function. The following subsections
describe these gate types.

Software Gate Type

A software gate type enables any specified counter/timer operation immediately when the
olDaSetGateType function is executed.

To determine if the subsystem supports a software gate, use the olDaGetSSCaps function,
specifying the OLSSC_SUP_GATE_NONE capability. If this function returns a nonzero value,
the capability is supported.

Using the DataAcq SDK
High-Level Gate Type

A high-level external gate type enables a counter/timer operation when the external gate
signal is high, and disables a counter/timer operation when the external gate signal is low.
Note that this gate type is used only for event counting, frequency measurement, and rate
generation; refer to page 94 for more information on these modes.

To determine if the subsystem supports a high-level external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_HIGH_LEVEL capability. If this
function returns a nonzero value, the capability is supported.

Low-Level Gate Type

A low-level external gate type enables a counter/timer operation when the external gate
signal is low, and disables the counter/timer operation when the external gate signal is high.
Note that this gate type is used only for event counting, frequency measurement, and rate
generation; refer to page 94 for more information on these modes.

To determine if the subsystem supports a low-level external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_LOW_LEVEL capability. If this
function returns a nonzero value, the capability is supported.

Low-Edge Gate Type

A low-edge external gate type triggers a counter/timer operation on the transition from the
high edge to the low edge (falling edge). Note that this gate type is used only for one-shot and
repetitive one-shot mode; refer to page 111 for more information on these modes.

To determine if the subsystem supports a low-edge external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_LOW_EDGE capability. If this
function returns a nonzero value, the capability is supported.

High-Edge Gate Type

A high-edge external gate type triggers a counter/timer operation on the transition from the
low edge to the high edge (rising edge). Note that this gate type is used only for one-shot and
repetitive one-shot mode; refer to page 94 for more information on these modes.

To determine if the subsystem supports a high-edge external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_HIGH_EDGE capability. If this
function returns a nonzero value, the capability is supported.

Any Level Gate Type

A level gate type enables a counter/timer operation on the transition from any level. Note that
this gate type is used only for event counting, frequency measurement, and rate generation;
refer to page 94 for more information on these modes.
115

Chapter 3

116
To determine if the subsystem supports a level external gate input, use the olDaGetSSCaps
function, specifying the OLSSC_SUP_GATE_LEVEL capability. If this function returns a
nonzero value, the capability is supported.

High-Level, Debounced Gate Type

A high-level, debounced gate type enables a counter/timer operation when the external gate
signal is high and debounced. Note that this gate type is used only for event counting,
frequency measurement, and rate generation; refer to page 94 for more information on these
modes.

To determine if the subsystem supports a high-level debounced external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_HIGH_LEVEL_DEBOUNCE
capability. If this function returns a nonzero value, the capability is supported.

Low-Level, Debounced Gate Type

A low-level, debounced gate type enables a counter/timer operation when the external gate
signal is low and debounced. Note that this gate type is used only for event counting,
frequency measurement, and rate generation; refer to page 94 for more information on these
modes.

To determine if the subsystem supports a low-level debounced external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_LOW_LEVEL_DEBOUNCE
capability. If this function returns a nonzero value, the capability is supported.

High-Edge, Debounced Gate Type

A high-edge, debounced gate type triggers a counter/timer operation on the rising edge of the
external gate signal; the signal is debounced. Note that this gate type is used only for one-shot
and repetitive one-shot mode; refer to page 94 for more information on these modes.

To determine if the subsystem supports a high-edge debounced external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_HIGH_EDGE_DEBOUNCE
capability. If this function returns a nonzero value, the capability is supported.

Low-Edge, Debounced Gate Type

A low-edge, debounced gate type triggers a counter/timer operation on the falling edge of the
external gate signal; the signal is debounced. Note that this gate type is used only for one-shot
and repetitive one-shot mode; refer to page 94 for more information on these modes.

To determine if the subsystem supports a low-edge debounced external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_LOW_EDGE_DEBOUNCE
capability. If this function returns a nonzero value, the capability is supported.

Using the DataAcq SDK
Level, Debounced Gate Type

A level, debounced gate type enables a counter/timer operation on the transition of any level
of the external gate signal; the signal is debounced. Note that this gate type is used only for
event counting, frequency measurement, and rate generation; refer to page 94 for more
information on these modes.

To determine if the subsystem supports a high-edge debounced external gate input, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_GATE_LEVEL_DEBOUNCE
capability. If this function returns a nonzero value, the capability is supported.

Pulse Output Types and Duty Cycles

The DataAcq SDK defines the following pulse output types:

• High-to-low transitions – The low portion of the total pulse output period is the active
portion of the counter/timer clock output signal.

To determine if the subsystem supports high-to-low transitions on the pulse output signal,
use the olDaGetSSCaps function, specifying the OLSSC_SUP_PLS_HIGH2LOW
capability. If this function returns a nonzero value, the capability is supported.

• Low-to-high transitions – The high portion of the total pulse output period is the active
portion of the counter/timer pulse output signal.

To determine if the subsystem supports low-to-high transitions on the pulse output signal,
use the olDaGetSSCaps function, specifying the OLSSC_SUP_PLS_LOW2HIGH
capability. If this function returns a nonzero value, the capability is supported.

Specify the pulse output type using the olDaSetPulseType function.

The duty cycle (or pulse width) indicates the percentage of the total pulse output period that is
active. A duty cycle of 50, then, indicates that half of the total pulse is low and half of the total
pulse output is high.

You can determine whether the pulse width is programmable by querying the
OLSSC_FIXED_PULSE_ WIDTH capability. In a non-zero result is returned, the pulse width is
fixed and cannot be programmed. If 0 is returned, the device supports a programmable pulse
width.

Specify the pulse width using the olDaSetPulseWidth function.
117

Chapter 3

118
Figure 22 illustrates a low-to-high pulse with a duty cycle of approximately 30%.

Figure 22: Example of a Low-to-High Pulse Output Type

Total Pulse Period

Active Pulse Width

low pulse

high pulse

Using the DataAcq SDK
Measure Counter Operations
On some devices, measure counters may be supported by the counter/timer subsystem.

A measure counter starts incrementing when it detects a specified start edge and stops
incrementing when it detects a specified stop edge. When the operation completes, the
counter remains idle until it is next read. On the next read, the current value of the counter
(from the previous measurement) is returned and the next measurement operation is started
automatically.

To determine which edges are supported for the measurement operation, use the
olDaGetSSCaps function, specifying the capability
OLSSC_SUP_CTMODE_CONT_MEASURE. This function returns a bit value indicating
which edges are supported. For example, if measure operations are supported on the rising
and falling edges of the gate signal only, a bit value of 3 is returned. Table 13 lists the possible
bit values.

Table 14: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description

0x00 − Continuous edge-to-edge measurements
are not supported.

0x01 SUP_GATE_RISING_BIT Rising edge of the gate signal is supported
for continuous edge-to-edge measurement
mode.

0x02 SUP_GATE_FALLING_BIT Falling edge of the gate signal is supported
for continuous edge-to-edge measurement
mode.

0x04 SUP_CLOCK_RISING_BIT Rising edge of the clock signal is supported
for continuous edge-to-edge measurement
mode.

0x08 SUP_CLOCK_FALLING_BIT Falling edge of the clock signal is supported
for continuous edge-to-edge measurement
mode.

0x10 SUP_ADC_CONVERSION_COMPLETE_BIT A/D conversion is complete is supported as
an edge type for continuous edge-to-edge
measurement mode.

0x20 SUP_TACHOMETER_INPUT_FALLING_BIT Falling edge of the tachometer input signal is
supported for continuous edge-to-edge
measurement mode.

0x40 SUP_TACHOMETER_INPUT_RISING_BIT Rising edge of the tachometer input signal is
supported for continuous edge-to-edge
measurement mode.

0x80 SUP_DIGITAL_INPUT_0_FALLING_BIT Falling edge of digital input 0 is supported for
continuous edge-to-edge measurement
mode.
119

Chapter 3

120
0x100 SUP_DIGITAL_INPUT_0_RISING_BIT Rising edge of digital input 0 is supported for
continuous edge-to-edge measurement
mode.

0X200 SUP_DIGITAL_INPUT_1_FALLING_BIT Falling edge of digital input 1 is supported for
continuous edge-to-edge measurement
mode.

0X400 SUP_DIGITAL_INPUT_1_RISING_BIT Rising edge of digital input 1 is supported for
continuous edge-to-edge measurement
mode.

0X800 SUP_DIGITAL_INPUT_2_FALLING_BIT Falling edge of digital input 2 is supported for
continuous edge-to-edge measurement
mode.

0X1000 SUP_DIGITAL_INPUT_2_RISING_BIT Rising edge of digital input 2 is supported for
continuous edge-to-edge measurement
mode.

0X2000 SUP_DIGITAL_INPUT_3_FALLING_BIT Falling edge of digital input 3 is supported for
continuous edge-to-edge measurement
mode.

0X4000 SUP_DIGITAL_INPUT_3_RISING_BIT Rising edge of digital input 3 is supported for
continuous edge-to-edge measurement
mode.

0X8000 SUP_DIGITAL_INPUT_4_FALLING_BIT Falling edge of digital input 4 is supported for
continuous edge-to-edge measurement
mode.

0X10000 SUP_DIGITAL_INPUT_4_RISING_BIT Rising edge of digital input 4 is supported for
continuous edge-to-edge measurement
mode.

0X20000 SUP_DIGITAL_INPUT_5_FALLING_BIT Falling edge of digital input 5 is supported for
continuous edge-to-edge measurement
mode.

0X40000 SUP_DIGITAL_INPUT_5_RISING_BIT Rising edge of digital input 5 is supported for
continuous edge-to-edge measurement
mode.

0X80000 SUP_DIGITAL_INPUT_6_FALLING_BIT Falling edge of digital input 6 is supported for
continuous edge-to-edge measurement
mode.

0X100000 SUP_DIGITAL_INPUT_6_RISING_BIT Rising edge of digital input 6 is supported for
continuous edge-to-edge measurement
mode.

0X200000 SUP_DIGITAL_INPUT_7_FALLING_BIT Falling edge of digital input 7 is supported for
continuous edge-to-edge measurement
mode.

0X400000 SUP_DIGITAL_INPUT_7_RISING_BIT Rising edge of digital input 7 is supported for
continuous edge-to-edge measurement
mode.

Table 14: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description

Using the DataAcq SDK
Specify the start edge with the olDaSetMeasureStartEdge function and the stop edge with
olDaSetMeasureStopEdge function. When you configure the counter/timer with
olDaConfig, the measure counter starts the measurement immediately.

To read the current counter value, read the counter/timer channel as part of the analog input
channel-gain list. You might see results similar to the following:

0X800000 SUP_CT0_CLOCK_INPUT_FALLING_BIT Falling edge of the clock input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X1000000 SUP_CT0_CLOCK_INPUT_RISING_BIT Rising edge of the clock input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X2000000 SUP_CT0_GATE_INPUT_FALLING_BIT Falling edge of the gate input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

0X4000000 SUP_CT0_GATE_INPUT_RISING_BIT Rising edge of the gate input signal
associated with counter/timer 0 is supported
for continuous edge-to-edge measurement
mode.

Table 15: An Example of Reading the Measure Counter as Part of the
Analog Input Data Stream

Time A/D Value
Measure Counter

Value Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete

70 5004 12373 Operation not complete

80 5003 14503 Operation complete

90 5002 14503 Next operation started, but is not complete

Table 14: Values for OLSCC_SUP_CTMODE_CONT_MEASURE

Value Name Description
121

Chapter 3

122
Using the count that is returned from the measure counter, you can determine the following:

• Frequency of a signal pulse (the number of periods per second). You can calculate the
frequency as follows:

− Frequency = Frequency of the internal counter/(Number of counts – 1)

For example, if the frequency of the internal counter on the device is 48 MHz and the
count is 201, the measured frequency is 240 kHz (48 MHz/200).

• Period of a signal pulse. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/Frequency of the internal counter

Using the DataAcq SDK
Quadrature Decoder Operations
On some devices, quadrature decoders may be supported by the counter/timer subsystem.

Quadrature decoders let you accept inputs (A, B, and Index) from a quadrature encoder
device and determine relative or absolute position of the inputs and/or rotational speed.

Using the olDaSetQuadDecoder function, you can specify the following parameters for a
quadrature decoder operation:

• The pre-scale value that is used to filter the onboard clock. Using a pre-scale value can
remove ringing edges and unwanted noise for more accurate results.

• The mode of operation (X1 or X4 mode) that matches the quadrature encoder mode.

• The index mode, which either enables the Index signal or disables the Index signal. If
enabled, the value of the decoder is reset to 0 whenever a selected edge (high or low) of
the Index signal goes high or low. If disabled, the Index signal has no effect.

You can read the value of the quadrature decoder using the olDaReadEvents function to
determine relative or absolute position.

To determine the rotation of a quadrature encoder, use the following formula:

Rotation degrees = Count x 360 degrees
4 * N

where N is the number of pulses generated by the quadrature encoder per rotation. For
example, if every rotation of the quadrature encoder generated 10 pulses, and the value read
from the quadrature decoder is 20, the rotation of the quadrature encoder is 180 degrees
(20/40 x 360 degrees).
123

Chapter 3

124
Tachometer Operations
Some devices allow you to connect a tachometer signal to the device to measure the frequency
or period of the tachometer input signal. You can read the value of the tachometer channel
through the analog input channel list. Refer to the documentation for your device to
determine the channel number to use.

In a tachometer operation, the internal counter starts incrementing when it detects the first
specified edge of the tachometer input and stops incrementing when it detects the next
specified edge of the tachometer input. You specify the edge of the tachometer signal that is
used for the measurement (Falling or Rising) using the olDaSetEdgeType function. To query
the value of this capability, use the olDaGetEdgeType function.

To determine if the subsystem supports high-to-low (falling) edges on the tachometer signal,
use the olDaGetSSCaps function, specifying the OLSSC_SUP_PLS_HIGH2LOW capability. If
this function returns a nonzero value, the capability is supported. To determine if the
subsystem supports low-to-high (rising) edges on the tachometer signal, use the
olDaGetSSCaps function, specifying the OLSSC_SUP_PLS_LOW2HIGH capability. If this
function returns a nonzero value, the capability is supported.

You can determine whether the tachometer value is old or not by using the
olDaSetStaleDataFlagEnabled function. If this flag is True, the most significant bit (MSB) of
the value is set to 0 to indicate new data; reading the value before the measurement is
complete returns an MSB of 1. If this flag is False, the MSB is always set to 0. To query the
value of this capability, use the olDaGetStaleDataFlagEnabled function.

When you read the value of the tachometer input as part of the analog input data stream, you
might see results similar to the following:

Table 16: An Example of Reading the Tachometer Input as Part of the Analog Input Data Stream

Time A/D Value
Tachometer
Input Value Status of Operation

10 5002 0 Operation started, but is not complete

20 5004 0 Operation not complete

30 5003 0 Operation not complete

40 5002 12373 Operation complete

50 5000 12373 Next operation started, but is not complete

60 5002 12373 Operation not complete

70 5004 12373 Operation not complete

80 5003 14503 Operation complete

90 5002 14503 Next operation started, but is not complete

Using the DataAcq SDK
Using the count that is returned from the tachometer input, you can determine the following:

• Frequency of a signal pulse (the number of periods per second). You can calculate the
frequency as follows:

− Frequency = Frequency of the internal counter/(Number of counts – 1)

For example, if the frequency of the internal counter on the device is 12 MHz and the
count is 21, the measured frequency is 600 kHz (12 MHz/20).

• Period of a signal pulse. You can calculate the period as follows:

− Period = 1/Frequency

− Period = (Number of counts – 1)/Frequency of the internal counter
125

Chapter 3

126
Simultaneous Startup
If supported, you can synchronize subsystems to perform simultaneous startup. Note that you
cannot perform simultaneous startup on subsystems configured for single-value operations
unless you are using a simultaneous sampling module.

To determine if the subsystems support simultaneous startup, use the olDaGetSSCaps
function for each subsystem, specifying the OLSSC_SUP_SIMULTANEOUS_START
capability. If this function returns a nonzero value, the capability is supported.

You can synchronize the triggers of subsystems by specifying the same trigger source for each
of the subsystems that you want to start simultaneously and wiring them to the device, if
appropriate.

Use the olDaGetSSList function to allocate a simultaneous start list. Then, use the
olDaPutDassToSSList function to put the subsystems that you want to start simultaneously
on the start list.

To determine the device handles given to each subsystem on the simultaneous start list, use
the olDaEnumSSList function.

Pre-start the subsystems using the olDaSimultaneousPreStart function. Pre-starting a
subsystem ensures a minimal delay once the subsystems are started. Once you call the
olDaSimultaneousPreStart function, do not alter the settings of the subsystems on the
simultaneous start list.

Start the subsystems using the olDaSimultaneousStart function. When started, both
subsystems are triggered simultaneously.

Note: Do not call olDaStart when using simultaneous start lists, since the subsystems are
already started.

When you are finished with the operations, call the olDaReleaseSSList function to free the
simultaneous start list. Then, call the olDaReleaseDASS function for each subsystem to free
it before calling olDaTerminate.

To stop the simultaneous operations, call olDaStop (for an orderly stop), olDaAbort (for an
abrupt stop) or olDaReset (for an abrupt stop that reinitializes the subsystem).

4
Programming Flowcharts

Single-Value Input Operations . 129

Single-Value Output Operations . 131

Continuous Analog Input Operations . 132

Continuous Analog Output Operations . 133

Continuous Digital Input Operations . 134

Continuous Digital Output Operations . 136

Event Counting Operations . 137

Up/Down Counting Operations . 138

Frequency Measurement Operations . 139

Edge-to-Edge Measurement Operations. 140

Continuous Edge-to-Edge Measurement Operations. 141

Pulse Output Operations. 142

Measure Counter Operations . 143

Tachometer Operations . 144

Quadrature Decoder Operations . 145

Simultaneous Operations . 146
127

Chapter 4

128
If you are unfamiliar with the capabilities of your device and/or subsystem, query the device
as follows:

• To determine the number and types of DT-Open Layers devices and drivers installed, use
the olDaEnumBoards function.

• To determine the subsystems supported by the device, use the olDaEnumSubSystems or
olDaGetDevCaps function.

• To determine the capabilities of a subsystem, use the olDaGetSSCaps or
olDaGetSSCapsEx function, specifying one of the capabilities listed in Table 2 on page 22.

• To determine the gains, filters, ranges, and resolutions if more than one is available, use
the olDaEnumSSCaps function.

Then, follow the flowcharts presented in the remainder of this chapter to perform the desired
operation.

Notes: Depending on your device, some of the settings may not be programmable. Refer to
your device driver documentation for details.

Although the flowcharts do not show error checking, it is recommended that you check for
errors after each function call.

Some steps represent several substeps; if you are unfamiliar with the detailed operations
involved with any one step, refer to the indicated page for detailed information. Optional
steps appear in shaded boxes.

Programming Flowcharts
Single-Value Input Operations

Set the subsystem parameters
(see page 147).

Set the data flow to
OL_DF_SINGLEVALUE using

olDaSetDataFlow.

Get a handle to the subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Configure the subsystem using
olDaConfig.

Specify A/D for an analog input subsystem or
DIN for a digital input subsystem.

Set up channel parameters
(see page 148).

Yes

No

Does
subsystem

support
simultaneous

mode?

Yes

No

Acquire a single floating-point
value from each input channel
using olDaGetSingleFloats.

Does
subsystem

support
floating-point

values?

Acquire a single integer value
from each input channel using

olDaGetSingleValues.

Yes

No

Read CJC
values?

Acquire a single CJC value for each
input channel using

olDaGetCjcTemperatures.

Go to the next page.
129

Chapter 4

130
Acquire a single integer value from
the input channel using
olDaGetSingleValue or
olDaGetSingleValueEx.

Yes

No

Does
subsystem

support
floating-point

values?

Acquire a single floating-point value from the
input channel using olDaGetSingleFloat.

Yes

No

Read CJC
value?

Acquire a single CJC value for the
input channel using

olDaGetCjcTemperature.

Continued from previous page.

Release the subsystem using
olDaReleaseDASS.

Release the driver and terminate the
session using olDaTerminate.

Programming Flowcharts
Single-Value Output Operations

Set the subsystem parameters
(see page 147).

Set the data flow to
OL_DF_SINGLEVALUE using

olDaSetDataFlow.

Get a handle to the subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Configure the subsystem using
olDaConfig.

Specify D/A for an analog output subsystem or
DOUT for a digital output subsystem.

Set up channel parameters
(see page 148).

Output
another

value(s)?

Output a single value from the
specified output channel using

olDaPutSingleValue.

Yes

Does
subsystem

support
simultaneous

mode?
Yes

No

Output a single value from
each output channel using

olDaPutSingleValues.

No

Release the subsystem using
olDaReleaseDASS.

Release the driver and terminate the
session using olDaTerminate.
131

Chapter 4

132
Continuous Analog Input Operations

Get a handle to the A/D subsystem with
olDaGetDASS.

Initialize the device driver and get the device handle
with olDaInitialize.

Set up the channel list (see page 152).

Set the subsystem parameters (see page 147).

Set the data flow using olDaSetDataFlow.

Set the DMA channel usage using
olDaSetDmaUsage.

Specify OL_DF_CONTINUOUS (the default
value) for post-trigger operations,
OL_DF_CONTINUOUS_PRETRIG for
continuous pre-trigger operations, or
OL_DF_CONTINUOUS_ABOUTTRIG for
continuous about-trigger operations).

Set up the channel parameters (see page 148).

Set up the clocks (see page 153).

Set up buffering (see page 158).

Configure the A/D subsystem using olDaConfig.

Deal with messages and buffers (see page 160).

Stop the operation (see page 164).

Start the operation with olDaStart.

Clean up the subsystem (see page 165).

If you want to use triggered scan mode, set up the
scan (see page 157.)

After configuration, if using an internal clock, you
can use olDaGetClockFrequency to get the
actual frequency that the internal sample clock
can achieve; if using an external clock, you can
use olDaGetExternalClockDivider to get the
actual clock divider that the device can achieve;
if using internal retrigger mode, you can use
olDaGetRetriggerFrequency to get the actual
frequency that the internal retrigger clock can
achieve.

Set up the triggers (see page 154).

Programming Flowcharts
Continuous Analog Output Operations

Get a handle to the D/A subsystem with
olDaGetDASS.

Initialize the device driver and get the device handle
with olDaInitialize.

Set the subsystem parameters (see page 147).

Set the data flow to OL_DF_CONTINUOUS using
olDaSetDataFlow.

Set the DMA channel usage using
olDaSetDmaUsage.

Set up the channel list (see page 152).

Set up the channel parameters (see page 148).

Set up buffering (see page 159).

Configure the D/A subsystem using olDaConfig.

Deal with messages and buffers (see page 162).

Stop the operation (see page 164).

Clean up the subsystem (see page 165).

Start the operation with olDaStart.

Set up the clocks (see page 153).

After configuration, if using an internal clock,
you can use olDaGetClockFrequency to get
the actual frequency that the internal output
clock can achieve; or if using an external clock,
you can use olDaGetExternalClockDivider to
get the actual clock divider that the device can
achieve.

Set up the triggers (see page 154).

If desired, mute the output using the olDaMute.
133

Chapter 4

134
Continuous Digital Input Operations

Get a handle to the DIN subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set the data flow to
OL_DF_CONTINUOUS using

olDaSetDataFlow.

Set the resolution with
olDaSetResolution.

Go to the next page.

Set the trigger source to
OL_TRG_SOFT using olDaSetTrigger.

olDaSetNotificationProcedure Specify the procedure to handle Windows
messages.

Using main
window to

handle
messages?

Yes

No

olDaSetWndHandle
Specify the window in which to
post messages.

Configure the subsystem using
olDaConfig.

Start the operation with olDaStart.

Programming Flowcharts
Continued from previous page.

Stop the operation
(see page 164).

Clean up the operation
(see page 165).

Get event
done

message?

Yes

No

The event done message is OLDA_WM_EVENT_DONE. In
olDaSetWndHandle or olDaSetNotificationProcedure, the
subsystem handle, HDASS, is returned in the wParam
parameter; this allows one window to handle messages from
all subsystems. The subsystem status is returned in the
IParam parameter.

For Data Translation PCI boards that support
interrupt-on-change, the low word of lParam contains the DIO
lines (bits) that caused the event and the high word of lParam
contains the status of the digital input port when the interrupt
occurred.

For Data Translation USB modules that support
interrupt-on-change, the meaning of lParam depends on the
module you are using.

Refer to your device documentation for more information.

Process data.
135

Chapter 4

136
Continuous Digital Output Operations

Get a handle to the D/A subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set the data flow to
OL_DF_CONTINUOUS using

olDaSetDataFlow.

Set up the channel list
(see page 152).

Set up buffering (see page 159).

Configure the D/A subsystem using
olDaConfig.

Set up the clocks
(see page 153).

After configuration, if using an internal
clock, you can use
olDaGetClockFrequency to get the
actual frequency that the internal
output clock can achieve; or if using an
external clock, you can use
olDaGetExternalClockDivider to get
the actual clock divider that the device
can achieve.

Deal with messages and buffers
(see page 162).

Stop the operation (see page 164).

Clean up the subsystem
(see page 165).

Start the operation with olDaStart.

Set up the triggers
 (see page 154).

Programming Flowcharts
Event Counting Operations

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks and gates
(see page 163).

Set the cascade mode using
olDaSetCascadeMode.

Specify the mode as OL_CTMODE_COUNT
using olDaSetCTMode.

Configure the subsystem using
olDaConfig.

Start the operation using olDaStart.

Read the events counted using
olDaReadEvents.

Stop the operation (see page 164).

Clean up the subsystem (see page 166).

Get update
of events

total?

Yes

No
137

Chapter 4

138
Up/Down Counting Operations

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the mode as
OL_CTMODE_UP_DOWN

using olDaSetCTMode.

Configure the subsystem using
olDaConfig.

Specify the clock source as
OL_CLK_EXTERNAL using

olDaSetClockSource.

Specify an external clock divider with
olDaSetExternalClockDivider.

Start the operation using olDaStart.

Read the events counted using
olDaReadEvents.

Stop the operation (see page 164).

Get update
of events

total?

Yes

No

Clean up the subsystem (see page 166).

Programming Flowcharts
Frequency Measurement Operations

Note: If you need more accuracy than the system timer provides, refer to page 97.

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks
(see page 153).

Specify the mode as OL_CTMODE_COUNT
using olDaSetCTMode.

Set the cascade mode using
olDaSetCascadeMode.

Configure the subsystem
using olDaConfig.

Start the frequency measurement operation
using olDaMeasureFrequency.

Get
measure

done
message?

Yes

No

Message is in the form
OLDA_WM_MEASURE_DONE.

Use the LongtoFreq (lParam)
macro to get the measured

frequency value:
float = Freq;

Freq = LongtoFreq (lParam);

Clean up the subsystem (see page 166).
139

Chapter 4

140
Edge-to-Edge Measurement Operations

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the mode as
OL_CTMODE_MEASURE
using olDaSetCTMode.

Configure the subsystem using
olDaConfig.

Specify the start edge
using olDaSetMeasureStartEdge.

Specify the clock source as
OL_CLK_INTERNAL using

olDaSetClockSource.

Specify the stop edge
using olDaSetMeasureStopEdge.

Start the operation using olDaStart.

Event
done

message
returned?

Yes

No

Message is in the form OLDA_WM_EVENT_DONE.
Note that if you want to perform another
edge-to-edge measurement, you can call olDaStart
again or use the OLDA_WM_EVENT_DONE
handler to call olDaStart again.

Read the value of the lParam
parameter in the

OLDA_WM_EVENT_DONE
message to determine the value

of the counter.

Clean up the subsystem (see page 166).

Programming Flowcharts
Continuous Edge-to-Edge Measurement Operations

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the mode as
OL_CTMODE_CONT_MEASURE

using olDaSetCTMode.

Configure the subsystem using
olDaConfig.

Specify the start edge
using olDaSetMeasureStartEdge.

Specify the clock source as
OL_CLK_INTERNAL using

olDaSetClockSource.

Specify the stop edge
using olDaSetMeasureStopEdge.

Read the value of the counter/timer using
olDaReadEvents or through the

channel-gain list.

No

Yes

Stop the operation (see page 164).

Clean up the subsystem (see page 166).

Read value
of counter

again?

Start the operation using olDaStart.

On each read of the counter/timer, the current value
of the counter/timer channel is returned and the next
edge-to-edge measurement mode operation starts.
If the current edge-to-edge measurement operation
is still in progress, 0 is returned.
141

Chapter 4

142
Pulse Output Operations

Get a handle to a general-purpose C/T
subsystem with olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Set up the clocks and gates
(see page 163).

Set the cascade mode using
olDaSetCascadeMode.

Specify the mode using
olDaSetCTMode.

Specify OL_CTMODE_RATE for rate
generation (continuous pulse output),
OL_CTMODE_ONESHOT for single one-
shot, or OL_CTMODE_ONESHOT_RPT for
repetitive one-shot.

Stop the operation (see page 164).

Specify the output pulse type using
olDaSetPulseType.

Specify the duty cycle of the output
pulse using olDaSetPulseWidth.

This step is not needed for single
one-shot operations.

Clean up the subsystem (see page 166).

Configure the subsystem using
 olDaConfig.

Start the operation using olDaStart.

Programming Flowcharts
Measure Counter Operations

Initialize the device driver and get the
device handle with olDaInitialize.

Get a handle to the C/T subsystem associated
with the measure counter using olDaGetDASS.

Read the value of the measure counter in the analog
input stream by adding the measure counter in the

analog input channel list. Follow the steps for
continuous analog input operations, on page 132.

Release the subsystem using olDaReleaseDASS.

Release the device driver and terminate the
session using olDaTerminate.

Configure the subsystem using olDaConfig.

Specify the start edge
using olDaSetMeasureStartEdge.

Specify the stop edge
using olDaSetMeasureStopEdge.
143

Chapter 4

144
Tachometer Operations

Initialize the device driver and get the
device handle with olDaInitialize.

Specify the edge (rising or falling) of the tachometer
for the measurement using olDaSetEdgeType.

Specify the value of the stale data flag using
olDaSetStaleDataFlagEnabled.

If this flag is True, the most significant bit (MSB) of
the value is set to 0 to indicate new data; reading the
value before the measurement is complete returns
an MSB of 1. If this flag is False, the MSB is always
set to 0.

Get a handle to the TACH subsystem with
olDaGetDASS.

Configure the TACH subsystem using
olDaConfig.

Read the value of the tachometer in the analog
input stream by adding the tachometer in the
analog input channel list. Follow the steps for

continuous analog input operations, on page 132.

Release the subsystem using
olDaReleaseDASS.

Release the device driver and terminate the
session using olDaTerminate.

Programming Flowcharts
Quadrature Decoder Operations

Set the clock source to OL_CLK_EXTERNAL
using olDaSetClockSource

Set up the quadrature decoder operation using
olDaSetQuadDecoder

Get a handle to the C/T subsystem with
olDaGetDASS.

Initialize the device driver and get the
device handle with olDaInitialize.

Start the operation using olDaStart.

Configure the subsystem using olDaConfig.

Get update
of events

total?

Yes

No

Read the events counted using
olDaReadEvents.

Stop the operation (see page 164).

Clean up the subsystem (see page 166).
145

Chapter 4

146
Simultaneous Operations

Configure the subsystem that you
want to run simultaneously.

Put each subsystem to be
simultaneously started on the start list

using olDaPutDassToSSList.

Prestart the subsystems on the
simultaneous start list with

olDaSimultaneousPreStart.

Allocate a simultaneous start list using
olDaGetSSList.

See the previous flow diagrams
in this chapter; you cannot
perform single-value operations
simultaneously on multiplexed
A/D modules.

Start the subsystems on the
simultaneous start list with
olDaSimultaneousStart.

Deal with messages (see page 160
for analog input operations; see page

162 for analog output operations).

Stop the operation (see page 164).

Clean up the subsystem (see page
page 165 for analog I/O operations).

Programming Flowcharts
Set Subsystem Parameters

olDaSetChannelType
Specify the channel type (single-ended or
differential). Specify single-ended if you are using
pseudo-differential channels.

olDaSetResolution Specify the resolution.

olDaSetEncoding
For A/D and D/A subsystems, specify the data
encoding type.

olDaSetRange

For A/D and D/A subsystems that support a single
range for the entire subsystem, specify the voltage
range for the entire subsystem.

olDaSetReturnCjcTemperatureInStream
For A/D subsystems that support thermocouple
inputs, enable or disable the ability to return CJC data
in the data stream. By default, this ability is disabled.

olDaSetSyncMode
For subsystems that support programmable
synchronization modes, specify the synchronization
mode for the subsystem (none, master, or slave).

olDaSetDataFilterType
For A/D subsystems that support programmable filter
types, specify the filter type for the subsystem.

olDaSetStrainExcitationVoltageSource
For A/D subsystems that support strain gage inputs,
specify the excitation voltage source

Using
an internal
excitation
voltage
source?

olDaSetStrainExcitationVoltage

Yes

Specify the value of the internal excitation voltage source.
147

Chapter 4

148
Set up Channel Parameters

Set
channel
range?

Yes

No

Use olDaSetChannelRange to set the voltage range per
channel,

No

Go to next page.

Yes
Use olDaSetThermocoupleType to set the thermocouple

type.

No

RTD
channel?

Yes
Use olDaSetRtdType to set the RTD type.

No

If the RTD type is Pt3850 or Custom, use olDaSetRtdR0
to set the resistance value of the RTD.

If the RTD type is Custom, use the olDaSetRtdA,
olDaSetRtdB, and olDaSetRtdC to set the Callendar-Van

Dusen coefficients for the RTD type.

Thermo-
couple

channel?

Use olDaSetSensorWiringConfiguration to indicate
whether the RTD uses a two-wire, three-wire, or four-wire

configuration.

Multisensor
Channel?

Yes
Use olDaSetMultiSensorType to set the sensor type for

the channel.

Voltage
Input

Channel?

No

Yes
If supported, use olDaSetInputTerminationEnabled to

enable or disable use of the bias return termination resistor
based on the channel wiring.

Programming Flowcharts
Accelerometer
channel?

Yes

Use olDaSetCouplingType to set the coupling type to AC or DC.

Use olDaSetExcitationCurrentSource to set the excitation current
source to Internal, External, or Disabled.

Use olDaSetExcitationCurrentValue to set
the value of the internal excitation current

source.Excitation
internal?

Yes

Go to next page.

Thermistor
channel?

Yes

No

Use olDaSetThermistorA, olDaSetThermistorB, and
olDaSetThermistorC to set the Steinhart-Hart coefficients for the

thermistor.

Resistance
channel?

Yes

No

Use olDaSetSensorWiringConfiguration to indicate whether the
resistance measurement uses a two-wire, three-wire, or four-wire

configuration.

Use olDaSetSensorWiringConfiguration to indicate whether the
thermistor uses a two-wire, three-wire, or four-wire configuration.

Continued from previous page.

Use olDaSetExcitationCurrentSource to set the excitation current
source to Internal, External, or Disabled.

Use olDaSetExcitationCurrentValue to set
the value of the internal excitation current
source based on the resistor that is used.

Excitation
internal?

Yes

No

No

Current
channel?

Yes If supported, use olDaSetInputTerminationEnabled to enable or
disable use of the bias return termination resistor based on the

channel wiring.
149

Chapter 4

150
Use olDaSetStrainBridgeConfiguration to set the configuration of the strain gage.

 Strain Gage
channel?

Yes

Continued from previous page.

Perform
shunt

calibration?

Yes Enable the shunt resistor using
olDaSetStrainShuntResistor.

Read the value of the bridge in the unstrained condition using
olDaGetSingleValue and supply this value later when you

convert voltage to strain using olDaVoltsToStrain.

Disable the shunt resistor using
olDaSetStrainShuntResistor.

No

No

Bridge
channel?

Yes Using
TEDS?

Yes Read the TEDS data from the sensor using
olDaReadBridgeSensorHardwareTeds, or from a TEDS

data file using olDaReadBridgeSensorVirtualTeds.

No

Use olDaSetBridgeConfiguration to set the configuration of the bridge-based
sensor or general-purpose bridge.

Using
TEDS?

Yes
Read the TEDS data from the strain gage using

olDaReadStrainGageHardwareTeds, or from a TEDS data
file using olDaReadStrainGageVirtualTeds.

No

Perform
shunt

calibration?

Yes Enable the shunt resistor using
olDaSetStrainShuntResistor.

Read the value of the bridge in the unstrained condition using
olDaGetSingleValue and supply this value later when you

convert voltage to strain using
olDaVoltsToBridgeBasedSensor.

Disable the shunt resistor using
olDaSetStrainShuntResistor.

No

Go to next page.

Programming Flowcharts
 Filter per
Channel?

Yes

Continued from previous page.

Specify the filter for each channel using
olDaSetChannelFilter.
151

Chapter 4

152
Set Up Channel List Parameters

olDaSetChannelListSize
Specify the size of the channel list, gain list,
channel inhibit list, and synchronous digital
I/O list.

olDaSetChannelListEntry Set up the channel list for the subsystem.

olDaSetGainListEntry

Specify the gain for each channel in the channel
list (the gain list parallels the channel list). Use a
gain of 1 for channels that do not support
programmable gain.

olDaSetChannelListEntryInhibit
Enable or disable inhibition for the specified
channel entries. If inhibited, the acquired values
from the specified entries are discarded.

olDaSetSynchronousDigitalIOUsage

Enable/disable a synchronous digital output
operation. If using a DOUT subsystem that is
currently in use, the handle to the DOUT
subsystem must be freed with olDaReleaseDASS
before configuring the this subsystem with
olDaConfig.

olDaSetDigitalIOListEntry
For A/D subsystems only, specify the values to
output to the dynamic digital output channels as
each entry in the channel list is sampled.

Programming Flowcharts
Set Up Clocks

Specify OL_CLK_EXTERNAL to select the external
clock or OL_CLK_EXTRA to select an extra available
external clock.

Using an
internal
clock?

olDaSetClockSource

olDaSetClockFrequency

Specify the frequency of the internal clock. The driver
sets the actual frequency as closely as possible to
the number specified.

olDaSetClockSource

olDaSetExternalClockDivider

Yes

No

Specify a clock divider to apply to the external clock
source. The driver sets the actual clock divider as
closely as possible to the number specified.

Specify OL_CLK_INTERNAL to select the internal clock or
OL_CLK_EXTRA to select an extra available internal clock.
153

Chapter 4

154
Set Up Triggers

Set the reference trigger source using the olDaSetReferenceTrigger function.
This trigger source stops pre-trigger acquisition, if in progress, and starts

post-trigger acquisition.

Using a
start trigger and
reference trigger
for pre-trigger/

post-trigger
operations?

Yes

No

Set the start trigger type using the olDaSetTrigger function.

Using
threshold
trigger for
the start
trigger?

Yes

Set the channel to use for the threshold trigger using
the olDaSetTriggerThresholdChannel function.

Set the level of the threshold trigger using the
olDaSetTriggerThresholdLevel function.

Using
threshold
trigger for

the
reference
trigger?

Yes
Set the channel to use for the threshold trigger using
the olDaSetReferenceTriggerThresholdChannel

function.

Set the level of the threshold trigger using the
olDaSetReferenceTriggerThresholdLevel function.

Specify the number of samples to acquire after the reference trigger using the
olDaSetReferenceTriggerPostScanCount function.

Go to next page.

Programming Flowcharts
Set the post-trigger source using the using the olDaSetTrigger function.

Using
pre-trigger or
about-trigger
mode without
a reference

trigger (legacy
devices)?

Yes

Set the pre-trigger type to one of the following values (if supported by your
device) using the olDaSetPretriggerSource function.

Using
post-trigger or
about-trigger

mode without a
reference

trigger (legacy
devices)?

Yes

Using
threshold
trigger?

Yes If supported by your device, set the channel to use for
the threshold trigger using the

olDaSetTriggerThresholdChannel function.

If supported by your device, set the level of the
threshold trigger using the

olDaSetTriggerThresholdLevel function.

Using
threshold
trigger?

Yes If supported by your device, set the channel to use for
the threshold trigger using the

olDaSetTriggerThresholdChannel function.

If supported by your device, set the level of the
threshold trigger using the

olDaSetTriggerThresholdLevel function.
No

No

No

Go to next page.

Continued from previous page.
155

Chapter 4

156
Set the trigger source using the olDaSetTrigger function.

Yes

Using
threshold
trigger?

Yes
If supported by your device, set the channel to use for

the threshold trigger using the
olDaSetTriggerThresholdChannel function.

If supported by your device, set the level of the
threshold trigger using the

olDaSetTriggerThresholdLevel function.

Continued from previous page.

Using a
trigger to start
analog output
operations?

Programming Flowcharts
Set Up Triggered Scan

Specify the retrigger mode: OL_RETRIGGER_
INTERNAL (internal retrigger clock is the retrigger;
any supported trigger source is initial trigger),
OL_RETRIGGER_SCAN_PER_TRIGGER
(retrigger source same as initial trigger source), or
OL_RETRIGGER_EXTRA (external retrigger
source is the retrigger; any supported trigger
source is the initial trigger).

olDaSetRetriggerMode

Specify the retrigger source.
Refer to your device driver
documentation for details.

Set the frequency of the
retrigger clock. The driver sets
the actual frequency as closely
as possible to the number
specified.

olDaSetTriggeredScanUsage Enable triggered scan mode.

Using internal
retrigger
mode?

Yes

olDaSetRetriggerFrequency

No

Using
retrigger extra

mode?

Yes

No

olDaSetRetrigger

Specify the number of times to scan the
channel-gain list per trigger/retrigger.

olDaSetMultiscanCount
157

Chapter 4

158
Set Up Input Buffering

Specify the procedure to handle Windows
messages.

Using main
window to

handle
messages?

Yes

Allocate
more

buffers?

Yes

olDaSetNotificationProcedure

No

Use olDmAllocBuffer to allocate a buffer of
samples, where each sample is 2 bytes; use
olDmCallocBuffer to allocate a buffer of samples
of a specified size; or use olDmMallocBuffer to
allocate a buffer in bytes.

Put the buffer on the ready queue.

olDaSetWrapMode

A minimum of three buffers is recommended for
continuous input operations.

olDaSetWndHandle
Specify the window in which
to post messages.

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

olDaPutBuffer

Specify the buffer wrapping mode. If
OL_WRP_NONE, data is written to multiple allocated
input buffers continuously; when no more empty
buffers are available, the operation stops (gap-free
data guaranteed). If OL_WRP_MULTIPLE, data is
written to multiple allocated input buffers
continuously; if no more empty buffers are available,
the device overwrites the data in the current buffer,
starting with the first location in the buffer (data is not
guaranteed to be gap-free).

Programming Flowcharts
Set Up Output Buffering

Specify the procedure to handle Windows messages.

Using main
window to

handle
messages?

Yes

Allocate
more

buffers?

Yes

olDaSetNotificationProcedure

No

olDaSetWrapMode

olDaSetWndHandle
Specify the window in which to
post messages.

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

olDaPutBuffer

olDmSetValidSamples Specify the valid number of data points in the buffer.

Fill the buffer.

Use olDmAllocBuffer to allocate a buffer of samples,
where each sample is 2 bytes; use olDmCallocBuffer
to allocate a buffer of samples of a specified size; or
use olDmMallocBuffer to allocate a buffer in bytes.

Put the buffer on the ready queue.

Specify the buffer wrapping mode. If OL_WRP_NONE, data is
written from multiple output buffers continuously; when no more
output buffers are available, the operation stops. If
OL_WRP_MULTIPLE, data is output from multiple output
buffers continuously; if no more output buffers are available, the
device outputs data from the current buffer, starting with the first
location in the buffer. If OL_WRP_SINGLE, data from a single
output buffer is downloaded to the FIFO of the device (if
supported by the device) and is written out starting from the first
location of the buffer; when the end of the buffer is reached, the
device starts outputting data from the first location of the buffer.
159

Chapter 4

160
Deal with Messages and Buffers for Input Operations

Get error
message?

Retrieve the buffer from the
done queue.

No

Yes
Report the error.

Get buffer
reused

message?

No

Yes

You may want to
increment a counter.

Get queue
done

message?

No

Yes
Report that the operation
has stopped. You might

also want to clean up the
subsystem (see page 165).

Get buffer
done

message?

No

Yes Process
data?

No

Yes
olDaGetBuffer

Determine the number of
samples in the buffer.olDmGetValidSamples

The following error messages can be reported:
OLDA_WM_OVERRUN or OLDA_WM_TRIGGER_ERROR.

The buffer reused message is
OLDA_WM_BUFFER_REUSED.

The queue done messages are OLDA_WM_QUEUE_DONE
and OLDA_WM_QUEUE_STOPPED.

The buffer done message is
OLDA_WM_BUFFER_DONE or
OLDA_WM_PRETRIGGER_BUFFER_DONE.

Wait for
message?

Yes
Return to the top of

the page.

olDaPutBuffer

olDmGetBufferPtr Get a pointer to the buffer.

Process the data/buffer in your program.

olDaPutBuffer

Convert the data from counts to voltage using
olDaCodeToVolts, from voltage to counts

using olDaVoltsToCode, from volts to strain
using olDaVoltsToStrain, or from volts to a

value for a bridge-based sensor using
olDaVoltsToBridgeBasedSensor, if desired.

Recycle the buffer if you want the subsystem to fill it again when
using OL_WRP_NONE or OL_WRP_MULTIPLE. See page 161
if you want to transfer data from an inprocess buffer. For a burst
of data, you may want to clean up after processing; refer to page
166 for more information.

Get IO
Complete
message?

Yes

Determine when the
reference trigger
occurred and the

number of pre-trigger
samples that were

acquired by subtracting
the post trigger scan
count from the total

number of samples that
were acquired.

Programming Flowcharts
Transfer Data from an Inprocess Buffer

olDaGetQueueSize
Determine the number of buffers on the
inprocess queue (at least one buffer must be on
the inprocess queue to perform this operation).

Copy the data from the inprocess buffer to the
allocated buffer for immediate processing. An
OLDA_WM_BUFFER_DONE message is
generated when the operation completes.

olDaFlushFromBufferInprocess

olDmAllocBuffer,
olDmMallocBuffer, or

olDmCallocBuffer

See page 160 to deal with the
buffers.

Use olDmAllocBuffer to allocate a buffer of
samples, where each sample is 2 bytes; use
olDmCallocBuffer to allocate a buffer of
samples of a specified size; or use
olDmMallocBuffer to allocate a buffer in bytes.
161

Chapter 4

162
Deal with Messages and Buffers for Output Operations

Get error
message?

No

Yes
Report the error.

Get buffer
reused

message?

No

Yes

You may want to
increment the counter.

Get queue
done

message?

No

Yes
Report that the operation
has stopped. You might

also want to clean up the
subsystem

(see page 165).

Get buffer
done

message?

No

Yes

No

Yes
olDaGetBuffer

The following error messages can be
reported: OLDA_WM_UNDERRUN or
OLDA_WM_TRIGGER_ERROR.

The buffer reused message is
OLDA_WM_BUFFER_REUSED.

The queue done messages are
OLDA_WM_QUEUE_DONE and
OLDA_WM_QUEUE_STOPPED.

The buffer done message is
OLDA_WM_BUFFER_DONE. Retrieve
the buffer from the done queue.

Refill
buffers?

Wait for
message?

Yes
Return to the top of

the page.

IO complete
message
returned?

Yes
The IO complete message is
OLDA_WM_IO_COMPLETE. It is generated when
the last data point has been output from the
analog output channel. Note that in some cases,
this message is generated well after the data is
transferred from the buffer (when the
OLDA_WM_BUFFER_DONE and
OLDA_WM_QUEUE_DONE messages are
generated.

olDaPutBuffer

olDmGetBufferPtr Get a pointer to the buffer.

Fill the buffer.

olDmSetValidSamples

olDaPutBuffer Recycle the buffer if you want the
subsystem to empty it again when using
OL_WRP_NONE or OL_WRP_MULTIPLE.

Programming Flowcharts
Set Clocks and Gates for Counter/Timer Operations

Specify OL_CLK_EXTERNAL to select the external
clock or OL_CLK_EXTRA to select an extra available
external clock.

Using an
internal
clock?

olDaSetClockSource

Specify OL_CLK_INTERNAL to
select the internal clock or
OL_CLK_EXTRA to select an
extra available internal clock.

olDaSetClockFrequency
Specify the frequency of the
output pulse from the internal
clock. The driver sets the actual
frequency as closely as possible
to the number specified.

olDaSetClockSource

olDaSetExternalClockDivider

Yes

No

olDaSetGateType

Specify a clock divider to apply to the external clock
source to set the frequency of the output pulse. The
driver sets the actual clock divider as closely as
possible to this number.

Specify the gate to enable or trigger a counter/timer
operation. Specify OL_GATE_NONE for a software gate,
OL_GATE_HIGH_LEVEL for a high-level gate,
OL_GATE_LOW_LEVEL, OL_GATE_HIGH_EDGE,
OL_GATE_LOW_EDGE, OL_GATE_LEVEL for any level
gate, OL_GATE_HIGH_LEVEL_DEBOUNCE for a
debounced high-level gate,
OL_GATE_LOW_LEVEL_DEBOUNCE,
OL_GATE_HIGH_EDGE_DEBOUNCE,
OL_GATE_LOW_EDGE_DEBOUNCE, or
OL_GATE_LEVEL_DEBOUNCE.
163

Chapter 4

164
Stop the Operation

olDaAbort and olDaReset stop the operation on the
subsystem immediately; the current buffers are not filled or
emptied before they are put on the done queue. olDaReset
also reinitializes the subsystem to a known state and flushes
all buffers to the done queue.

Stop in an
orderly
way?

olDaStop

olDaStop stops the operation on the subsystem in the
recommended way; the current inprocess buffers are filled or
emptied and put on the done queue. The driver posts at least
one buffer done and queue stopped message.

Note that olDaStop always waits for the current buffer to be
filled before stopping the subsystem. Therefore, if you are using
an external trigger or a threshold trigger and the trigger is never
received, do not call olDaStop as the subsystem will not be
stopped if it is waiting for a trigger. Instead, call olDaAbort,
which stops the subsystem immediately.

olDaReset

olDaAbort

Yes

No

Reinitialize?
Yes

No

Pause the
operation?

Yes

No

olDaPause

Continue a
paused

operation?

Yes

No

olDaContinue

Programming Flowcharts
Clean Up Buffered I/O Operations

olDaFlushBuffers
Flush all buffers on the ready and/or
inprocess queues to the done queue.

olDaGetQueueSize
Determine the number of buffers on the done
queue.

olDaGetBuffer Retrieve each buffer on the done queue.

olDmFreeBuffer
Free each buffer retrieved from the done
queue.

More
buffers to

free?

Yes

No

olDaReleaseDASS Release each subsystem.

olDaTerminate
Release the device driver and terminate the
session.

olDaReleaseSSList
For simultaneous operations only, release the
simultaneous start list.
165

Chapter 4

166
Clean Up Counter/Timer Operations

olDaReleaseDASS Release each subsystem.

olDaTerminate
Release the device driver and terminate
the session.

olDaReleaseSSList
For simultaneous operations only,
release the simultaneous start list.

5
Product Support
167

Chapter 5

168
Should you experience problems using the DataAcq SDK, follow these steps:

1. Read all the appropriate sections of this manual. Make sure that you have added any
“Read This First” information to your manual and that you have used this information.

2. Check for a README file on the Data Acquisition OMNI CD. If present, read this file for
the latest installation and usage information.

3. Check that you have installed your hardware devices properly. For information, refer to
the documentation supplied with your devices.

4. Check that you have installed the device drivers for your hardware devices properly. For
information, refer to the documentation supplied with your devices.

5. Check that you have installed your software properly. For information, refer to Chapter 2
starting on page 19.

If you are still having problems, Data Translation’s Technical Support Department is available
to provide technical assistance. To request technical support, go to our web site at
hwww.mccdaq.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

• Your product serial number

• The hardware/software product you need help on

• The version of the CD you are using

• Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our web site
(www.mccdaq.com) for the name and telephone number of your nearest distributor.

A
Sample Code

Single-Value Analog Input . 170

Continuous Analog Input . 174
169

Appendix A

170
Single-Value Analog Input
The following code fragments illustrate the steps required to perform a single-value analog
input operation. Refer to the example program svadc.c in the directory C:\Program
Files\Data Translation\Win32\SDK\Examples\ for the entire program.

This program calls a user-defined function called GetDriver(), which enumerates the devices
installed in the system.

Declare Variables and User Functions

This code fragment defines the variables used and the user-defined GetDriver() function; note
that this program uses the device’s default values for channel type, resolution, data encoding,
range, and channel filter.

typedef struct tag_board {
HDRVR hdrvr; /* driver handle */
HDASS hdass; /* subsystem handle */
ECODE status; /* board error status */
char name[STRLEN]; /* string for board name */
char entry[STRLEN]; /* string for board name */
} BOARD;

typedef BOARD FAR* LPBOARD;

static BOARD board;

BOOL __export FAR PASCAL GetDriver(lpszName,lpszEntry,lParam)

LPSTR lpszName; /* board name */
LPSTR lpszEntry; /* system.ini entry */
LPARAM lParam; /* optional user data */
UINT channel = 0;
DBL gain = 1.0;
DBL min,max;
float volts;
long value;
UINT encoding,resolution;

Initialize the Driver

The following code fragment, in WinMain (), calls the CHECKERROR error handler macro
and the olDaEnumBoards function, which initializes the first available DT-Open Layers
device. olDaEnumBoards calls GetDriver(), which lists the name of the device:

board.hdrvr = NULL;
CHECKERROR(olDaEnumBoards(GetDriver, (LPARAM) (LPBOARD) &board));

Sample Code
This code fragment is in GetDriver() and gets the device name:

{
LPBOARD lpboard = (LPBOARD)(LPVOID)lParam;
/* fill in board strings */
lstrcpyn(lpboard->name,lpszName,STRLEN);
lstrcpyn(lpboard->entry,lpszEntry,STRLEN);

This code is in WinMain() and checks for errors within the callback function:

CHECKERROR (board.status);
/* check for NULL driver handle - means no boards */
if (board.hdrvr == NULL){

MessageBox(HWND_DESKTOP, "No DT-Open Layer boards!!!", "Error",
MB_ICONEXCLAMATION | MB_OK);

return ((UINT)NULL);
}

This code fragment is in WinMain() and initializes the device:

lpboard->status = olDaInitialize(lpszName,
&lpboard->hdrvr);

if (lpboard->hdrvr != NULL)
return FALSE;

/* false to stop enumerating */
else

return TRUE; /* true to continue */
}

Get a Handle to the Subsystem

The following code fragment gets a handle to the A/D subsystem and checks for errors:

CHECKERROR(olDaGetDASS(board.hdrvr,OLSS_AD,0, &board.hdass));

Set the DataFlow to Single Value

The following code fragment sets the dataflow mode of the A/D subsystem to single value
and checks for errors.

CHECKERROR (olDaSetDataFlow(board.hdass,OL_DF_SINGLEVALUE));

Configure the Subsystem

The following code fragment configures the A/D subsystem and checks for errors.

CHECKERROR (olDaConfig(board.hdass));
171

Appendix A

172
Acquire a Single Value

The following code fragment acquires a single analog input value from channel 0 of the A/D
subsystem (using a gain of 1) and checks for errors.

CHECKERROR (olDaGetSingleValue(board.hdass, &value, channel, gain));

 Convert the Value to Voltage

The following code fragment uses the default range, encoding, and resolution of the A/D
subsystem to convert the acquired value into voltage and to check for errors. Note that this
step is optional.

CHECKERROR (olDaGetRange(board.hdass,&max,&min));
CHECKERROR (olDaGetEncoding(board.hdass, &encoding));
CHECKERROR (olDaGetResolution(board.hdass, &resolution));

/* Convert value to volts */
if (encoding != OL_ENC_BINARY)

{
/* convert to offset binary by inverting the */
/* sign bit */
 value ^= 1L << (resolution-1);

/* zero upper bits */
value &= (1L << resolution) - 1;

}
volts=(float)max-(float)min)/(1L<<resolution)* value+float)min;

/* display value with message box */
sprintf(str,"Single Value AD Op.\nADC Input = %.3f V", volts);
MessageBox(HWND_DESKTOP, str, board.name,

MB_ICONINFORMATION | MB_OK);

Release the Subsystem and Terminate the Session

The following code fragment releases the A/D subsystem, terminates the session, and checks
for errors:

CHECKERROR (olDaReleaseDASS(board.hdass));
CHECKERROR (olDaTerminate(board.hdrvr));

Handle Errors

The following code fragment handles the errors from the DataAcq SDK and displays the error
codes. Note that this step is optional but recommended.

#define STRLEN 80 /* String size for general text*/
/* manipulation. */

Sample Code
char str[STRLEN]; /* Global string for general */
/* text manipulation */

#define SHOW_ERROR(ecode)
MessageBox(HWND_DESKTOP,olDaGetErrorString(ecode, str,STRLEN),

"Error", MB_ICONEXCLAMATION|MB_OK);

#define CHECKERROR(ecode) \
if ((board.status = (ecode)) != OLNOERROR)\

{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\
return ((UINT)NULL);

}

173

Appendix A

174
Continuous Analog Input
The following code fragments illustrate the steps required to perform a continuous
(post-trigger) analog input operation. Refer to the example program contadc.c in the directory
C:\Program Files\Data Translation\Win32\SDK\Examples\ for the entire program.

This program calls two user-defined functions: GetDriver(), which enumerates the devices
installed in the system, and OutputBox(), which creates a dialog box to handle information
and error window messages from the A/D subsystem.

Declare Variables and User Functions

This code fragment defines the variables used and the user-defined GetDriver() function; note
that this program uses the device’s default values for channel type, resolution, data encoding,
range, and channel filter.

typedef struct tag_board {
 HDRVR hdrvr; /* driver handle */
 HDASS hdass; /* subsystem handle */
 ECODE status; /* board error status */
 HBUF hbuf; /* subsystem buffer handle */
 WORD FAR* lpbuf; /* buffer pointer */
 char name[STRLEN]; /* string for board name */
 char entry[STRLEN]; /* string for board name */

} BOARD;

typedef BOARD FAR* LPBOARD;

static BOARD board;
static ULNG count = 0;
BOOL __export FAR PASCAL GetDriver(lpszName, pszEntry, lParam)

 LPSTR lpszName; /* board name */
 LPSTR lpszEntry; /* system.ini entry */
 LPARAM lParam; /* optional user data */

BOOL __export FAR PASCAL InputBox(hDlg, message, wParam, lParam)

HWND hDlg;
/* window handle of the dialog box */
UINT message;
/* type of message */
WPARAM wParam;
/* message-specific information */
LPARAM lParam;

DBL min,max;
float volts;
long value;
ULNG samples;

Sample Code
UINT encoding,resolution;

DBL freq;
UINT size,dma,gainsup;
int i;

UINT channel = 0;
DBL gain = 1.0;

Initialize the Driver

The following code fragment, in WinMain(), calls the CHECKERROR error handler macro
and the olDaEnumBoards function, which initializes the first available DT-Open Layers
device. olDaEnumBoards calls GetDriver(), which lists the name of the device:

board.hdrvr = NULL;
CHECKERROR(olDaEnumBoards(GetDriver,(LPARAM)(LPBOARD)&board));
CHECKERROR (board.status);

/* check for NULL driver handle - means no boards */
if (board.hdrvr == NULL){

MessageBox(HWND_DESKTOP, " No Open Layer boards!!!", "Error",
 MB_ICONEXCLAMATION | MB_OK);

return ((UINT)NULL);
}

This code is in GetDriver() and gets the device name:

{
LPBOARD lpboard = (LPBOARD)(LPVOID)lParam;

/* fill in board strings */
lstrcpyn(lpboard->name,lpszName,STRLEN);
lstrcpyn(lpboard->entry,lpszEntry,STRLEN);
}

This code is in WinMain() and initializes the device:

lpboard->status = olDaInitialize(lpszName,
&lpboard->hdrvr);

if (lpboard->hdrvr != NULL)
return FALSE; /* false to stop enumerating */

else
return TRUE; /* true to continue */

}

175

Appendix A

176
Get a Handle to the Subsystem

The following code fragment gets a handle to the A/D subsystem and checks for errors:

CHECKERROR (olDaGetDASS(board.hdrvr,OLSS_AD,0,&board.hdass));

Set the DataFlow to Continuous

The following code fragment sets the dataflow mode of the A/D subsystem to single value
and checks for errors:

CHECKERROR (olDaSetDataFlow(board.hdass,OL_DF_CONTINUOUS));

Specify the Channel List and Channel Parameters

The following code fragment specifies a channel-gain list size of 1; specifies channel 0 in the
channel-gain list; if the subsystem supports programmable gain, specifies a gain of 1 for this
entry; and checks for errors:

/* Specify a channel-list size of 1.*/
CHECKERROR (olDaSetChannelListSize(board.hdass,1));

/* Specify a channel 0 in the channel list.*/
CHECKERROR (olDaSetChannelListEntry(board.hdass,0,channel));

/* Check if the subsystem supports programmable gain. */
CHECKERROR (olDaGetSSCaps(board.hdass,OLSSC_SUP_PROGRAMGAIN,

gainsup));
/* Set the gain for entry 0 in the channel list */
/* if the board supports it. */
if (gainsup)
CHECKERROR (olDaSetGainListEntry(board.hdass, 0,gain));

Specify the Clocks

The following code fragment specifies the frequency of the internal A/D sample clock and
checks for errors:

/* Check the maximum frequency for the internal clock */
CHECKERROR(olDaGetSSCapsEx(board.hdass,OLSSCE_MAXTHROUGHPUT, &freq));

/* set 1000 Hz frequency */
freq = min (1000.0, freq);
CHECKERROR (olDaSetClockFrequency(board.hdass, freq));

Sample Code
Specify DMA Usage

The following code fragment specifies one DMA channel for the A/D subsystem and checks
for errors:

/* Check the number of DMA channels supported. */
CHECKERROR(olDaGetSSCaps(board.hdass, OLSSC_NUMDMACHANS, &dma));

/* Set one dma channel.*/
dma = min (1, dma);
CHECKERROR (olDaSetDmaUsage(board.hdass,dma));

Set Up Window Handle and Buffering

The following code fragment specifies a handle to the message window, set up buffers, and
check for errors:

/* Specify window handle. */
CLOSEONERROR (olDaSetWndHandle(board.hdass, hDlg,(UINT)NULL));

/*Specify the buffer wrap mode as multiple */
CHECKERROR (olDaSetWrapMode(board.hdass, OL_WRP_MULTIPLE));

/*Specify the buffers and put them on the ready queue. */
size = (UINT)freq/10;
/* Specify the buffer size. */

/* Allocate three input buffers and put the buffers on the
/* ready queue. */
for (i=0;i<3;i++)
{

CHECKERROR (olDmCallocBuffer(0,0,(ULNG) size, 2,&board.hbuf));
CHECKERROR (olDmGetBufferPtr(board.hbuf,(LPVOID FAR*)

&board.lpbuf));
CHECKERROR (olDaPutBuffer(board.hdass, board.hbuf));

}

Configure the Subsystem

The following code fragment configures the A/D subsystem and checks for errors.

CHECKERROR (olDaConfig(board.hdass));

Start the Continuous Analog Input Operation

The following code fragment acquires a single analog input value from channel 0 of the A/D
subsystem (using a gain of 1) and checks for errors:

CLOSEONERROR (olDaStart(board.hdass));
177

Appendix A

178
Deal with Messages and Buffers

The following code fragment deals with messages and buffers for the A/D subsystem:

/* Use a dialog box to collect information */
/* and error messages from the subsystem. */
DialogBox(hInstance, (LPCSTR)INPUTBOX, HWND_DESKTOP, InputBox);

/* This function processes messages for the input dialog box. */
switch (message) {

case WM_INITDIALOG:
/* message: initialize dialog box*/
/* set the title to the board name */
SetWindowText(hDlg,board.name);
return (TRUE); /* A message was returned. */

case OLDA_WM_BUFFER_REUSED:
/* message: buffer reused*/
break;
case OLDA_WM_BUFFER_DONE:
/* message: buffer done*/

/* Get buffer off the done queue. */
CHECKERROR (olDaGetBuffer(board.hdass, &board.hbuf));

/*If there is a buffer, get subsystem */
/*information for code to volts conversion */
if (board.hbuf != NULL){
CLOSEONERROR (olDaGetRange(board.hdass,&max,&min));
CLOSEONERROR (olDaGetEncoding(board.hdass,&encoding));
CLOSEONERROR (olDaGetResolution (board.hdass,&resolution));

/* get max samples in input buffer */
CLOSEONERROR (olDmGetMaxSamples(board.hbuf,&samples));

/* get last sample in buffer */
value = board.lpbuf[samples-1];

/* Get pointer to buffer data */
CHECKERROR (olDmGetBufferPtr (board.hbuf, (LPVOID FAR*)
&board.lpbuf));

/* Put buffer back on the ready queue. */
CHECKERROR (olDaPutBuffer(board.hdass,board.hbuf));

case OLDA_WM_QUEUE_DONE:
/* using wrap multiple or none */
/* if this message is received, */
/* acquisition has stopped. */
EndDialog(hDlg, TRUE);

Sample Code
case OLDA_WM_QUEUE_STOPPED:
/* using wrap multiple or none */
/* if this message is received, */
/* acquisition has stopped. */
EndDialog(hDlg, TRUE);

case OLDA_WM_TRIGGER_ERROR:

/* Process trigger error message */
MessageBox(hDlg,"Trigger error: acquisition stopped",

"Error", MB_ICONEXCLAMATION |MB_OK);
EndDialog(hDlg, TRUE);

case OLDA_WM_OVERRUN_ERROR:
/* Process underrun error message */
MessageBox(hDlg,"Input overrun error: acquisition stopped",

"Error", MB_ICONEXCLAMATION | MB_OK);
EndDialog(hDlg, TRUE);

case WM_COMMAND:
/* message: received a command */
#ifdef WIN32
switch (LOWORD(wParam)) {
#else
switch (wParam) {
#endif
case IDOK:
case IDCANCEL:

CLOSEONERROR (olDaAbort(board.hdass));
EndDialog(hDlg, TRUE);

return (TRUE); /* Did process a message. */
}
break;

 }
return (FALSE); /* Didn't get a message */

}

Convert Values to Voltage

The following code fragment uses the default range, encoding, and resolution of the A/D
subsystem to convert the acquired values into voltages and to check for errors. Note that this
step is optional.

/* convert value to volts */
if (encoding != OL_ENC_BINARY) {

/* convert to offset binary by inverting sign bit */
value ^= 1L << (resolution-1);

/* zero upper bits */
179

Appendix A

180
value &= (1L << resolution) - 1;
}
volts = ((float)max-(float)min)/(1L<<resolution) *

value + (float)min;

/* display value */
sprintf(str,"%.3f Volts",volts);
SetDlgItemText (hDlg, IDD_VALUE, str);
}

Clean Up

The following code fragment flushes the buffers, releases the subsystem, and terminates the
program when the continuous A/D operation is complete:

/* Get the input buffers from the done queue and free the
/* input buffers */
CHECKERROR (olDaFlushBuffers(board.hdass));

for (i=0;i<3;i++)
{

CHECKERROR (olDaGetBuffer(board.hdass, &board.hbuf));
CHECKERROR (olDmFreeBuffer(board.hbuf));

}

/* release the subsystem and terminate the session */
CHECKERROR (olDaReleaseDASS(board.hdass));
CHECKERROR (olDaTerminate(board.hdrvr));

Handle Errors

The following code fragment handles the errors from the DataAcq SDK and displays the error
codes. Note that this step is optional but recommended.

/* Error handling macros */

#define STRLEN 80 /* String size for general text manipulation */
char str[STRLEN]; /* Global string for general text manipulation. */

#define SHOW_ERROR(ecode)
MessageBox(HWND_DESKTOP,olDaGetErrorString(ecode,(str,STRLEN),

"Error", MB_ICONEXCLAMATION |MB_OK);
#define CHECKERROR(ecode)

if ((board.status = (ecode))!= OLNOERROR)\
{\

SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\

return ((UINT)NULL);}

Sample Code
#define CLOSEONERROR(ecode)
if ((board.status = (ecode)) != OLNOERROR)\
{\
SHOW_ERROR(board.status);\
olDaReleaseDASS(board.hdass);\
olDaTerminate(board.hdrvr);\
EndDialog(hDlg, TRUE);\
return (TRUE);}
181

Appendix A

182

Index

Index
Numerics
32-bit applications 14
64-bit applications 14

A
A coefficient 61, 62
A/D subsystem 47
aborting an operation

A/D 71
continuous edge-to-edge measurement 106
D/A 71
digital input 71
digital output 71
edge-to-edge measurement 102
event counting 95
rate generation 107
repetitive one-shot 111
simultaneous 126
up/down counting 96

about-trigger mode 75
AC coupling 58
aliasing 80
analog event trigger 85
analog input 50, 124

bridge-based sensors 63
buffers 86
channel list size 52
channel type 51
channels in the channel list 53
clock sources 79
coupling type 58
current measurements 56
data encoding 65
data flow 69
DMA channels 93
excitation current sources 57, 58
filters 68
gain 66
IEPE inputs 58
inhibiting channels 53
multisensor inputs 55
post-trigger scan count 85
ranges 66
resistance measurements 57
resolution 65

RTD inputs 61
sensor wiring 57
single channel 52
strain gage inputs 63
synchronous digital I/O values in the channel list

54
thermistor inputs 62
thermocouples 58
trigger sources 81
triggered scan mode 76
voltage inputs 56

analog input channel configuration
differential 51
pseudo-differential 51
single-ended 51

analog output 50, 124
buffers 86
channel list size 52
channel type 51
channels in the channel list 53
clock sources 79
data encoding 65
data flow 69
DMA channels 93
filters 68
gain 66
ranges 66
resolution 65
single channel 52
trigger sources 81

analog threshold (negative) trigger 83
analog threshold (positive) trigger 82
architecture 45
autoranging 39, 70

B
B coefficient 61, 62
binary data format 65
bridge type 64
bridge types 64
bridge-based sensors 63
buffer list management functions 43
buffer management functions 42
buffers 86

done queue 89
flowcharts 160, 162
183

Index

184
inprocess queue 88
ready queue 87
transferring data from an inprocess buffer 161
wrap modes 91

C
C coefficient 61, 62
C/T clock sources 112

external C/T clock 113
extra C/T clock 114
internal C/T clock 113
internally cascaded C/T clock 113

C/T subsystem 47
calibration 48
calling conventions 18
capabilities

used with olDaGetSSCaps 22
used with olDaGetSSCapsEx 30

cascading counters 113
channel list

inhibition 53
size 52
specification 53
specifying synchronous digital I/O values 54

channel type 51
channels, setting up parameters 148
CJC source

external 60
internal 60

CJC values in data stream 60
cleaning up operations

A/D 165
counter/timer 166
D/A 165
digital I/O 165

clock input signal 94
clock sources

external 80, 138
external C/T clock 113
extra 81
extra C/T clock 114
internal 80, 140, 141
internal C/T clock 113
internally cascaded C/T clock 113

coefficients
A 61, 62
B 61, 62
C 61, 62
R0 61, 62

configuration functions 31

configuring a subsystem 48
continuing an operation

A/D 71
D/A 71
digital input 71
digital output 71

continuous edge-to-edge measurement operations
flowcharts 141

continuous operations 71
continuous (post-trigger) mode 73
continuous about-trigger mode 75
continuous pre- and post-trigger using a start and

reference trigger 72
continuous pre-trigger mode 74
flowcharts for A/D 132
flowcharts for D/A 133
flowcharts for digital input 132, 134
flowcharts for digital output 133, 136
sample code for continuous A/D 174

continuous pulse output 107
conventions used 10
conventions, calling 18
conversion rate 77, 78
correcting thermocouple data 60
count, scan 85
counter/timer operations 94

C/T clock sources 112
channels 94
duty cycle 117
gate types 114
operation modes 94
pulse output types 117

counting events 95, 96, 100, 103
coupling type 58
creating 32-bit applications 14
creating 64-bit applications 14
current measurements 56
current sources and values 57, 58

D
D/A subsystem 47
data acquisition functions 20

configuration 31
conversion 41
information 20
initialization and termination 30
operation 39

data buffers 86
data conversion functions 41
data encoding 65

Index
data flow modes 69
data management functions 42

buffer list management 43
buffer management 42

data transfer, from an inprocess buffer 161
DC coupling 58
debounced gate type

any level 117
high-edge 116
high-level 116
low-edge 116
low-level 116

device, initialization 47
differential inputs 51
digital event trigger 85
digital input 50, 124

buffers 86
channel list size 52
channel type 51
clock sources 79
data flow 69
DMA channels 93
gain 66
resolution 65
single channel 52
specifying the channels in the channel list 53
trigger sources 81

digital output 50, 124
buffers 86
channel list size 52
channel type 51
clock sources 79
data flow 69
DMA channels 93
gain 66
resolution 65
single channel 52
specifying the channels in the channel list 53
trigger sources 81

DIN subsystem 47
DMA channels 93
done queue 89
DOUT subsystem 47
DT-Open Layers 12
duty cycle 117

E
edge-to-edge measurement operations 100

continuous 103
flowcharts 140

encoding 65
error checking 128
error codes 49
event counting operations 95

flowcharts 137
event trigger

analog 85
digital 85
timer 85

example programs 16
excitation current sources and values 57, 58
excitation voltage source 63
excitation voltage value 63
external analog threshold (negative) trigger 83
external analog threshold (positive) trigger 82
external C/T clock 113
external clock 138

source 80
external digital (TTL) trigger 82
external excitation current source 57, 58
external retrigger mode 77
extra C/T clock 114
extra clock sources 81
extra retrigger mode 78
extra trigger sources 85

F
filters 68
floating-point values 59, 62, 63
flowcharts 127

cleaning up A/D operations 165
cleaning up counter/timer operations 166
cleaning up D/A operations 165
cleaning up digital I/O operations 165
continuous A/D operations 132
continuous D/A operations 133
continuous digital input operations 132, 134
continuous digital output operations 133, 136
continuous edge-to-edge measurement

operations 141
dealing with messages and buffers 160, 162
edge-to-edge measurement operations 140
event counting operations 137
frequency measurement operations 139
pulse output operations 142
quadrature decoder 145
setting up buffers for A/D operations 158
setting up buffers for D/A operations 159
setting up buffers for digital input operations 158
185

Index

186
setting up buffers for digital output operations
159

setting up channel lists 152
setting up channel parameters 148
setting up clocks 153, 163
setting up gates 163
setting up subsystem parameters 147
setting up triggered scans 157
setting up triggers 154
simultaneous operations 146
single-value input operations 129
single-value output operations 131
stopping operations 164
tachometer 143, 144
transferring data from an inprocess buffer 161
up/down counting operations 138

frequency measurement operations 97
flowcharts 139
using a pulse of a known duration 98
using the Windows timer 97

functions
buffer list management 43
buffer management 42
configuration 31
data conversion 41
information 20
initialization and termination 30
operation 39
summary 19

G
gain list 67
gains 66
gate input signal 94, 114
gate types 114

any level 115
high-edge 115
high-edge, debounced 116
high-level 115
high-level, debounced 116
level, debounced 117
low-edge 115
low-edge, debounced 116
low-level 115
low-level, debounced 116
software 114

H
handling errors 49

handling messages 49
help, launching online 15
high-edge gate type 115
high-edge, debounced gate type 116
high-level debounced gate type 116
high-level gate type 115
high-to-low pulse output 117

I
IEPE inputs 57, 58
information functions 20
inhibiting channels 53
initialization functions 30
initializing a device 47
inprocess buffer, transferring data 161
inprocess queue 88
input configuration

differential analog 51
single-ended analog 51

internal C/T clock 113
internal clock 140, 141

sources 80
internal excitation current source and values 57, 58
internal retrigger mode 77
internal trigger 82

L
level gate type 115
level, debounced gate type 117
linearization 60
list management functions 43
LongtoFreq macro 139, 140
low-edge gate type 115
low-edge, debounced gate type 116
low-level gate type 115
low-level, debounced gate type 116
low-to-high pulse output 117

M
macro 139, 140
measure counter operations 119
measuring frequency 97
message handling 49

flowcharts for A/D 160
flowcharts for D/A 162
flowcharts for digital input 160
flowcharts for digital output 162

Index
messages
OLDA_WM_BUFFER_DONE 89
OLDA_WM_BUFFER_REUSED 91
OLDA_WM_MEASURE_DONE 98
OLDA_WM_PRETRIGGER_BUFFER_DONE 89
OLDA_WM_QUEUE_DONE 91
OLDA_WM_QUEUE_STOPPED 89

multiple wrap mode 91
multisensor inputs 55
muting the output 71

N
no wrap mode 91
Nyquist Theorem 80

O
OL_ENUM_CHANNEL_SUPPORTED_

MULTISENSOR_TYPES 55
OL_ENUM_EXCITATION_CURRENT_VALUES

57, 58
OL_ENUM_FILTERS 68
OL_ENUM_GAINS 67
OL_ENUM_RANGES 66
OL_ENUM_THRESHOLD_REFERENCE_

TRIGGER_CHANNELS 83, 84
OL_ENUM_THRESHOLD_START_TRIGGER_

CHANNELS 83, 84
OLCHANNELCAP_SUP_INPUT_

TERMINATION 56
OLDA_WM_BUFFER_DONE 89, 160, 162
OLDA_WM_BUFFER_REUSED 91, 160, 162
OLDA_WM_EVENT_DONE 49, 79, 135
OLDA_WM_IO_COMPLETE 49, 89, 162
OLDA_WM_MEASURE_DONE 49, 98
OLDA_WM_OVERRUN 160
OLDA_WM_PRETRIGGER_BUFFER_DONE 89,

160
OLDA_WM_QUEUE_DONE 91, 160, 162
OLDA_WM_QUEUE_STOPPED 89, 160, 162
OLDA_WM_TRIGGER_ERROR 77, 78, 160, 162
OLDA_WM_UNDERRUN 162
olDaAbort 164

in A/D operations 71
in continuous edge-to-edge measurement

operations 106
in D/A operations 71
in digital input operations 71
in digital output operations 71
in edge-to-edge measurement operations 102

in event counting operations 95
in rate generation operations 107
in repetitive one-shot operations 111
in simultaneous operations 126
in up/down counting operations 96

olDaAutoCalibrate 40, 49
olDaCodeToVolts 41, 69, 90, 160
olDaConfig 39, 48, 71

in continuous A/D operations 132
in continuous D/A operations 133, 136
in continuous digital input operations 132, 134
in continuous digital output operations 133, 136
in edge-to-edge measurement operations 140,

141, 143
in event counting operations 137, 144, 145
in frequency measurement operations 139
in pulse output operations 142
in single-value operations 129, 131
in up/down counting operations 138

olDaContinue 40, 164
in A/D operations 71
in D/A operations 71
in digital input operations 71
in digital output operations 71

olDaEnumBoards 20, 47, 128
olDaEnumBoardsEx 20
olDaEnumChannelCaps 55, 21
olDaEnumLists 43
olDaEnumSSCaps 21, 128
olDaEnumSSList 21
olDaEnumSubSystems 20, 48, 128
olDaFlushBuffers 40, 91, 165
olDaFlushFromBufferInprocess 40, 88, 90, 161
olDaFreeBuffer 91
olDaGetBoardInfo 20, 47
olDaGetBridgeConfiguration 35, 64
olDaGetBuffer 40, 90, 165

in continuous A/D operations 160
in continuous D/A operations 162
in continuous digital input operations 160
in continuous digital output operations 162

olDaGetCascadeMode 37
olDaGetChannelCaps 21, 56
olDaGetChannelFilter 33
olDaGetChannelListEntry 32
olDaGetChannelListEntryInhibit 32
olDaGetChannelListSize 32
olDaGetChannelRange 33
olDaGetChannelType 32
olDaGetCjcTemperature 39, 70, 130
olDaGetCjcTemperatures 39, 70, 129
187

Index

188
olDaGetClockFrequency 34
olDaGetClockSource 34
olDaGetCouplingType 35
olDaGetCTMode 37
olDaGetDASS 30, 48

in continuous A/D operations 132
in continuous D/A operations 133, 136
in continuous digital input operations 132, 134
in continuous digital output operations 133, 136
in edge-to-edge measurement operations 140, 141
in event counting operations 137, 144, 145
in frequency measurement operations 139
in pulse output operations 142, 143
in single-value operations 129, 131
in up/down counting operations 138

olDaGetDASSInfo 21
olDaGetDataFilterType 33, 69
olDaGetDataFlow 31
olDaGetDevCaps 20, 48, 128
olDaGetDeviceName 20
olDaGetDigitalIOListEntry 32
olDaGetDmaUsage 31
olDaGetDriverVersion 21
olDaGetEdgeType 38, 124
olDaGetEncoding 33
olDaGetErrorString 21
olDaGetExcitationCurrentValue 35
olDaGetExternalClockDivider 34
olDaGetGainListEntry 32
olDaGetGateType 37
olDaGetInputTerminationEnabled 37, 56
olDaGetMeasureStartEdge 37
olDaGetMeasureStopEdge 37
olDaGetMultiscanCount 32
olDaGetMultiSensorType 56, 34
olDaGetNotificationProcedure 31
olDaGetPretriggerSource 34
olDaGetPulseType 37
olDaGetPulseWidth 37
olDaGetQueueSize 21, 161, 165
olDaGetRange 33
olDaGetReferenceTrigger 33
olDaGetReferenceTriggerPostScanCount 34
olDaGetReferenceTriggerPostScanCount

property 86
olDaGetReferenceTriggerThresholdChannel 34,

83, 84
olDaGetReferenceTriggerThresholdLevel 34, 83,

84
olDaGetResolution 33
olDaGetRetrigger 34

olDaGetRetriggerFrequency 32
olDaGetRetriggerMode 32
olDaGetReturnCjcTemperatureInStream 36
olDaGetRtdA 62
olDaGetRtdB 36, 62
olDaGetRtdC 36, 62
olDaGetRtdR0 35, 36, 62
olDaGetRtdType 35, 62
olDaGetSensorWiringConfiguration 36, 57, 62, 63
olDaGetSingleFloat 39, 70, 130
olDaGetSingleFloats 39, 70, 129
olDaGetSingleValue 39, 69, 130, 150
olDaGetSingleValueEx 39, 70, 130
olDaGetSingleValues 39, 70, 129
olDaGetSSCaps 20, 128
olDaGetSSCapsEx 21, 128
olDaGetSSList 41, 126, 146
olDaGetStaleDataFlagEnabled 38, 124
olDaGetStrainBridgeConfiguration 35, 64
olDaGetStrainExcitationVoltage 35
olDaGetStrainExcitationVoltageSource 35
olDaGetStrainShuntResistor 35
olDaGetSynchronousDigitalIOUsage 32
olDaGetSyncMode 37
olDaGetTempFilterType 69
olDaGetThermistorA 62
olDaGetThermistorB 36, 62
olDaGetThermistorC 36, 62
olDaGetThermistorR0 36
olDaGetThermocoupleType 36
olDaGetTrigger 33
olDaGetTriggeredScanUsage 32
olDaGetTriggerThresholdChannel 33, 83, 84
olDaGetTriggerThresholdLevel 33, 83, 84
olDaGetVersion 21
olDaGetWndHandle 31
olDaGetWrapMode 31
olDaInitialize 30, 47

in continuous A/D operations 132
in continuous D/A operations 133, 136
in continuous digital input operations 132, 134
in continuous digital output operations 133, 136
in edge-to-edge measurement operations 140, 141
in event counting operations 137, 143, 144, 145
in frequency measurement operations 139
in pulse output operations 142
in single-value operations 129, 131
in up/down counting operations 138

olDaIsRunning 21, 71
olDaMeasureFrequency 40, 97, 139
olDaMultiSensorType 148

Index
olDaMute 40
in D/A operations 71, 133

olDaPause 40, 164
in A/D operations 71
in D/A operations 71
in digital input operations 71
in digital output operations 71

olDaPutBuffer 40, 87, 90
in continuous A/D operations 158, 160
in continuous D/A operations 159, 162
in continuous digital input operations 160
in continuous digital output operations 159, 162

olDaPutDassToSSList 41, 126, 146
olDaPutSingleValue 39, 70, 131
olDaPutSingleValues 39, 70, 131
olDaReadBridgeSensorHardwareTeds 65, 150
olDaReadBridgeSensorVirtualTeds 65, 150
olDaReadEvents 40, 95, 96, 102, 106, 137, 138, 145

in continuous edge-to-edge measurement
operations 141

olDaReadStrainGageHardwareTeds 65, 150
olDaReadStrainGageVirtualTeds 65
olDaReadStrainGageVirtualTeds 150
olDaReleaseDASS 31, 49, 126

in A/D operations 165
in counter/timer operations 166
in D/A operations 165
in digital input operations 165
in digital output operations 165
in single-value operations 130, 131
in tachometer operations 143, 144

olDaReleaseSSList 41, 126, 165, 166
olDaReset 40, 164

in A/D operations 71
in continuous edge-to-edge measurement

operations 106
in D/A operations 71
in digital input operations 71
in digital output operations 71
in edge-to-edge measurement operations 102
in event counting operations 95
in rate generation operations 107
in repetitive one-shot operations 111
in simultaneous operations 126
in up/down counting operations 96

olDaSetBridgeConfiguration 35, 64, 150
olDaSetCascadeMode 37, 113

in event counting operations 137
in frequency measurement operations 139
in pulse output operations 142

olDaSetChannelFilter 33, 68, 151

olDaSetChannelListEntry 32, 53, 152
olDaSetChannelListEntryInhibit 32, 53, 152
olDaSetChannelListSize 32, 52, 152
olDaSetChannelRange 33, 66, 148
olDaSetChannelType 32, 51, 147
olDaSetClockFrequency 34, 80, 107, 113, 153

in C/T operations 163
olDaSetClockSource 34, 80, 113, 138, 140, 141,

145, 153
in C/T operations 163

olDaSetCouplingType 35, 58, 149
olDaSetCTMode 37

in continuous edge-to-edge measurement
operations 105

in edge-to-edge measurement operations 101,
140, 141

in event counting operations 95, 99, 137
in frequency measurement operations 139
in one-shot mode 98
in one-shot operations 97, 109
in pulse output operations 142
in rate generation operations 107
in repetitive one-shot operations 111
in up/down counting operations 96, 138

olDaSetDataFilterType 33, 68, 147
olDaSetDataFlow 31, 134

in continuous (post-trigger) operations 72, 73
in continuous A/D operations 132
in continuous about-trigger operations 75
in continuous D/A operations 133, 136
in continuous digital input operations 132
in continuous digital output operations 133, 136
in continuous pre-trigger operations 74
in single-value operations 69, 129, 131

olDaSetDigitalIOListEntry 32, 54, 152
olDaSetDmaUsage 31, 93

in continuous A/D operations 132
in continuous D/A operations 133
in continuous digital input operations 132
in continuous digital output operations 133

olDaSetEdgeType 38, 124, 144
olDaSetEncoding 33, 65, 147
olDaSetExcitationCurrentSource 35, 57, 58, 149
olDaSetExcitationCurrentValue 35, 57, 58, 149
olDaSetExternalClockDivider 34, 80, 107, 113,

138, 153
in C/T operations 163

olDaSetGainListEntry 32, 67, 152
olDaSetGateType 37, 114, 163
olDaSetInputTerminationEnabled 37, 56, 148, 149
olDaSetMeasureStartEdge 37, 140, 141, 143
189

Index

190
olDaSetMeasureStopEdge 37, 140, 141, 143
olDaSetMultiscanCount 32, 76, 157
olDaSetMultiSensorType 56, 34
olDaSetNotificationProcedure 31, 49, 134

in continuous A/D operations 158
in continuous D/A operations 159
in continuous digital input operations 158
in continuous digital output operations 159

olDaSetPretriggerSource 34, 75, 81, 155
olDaSetPulseType 37, 117, 142
olDaSetPulseWidth 37, 117, 142
olDaSetQuadDecoder 37, 123, 145
olDaSetRange 33, 66, 147
olDaSetReferenceTrigger 33, 72, 81, 154
olDaSetReferenceTriggerPostScanCount 34, 72,

85, 154
olDaSetReferenceTriggerThresholdChannel 34,

72, 83, 84, 154
olDaSetReferenceTriggerThresholdLevel 34, 72,

83, 84, 154
olDaSetResolution 33, 65, 147

in continuous digital input operations 134
olDaSetRetrigger 34, 78, 81, 157
olDaSetRetriggerFrequency 32, 77, 157
olDaSetRetriggerMode 32, 77, 78, 157
olDaSetReturnCjcTemperatureInStream 36, 60,

147
olDaSetRtdA 36, 61, 148
olDaSetRtdB 36, 61, 148
olDaSetRtdC 36, 61, 148
olDaSetRtdR0 35, 61, 148
olDaSetRtdType 35, 61, 148
olDaSetSensorWiringConfiguration 62, 63, 36,

57, 148, 149
olDaSetStaleDataFlagEnabled 38, 124
olDaSetStrainBridgeConfiguration 35, 64, 150
olDaSetStrainExcitationVoltage 35, 63, 147
olDaSetStrainExcitationVoltageSource 35, 63, 147
olDaSetStrainShuntResistor 35, 64, 150
olDaSetSynchronousDigitalIOUsage 32, 54, 152
olDaSetSyncMode 37, 86, 147
olDaSetTempFilterType 69
olDaSetThermistorA 36, 62, 149
olDaSetThermistorB 36, 62, 149
olDaSetThermistorC 36, 62, 149
olDaSetThermocoupleType 36, 59, 148
olDaSetTrigger 33, 72, 74, 81, 134, 154, 155, 156
olDaSetTriggeredScanUsage 32, 76, 157
olDaSetTriggerThresholdChannel 33, 72, 83, 84,

154, 155, 156

olDaSetTriggerThresholdLevel 33, 72, 83, 84, 154,
155, 156

olDaSetWndHandle 31, 49, 134
in continuous A/D operations 158
in continuous D/A operations 159
in continuous digital input operations 158
in continuous digital output operations 159

olDaSetWrapMode 31, 91
in continuous A/D operations 158
in continuous D/A operations 159
in continuous digital input operations 158
in continuous digital output operations 159

olDaSimultaneousPreStart 41, 126, 146
olDaSimultaneousStart 41, 126, 146
olDaStaleDataFlagEnabled 144
olDaStart 40, 134

in A/D operations 71, 132
in D/A operations 71, 133, 136
in digital input operations 71, 132
in digital output operations 71, 133, 136
in edge-to-edge measurement operations 102,

140, 141
in event counting operations 95, 137, 145
in one-shot operations 110
in pulse output operations 142
in rate generation operations 107
in repetitive one-shot operations 111
in simultaneous operations 126
in up/down counting operations 96, 138

olDaStop 40, 164
in A/D operations 71
in continuous edge-to-edge measurement

operations 106
in D/A operations 71
in digital input operations 71
in digital output operations 71
in edge-to-edge measurement operations 102
in event counting operations 95
in rate generation operations 107
in repetitive one-shot operations 111
in simultaneous operations 126
in up/down counting operations 96

olDaTerminate 31, 49, 126, 165
in C/T operations 166
in digital input operations 165
in digital output operations 165
in single-value operations 130, 131
in tachometer operations 143, 144

olDaUnMute 40
in D/A operations 71

Index
olDaVoltsToBridgeBasedSensor 41, 63, 90, 150,
160

olDaVoltsToCode 41, 69, 90, 160
olDaVoltsToStrain 41, 63, 90, 150, 160
olDmAllocBuffer 42, 87

in A/D operations 158
in D/A operations 159
in digital input operations 158
in digital output operations 159
in inprocess buffer operations 161

olDmCallocBuffer 42, 87
in A/D operations 158
in D/A operations 159
in digital input operations 158
in digital output operations 159
in inprocess buffer operations 161

olDmCopyBuffer 42
olDmCopyFromBuffer 42
olDmCopyToBuffer 42
olDmCreateList 43
olDmEnumBuffers 43
olDmFreeBuffer 42, 165
olDmFreeList 43
olDmGetBufferFromList 43
olDmGetBufferPtr 42, 90

in continuous A/D operations 160
in continuous D/A operations 162
in continuous digital input operations 160
in continuous digital output operations 162

olDmGetBufferSize 42
olDmGetDataBits 42
olDmGetDataWidth 42
olDmGetErrorString 43
olDmGetListCount 43
olDmGetListHandle 43
olDmGetListIDs 44
olDmGetMaxSamples 43
olDmGetTimeDateStamp 43
olDmGetValidSamples 43

in continuous A/D operations 160
in continuous digital input operations 160

olDmGetVersion 43
olDmMallocBuffer 43, 87

in A/D operations 158
in D/A operations 159
in digital input operations 158
in digital output operations 159
in inprocess buffer operations 161

olDmPeekBufferFromList 44
olDmPutBufferToList 44
olDmReAllocBuffer 43

olDmReCallocBuffer 43
olDmReMallocBuffer 43
olDmSetDataWidth 42
olDmSetValidSamples 43, 159

in continuous D/A operations 162
in continuous digital output operations 162

OLSCC_SUP_SEQUENTIAL_CGL 52
OLSS_SUP_EXTCLOCK 26
OLSS_SUP_RETRIGGER_INTERNAL 23, 77
OLSS_SUP_RETRIGGER_SCAN_PER_TRIGGER

23, 77
OLSSC_CGLDEPTH 23, 52
OLSSC_FIFO_SIZE_IN_K 29, 92
OLSSC_FIXED_PULSE_WIDTH 28, 117
OLSSC_MAX_EXCITATION_VOLTAGE 30
OLSSC_MAXDICHANS 24
OLSSC_MAXDIGITALIOLIST_VALUE 23, 54
OLSSC_MAXMULTISCAN 23, 76
OLSSC_MAXSECHANS 51
OLSSC_MIN_EXCITATION_VOLTAGE 30
OLSSC_NONCONTIGUOUS_CHANNELNUM 23
OLSSC_NUM_DMACHANS 93
OLSSC_NUM_EXCITATION_CURRENT_

VALUES 26, 57, 58
OLSSC_NUM_RANGES 66
OLSSC_NUM_RESOLUTION 65
OLSSC_NUMCHANNELS 24, 50
OLSSC_NUMDMACHANS 22
OLSSC_NUMEXTRACLOCKS 26, 81, 114
OLSSC_NUMEXTRATRIGGERS 25, 85
OLSSC_NUMFILTERS 24, 68
OLSSC_NUMGAINS 23, 67
OLSSC_NUMRANGES 24
OLSSC_NUMRESOLUTIONS 24
OLSSC_RANDOM_CGL 52
OLSSC_RETURNS_FLOATS 24, 59, 62, 63
OLSSC_RETURNS_OHMS 27
OLSSC_SUP_2SCOMP 24, 65
OLSSC_SUP_AC_COUPLING 26, 58
OLSSC_SUP_ANALOGEVENTTRIG 25, 85
OLSSC_SUP_AUTOCAL 29, 48
OLSSC_SUP_BINARY 24, 65
OLSSC_SUP_BRIDGEBASEDSENSORS 27, 63
OLSSC_SUP_BUFFERING 22, 86
OLSSC_SUP_CASCADING 28, 113
OLSSC_SUP_CHANNELLIST_INHIBIT 23, 53
OLSSC_SUP_CJC_SOURCE_CHANNEL 27, 60
OLSSC_SUP_CJC_SOURCE_INTERNAL 27, 60
OLSSC_SUP_CONTINUOUS 22, 72, 73
OLSSC_SUP_CONTINUOUS_ABOUTTRIG 22, 75
OLSSC_SUP_CONTINUOUS_PRETRIG 22, 74
191

Index

192
OLSSC_SUP_CTMODE_CONT_MEASURE 28,
103, 119

OLSSC_SUP_CTMODE_COUNT 28, 95, 97
OLSSC_SUP_CTMODE_MEASURE 28, 100
OLSSC_SUP_CTMODE_ONESHOT 28, 109
OLSSC_SUP_CTMODE_ONESHOT_RPT 28, 111
OLSSC_SUP_CTMODE_RATE 28, 107
OLSSC_SUP_CTMODE_UP_DOWN 28, 96
OLSSC_SUP_CURRENT 26, 56
OLSSC_SUP_CURRENT_OUTPUTS 24
OLSSC_SUP_DATA_FILTERS 24
OLSSC_SUP_DC_COUPLING 26
OLSSC_SUP_DIFFERENTIAL 24, 51
OLSSC_SUP_DIGITALEVENTTRIG 25, 85
OLSSC_SUP_EXP2896 24, 51
OLSSC_SUP_EXP727 24, 51
OLSSC_SUP_EXTCLOCK 80, 113
OLSSC_SUP_EXTERNAL_EXCITATION_

CURRENT_SOURCE 26, 57, 58
OLSSC_SUP_EXTERNAL_EXCITATION_

VOLTAGE_SOURCE 28, 63
OLSSC_SUP_EXTERNTRIG 25, 82
OLSSC_SUP_EXTERNTTLNEG_REFERENCE_

TRIG 25, 82
OLSSC_SUP_EXTERNTTLPOS_REFERENCE_

TRIG 25, 82
OLSSC_SUP_FIFO 29, 92
OLSSC_SUP_FILTERPERCHAN 24, 68
OLSSC_SUP_GAPFREE_DUALDMA 22, 93
OLSSC_SUP_GAPFREE_NODMA 22, 93
OLSSC_SUP_GAPFREE_SINGLEDMA 22, 93
OLSSC_SUP_GATE_GATE_LEVEL 29
OLSSC_SUP_GATE_HIGH_EDGE 29, 115
OLSSC_SUP_GATE_HIGH_EDGE_DEBOUNCE

29, 116, 117
OLSSC_SUP_GATE_HIGH_LEVEL 29, 115
OLSSC_SUP_GATE_HIGH_LEVEL_DEBOUNCE

29, 116
OLSSC_SUP_GATE_LEVEL 116
OLSSC_SUP_GATE_LEVEL_DEBOUNCE 29
OLSSC_SUP_GATE_LOW_EDGE 29, 115
OLSSC_SUP_GATE_LOW_EDGE_DEBOUNCE 29
OLSSC_SUP_GATE_LOW_LEVEL 29, 115
OLSSC_SUP_GATE_LOW_LEVEL_DEBOUNCE

29
OLSSC_SUP_GATE_NONE 29, 114
OLSSC_SUP_IEPE 26, 58
OLSSC_SUP_INPROCESSFLUSH 22, 88
OLSSC_SUP_INTCLOCK 26, 80, 113
OLSSC_SUP_INTERLEAVED_CJC_IN_STREAM

27, 60

OLSSC_SUP_INTERNAL_EXCITATION_
CURRENT_SOURCE 26, 57, 58

OLSSC_SUP_INTERNAL_EXCITATION_
SOURCE 63

OLSSC_SUP_INTERNAL_EXCITATION_
VOLTAGE_SOURCE 27

OLSSC_SUP_INTERRUPT 29, 79
OLSSC_SUP_MAXRETRIGGER 30
OLSSC_SUP_MAXSECHANS 24
OLSSC_SUP_MINRETRIGGER 30
OLSSC_SUP_MULTISENSOR 26, 55
OLSSC_SUP_MUTE 71
OLSSC_SUP_PAUSE 22, 71
OLSSC_SUP_PLS_HIGH2LOW 28, 29, 117, 124
OLSSC_SUP_PLS_LOW2HIGH 28, 29, 117, 124
OLSSC_SUP_POST_REFERENCE_TRIG_

SCANCOUNT 25, 85
OLSSC_SUP_POSTMESSAGE 22, 49
OLSSC_SUP_PROCESSOR 29
OLSSC_SUP_PROGRAMGAIN 23, 67
OLSSC_SUP_QUADRATURE_DECODER 28
OLSSC_SUP_RANDOM_CGL 23
OLSSC_SUP_RANGEPERCHANNEL 24, 66
OLSSC_SUP_REMOTE_SENSE 27
OLSSC_SUP_RESISTANCE 26, 57
OLSSC_SUP_RETRIGGER_EXTRA 23, 78
OLSSC_SUP_RTDS 27, 61
OLSSC_SUP_SEQUENTIAL_CGL 23
OLSSC_SUP_SHUNT_CALIBRATION 27, 64
OLSSC_SUP_SIMULTANEOUS_CLOCKING 26,

79
OLSSC_SUP_SIMULTANEOUS_SH 23, 52, 70
OLSSC_SUP_SIMULTANEOUS_START 22, 126
OLSSC_SUP_SINGLEENDED 24, 51
OLSSC_SUP_SINGLEVALUE 22, 69
OLSSC_SUP_SINGLEVALUE_AUTORANGE 23,

70
OLSSC_SUP_SOFTTRIG 25, 82
OLSSC_SUP_STALE_DATA_FLAG 29
OLSSC_SUP_STRAIN_GAGE 27, 63
OLSSC_SUP_SV_NEG_EXTERN_TTLTRIG 82
OLSSC_SUP_SV_POS_EXTERN_TTLTRIG 25, 82
OLSSC_SUP_SWCAL 29
OLSSC_SUP_SWRESOLUTION 24, 65
OLSSC_SUP_SYNCBUS_REFERENCE_TRIG 25,

84
OLSSC_SUP_SYNCHRONIZATION 22, 86
OLSSC_SUP_SYNCHRONOUS_DIGITALIO 23,

54
OLSSC_SUP_TEMP_FILTERS 68

Index
OLSSC_SUP_TEMPERATURE_DATA_IN_
STREAM 27, 60

OLSSC_SUP_THERMISTOR 27, 62
OLSSC_SUP_THERMOCOUPLES 27, 58
OLSSC_SUP_THRESHNEG_REFERENCE_TRIG

25, 84
OLSSC_SUP_THRESHPOS_REFERENCE_TRIG

25, 82
OLSSC_SUP_THRESHTRIGNEG 25, 83
OLSSC_SUP_THRESHTRIGPOS 25, 82
OLSSC_SUP_TIMEREVENTTRIG 25, 85
OLSSC_SUP_TRIGSCAN 23, 76
OLSSC_SUP_WAVEFORM_MODE 22
OLSSC_SUP_WRPMULTIPLE 22, 92
OLSSC_SUP_WRPSINGLE 22, 92
OLSSC_SUP_WRPWAVEFORM_ONLY 22, 92
OLSSC_SUP_ZEROSEQUENTIAL_CGL 23, 52
OLSSCE_BASECLOCK 30
OLSSCE_CJC_MILLIVOLTS_PER_DEGREE_C 30
OLSSCE_MAXCLOCKDIVIDER 30, 80, 113
OLSSCE_MAXTHROUGHPUT 30, 80, 113
OLSSCE_MIN_EXCITATION_VOLTAGE 63
OLSSCE_MINCLOCKDIVIDER 30, 80, 113
OLSSCE_MINTHROUGHPUT 30, 80, 113
one-shot mode 109
online help, launching 15
operation functions 39
operation modes, counter/timer 94

continuous edge-to-edge measurement 103
edge-to-edge measurement 100
event counting 95
frequency measurement 97
one-shot pulse output 109
rate generation 107
repetitive one-shot pulse output 111
up/down counting 96

operations
analog input 50, 124
analog output 50, 124
counter/timer 94
digital input 50, 124
digital output 50, 124
measure counter 119
quadrature decoder 123
simultaneous 126

outputting pulses
continuously 107
one-shot 109
repetitive one-shot 111

overview of the DataAcq SDK 12

P
parameters

setting up buffers for A/D operations 158
setting up buffers for D/A operations 159
setting up buffers for digital input operations 158
setting up buffers for digital output operations

159
setting up channel lists 152
setting up clocks 153
setting up clocks for counter/timer operations

163
setting up gates 163
setting up the channels 148
setting up the subsystem 147
setting up triggered scans 157
setting up triggers 154

pausing an operation
A/D 71
D/A 71
digital input 71
digital output 71

post-trigger mode 73
post-trigger scan count 85
pre-trigger mode 74
programmable gain 67
programming flowcharts 127
pseudo-differential channels 51
pulse output 94

duty cycle 117
flowcharts 142
one-shot 109
output types 117
rate generation (continuous) 107
repetitive one-shot 111

pulse train output 107
pulse types

high-to-low 117
low-to-high 117

pulse width 117

Q
quadrature decoder 123
quadrature decoder flowcharts 145
quadrature decoder operations 123
queues

done 89
inprocess 88
ready 87
193

Index

194
R
R0 coefficient 61, 62
ranges 66
rate generation mode 107
ready queue 87
releasing the subsystem and driver 49
repetitive one-shot mode 111
requirements 13
resetting an operation

A/D 71
continuous edge-to-edge measurement 106
D/A 71
digital input 71
digital output 71
edge-to-edge measurement 102
event counting 95
rate generation 107
repetitive one-shot 111
simultaneous 126
up/down counting 96

resistance measurements 57
resolution 65
retrigger modes

internal retrigger 77
retrigger extra 78
scan-per-trigger 77

RTD inputs 61
RTD types 61, 62
RTDs 61

S
sample code

for continuous A/D 174
for single-value A/D 170

scan count 85
scan-per-trigger retrigger mode 77
sensor wiring

resistance measurements 57
RTDs 62
thermistor 63

service and support procedure 168
setting up buffers

for A/D operations 158
for D/A operations 159
for digital input operations 158
for digital output operations 159

setting up channel lists 152
setting up channel parameters 148
setting up clocks 153
setting up clocks for counter/timer operations 163

setting up gates 163
setting up subsystem parameters 147
setting up triggered scans 157
setting up triggers 154
shunt calibration 64
shunt resistor 64
simultaneous operations 126

flowcharts 146
single wrap mode 92
single-ended inputs 51
single-value operations 69

for a simultaneous device 70
input flowcharts 129
output flowchart 131
sample code for analog input 170

software architecture 45
software gate type 114
software trigger 82
specifying a single channel 52
specifying a subsystem 47
specifying AC or DC coupling 58
specifying bridge-based sensors 63
specifying buffers 86
specifying channels in the channel list 53
specifying clock sources 80
specifying DMA channels 93
specifying filters 68
specifying gains 66
specifying ranges 66
specifying RTDs 61
specifying single-value operations 69
specifying single-value operations for a

simultaneous device 70
specifying strain gages 63
specifying synchronous digital I/O values in the

channel list 54
specifying the data flow 69
specifying thermistors 62
specifying thermocouples 58
specifying trigger sources 81
specifying triggered scan mode 76
starting an operation

A/D 71
D/A 71
digital input 71
digital output 71
edge-to-edge measurement 102
event counting 95
frequency measurement 97
one-shot 110
rate generation 107

Index
repetitive one-shot 111
up/down counting 96

stopping an operation
A/D 71
continuous edge-to-edge measurement 106
D/A 71
digital input 71
digital output 71
edge-to-edge measurement 102
event counting 95
flowchart 164
rate generation 107
repetitive one-shot 111
simultaneous 126
up/down counting 96

strain 63
strain gage type 64
strain gages 63
subsystem 47

setting up parameters 147
Sync Bus trigger 84
synchronization modes 86
system operations 47

calibrating a subsystem 48
configuring a subsystem 48
handling errors 49
handling messages 49
initializing a device 47
releasing the subsystem and driver 49
specifying a subsystem 47

system requirements 13

T
TACH subsystem 47
tachometer flowchart 143, 144
technical support 168
TEDS

for bridge-based sensors 65
for strain gages 65

terminating the session 49
termination functions 30
thermistors 62
thermocouple inputs 58
thermocouples 58

returning CJC values in the data stream 60
type 59

threshold (negative) trigger 83
threshold (positive) trigger 82
timer event trigger 85
transferring data from an inprocess buffer 161

trigger source 81
analog event 85
digital event trigger 85
external analog threshold (negative) 83
external analog threshold (positive) 82
external digital (TTL) 82
extra trigger 85
software (internal) 82
Sync Bus 84
timer event trigger 85

triggered scan mode 76
troubleshooting checklist 168
troubleshooting procedure 168
twos complement data format 65
type, channel 51

U
unmuting the output 71
up/down counting operations 96

flowcharts 138

V
voltage inputs 56

W
wiring configuration 57, 62, 63

resistance measurements 57
RTDs 62
thermistors 63

WOW64 emulator 14
wrap modes 91

multiple 91
none 91
single 92

X
x64 platforms 13
x86 platforms 13
195

Index

196

	Title Page
	Copyright Page
	Table of Contents
	About this Manual
	Intended Audience
	What You Should Learn from this Manual
	Organization of this Manual
	Conventions Used in this Manual
	Related Information
	Where to Get Help

	Getting Started
	What is the DataAcq SDK?
	Quick Start
	What You Need
	Installing the Software
	Creating 32-Bit and 64-Bit Application Programs Using the DataAcq SDK
	Creating 32-Bit Native Windows Applications
	Creating 64-Bit Native Windows Applications

	Using the DataAcq SDK Online Help
	About the Example Programs
	About the Library Function Calling Conventions

	Function Summary
	Data Acquisition Functions
	Information Functions
	Subsystem Capability Queries

	Initialization and Termination Functions
	Configuration Functions
	Operation Functions
	Data Conversion Functions

	Data Management Functions
	Buffer Management Functions
	Buffer List Management Functions

	Using the DataAcq SDK
	System Operations
	Initializing a Device
	Specifying a Subsystem
	Configuring a Subsystem
	Calibrating a Subsystem
	Handling Errors
	Handling Messages
	Releasing the Subsystem and the Driver

	Analog and Digital I/O Operations
	Channels
	Specifying the Channel Type
	Specifying a Single Channel
	Specifying One or More Channels
	Specifying the Channel List Size
	Specifying the Channels in the Channel List
	Inhibiting Channels in the Channel List
	Specifying Synchronous Digital I/O Values in the Channel List

	MultiSensor Inputs
	Voltage Inputs
	Current Measurements
	Resistance Measurements
	Sensor Wiring
	Excitation Current Sources and Values

	IEPE Inputs
	Coupling Type
	Excitation Current Sources and Values

	Thermocouples
	Thermocouple Input Types
	Thermocouple Correction and Linearization

	RTD Inputs
	Thermistor Inputs
	Strain Gage and Bridge-Based Sensor Inputs
	Excitation Voltage
	Strain Gage Type
	Bridge-Based Sensor Type
	Shunt Calibration
	TEDS

	Data Encoding
	Resolution
	Ranges
	Gains
	Specifying the Gain for a Single Channel
	Specifying the Gain for One or More Channels

	Filters
	FIlter Per Channel
	Filter Types

	Data Flow Modes
	Single-Value Operations
	Typical Single-Value Operations
	Simultaneous Single-Value Operations

	Continuous Operations
	Continuous Pre- and Post-Trigger Mode Using a Start and Reference Trigger
	Continuous Post-Trigger Mode
	Continuous Pre-Trigger Mode (Legacy Devices)
	Continuous About-Trigger Mode (Legacy Devices)

	Triggered Scan Mode
	Scan-Per-Trigger Mode
	Internal Retrigger Mode
	Retrigger Extra Mode

	Interrupts
	Clock Sources
	Internal Clock Source
	External Clock Source
	Extra Clock Source

	Trigger Source
	Software (Internal) Trigger Source
	External Digital (TTL) Trigger Source
	External Analog Threshold (Positive) Trigger Source
	External Analog Threshold (Negative) Trigger Source
	Sync Bus Trigger Source
	Analog Event Trigger Source
	Digital Event Trigger Source
	Timer Event Trigger Source
	Extra Trigger Source

	Post-Trigger Scan Count
	Synchronization Mode
	Buffers
	Ready Queue
	Inprocess Queue
	Done Queue
	Buffer and Queue Management
	Buffer Wrap Modes

	DMA Resources

	Counter/Timer Operations
	User Counter/Timers
	Counter/Timer Operation Mode
	Event Counting
	Up/Down Counting
	Frequency Measurement
	Using the Windows Timer
	Using a Pulse of a Known Duration

	Edge-to-Edge Measurement
	Continuous Edge-to-Edge Measurement
	Rate Generation
	One-Shot
	Repetitive One-Shot

	C/T Clock Sources
	Internal C/T Clock
	External C/T Clock
	Internally Cascaded Clock
	Extra C/T Clock Source

	Gate Types
	Software Gate Type
	High-Level Gate Type
	Low-Level Gate Type
	Low-Edge Gate Type
	High-Edge Gate Type
	Any Level Gate Type
	High-Level, Debounced Gate Type
	Low-Level, Debounced Gate Type
	High-Edge, Debounced Gate Type
	Low-Edge, Debounced Gate Type
	Level, Debounced Gate Type

	Pulse Output Types and Duty Cycles

	Measure Counter Operations
	Quadrature Decoder Operations
	Tachometer Operations
	Simultaneous Startup

	Programming Flowcharts
	Single-Value Input Operations
	Single-Value Output Operations
	Continuous Analog Input Operations
	Continuous Analog Output Operations
	Continuous Digital Input Operations
	Continuous Digital Output Operations
	Event Counting Operations
	Up/Down Counting Operations
	Frequency Measurement Operations
	Edge-to-Edge Measurement Operations
	Continuous Edge-to-Edge Measurement Operations
	Pulse Output Operations
	Measure Counter Operations
	Tachometer Operations
	Quadrature Decoder Operations
	Simultaneous Operations

	Product Support
	Sample Code
	Single-Value Analog Input
	Declare Variables and User Functions
	Initialize the Driver
	Get a Handle to the Subsystem
	Set the DataFlow to Single Value
	Configure the Subsystem
	Acquire a Single Value
	Convert the Value to Voltage
	Release the Subsystem and Terminate the Session
	Handle Errors

	Continuous Analog Input
	Declare Variables and User Functions
	Initialize the Driver
	Get a Handle to the Subsystem
	Set the DataFlow to Continuous
	Specify the Channel List and Channel Parameters
	Specify the Clocks
	Specify DMA Usage
	Set Up Window Handle and Buffering
	Configure the Subsystem
	Start the Continuous Analog Input Operation
	Deal with Messages and Buffers
	Convert Values to Voltage
	Clean Up
	Handle Errors

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

