

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.digilentinc.com

USB Device IP Core User Guide

Revised May 18, 2020; Author Tudor Gherman

DOC#: 506-030 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 11

!*!*Under development*!*!

Please note that this version of the IP core is not a final one, but still currently under development. This

notice will be removed once the IP core is in a stable/final state.

1 Introduction

This user guide describes the Digilent USB Device

Controller Intellectual Property. This IP is designed to

provide communication between an AXI Microblaze

system and a USB 2.0 Host.

2 Features

• Capable to operate at 480Mb/s (USB High Speed)

• ULPI Interface

• tested with 2 endpoints

• Integrated DMA engine

3 Overview

The design is divided in two clock domains. The logic on

the ULPI clock side is responsible with the UPLI bus

decoding, speed negotiation and packet decoding. The

logic on the AXI side is responsible for transferring data

between the transmit buffers, receive buffers, context and the main memory.

IP quick facts

Supported device
families

Zynq®-7000, 7 series

Supported user
interfaces

Xilinx®: AXI4, AXI4
Lite, ULPI

Provided with core

Design files VHDL

Simulation model -

Constraints file XDC

Software driver N/A

Tested design flows

Design entry
Vivado™ Design

Suite 2015.4

Synthesis
Vivado Synthesis

2015.4

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 11

Protocol Engine

ULPI

HSNegotiation

Packet_Decoder TX Buffers

RX Buffers

DMA

Context

AXI Stream

Mux

AXIS_MM2S

AXIS_S2MM

AXIS_MM2S

AXIS_S2MM

DMA_Transfer_Manager

DMA_Ops

AXI_Lite

Master

Control Registers

AXI4_Lite

AXI4

AXI4_Lite

ULPI

Figure 1. IP top-level diagram.

3.1 Protocol Engine

This block is responsible with managing communication on the ULPI bus, with speed negotiation and

with packet encoding/decoding.Transmit packet data is passed to the Protocol Engine block through the

TX Buffers, while received packets are placed in the RX Buffers.

3.1.1 ULPI

The ULPI block decodes the data received over the ULPI bus and implements the required frameworks

for NOPID, Transmit packet (PID), Register write (REGW) and register read (REGR) commands. According

to the ULPI specifications, the USB PHY can abort packets that are being transmitted. This requirement is

not implemented yet.

3.1.2 High Speed Negotiation

This block implements the logic required for carrying out the High Speed Negotiation, Reset, Suspend

and Resume as described by Chapter7 of the USB Specifications. Suspend and Resume have not been

tested yet.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 11

3.1.3 Protocol Engine

This block implements Chapter8 (Protocol Layer) of the USB specifications. The implemented and tested

state machines are Dev_Do_BCINTI, Dev_HS_BCO. Dev_HS_Ping, Dev_Do_BCINTO are not tested.

Isochronous transfers are not supported. Handshake responses are generated automatically.

3.1.4 Transmit Buffers

Data is passed from the DMA engine to the Protocol Engine in two stages. Packets are first stored into

an AXI Stream interface FIFO. The second stage is implemented into a dual port BRAM block. Each

endpoint has 1024 bytes reserved and the internal logic is responsible with distributing data from the TX

FIFO to the correct address in BRAM. The transmit buffers are implemented in the Transmit_Path

module

3.1.5 Receive Buffers

The received packet bytes are stored as they arrive in an input buffer. If the packet is received without

errors it is passed to an AXI Stream interface FIFO. If errors are detected, the packet is discarded. There

is no need for individual buffers for each endpoint since the DMA engine will distribute the packets to

the endpoint buffers allocated in system memory. The receive buffer is placed in the top module.

3.2 Context

There are two data structures that provide the information required to transfer data between the ULPI

interface and the system memory. These two structures are the Queue Heads (dQH) and the Transfer

Descriptors (dTD). The software is responsible for creating both Queue Heads and Transfer Descriptors

in system memory and the device controller will fetch a “copy” of each. For more information see 5.3

Device Data Structures.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 11

Figure 2. Device Descriptors.

3.3 DMA Transfer Manager

The DMA Transfer Manager block holds the state machines that control the DMA engine. There are four

“frameworks” implemented in this block: one responsible for priming endpoints, one for control

transfers, one for input packets and one for output packets. Both control information (Context memory)

and packet data need to be transferred for each sequence. For a more detailed description refer to

section 5.4 Device Frameworks

3.4 Control Registers

All control registers are implemented in this block. The processor can read and write registers through

an AXI Lite interface.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 11

4 Interface Descriptions

The interfaces of the Device Controller Core are listed and described in Table 1.

Interface Name Interface Signal Type Init State Description

AXI4 Lite Slave - N/A The AXI4 Lite interface is used to
control register access.

AXI4 Master - N/A The AXI4 master interface is used by
the DMA engine to transfer data
between the device controller and
the system memory.

ULPI Slave - N/A See UTMI+ Low Pin Interface
(ULPI) Specification, Revision
1.1, October 20th, 2004

Table 1. Port descriptions.

5 Hardware Description

5.1 Interrupts

The Status register (USBSTS) and the Interrupt Enable register (USBINTR) are responsible for triggering

interrupts. There are 6 interrupt conditions currently supported by the controller:

1. UI: Set when a transfer is completed. (Bit 0 in USBSTS)

2. NAKI: Set when a device has generated a NAK. (Bit 16 in USBSTS)

3. SLI: Set when the device enters suspend state. (Bit 8 in USBSTS)

4. SRI: Set when a Start of Frame (SOF) packet is received. (Bit 7 in USBSTS)

5. URI: Set when Reset is detected. (Bit 6 in USBSTS)

6. PCI: Port Change Detect. (Bit 2 in USBSTS)

5.2 Endpoint Registers

ENDPTSETUPSTAT: Bits[11:0] are set when the corresponding endpoint receives a setup packet. The

access type for this register is write-one-to-clear.

ENDPTPRIME: Bits [27:16] are relevant for IN endpoints while bits [11:0] are relevant for OUT endpoints.

Software sets a bit to instruct the controller to fetch the corresponding queue head, transfer descriptor

and packet data from the main memory. The access type for this register is write-one-to-set. Hardware

automatically clears the corresponding bits when the prime operation is complete.

ENDPTFLUSH: Bits [27:16] are relevant for IN endpoints while bits [11:0] are relevant for OUT endpoints.

Software sets a bit to instruct the hardware to flush the corresponding endpoint. The access type for this

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 11

register is write-one-to-set. Hardware automatically clears the corresponding bits when the flush

operation is complete.

ENDPTSTAT: Bits [27:16] are relevant for IN endpoints while bits [11:0] are relevant for OUT endpoints.

Hardware sets a bit when the corresponding endpoint has been primed. The access type for this register

is read only.

ENDPTCOMPLETE: Bits [27:16] are relevant for IN endpoints while bits [11:0] are relevant for OUT

endpoints. Hardware sets a bit to indicate that the corresponding endpoint has completed the transfer

that was primed.

ENDPTCTRL{11:0}: Bits [19:18] are relevant for IN endpoints while bits [3:2] are relevant for OUT

endpoints. This register is used to select the endpoint type. Isochronous endpoints are not supported.

The access type for this register is read-write.

5.3 Device Data Structures

The processor does not directly instruct the DMA engine what data and where to/from to transfer it.

Instead, it allocates space in system memory in order to define data structures (Queue Heads and

Transfer Descriptors) that describe each individual transfer. Each endpoint has one corresponding

Queue Head structure (Fig) and a linked list of Transfer Descriptors. The Device controller first fetches

the Queue Head. Afterwards, based on the information specified in the Queue Head, the device

controller fetches the first transfer descriptor and copies it into the Context memory in the Overlay Area

of the corresponding endpoint.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 11

Figure 1. Device Link List example.

5.3.1 Queue Heads (dQH)

The Maximum Packet Length field stores the maximum packet length for each individual endpoint.

The Setup Buffer Bytes 3…0 and Setup Buffer Bytes 7…4 store setup packets received. Setup packets are

always 8 byte long and reading this fields in the Queue head is the only mean by which software can access

setup data.

 Software is also responsible to write the Next dTD Pointer field with the address of the first Transfer

Descriptor.

Figure 4. Device Queue Head.

5.3.2 Transfer Descriptors (dQH)

Transfer Descriptors hold information that effectively describe the DMA transfers that need to take place

in order to move packets between the system memory and TX/RX Buffers.

The Total Bytes field specifies the number of bytes that the device controller is supposed to transmit or

receive in order to consider a transfer completed.

The Status field is written back by the device controller once a transfer is completed. Only bit 7 is currently

used, which represents the active status.

The Buffer Pointer (The device controller currently uses only Page 0) field and the Current Offset field are

used to determine the memory address where packet data is stored.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 11

The Terminate Transfer (T) bit is set by software if the dTD is the last in the linked list. If T is cleared, the

device controller will fetch the next dTD using the information in the Next dTD Pointer field to determine

its address.

The Next dTD Pointer field specifies the address of the following dTD in the linked list.

Figure 5. Device Transfer Descriptor

5.4 Device Frameworks

5.4.1 Priming

Because of the strict timing requirements on the USB bus, data is loaded in the transmit buffers in

advance. This procedure is called priming and it is different between transmit endpoints and receive

endpoints.

5.4.1.1 Transmit Endpoints

1. The device controller fetches the queue head (dQH) from main memory based on the address

written by software in ENPOINTLISTADDR register.

2. The device controller fetches the transfer descriptor from system memory from the address

specified in the Next dTD Pointer field of the previously transferred dQH.

3. The device controller fetches packet data from main memory and fills the transmit buffer

based on the address specified in the Buffer Pointer and Current Offset fields of the previously

transmitted dTD.

4. The device controller updates its “copy” of the Next dTD Pointer field so that it points to the

remaining packet data (if any). When an IN packet will be sent by the host data will be fetched

from that address.

5. The device controller will update the ENPTSTAT and ENDPTPRIME registers.

5.4.1.2 Receive Endpoints

1. The device controller fetches the queue head (dQH) from main memory based on the address

written by software in ENPOINTLISTADDR register.

2. The device controller fetches the transfer descriptor from main memory from the addres

specified in the Next dTD Pointer field of the previously transferred dQH.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 11

3. When an OUT packet will be sent by the host, data from the receive buffer will be transferred

by the device controller into main memory at the address specified in the Buffer Pointer and

Current Offset fields.

4. The device controller will update the ENPTSTAT and ENDPTPRIME registers

5.4.2 Setup Packet Framework

Unless the SLOM bit in USBMODE register is set, the device controller copies the setup packet bytes into

the corresponding dQH in system memory through a DMA transfer. If the interrupts are enabled and the

UI (Bit 0 in USBINTR register) condition is not masked the core will trigger an interrupt.

5.4.3 IN Packet Framework

This sequence of events is triggered when the device successfully responds with data to an IN tken

packet.

1. The device controller checks if there are any bytes left to transmit for the current dTD.

2. If all bytes specified by the dTD have been transmitted, the dTD is copied back in the system

memory with its Status field updated. Otherwise, the state machine jumps to step 4.

3. If the Terminate bit is set, the controller considers the transfer specified by the processed

dTD completed and takes no further action. If Terminate bit is cleared, the next dTD in the

linked list is fetched from main memory from the address specified by the Next dTD Pointer

field.

4. If there are bytes left to transmit for the current dTD, the device controller computes the

address in the data buffer where the remaining data resides and triggers a new DMA transfer.

When the data has been transferred to the TX Buffer, the controller will be ready to respond

to a new IN token sent by the host.

6 Mouse Emulation

The functionality of the core is demonstrated by emulating a mouse on the Genesys2 board. The pointer

can be moved with the push-buttons on the board.

The enumeration process on the device side is carried out by endpoint0. After the speed negotiation is

done, the host will request several descriptors from the device. This requests are encoded in setup

packets. The sequence of events is as follows:

1. The host sends a Token packet with its PID indicating a SETUP token.

2. The host sends an OUT packet with the 8 bytes that make up the setup information.

3. The device controller will copy the setup packet in main memory, more specifically in the

corresponding dQH in the Setup Buffer Bytes fields and triggers an interrupt.

4. The device driver is responsible with preparing the requested response and priming endpoint0.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 11

5. Meanwhile, the device controller will issue NAK handshake packets in response to IN packets

received from the host. Once the endpoint is primed, the device controller will issue a DATA1

packet in response to the IN sent by the host.

6. If an ACK handshake token is received from the host, the device controller will set the

corresponding bit in ENPTCOMPLETE register.

7. The device controller driver is responsible to check if a zero length packet (the status phase of

the control transfer) was received from the host.

This sequence will repeat for all the following control transfers initiated by the host. The descriptors

required are: Device Descriptor, Configuration Descriptor, Device Qualifier Descriptor, String

Descriptor0, String Descriptor1, String Descriptor2, String Descriptor3, HID Report Descriptor. Once the

host gathers all this information will start sending IN tokens on endpoint1. The length and format of the

information coded in the HID reports is specified in the HID Report Descriptor.

7 Limitations

1. ULPI: Extended Register Write (EXTW) and Extended Register Read are not verified (not needed

for the current application). Packet abort is not supported yet.

2. HS_Negotiation (Chapter7): Suspend and Resume are not tested. Remote Wakeup not

implemented. Full Speed and Low Speed not tested.

3. Packet_Decoder(Chapter8): Dev_HS_Ping, Dev_Do_BCINTO are not tested. Isochronous

transfers are not supported. OUT transactions are not working, need to be fixed. OUT packets

are not used with input devices by the HID protocol.

4. Device Data Structures (Context): IOC is ignored. Interrupts are generated when a dTD is

complete regardless of IOC value. Status field of the dTD in not checked by software and is not

correctly written back by hardware. MultO is ignored (it should only be used with isochronous

transfers which are not supported yet). Mult (used only with isochronous packets) field ignored.

ZLT field ignored. Zero Length transfers are dictated by software (dTDs with Total Bytes field set

to 0) only.

5. DMA_Transfer_Manager: Active Status issue. The ZYNQ USB core seems to periodically read

dTDs from main memory and, if the software modifies the active bit after the dTD has been

copied in the Device Controller memory, the Device Controller will still execute the transfer

described by the dTD. This issue was noticed with circular buffers. In the current

implementation, if the dTD is inactive, the USB Device controller will stall. This bit is only used to

indicate that the Device controller has released a buffer.

6. Control Registers: Only registers mentioned in section 5 have been tested. Not all ZYNQ USB

core registers have been implemented.

8 References

The following documents provide additional information on the subjects discussed:

1. Xilinx Inc., UG585: Zynq-7000 AP SoC Technical Reference Manual, v1.10, February 23, 2015.
2. UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1, October 20th, 2004.

USB Device IP Core User Guide

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 11

3. Universal Serial Bus Specification Revision 2.0, April 27, 2000

