

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.digilentinc.com

DMC60C CAN Protocol Guide

Revised October 24, 2018
This manual applies to the DMC60C rev. E.1 with application firmware version 1.23 or newer and
bootloader 1.9 or newer

DOC#: 511-000 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 34

Overview

The DMC60C follows the CAN 2.0B Active Specification, which supports both standard and extended data frames.

Standard data frames include an 11-bit message identifier, which will be referred to as a Standard Identifier (SID) in

this documentation. Extended data frames include the 11-bit Standard Identifier and an additional 18-bit Extended

Identifier (EID), giving these types of frames a 29-bit long message identifier. The DMC60C makes exclusive use of

29-bit message identifiers and does not accept nor transmit any messages containing 11-bit message identifiers.

Byte 3 Byte 2 Byte 1 Byte 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Device Type Manufacturer API Device Number

 Standard Identifier Extended Identifier

 10 9 8 7 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Table 1: Message Identifier Fields

Value Encoding

0 Broadcast Messages Value Encoding

1 Robot Controller 0 Broadcast Messages

2 Motor Controller 1 National Instruments

3 Relay Controller 2 Texas Instruments (Stellaris)

4 Gyro Sensor 3 DEKA

5 Accelerometer Sensor 4 Cross The Road Electronics

6 Ultrasonic Sensor 5 UNKNOWN

7 Gear Tooth Sensor 6 Digilent

8-31 Reserved 7-255 Reserved
Table 2: Device Type Encodings Table 3: Manufacturer Encodings

Enumeration and Device Discovery

Enumeration is the process of discovering the devices attached to the CAN bus. This process is initiated by

transmitting msgidEnum (0x00000240) with the Device Number field of the message identifier set to 0. All devices

that are active on the CAN bus will transmit one or more messages in response to an enumeration request. Each

Digilent device that is present on the bus responds by transmitting two response packets (ENUMRSP0 and

ENUMRSP1) with msgidEnumResp (0x0206F000). If the device has had a Device Number assigned to it then it’s

Device Number will be appended to the message identifier. Otherwise, the Device Number field of the message

identifier will be set to 0.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 34

Since there is a possibility of more than one device responding with the same Device Number it is necessary to

include an additional piece of information to distinguish these devices from one another. This is done by having

each device assign itself a Session ID (sessid) each time it connects to the CAN bus. The Session ID is included in

both ENUMRSP0 and ENUMRSP1 packets, and allows the Robot Controller (or host) to identify when there is more

than one device present on the bus that has the same Device Number assigned to it. The Session ID can then be

used in conjunction with a device’s present Device Number to construct Vendor Commands. Vendor commands

allow the Robot Controller to retrieve additional information from a device, set a device’s Device Number, perform

firmware upgrades, and perform general device configuration.

When a Digilent device receives an enumeration request it will delay its response to that request by 0.5 to 63.5

milliseconds. This is done to prevent the bus from being flooded with messages and reduce frame errors. How long

each device delays its response will depend on whether it’s using the default Device Number (0). If a device is using

the default Device Number, then the amount of delay is pseudo randomly generated using the device’s current

Session ID. If the device has been assigned a non-default Device Number (1-63) then the amount of delay is equal

to Device Number milliseconds.

A typical enumeration process may consist of the following steps:

1. Transmit msgidEnum (0x00000240) with the Device Number field of the message identifier set to 0.

2. Receive ENUMRSP0 and ENUMRSP1 packets for up to 100 milliseconds.

3. Organize ENUMRSP0 and ENUMRSP1 packets by Device Number and Session ID to determine how many

devices are present on the bus.

4. Request Device Descriptors from any device of interest.

The ENUMRSP0 and ENUMRSP1 packets returned by a device provide several useful pieces of information about

the device, including its Product Identifier, Application Firmware revision, Bootloader Firmware Revision, and the

type of firmware that the device is currently executing (Application, Bootloader, or Auxiliary Bootloader).

Additional information can be retrieved from a device by issuing the vcmdGetDescriptors Vendor Command, which

will cause the device to transmit its Device Descriptors. The ENUMRSP0 and ENUMRSP1 packets are described

below. Additional information regarding Device Descriptors and Vendor Commands can be found in their

respective sections.

ENUMRSP0 Data Structure

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

pdid sessid

sessid CAN bus Session ID.
pdid Unsigned 32-bit Product Identifier.

ENUMRSP1 Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

fwverBoot fwverApp flgsEnum sessid

sessid CAN bus Session ID.

flgsEnum Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 rsv imgtyp

 imgtyp Type of firmware currently executing.
 0 = Application
 1 = Bootloader
 2 = Auxiliary Bootloader
 rsv Reserved for future use.
fwverApp Application firmware revision. Device will report 0xFFFF if application isn’t present.
fwverBoot Bootloader firmware revision.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 34

Device Descriptors

The DMC60C stores several string descriptor fields in a dedicated section of flash should not be overwritten as part

of an infield Application or Bootloader firmware update. These fields provide useful information about a device,

such as its name, date of manufacture, and hardware revision. The Robot Controller (or host) may obtain a

device’s string descriptors by using the vcmdGetDescriptors Vendor Command. The device returns its string

descriptors using a field separated binary stream. The first byte of each field serves as a field identifier (idfld). The

second byte of each field is a count of the number of bytes (cb), or characters, that make up the string

corresponding to the current field, which immediately follow the byte count. The following is an example of an

abbreviated binary stream returned in response to the vcmdGetDescriptors Vendor Command:

BYTE # 0 1 2 3 4 5 6 7

DATA idfldSzDevName 6 ‘D’ ‘M’ ‘C’ ‘6’ ‘0’ ‘C’

BYTE # 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

DATA idfldSzProdName 15 ‘D’ ‘i’ ‘g’ ‘i’ ‘l’ ‘e’ ‘n’ ‘t’ ‘ ’ ‘D’ ‘M’ ‘C’ ‘6’ ‘0’ ‘C’

BYTE # 25 26 27 28 29 30 31 32 33 34 35 36 37 38

DATA idfldSzSN 13 ‘2’ ‘1’ ‘0’ ‘3’ ‘3’ ‘4’ ‘3’ ‘A’ ‘7’ ‘9’ ‘F’ ‘2’

Each string field can be individually assigned using commands described in the Vendor Commands section.

The table below defines the field identifiers used to identify each type of descriptor and provides an overview of

the string fields that are available. A detailed description of each string field follows below.

Field Identifier Value Description Maximum
Number of
Characters

Default Value

idfldNone 0 NA NA NA

idfldSzDevName 1 Device Name String 28 “Motor Controller”

idfldSzManName 2 Manufacturer Name String 28 “Digilent”

idfldSzProdName 3 Product Name String 28 “Digilent DMC60C”

idfldSzManDate 4 Manufacture Date String 20 "UNKNOWN"

idfldSzHardWareVer 5 Hardware Version Number String 8 "UNKNOWN"

idfldSzSN 6 Serial Number String 12 "UNKNOWN"

Note: the maximum number of characters does NOT include the zero terminator.
Note: Default Value is the value that will be returned for a field if no value has been set or the EEPROM has been corrupted.
All fields should have a value assigned during the manufacturing test.

Device Name String
The Device Name String is intended to be a user assignable device name. It can be set using the
vcmdSetDevName Vendor Command. During the manufacturing test a default value of “DMC60C” will be
assigned to this field.

Manufacturer Name String
The Manufacturer Name String lists the manufacturer of the product. This is not meant to be a user assignable
field. However, it can be set using the vcmdSetManName Vendor Command. During the manufacturing test a
default value of “Digilent” will be assigned to this field.

Product Name String
The Product Name String provide a descriptive name that corresponds to the device. This is not meant to be a
user assignable field. However, it can be set using the vcmdSetProdName Vendor Command. During the
manufacturing test a default value of “Digilent DMC60C” will be assigned to this field.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 34

Manufacture Date String
The Manufacture Date string lists the date that the product was manufactured. The date string should be of the
format “mm/dd/yy” where “mm” corresponds to the month (1 – 12), “dd” corresponds to the day of the month
(1 – 31), and “yy” corresponds to the year. For example, if the product was manufactured on January 16 of 2018
then a value of “01/16/18” should be assigned. This is not meant to be a user assignable field. However, it can
be set using the vcmdSetManDate Vendor Command. During the manufacturing test the current date will be
assigned to this field.

Hardware Version Number String
The Hardware Version Number string lists the revision of the current PCB assembly contained within the
product. The hardware version number string should be of the format “x.y” where “x” is the major revision
letter and “y” is the minor revision number. For example, if the current revision of the PCB assembly is “E.0”
then a value of “E.0” should be assigned. This is not meant to be a user assignable field. However, it can be set
using the vcmdSetHardwareVer Vendor Command. During the manufacturing test the current PCB assembly
revision will be assigned to this field.

Serial Number String
The Serial Number String is a 12-digit hexadecimal number that is intended to be unique for every device
manufactured. The first 6 digits of the serial number string are fixed to “210334” while the remaining 6 digits
are assigned by the contract manufacturer and should be unique to each device that’s manufactured. This is not
meant to be a user assignable field. However, it can be set using the vcmdSetSN Vendor Command. During the
manufacturing test the device’s serial number will be assigned to this field.

Vendor Commands

Overview

Vendor commands are used for performing general device configuration and maintenance. They are used to set

string descriptors, retrieve string descriptors, assign device numbers, and perform firmware upgrades. All vendor

commands consist of a command packet, a status packet, and optionally include bulk data transfer to or from the

device.

Commands that do not involve transmitting or receiving bulk data are initiated by transmitting a VENDORCMD

packet using identifier msgidVendorCmd. Upon processing this command the device will respond by transmitting a

VENDORSTS packet using message identifier msgidVendorSts. The cerc field of the VENDORSTS packet will contain

an error code corresponding to the command and the byte count field, cb, will be set to 0.

Commands that involve transferring bulk data to the device will include a byte count in the appropriate parameter

of the VENDORCMD packet and will transmit the packet using message identifier msgidVendorCmd. Bulk data will

then be transmitted to the device using message identifier msgidVendorDout. Once all data has been transmitted

the device will respond with a VENDORSTS packet containing an error code and the number of bytes that were

successfully received.

Commands that involve receiving bulk data from a device are initiated by transmitting a VENDORCMD packet using

identifier msgidVendorCmd. Upon processing this command the device will respond with a VENDORSTS packet

containing an error code and the number of bytes that the device intends to transmit in response to the command.

If the command is accepted, then the device will begin transmitting bulk data using message identifier

msgidVendorDin. The device will continue transmitting bulk data until all data has been transmitted, and error has

occurred, or a new command has been received.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 34

Message Identifiers, Error Codes, and Data Structures

Vendor Command Message Identifiers

Message Identifier Value

msgidVendorCmd 0x0206FC00

msgidVendorDout 0x0206FC40

msgidVendorDin 0x0206FC80

msgidVendorSts 0x0206FCC0
Note: All message identifiers transmitted as part of a vendor command should
include a Device Number in the lower 6 bits of the extended identifier.

Vendor Command Error Codes

Error Value Description

cercNoError 0 No error has occurred

cercNotSupported 1 The specified command is not supported by the current firmware image

cercBadParameter 2 One or more parameter specified is invalid for the specified command

cercDataRcvMore 3 The device received more data than was specified in the command

cercInBootloader 4 The device was instructed to the enter the bootloader and the bootloader is running

cercCrcMismatch 5 The CRC computed for the flash page does not match the CRC received from the host

cercFlashWriteFailed 6 The device either failed to erase or write the specified flash page

cercAckReset 7 The device was instructed to reset and now that reset has completed

cercTestPassed 8 The test that was run in response to the received vendor command passed

cercTestFailed 9 The test that was run in response to the received vendor command failed

Test Error Codes

Error Value Description

tercNoError 0 No error has occurred

tercUserAN1 1 Pin AIN1 failed the test specified by the vendor command

tercFwdLimit 2 Pin FWDLIM failed the test specified by the vendor command

tercRevLimit 3 Pin REVLIM failed the test specified by the vendor command

tercQEA 4 Pin QEA failed the test specified by the vendor command

tercQEB 5 Pin QEB failed the test specified by the vendor command

tercQEIdx 6 Pin QEIDX failed the test specified by the vendor command

VENDORCMD Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

PARAM2 PARAM1 cmd sessid

sessid CAN bus Session ID.
cmd Vendor command.
PARAM1 First command parameter. Meaning varies depending on the command.
PARAM2 Second command parameter. Meaning varies depending on the command.

VENDORSTS Data Structure

Byte 3 Byte 2 Byte 1 Byte 0

cb cerc

cerc Command error code returned in response to the most recent command.
cb Count of bytes to be returned through DTI endpoint.

FWVERRSP Data Structure

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 34

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

fwverBoot fwverApp flgsFwr

flgsFwr Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 rsv imgtyp

 imgtyp Type of firmware currently executing.
 0 = Application
 1 = Bootloader
 2 = Auxiliary Bootloader
 rsv Reserved for future use.

fwverApp Application firmware revision. Device will report 0xFFFF if application isn’t present.
fwverBoot Bootloader firmware revision.

Commands

vcmdSetDevNumber 0x01
Parameters
 PARAM1 Device number to assign. Valid values are 1 – 63.
 PARAM2 0
Set the device number to the specified value. The device number is specified in the PARAM1 field of the
VENDORCMD packet, which is transferred with msgidVendorCmd. After the device has received and processed
the command it will respond with a VENDORSTS packet containing msgidVendorSts. If assignment of the new
device number was successful, then the new device number will be present in the lower 6-bits of the EID field of
the VENDORSTS packet and the cerc field will be set to cercNoError. If an error occurred, then the lower 6-bits of
the EID field of the VENDORSTS packet will contain the device’s original device number and the cerc field will
contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of whether the
command was successful.

vcmdSetDevName 0x02
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s device name string to the specified value. The device name string may be up to 64 characters
long, not including the zero terminator, and must be zero terminated. The specified string should be transferred
to the device by sending one or more messages with msgidVendorDout immediately following the vendor
command. Once all characters have been transferred the device will process the command and send a
VENDORSTS packet with msgidVendorSts. If the device name string was successfully written to flash memory,
then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the cerc field
will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of whether the
command was successful.

vcmdSetManName 0x03
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s manufacturer name string to the specified value. The manufacturer name string may be up to
28 characters long, not including the zero terminator, and must be zero terminated. The specified string should
be transferred to the device by sending one or more messages with msgidVendorDout immediately following
the vendor command. Once all characters have been transferred the device will process the command and send
a VENDORSTS packet with msgidVendorSts. If the manufacturer name string was successfully written to flash
memory, then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the
cerc field will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of
whether the command was successful.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 34

vcmdSetProdName 0x04
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s product name string to the specified value. The product name string may be up to 28 characters
long, not including the zero terminator, and must be zero terminated. The specified string should be transferred
to the device by sending one or more messages with msgidVendorDout immediately following the vendor
command. Once all characters have been transferred the device will process the command and send a
VENDORSTS packet with msgidVendorSts. If the product name string was successfully written to flash memory,
then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the cerc field
will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of whether the
command was successful.

vcmdSetManDate 0x05
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s manufacture date string to the specified value. The manufacture date string may be up to 20
characters long, not including the zero terminator, and must be zero terminated. The specified string should be
transferred to the device by sending one or more messages with msgidVendorDout immediately following the
vendor command. Once all characters have been transferred the device will process the command and send a
VENDORSTS packet with msgidVendorSts. If the manufacture date string was successfully written to flash
memory, then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the
cerc field will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of
whether the command was successful.

vcmdSetHardwareVer 0x06
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s hardware version string to the specified value. The hardware version string may be up to 8
characters long, not including the zero terminator, and must be zero terminated. The specified string should be
transferred to the device by sending one or more messages with msgidVendorDout immediately following the
vendor command. Once all characters have been transferred the device will process the command and send a
VENDORSTS packet with msgidVendorSts. If the hardware version string was successfully written to flash
memory, then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the
cerc field will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of
whether the command was successful.

vcmdSetSN 0x07
Parameters
 PARAM1 Number of characters in the string, including the zero terminator.
 PARAM2 0
Set the device’s serial number string to the specified value. The serial number string may be up to 8 characters
long, not including the zero terminator, and must be zero terminated. The specified string should be transferred
to the device by sending one or more messages with msgidVendorDout immediately following the vendor
command. Once all characters have been transferred the device will process the command and send a
VENDORSTS packet with msgidVendorSts. If the serial number string was successfully written to flash memory,
then the cerc field of the VENDORSTS packet will contain cercNoError. If an error occurred, then the cerc field
will contain an applicable error code. The cb field of the VENDORSTS packet will be 0 regardless of whether the
command was successful.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 34

vcmdFlashLEDS 0x50
Parameters
 PARAM1 0
 PARAM2 0
Instruct the device to cycle its LEDs in a rainbow-like pattern. The corner LEDs will continuously toggle between
red, orange, yellow, green, blue, fuchsia, and cyan for 5 seconds and then revert to their previous state. The
device will respond with a VENDORSTS packet containing msgidVendorSts immediately after processing the
command. The cerc field of the VENDORSTS packet will contain cercNoError and the cb field will be set to 0.

vcmdGetDescriptors 0x60
Parameters
 PARAM1 0
 PARAM2 0
Retrieve the device’s string descriptors. After the device has received and processed the command it will
respond with a VENDORSTS packet containing msgidVendorSts. If no error occurred, then the cerc field of the
VENDORSTS packet will contain cercNoError and the cb field will contain the total number of bytes to be
received from the device. The device will then begin transmitting messages with msgidVendorDin, each
containing up to 8 bytes of data. The device will continue to transmit messages with msgidVendorDin until cb
bytes have been transferred, a new command has been received, or an error occurs. The device will NOT
transmit a VENDORSTS packet at the end of the transfer. The string descriptors are returned as a field separated
binary stream. The first byte of each field serves as a field identifier (idfld). The second byte of each field is a
count of the number of bytes (cb), or characters, that make up the string corresponding to the current field,
which immediately follow the byte count. Please note that the string descriptors returned in response to this
command do NOT include a zero-terminator. The robot controller, or host, must parse the binary stream into
the applicable descriptor strings and add zero-terminators as needed.

vcmdGetFwver 0x61
Parameters
 PARAM1 0
 PARAM2 0
Retrieve the device’s firmware version information. This includes the application firmware revision, bootloader
firmware revision, and the type of firmware image that is currently running (bootloader, application, or auxiliary
bootloader). After the device has received and processed the command it will respond with a VENDORSTS
packet containing msgidVendorSts. If no error occurred, then the cerc field of the VENDORSTS packet will
contain cercNoError and the cb field will contain the total number of bytes to be received from the device. The
device will then transmit a FWVERRSP packet with msgidVendorDin, containing cb bytes of data. The device will
NOT transmit a VENDORSTS packet at the end of the transfer. Please note that the fwverApp field of the
FWVERRSP packet will contain 0xFFFF if no application firmware is present in the device’s flash memory.

vcmdGetFlashSeqnum 0x62
Parameters
 PARAM1 0
 PARAM2 0
Retrieve the device’s flash sequence number. The flash sequence number is a 32-bit unsigned value that
represents sequence number corresponding to the most recently written EEPROM section. Each time the
EEPROM section is written to flash the sequence number is incremented. The sequence number, along with
knowledge of the memory map, and the flash endurance, can be used to determine the wear level of the flash
memory that’s used for storing nonvolatile configuration parameters. After the device has received and
processed the vcmdGetFlashSeqnum command it will respond with a VENDORSTS packet containing
msgidVendorSts. If no error occurred, then the cerc field of the VENDORSTS packet will contain cercNoError and
the cb field will contain the total number of bytes to be received from the device. The device will then transmit
a FWVERRSP packet with msgidVendorDin, containing cb bytes of data. The device will NOT transmit a
VENDORSTS packet at the end of the transfer.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 34

vcmdEnterBootloader 0xF0
Parameters
 PARAM1 0
 PARAM2 0
Instruct the device to terminate any application firmware that may be running and jump back into the
bootloader. After the device has received and processed the command it will save the current session ID, set a
flag in persistent memory telling it to remain in the bootloader, and perform a software reset. Once the device
is executing the bootloader firmware it will then respond with a VENDORSTS packet containing msgidVendorSts.
The cerc field of the VENDORSTS packet will contain cercInBootloader and the cb field will be set to 0. If the
device receives this command while it’s already executing the bootloader firmware, then no reset will occur,
and the device will respond with the same status message.

vcmdSoftReset 0xF1
Parameters
 PARAM1 0
 PARAM2 0
Instruct the device to perform a software reset. After the device has received and processed the command it
will save the current session ID, set a flag in persistent memory telling it to send a status packet once the reset
has completed, and perform a software reset. After the device performs the reset and begins executing the
application firmware (if present) then it will respond with VENDORSTS packet containing msgidVendorSts. The
cerc field of the VENDORSTS packet will contain cercAckReset and the cb field will be set to 0. If the device
receives this command and no application firmware is present, then it will still perform the software reset, but
no VENDORSTS packet will be sent.

vcmdEraseWriteFlashPage 0xF2
Parameters
 PARAM1 Image Type (Application = 0, Bootloader = 1, Auxiliary Bootloader = 2)
 PARAM2 Flash Page Number
Erase and then program the specified page of the device’s flash memory. Each page of flash memory contains
1024 instructions, with each instruction being 24-bits wide. However, the device expects each instruction to be
provided as a 32-bit DWORD with the most significant 8-bits serving the function of padding. Additionally, the
device expects a 4-byte CRC32 to immediately follow the 1024 instructions. After the device receives the
command it will verify that the specified image type can be programmed by the currently executing firmware
image and that the specified page number is in the valid range for the specified image type. If the specified
image type cannot be programmed by the current firmware image, then the device will transmit a VENDORSTS
packet with msgidVendorSts and the cerc field of the VENDORSTS packet will contain cercBadParameter
(Bootloader or Auxiliary Bootloader firmware executing) or cercNotSupported (Application firmware executing).
If both the image type and flash page number are valid then the device will configure the DTO endpoint to
receive the flash page and wait for the data transfer to complete. The flash page should then be transferred to
the device by sending messages with msgidVendorDout immediately following the vendor command. Once the
entire flash page has been received the device will compute a CRC32 of the page data, verify that it matches the
CRC32 that it received, erase the page, and then write the new page to flash memory. If the entire flash page
was successfully written, then then the cerc field of the VENDORSTS packet will contain cercNoError. If an error
occurred, then the cerc field will contain an applicable error code. The cb field of the VENDORSTS packet will be
0 regardless of whether the command was successful.

vcmdJ1ShortTest 0xF3
Parameters
 PARAM1 0
 PARAM2 0
Instruct the device to run the J1 Short Circuit Test. Once the test completes the device will respond with a
VENDORSTS packet containing msgidVendorSts. If no short circuits were detected, then the cerc field of the
VENDORSTS packet will contain cercTestPassed. If one or more short circuits were detected, then the least

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 34

significant byte of the cerc field of the VENDORSTS packet will contain cercTestFailed and the most significant
byte of the cerc field will contain a test error code corresponding to the last pin to fail the test. The cb field of
the VENDORSTS packet will be 0 regardless of whether the test passed.

vcmdJ1OpenTest 0xF4
Parameters
 PARAM1 0
 PARAM2 0
Instruct the device to run the J1 Open Circuit Test. Once the test completes the device will respond with a
VENDORSTS packet containing msgidVendorSts. If no open circuits were detected, then the cerc field of the
VENDORSTS packet will contain cercTestPassed. If one or more open circuits were detected, then the least
significant byte of the cerc field of the VENDORSTS packet will contain cercTestFailed and the most significant
byte of the cerc field will contain a test error code corresponding to the last pin to fail the test. The cb field of
the VENDORSTS packet will be 0 regardless of whether the test passed. For this test to pass a loopback fixture
that connects pins 3 to 4, 5 to 7, and 8 to 9 must be connected to header J1 of the device.

Firmware Updates

The DMC60C contains 129KB of internal flash. The internal flash is divided into 43 pages, each of which contain

1024 word addressable blocks. Each address of program memory corresponds to a 16-bit lower word and a 16-bit

upper word. The upper byte of the upper word is unimplemented and always reads 0, meaning that each program

instruction is effectively 24-bits. All program memory addresses are word aligned to the lower word and the

program counter is always executed or decremented by two during execution.

Program Memory Organization

Bit Number 31 24 23 16 15 8 7 0

PC Address Most Significant Word Least Significant Word

0x000000 Phantom Byte Program Memory

0x000002 Phantom Byte Program Memory

0x000004 Phantom Byte Program Memory

0x000006 Phantom Byte Program Memory

Note: phantom byte always reads as ‘0’

The DMC60C’s internal flash has been divided into multiple sections, allowing it to contain both bootloader and

application firmware images, as well as provide non-volatile storage of various configuration parameters and string

descriptors. The table below details the memory map utilized by the DMC60C.

DMC60C Memory Map

Flash Section Byte Address Page Number Byte Length

GOTO Instruction 0x000000 0 0x2

Reset Address 0x000002 0 0x2

Interrupt Vector Table
0x000004

0 0x1FC
0x0001FE

Application Firmware
0x000200 0

0xF5FE
0x00F7FC 30

Application Firmware Version 0x00F7FE 30 0x2

Configuration Parameters
And String Descriptors

0x00F800 31
0x2000

0x0117FE 34

Bootloader Firmware
0x011800 35

0x3FEA
0x0157E8 42

Bootloader Firmware Version 0x0157EA 42 0x2

Flash Configuration Bytes
0x0157EC

42 0x14
0x0157FE

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 34

The DMC60C comes pre-loaded with both bootloader and application firmware images. At power on or software

reset the device will execute the GOTO Instruction and jump to the location specified in the Reset Address section

of the flash memory. This will result in the program counter moving to the beginning of the bootloader firmware

section. The processor will then begin executing the bootloader firmware.

During the initialization process the bootloader reads the fStayInBootloader flag, which is stored in persistent

memory. If the flag is set then the bootloader will continue executing until the next power on or software reset

occurs, and it will make no attempt to load the application firmware. If the flag is cleared, then the bootloader will

read the Application Firmware Version and check to see if a valid application firmware image is present. When the

Application Firmware Version is not 0xFFFF, which is the value set during a page erase operation, the bootloader

assumes the application image is valid, frees up any resources that were in use, and then jumps to the beginning of

the application firmware section. When the Application Firmware Version is 0xFFFF the device will continue

executing the bootloader until the next power on or software reset occurs.

The bootloader can perform Run-time Self Programming (RTSP) of the device’s flash memory. When the

bootloader is executing, a new application firmware can be transferred over the CAN bus and programmed into

flash memory one page at a time using the vcmdEraseWriteFlashPage vendor command.

A Robot Controller (or host) that wishes to update the application Firmware of a DMC60C device must first read in

the hex file containing the firmware and parse it into pages of 4096 bytes (1024 instructions, with the MSB of the

MSW padded with 0xFF). A CRC32 must be computed for each page that’s present in the hex file and appended to

the end of the page. When the device receives the new page, it will compute a CRC32 of the first 4096 bytes and

then compare it to that of the CRC32 that received. If the CRC matches, then the device will proceed to erase the

flash section. Otherwise, it will return a CRC error and abort the operation.

A hex file containing an application firmware image may contain pages that are outside of the flash section that

has been reserved for application images. If the hex file contains data for pages beyond page 30 then the Robot

Controller (or host) should ignore these pages and not transmit them to the device as part of a firmware update.

When the bootloader receives a vcmdEraseWriteFlashPage command it checks the page number specified in the

PARAM2 field and if it’s not in a range that’s valid for an application firmware or auxiliary bootloader firmware (0

to 30), then it will return a status packet containing cercBadParameter and abort the operation. A key ramification

of this is that the bootloader and application must use the same config bits, and if a developer wants to change the

config bits utilized by the application then it’s also necessary to update the bootloader.

Due to the way the bootloader determines the validity of an application firmware image that’s presently stored in

flash it is necessary to set the application firmware version number to 0xFFFF at the beginning of a firmware

update and then write the new version number to flash after all other data has been successfully programmed.

After the DMC60C has received a page of data through the vcmdEraseWriteFlashPage vendor command and

verified that the CRC32 matches it looks at the page number specified in the PARAM2 field of the command. When

page number 30 is specified the bootloader firmware saves the value of firmware version number in a temporary

variable, erases the page, and then writes the first 4092 bytes of the page to flash. When page number 0 is

received the bootloader firmware replaces the reset address specified in the page data with the address of the

beginning of the bootloader firmware image, erases page 0, programs page 0, and then writes the firmware

version number to the last DWORD of page 30. Therefore a Robot Controller (or host) that initiates an application

firmware update should always write page 30 first and page 0 last. Any other pages that are in the valid range for

an application firmware may be written in any order.

Recommended Application Firmware Update Steps:

1. Read and parse the hex file containing the firmware image into pages.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 34

2. Send vcmdEnterBootloader to enter the bootloader and wait for a status packet containing

cercInBootloader, which will confirm that the bootloader is now running.

3. Erase and program flash pages one at a time using the vcmdEraseWriteFlashPage command. Start on

page 30 (the last page of the application firmware section) and work backwards to page 0, programming

each page that’s present in hex file.

4. Send vcmdSoftReset which should cause the bootloader to reset and then load the application firmware.

A status packet containing cercAckReset should be sent by the device shortly after the command is

processed.

5. Send vcmdGetFwver to retrieve the application firmware version number. Verify that it matches that of

the newly programmed image.

Configuration Parameters

Configuration parameters are used for configuring various device settings, including the limit switches, and closed

loop control constant. Most of the parameters that may be set are stored in a reserved section of the DMC60’s

flash memory and are preserved across power cycles. At power on the DMC60’s application firmware reads the

non-volatile parameters from the flash into RAM variables that are maintained while the device is operating.

The Robot Controller (or host) may set a parameter by transmitting a PARAMSET packet with identifier

msgidParamSet. The PARAMSET packet should contain the Session ID of the target device in the sessid field, the

Parameter Identifier in the paramid field, and the desired value in the value field. If the parameter is supported by

the device, then the applicable variable will be updated in RAM immediately and may also be immediately written

to flash if no parameter has been updated in the past 15 seconds. If a parameter has been updated or written to

flash in the past 15 seconds then the flash write will be deferred until no parameters have been updated for 15

seconds, and then the write will take place. This is necessary to reduce flash wear. Once a parameter has been

updated in RAM the device will respond with a PARAMRESP packet with identifier msgidParamResp. The paramid

field of the PARAMREQ packet should contain the Parameter Identifier of the most recently set or requested

parameter and the value field should contain the value that is currently set for that parameter. If no error

occurred, then the perc field will contain percNoError. If the device does not support the specified parameter or an

error occurred, then the perc field will contain an applicable error code and the value field will be set to 0. If the

sessid field does not match the device’s current Session ID then the device will ignore the PARAMSET or

PARAMREQ packet and will not respond with a PARAMRESP packet.

The Robot Controller (or host) may request the value of a parameter by transmitting a PARAMREQ packet with

identifier msgidParamReq. The PARAMREQ packet should contain the Parameter Identifier in the paramid field.

The device will respond with the value of a parameter a PARAMRESP packet with identifier msgidParamResp. The

paramid field of the PARAMREQ packet should contain the Parameter Identifier of the most recently requested

parameter and the value field should contain the value that is currently set for that parameter. If no error

occurred, then the perc field will contain percNoError. If the device does not support the specified parameter or an

error occurred, then the perc field will contain an applicable error code and the value field will be set to 0.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 34

Configuration Command Message Identifiers

Message Identifier Value

msgidParamReq 0x02061800

msgidParamResp 0x02061840

msgidParamSet 0x02061880
Note: All message identifiers transmitted as part of a configuration command
should include a Device Number in the lower 6 bits of the extended identifier.

Configuration Command Error Codes

Error Value Description

percNoError 0 No error has occurred

percBadParameter 1 The specified parameter is not supported

percBadValue 2 The specified value is invalid for the parameter being set

PARAMSET Data Structure

Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

value paramid sessid

sessid CAN bus Session ID.
paramid Configuration parameter to set.
value Value to set for the specified configuration parameter. Meaning varies with parameter.

PARAMREQ Data Structure

Byte 2 Byte 1 Byte 0

paramid sessid

sessid CAN bus Session ID.
paramid Configuration parameter to request.

PARAMRESP Data Structure

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

perc value paramid

paramid Configuration parameter that was most recently set or requested.
value Value set for the specified parameter.
perc Error code returned in response to the most recent Parameter Set or Parameter Request command.

Configuration Parameter Summary

Parameter ID Description
Default

Configuration
Saved in

Flash

paramLimitSwtFwdNormClosed 1 Forward limit switch type Normally Open YES

paramLimitSwtFwdDisabled 2 Forward limit switch enable state Enabled YES

paramLimitSwtRevNormClosed 3 Reverse limit switch type Normally Open YES

paramLimitSwtRevDisabled 4 Reverse limit switch enable state Enabled YES

paramLimitSoftFwdThreshold 5 Forward soft limit threshold 0 YES

paramLimitSoftFwdEnable 6 Forward soft limit enable state Disabled YES

paramLimitSoftRevThreshold 7 Reverse soft limit threshold 0 YES

paramLimitSoftRevEnable 8 Reverse soft limit enable state Disabled YES

paramAdcCurrentMultiplier 9
Multiplier used to convert ADC
readings into current measurements

0x00000816 YES

paramClosedLoopPGainSlot0 10
Slot 0 closed loop control
proportional gain

0 YES

paramClosedLoopIGainSlot0 11 Slot 0 closed loop control integral gain 0 YES

paramClosedLoopDGainSlot0 12
Slot 0 closed loop control derivative
gain

0 YES

paramClosedLoopIZoneSlot0 13
Slot 0 closed loop control integral
accumulator limit

0 (disabled) YES

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 34

paramClosedLoopFGainSlot0 14
Slot 0 closed loop control feed-
forward gain

0 YES

paramClosedLoopAllowableErrorSlot0 15
Slot 0 closed loop control allowable
closed loop error

0 YES

paramClosedLoopRampRateSlot0 16 Slot 0 closed loop control ramp rate 0 (disabled) YES

paramClosedLoopFwdMaxSlot0 17
Slot 0 closed loop control maximum
forward duty cycle

32767 YES

paramClosedLoopRevMaxSlot0 18
Slot 0 closed loop control maximum
reverse duty cycle

-32768 YES

paramClosedLoopFwdNominalSlot0 19
Slot 0 closed loop control forward
nominal duty cycle

0 YES

paramClosedLoopRevNominalSlot0 20
Slot 0 closed loop control reverse
nominal duty cycle

0 YES

paramClosedLoopPGainSlot1 21
Slot 1 closed loop control
proportional gain

0 YES

paramClosedLoopIGainSlot1 22 Slot 1 closed loop control integral gain 0 YES

paramClosedLoopDGainSlot1 23
Slot 1 closed loop control derivative
gain

0 YES

paramClosedLoopIZoneSlot1 24
Slot 1 closed loop control integral
accumulator limit

0 (disabled) YES

paramClosedLoopFGainSlot1 25
Slot 1 closed loop control feed-
forward gain

0 YES

paramClosedLoopAllowableErrorSlot1 26
Slot 1 closed loop control allowable
closed loop error

0 YES

paramClosedLoopRampRateSlot1 27 Slot 1 closed loop control ramp rate 0 (disabled) YES

paramClosedLoopFwdMaxSlot1 28
Slot 1 closed loop control maximum
forward duty cycle

32767 YES

paramClosedLoopRevMaxSlot1 29
Slot 1 closed loop control maximum
reverse duty cycle

-32768 YES

paramClosedLoopFwdNominalSlot1 30
Slot 1 closed loop control forward
nominal duty cycle

0 YES

paramClosedLoopRevNominalSlot1 31
Slot 1 closed loop control reverse
nominal duty cycle

0 YES

paramCurrentLimitPGain 32
Proportional gain constant for current
limiting

0x00640000 YES

paramCurrentLimitIGain 33
Integral gain constant for current
limiting

0x003C0000 YES

paramCurrentLimitDGain 34
Derivative gain constant for current
limiting

0 YES

paramCurrentLimitIZone 35
Integral accumulator limit for current
limiting

0x014CC888 YES

paramCurrentLimitFGain 36
Feed-forward gain constant for
current limiting

0 YES

paramEncoderPosition 41 Current Encoder Position 0 at power on NO

paramClearPositionOnIndex 42
Clear Encoder Position based on the
Index Pin

0 (disabled) NO

paramClearPositionOnFwdLimit 43
Clear Encoder Position based on the
Forward Limit Switch input

0 (disabled) NO

paramClearPositionOnRevLimit 44
Clear Encoder Position based on the
Reverse Limit Switch Input

0 (disabled) NO

paramIndexActiveEdge 45 Index pin active edge 0 (falling) NO

paramActiveFaults 51 Active Faults 0 at power on NO

paramStickyFaults 52 Sticky Faults 0 YES

paramOverCurrentStkyFltCnt 53 Over Current Sticky Fault Count 0 YES

paramOverTempStkyFltCnt 54 Over Temperature Sticky Fault Count 0 YES

paramUnderVoltageStkyFltCnt 55 Under Voltage Sticky Fault Count 0 YES

paramGateDriverStkyFltCnt 56 Get Drive Sticky Fault Count 0 YES

paramCommStkyFltCnt 57 Communications Sticky Fault Count 0 at power on NO

paramContinuousCurrentLimit 61 Continuous current limit 40 amps YES

paramPeakCurrentLimit 62 Peak current limit 60 amps YES

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 34

paramPeakCurrentDuration 63 Peak current duration 500 ms YES

paramCurrentLimitEnable 64 Current limit enable state Disabled YES

paramStatusAnalogFrameRate 91 Analog Status Frame Rate 100 ms NO

paramStatusEncoderFrameRate 92
Quadrature Encoder Status Frame
Rate

100 ms NO

paramStatusGeneralFrameRate 93 General Status Frame Rate 10 ms NO

Fault Codes

Error Value Description

fltOverCurrent 0x0001 Overcurrent fault

fltOverTemp 0x0002 Overtemperature fault

fltUnderVoltage 0x0004 Under voltage fault

fltGateDriver 0x0008 Bridge driver fault (most likely short circuit)

fltComm 0x0010 Communications interface fault

paramLimitSwtFwdNormClosed
Parameters
 paramid 1

 value 1 Forward limit switch is a normally closed switch

 0 Forward limit switch is a normally open switch

Configure the forward limit switch type. The forward limit switch be configured as a normally closed switch by
setting the value field to a ‘1’ or a normally open switch by setting the value field to a ‘0’. The DMC60C uses
internal (weak) pull-ups to pull the forward limit switch pin to 3.3V. When configured as a normally closed
switch the DMC60C will prevent the output from applying a positive voltage to the load when the limit switch
opens, causing the DMC60C to detect a logic ‘1’ on the FWDLIM pin. When configured as a normally open
switch the DMC60C will prevent the output from applying a positive voltage to the load when the limit switch
closes, causing the DMC60C to detect a logic ‘0’ on the FWDLIM pin. This parameter is stored in nonvolatile
memory and is preserved across power cycles.

paramLimitSwtFwdDisabled
Parameters
 paramid 2

 value 0 Forward limit switch input enabled

 1 Forward limit switch input disabled

Configure the forward limit switch enable state. The forward limit switch can be enabled by setting the value
field to a ‘0’ or disabled by setting the value field to a ‘1’. When the forward limit switch is disabled the
DMC60C will allow the output to apply a positive voltage to the load (when set) regardless of the logic level
applied to the FWDLIM pin. This parameter is stored in nonvolatile memory and is preserved across power
cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 34

paramLimitSwtRevNormClosed
Parameters
 paramid 3

 value 1 Reverse limit switch is a normally closed switch

 0 Reverse limit switch is a normally open switch

Configure the reverse limit switch type. The reverse limit switch be configured as a normally closed switch by
setting the value field to a ‘1’ or a normally open switch by setting the value field to a ‘0’. The DMC60C uses
internal (weak) pull-ups to pull the reverse limit switch pin to 3.3V. When configured as a normally closed switch
the DMC60C will prevent the output from applying a negative voltage to the load when the limit switch opens,
causing the DMC60C to detect a logic ‘1’ on the REVLIM pin. When configured as a normally open switch the
DMC60C will prevent the output from applying a negative voltage to the load when the limit switch closes,
causing the DMC60C to detect a logic ‘0’ on the REVLIM pin. This parameter is stored in nonvolatile memory and
is preserved across power cycles.

paramLimitSwtRevDisabled
Parameters
 paramid 4

 value 0 Reverse limit switch input enabled

 1 Reverse limit switch input disabled

Configure the reverse limit switch enable state. The reverse limit switch can be enabled by setting the value
field to a ‘0’ or disabled by setting the value field to a ‘1’. When the reverse limit switch is disabled the DMC60C
will allow the output to apply a negative voltage to the load (when set) regardless of the logic level applied to
the REVLIM pin. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramLimitSoftFwdThreshold
Parameters
 paramid 5
 value 32-bit signed soft forward limit threshold
Configure the soft forward limit threshold. The soft forward limit threshold specifies the maximum position that
the encoder can read in the forward direction. The units are native to the encoder that’s connected to the
expansion header. The DMC60’s control loop runs every 500us. Each time it executes the current position of the
encoder is read and compared to the soft forward limit threshold. If the encoder’s current position is greater
than or equal to the specified soft forward limit threshold and the soft forward limit is enabled, then the
DMC60’s output will be prevented from applying a positive voltage to the load. Both positive and negative soft
limit thresholds are valid. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramLimitSoftFwdEnable
Parameters
 paramid 6

 value 1 Forward soft limit enabled

 0 Forward soft limit disabled

Configure the soft forward limit enable state. The soft forward limit can be enabled by setting the value field to
a ‘1’ or disabled by setting the value field to a ‘0’. When the soft forward limit is disabled the DMC60’s output
will be allowed to apply a positive voltage to the load regardless of the current encoder position and soft
forward limit threshold. This parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 34

paramLimitSoftRevThreshold
Parameters
 paramid 7

 value 32-bit signed soft reverse limit threshold
Configure the soft reverse limit threshold. The soft reverse limit threshold specifies the maximum position that
the encoder can read in the reverse direction. The units are native to the encoder that’s connected to the
expansion header. The DMC60’s control loop runs every 500us. Each time it executes the current position of the
encoder is read and compared to the soft reverse limit threshold. If the encoder’s current position is less than or
equal to the specified soft reverse limit threshold and the soft reverse limit is enabled, then the DMC60’s output
will be prevented from applying a negative voltage to the load. Both positive and negative soft limit thresholds
are valid. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramLimitSoftRevEnable
Parameters
 paramid 8

 value 1 Reverse soft limit enabled

 0 Reverse soft limit disabled

Configure the soft reverse limit enable state. The soft reverse limit can be enabled by setting the value field to a
‘1’ or disabled by setting the value field to a ‘0’. When the soft reverse limit is disabled the DMC60’s output will
be allowed to apply a negative voltage to the load regardless of the current encoder position and soft reverse
limit threshold. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramAdcCurrentMultiplier
Parameters
 paramid 9
 value Signed 16.16 ADC sample to current multiplier
Configure the constant used by the DMC60C to convert ADC measurements into an associated load current in
amps. The DMC60C uses a combination of a current sense resistor, bidirectional current sense amplifier with a
50V/V gain, and a 3.3V reference to measure load currents. The current sense amplifier is biased at 1.65V,
which means a load current of 0 amps will result in the current sense amplifier outputting 1.65V. At power on
the DMC60C performs a calibration procedure to determine the ADC sample value (smpZeroCurrent)
corresponding to no current flow between the M+ and M- terminals. When current flows from the M+ terminal
to the M- terminal the current sense amplifier outputs a voltage between 1.65V and 3.3V, which corresponds to
positive current flow. When current flows from the M- terminal to the M+ terminal the current sense amplifier
outputs a voltage between 1.65V and 0V, corresponding to negative current flow. The DMC60C uses an internal
12-bit ADC to convert this voltage into digitized value every 500 microseconds. The digitized value is then
converted into a signed 16.6 fixed point current measurement (in Amps) using the following formula:
𝑐𝑟𝑛𝑡𝐿𝑜𝑎𝑑 = (𝑠𝑚𝑝𝐴𝑑𝑐 − 𝑠𝑚𝑝𝑍𝑒𝑟𝑜𝐶𝑢𝑟𝑟𝑒𝑛𝑡) ×𝑚𝑝𝑙𝑟𝐴𝑑𝑐𝐶𝑢𝑟𝑟𝑒𝑛𝑡. The multiplier (mplrAdcCurrent) that
corresponds to a given sense resistance (resCrntSns, in ohms) can be calculated using the following formula:

𝑚𝑝𝑙𝑟𝐴𝑑𝑐𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = (
𝑣𝑟𝑒𝑓

4096
×

1

𝑟𝑒𝑠𝐶𝑟𝑛𝑡𝑆𝑛𝑠×50
) × 65536. For example, if the sense resistor has a nominal value of

500 µohms then the 𝑚𝑝𝑙𝑟𝐴𝑑𝑐𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = (
3.3

4096
×

1

0.0005×50
) × 65536 = 2112 or 0x00000840 in hexadecimal.

The DMC60C comes pre-programmed with a multiplier that corresponds to the expected sense resistance
(approximately 510 µohms) so it should not be necessary to configure the multiplier. However, if current
measurements appear to be off then paramAdcCurrentMultiplier can be used to adjust the multiplier used. This
parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 34

paramClosedLoopPGainSlot0
Parameters
 paramid 10
 value signed 16.16 closed loop control proportional gain constant
Configure the proportional gain constant used by motor control profile slot 0. This constant is used during
closed loop control to calculate a proportional increase or decrease in the throttle (duty cycle) due to the
measured closed loop error. This parameter will be utilized for PID calculations when motor control profile slot
0 is specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or
Current). This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopIGainSlot0
Parameters
 paramid 11
 value signed 16.16 closed loop control integral gain constant
Configure the integral gain constant used by motor control profile slot 0. This constant is used during closed
loop control to calculate an integral increase or decrease in the throttle (duty cycle) due to the measured closed
loop error. This parameter will be utilized for PID calculations when motor control profile slot 0 is specified in a
control frame that specifies one of the closed loop control modes (Velocity, Position, or Current). This
parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopDGainSlot0
Parameters
 paramid 12
 value signed 16.16 closed loop control derivative gain constant
Configure the derivative gain constant used by motor control profile slot 0. This constant is used during closed
loop control to calculate the derivative increase or decrease in the throttle (duty cycle) due to the measured
closed loop error. This parameter will be utilized for PID calculations when motor control profile slot 0 is
specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or Current).
This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopIZoneSlot0
Parameters
 paramid 13
 value 31-bit unsigned integral accumulator limit
Configure the integral accumulator limit used by motor control profile slot 0. The integral accumulator limit, or
I-zone, is used to limit how large the integral accumulator can grow during closed loop control. The value sent to
the DMC60C is converted to a 32-bit signed integer and used to set the positive and negative bounds of the
integral accumulator. If the integral accumulator exceeds these bounds while PID calculations are performed,
then the accumulator will be capped to value or -value. This provides a mechanism for combating integral
windup. Setting a value of 0 will disable the limit and allow the integral accumulator to grow without bounds.
This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFGainSlot0
Parameters
 paramid 14
 value signed 16.16 closed loop control feed forward gain constant
Configure the feed-forward gain constant used by motor control profile slot 0. This constant is used during
closed loop control to calculate the number of throttle units to contribute to the duty cycle as the proportion of
the setpoint (target Velocity, Position, or Current) independent of the error. For example, if the target current is
20.0 amps and you want to apply 50% throttle for this setpoint then the feed forward gain would be set to
0.50×32767

20.0
= 819.175. Convert this to fixed-point by multiplying by 65536. This results in a value of 0x03332CCC

(hex), which is what should be sent to the DMC60C in the value field of the PARAMSET packet. The feed-forward

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 34

term can be excluded from the PID calculations by specifying a value of 0 for the gain. This parameter will be
utilized for PID calculations when motor control profile slot 0 is specified in a control frame that specifies one of
the closed loop control modes (Velocity, Position, or Current). This parameter is stored in nonvolatile memory
and is preserved across power cycles.

paramClosedLoopAllowableErrorSlot0
Parameters
 paramid 15
 value 31-bit unsigned allowable closed loop error
Configure the allowable closed loop error used by motor control profile slot 0. The allowable closed loop error
specifies the minimum error required for the PID controller to calculate a non-zero contribution to the output
throttle (duty cycle) based on the P, I, and D terms. If the allowable error is set to a non-zero value and the
measured error is less than the allowable error then the P, I, and D terms will contribute 0 throttle units to the
output throttle calculation and the integral accumulator will be cleared. If the allowable error is set to 0 or the
measured error exceeds the allowable error then P, I, and D terms are included in the output throttle
calculation. The feed-forward gain constant, or F term, is included in the output throttle calculation regardless
of the allowable error setting. This parameter will be utilized for PID calculations when motor control profile slot
0 is specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or
Current). This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopRampRateSlot0
Parameters
 paramid 16
 value 31-bit unsigned closed loop ramp rate
Configure the closed loop ramp rate used by motor control profile slot 0. The closed loop ramp rate specifies
the maximum number of throttle units the output can change by each time the control loop executes in closed
loop control mode (Velocity, Position, or Current). For example, If the closed loop ramp rate is set to 1000 and
the PID update function determines that the throttle should be increased by 5000 units then the immediate
throttle increase will be limited to 1000 units. If the next PID Update doesn’t change the target throttle output
value, the throttle will be increased by another 1000 units the next time the control loop executes. This process
will continue until the target throttle is reached or a new throttle value is calculated. The control loop executes
once every 500 µs. Therefore, specifying a closed loop ramp rate of 16 would result in it taking approximately
1.02 seconds to go from 0% throttle (0) to 100% throttle (32767). Specifying a value of 0 for the closed loop
ramp rate disables throttling and allows the output to be immediately set to the target value. This parameter is
stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFwdMaxSlot0
Parameters
 paramid 17
 value 32-bit signed closed loop control maximum forward duty cycle
Configure the closed loop control maximum forward duty cycle used by motor control profile slot 0. The
maximum forward duty cycle is the largest positive duty cycle that may be applied to the output when motor
control profile slot 0 is specified in a control frame that specifies one of the closed loop control modes (Velocity,
Position, or Current). The value specified for this parameter should be restricted to be within the range of 0 to
32767. This parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 34

paramClosedLoopRevMaxSlot0
Parameters
 paramid 18
 value 32-bit signed closed loop control maximum reverse duty cycle
Configure the closed loop control maximum reverse duty cycle used by motor control profile slot 0. The
maximum reverse duty cycle is the largest negative duty cycle that may be applied to the output when motor
control profile slot 0 is specified in a control frame that specifies one of the closed loop control modes (Velocity,
Position, or Current). The value specified for this parameter should be restricted to be within the range of
-32768 to 0. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFwdNominalSlot0
Parameters
 paramid 19
 value 32-bit signed closed loop control nominal forward duty cycle
Configure the closed loop control nominal forward duty cycle used by motor control profile slot 0. The nominal
forward duty cycle is the smallest positive duty cycle that may be applied to the output when the closed loop
error exceeds the allowable closed loop error specified for the selected motor profile slot. The closed loop
nominal forward duty cycle is only utilized when the control frame specifies one of the closed loop control
modes (Velocity, Position, or Current). The value specified for this parameter should be restricted to be within
the range of 0 to 32767. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopRevNominalSlot0
Parameters
 paramid 20
 value 32-bit signed closed loop control nominal reverse duty cycle
Configure the closed loop control nominal reverse duty cycle used by motor control profile slot 0. The nominal
reverse duty cycle is the smallest negative duty cycle that may be applied to the output when the closed loop
error exceeds the allowable closed loop error specified for the selected motor profile slot. The closed loop
nominal reverse duty cycle is only utilized when the control frame specifies one of the closed loop control
modes (Velocity, Position, or Current). The value specified for this parameter should be restricted to be within
the range of -32768 to 0. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopPGainSlot1
Parameters
 paramid 21
 value signed 16.16 closed loop control proportional gain constant
Configure the proportional gain constant used by motor control profile slot 1. This constant is used during
closed loop control to calculate a proportional increase or decrease in the throttle (duty cycle) due to the
measured closed loop error. This parameter will be utilized for PID calculations when motor control profile slot
1 is specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or
Current). This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopIGainSlot1
Parameters
 paramid 22
 value signed 16.16 closed loop control integral gain constant
Configure the integral gain constant used by motor control profile slot 1. This constant is used during closed
loop control to calculate an integral increase or decrease in the throttle (duty cycle) due to the measured closed
loop error. This parameter will be utilized for PID calculations when motor control profile slot 1 is specified in a
control frame that specifies one of the closed loop control modes (Velocity, Position, or Current). This
parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 21 of 34

paramClosedLoopDGainSlot1
Parameters
 paramid 23
 value signed 16.16 closed loop control derivative gain constant
Configure the derivative gain constant used by motor control profile slot 1. This constant is used during closed
loop control to calculate the derivative increase or decrease in the throttle (duty cycle) due to the measured
closed loop error. This parameter will be utilized for PID calculations when motor control profile slot 1 is
specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or Current).
This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopIZoneSlot1
Parameters
 paramid 24
 value 31-bit unsigned integral accumulator limit
Configure the integral accumulator limit used by motor control profile slot 1. The integral accumulator limit, or
I-zone, is used to limit how large the integral accumulator can grow during closed loop control. The value sent to
the DMC60C is converted to a 32-bit signed integer and used to set the positive and negative bounds of the
integral accumulator. If the integral accumulator exceeds these bounds while PID calculations are performed,
then the accumulator will be capped to value or -value. This provides a mechanism for combating integral
windup. Setting a value of 0 will disable the limit and allow the integral accumulator to grow without bounds.
This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFGainSlot1
Parameters
 paramid 25
 value signed 16.16 closed loop control feed forward gain constant
Configure the feed-forward gain constant used by motor control profile slot 1. This constant is used during
closed loop control to calculate the number of throttle units to contribute to the duty cycle as the proportion of
the setpoint (target Velocity, Position, or Current) independent of the error. For example, if the target current is
20.0 amps and you want to apply 50% throttle for this setpoint then the feed forward gain would be set to
0.50×32767

20.0
= 819.175. Convert this to fixed-point by multiplying by 65536. This results in a value of 0x03332CCC

(hex), which is what should be sent to the DMC60C in the value field of the PARAMSET packet. The feed-forward
term can be excluded from the PID calculations by specifying a value of 0 for the gain. This parameter will be
utilized for PID calculations when motor control profile slot 1 is specified in a control frame that specifies one of
the closed loop control modes (Velocity, Position, or Current). This parameter is stored in nonvolatile memory
and is preserved across power cycles.

paramClosedLoopAllowableErrorSlot1
Parameters
 paramid 26
 value 31-bit unsigned allowable closed loop error
Configure the allowable closed loop error used by motor control profile slot 1. The allowable closed loop error
specifies the minimum error required for the PID controller to calculate a non-zero contribution to the output
throttle (duty cycle) based on the P, I, and D terms. If the allowable error is set to a non-zero value and the
measured error is less than the allowable error then the P, I, and D terms will contribute 0 throttle units to the
output throttle calculation and the integral accumulator will be cleared. If the allowable error is set to 0 or the
measured error exceeds the allowable error then P, I, and D terms are included in the output throttle
calculation. The feed-forward gain constant, or F term, is included in the output throttle calculation regardless
of the allowable error setting. This parameter will be utilized for PID calculations when motor control profile slot
1 is specified in a control frame that specifies one of the closed loop control modes (Velocity, Position, or
Current). This parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 22 of 34

paramClosedLoopRampRateSlot1
Parameters
 paramid 27
 value 31-bit unsigned closed loop ramp rate
Configure the closed loop ramp rate used by motor control profile slot 1. The closed loop ramp rate specifies
the maximum number of throttle units the output can change by each time the control loop executes in closed
loop control mode (Velocity, Position, or Current). For example, If the closed loop ramp rate is set to 1000 and
the PID update function determines that the throttle should be increased by 5000 units then the immediate
throttle increase will be limited to 1000 units. If the next PID Update doesn’t change the target throttle output
value, the throttle will be increased by another 1000 units the next time the control loop executes. This process
will continue until the target throttle is reached or a new throttle value is calculated. The control loop executes
once every 500 µs. Therefore, specifying a closed loop ramp rate of 16 would result in it taking approximately
1.02 seconds to go from 0% throttle (0) to 100% throttle (32767). Specifying a value of 0 for the closed loop
ramp rate disables throttling and allows the output to be immediately set to the target value. This parameter is
stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFwdMaxSlot1
Parameters
 paramid 28
 value 32-bit signed closed loop control maximum forward duty cycle
Configure the closed loop control maximum forward duty cycle used by motor control profile slot 1. The
maximum forward duty cycle is the largest positive duty cycle that may be applied to the output when motor
control profile slot 1 is specified in a control frame that specifies one of the closed loop control modes (Velocity,
Position, or Current). The value specified for this parameter should be restricted to be within the range of 0 to
32767. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopRevMaxSlot1
Parameters
 paramid 29
 value 32-bit signed closed loop control maximum reverse duty cycle
Configure the closed loop control maximum reverse duty cycle used by motor control profile slot 1. The
maximum reverse duty cycle is the largest negative duty cycle that may be applied to the output when motor
control profile slot 1 is specified in a control frame that specifies one of the closed loop control modes (Velocity,
Position, or Current). The value specified for this parameter should be restricted to be within the range of
-32768 to 0. This parameter is stored in nonvolatile memory and is preserved across power cycles.

paramClosedLoopFwdNominalSlot1
Parameters
 paramid 30
 value 32-bit signed closed loop control nominal forward duty cycle
Configure the closed loop control nominal forward duty cycle used by motor control profile slot 1. The nominal
forward duty cycle is the smallest positive duty cycle that may be applied to the output when the closed loop
error exceeds the allowable closed loop error specified for the selected motor profile slot. The closed loop
nominal forward duty cycle is only utilized when the control frame specifies one of the closed loop control
modes (Velocity, Position, or Current). The value specified for this parameter should be restricted to be within
the range of 0 to 32767. This parameter is stored in nonvolatile memory and is preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 34

paramClosedLoopRevNominalSlot1
Parameters
 paramid 31
 value 32-bit signed closed loop control nominal reverse duty cycle
Configure the closed loop control nominal reverse duty cycle used by motor control profile slot 1. The nominal
reverse duty cycle is the smallest negative duty cycle that may be applied to the output when the closed loop
error exceeds the allowable closed loop error specified for the selected motor profile slot. The closed loop
nominal reverse duty cycle is only utilized when the control frame specifies one of the closed loop control
modes (Velocity, Position, or Current). The value specified for this parameter should be restricted to be within
the range of -32768 to 0. This parameter is stored in nonvolatile memory and is preserved across power cycles.
paramCurrentLimitPGain
Parameters
 paramid 32
 value signed 16.16 proportional gain constant used for current limiting
Configure the proportional gain constant used by motor controller while performing current limiting. This
constant is used to calculate a proportional increase or decrease in the throttle (duty cycle) due to the
measured closed loop error. This parameter will be utilized for PID calculations when current limiting is active.
This parameter is stored in nonvolatile memory and is preserved across power cycles. The default value should
be sufficient for most applications and should be tested before any adjustments are made.

paramCurrentLimitIGain
Parameters
 paramid 33
 value signed 16.16 integral gain constant used for current limiting
Configure the integral gain constant used by motor controller while performing current limiting. This constant is
used during closed loop control to calculate an integral increase or decrease in the throttle (duty cycle) due to
the measured closed loop error. This parameter will be utilized for PID calculations when current limiting is
active. This parameter is stored in nonvolatile memory and is preserved across power cycles. The default value
should be sufficient for most applications and should be tested before any adjustments are made.

paramCurrentLimitDGain
Parameters
 paramid 34
 value signed 16.16 derivative gain constant used for current limiting
Configure the derivative gain constant used by motor controller while performing current limiting. This constant
is used during closed loop control to calculate the derivative increase or decrease in the throttle (duty cycle) due
to the measured closed loop error. This parameter will be utilized for PID calculations when current limiting is
active. This parameter is stored in nonvolatile memory and is preserved across power cycles. The default value
should be sufficient for most applications and should be tested before any adjustments are made.

paramCurrentLimitIZone
Parameters
 paramid 35
 value 31-bit unsigned integral accumulator limit used for current limiting
Configure the integral accumulator limit used by motor controller while performing current limiting. The integral
accumulator limit, or I-zone, is used to limit how large the integral accumulator used for current limiting can
grow when current limiting is active. The value sent to the DMC60C is converted to a 32-bit signed integer and
used to set the positive and negative bounds of the integral accumulator. If the integral accumulator exceeds
these bounds while PID calculations are performed, then the accumulator will be capped to value or -value. This
provides a mechanism for combating integral windup. Setting a value of 0 will disable the limit and allow the
integral accumulator to grow without bounds. This parameter is stored in nonvolatile memory and is preserved
across power cycles. The default value should be sufficient for most applications and should be tested before
any adjustments are made.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 24 of 34

paramCurrentLimitFGain
Parameters
 paramid 36
 value signed 16.16 feed forward gain constant used for current limiting
Configure the feed-forward gain constant used by motor controller while performing current limiting. This
constant is used during closed loop control to calculate the number of throttle units to contribute to the duty
cycle as the proportion of the setpoint independent of the error. For example, if the target current is 20.0 amps
and you want to apply 50% throttle for this setpoint then the feed forward gain would be set to
0.50×32767

20.0
= 819.175. Convert this to fixed-point by multiplying by 65536. This results in a value of 0x03332CCC

(hex), which is what should be sent to the DMC60C in the value field of the PARAMSET packet. The feed-forward
term can be excluded from the PID calculations by specifying a value of 0 for the gain. This parameter will be
utilized for PID calculations when current limiting is active. This parameter is stored in nonvolatile memory and
is preserved across power cycles. The default value should be sufficient for most applications and should be
tested before any adjustments are made.

paramEncoderPosition
Parameters
 paramid 41
 value 32-bit signed encoder position
Configure the encoder position. The encoder position is maintained by the QEI module of the DMC60’s MCU
and is continuously updated by the pulse train applied to QEA and QEB inputs of the expansion header. At
power on the encoder’s position is initialized to zero. This may not correspond with the zero point that’s defined
in the end user application, and as such, it may be necessary to set the encoder to a specific position or reset it
to 0 after performing a homing sequence. The encoder’s position is used for closed loop position control and for
determining whether the forward soft limit or reverse soft limit have been hit. The encoder position should only
be configured while the DMC60’s output is disabled.

paramClearPositionOnIndex
Parameters
 paramid 42

 value 1 Encoder position count is cleared by the active edge on the Index pin

 0 Encoder position count is unaffected by the Index pin

Configure the index pin to clear the encoder position count. When a ‘1’ is specified in the value field the
detection of the configured active edge (rising or falling) on the Index pin will cause the encoder position count
to be cleared. Specifying a ‘0’ in the value field causes the DMC60C to ignore the state of the index pin. The
Index pin features an internal pull-up. This makes it possible to connect a normally closed or normally open
switch between the index pin and ground. This parameter is stored in volatile memory and is not preserved
across power cycles.

paramClearPositionOnFwdLimit
Parameters
 paramid 43

 value 1 Encoder position count is cleared by the forward limit switch

 0 Encoder position count is unaffected by the forward limit switch

Configure the forward limit switch to clear the encoder position count. When a ‘1’ is specified in the value field,
the encoder position count will be automatically cleared when the forward limit switch is active. The position
count will continue to be cleared for as long as the forward limit switch remains active. The active state of the
forward limit switch can be configured as normally open or normally closed. The forward limit switch does not
have to be enabled for the encoder position to be cleared. When a ‘0’ in the value field the encoder position is
unaffected by the state of the forward limit switch. This parameter is stored in volatile memory and is not
preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 25 of 34

paramClearPositionOnRevLimit
Parameters
 paramid 44

 value 1 Encoder position count is cleared by the reverse limit switch

 0 Encoder position count is unaffected by the reverse limit switch

Configure the reverse limit switch to clear the encoder position count. When a ‘1’ is specified in the value field,
the encoder position count will be automatically cleared when the reverse limit switch is active. The position
count will continue to be cleared for as long as the reverse limit switch remains active. The active state of the
reverse limit switch can be configured as normally open or normally closed. The reverse limit switch does not
have to be enabled for the encoder position to be cleared. When a ‘0’ in the value field the encoder position is
unaffected by the state of the reverse limit switch. This parameter is stored in volatile memory and is not
preserved across power cycles.

paramIndexActiveEdge
Parameters
 paramid 45

 value 1 Index pin detects rising edges

 0 Index pin detects falling edges

Configure the index pin to detect rising or falling edges. When a ‘1’ is specified in the value field the index pin
will detect an index event whenever a rising edge occurs. When a ‘0’ is specified in the value field the index pin
will detect an index event whenever a falling edge occurs. This parameter is stored in volatile memory and is not
preserved across power cycles.

paramActiveFaults
Parameters
 paramid 51
 value Not applicable
Get a field set (bit field) containing the active faults. A value of ‘1’ in the corresponding bit position indicates
that the associated fault is present. A value of ‘0’ indicates that the fault isn’t currently present. When the
DMC60C detects a fault it disables its output, sets a 3 second countdown timer, and enters the fault state. If no
faults are present after the countdown timer expires then the DMC60C will exit the fault state and return to
running or waiting for link mode (PWM input or CAN input). If another fault occurs before the countdown timer
expires, or the fault is still present after the timer expires, then timer is reset to 3 seconds and the DMC60C
remains in the fault state.

paramStickyFaults
Parameters
 paramid 52
 value Non-zero to clear the sticky faults after reading them, 0 to keep them in tact
Get a field set (bit field) containing the sticky faults. A value of ‘1’ in the corresponding bit position indicates that
the associated fault has occurred at some point, even if it’s not currently present. A value of ‘0’ indicates that
the fault has not occurred since the last time the sticky faults were cleared. When the DMC60C detects a fault, it
sets the bit associated with that fault in a variable that keeps track of the sticky faults. Additionally, it
increments a count variable that keeps track of the number of times the fault has occurred. This allows the
Robot Controller to detect intermittent faults conditions that may have occurred. The sticky fault flags are
stored in nonvolatile memory and are preserved across power cycles.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 26 of 34

paramOverCurrentStkyFltCnt
Parameters
 paramid 53
 value Non-zero to reset the over current sticky fault count after reading it, 0 to maintain the existing

count value
Get the Over Current Sticky Fault Count. The Over Current Sticky Fault Count is the number of times that a new
overcurrent fault has occurred. Specifying a non-zero value in the value field of the PARAMSET packet will clear
the count after it has been read into the PARAMRESP packet. The overcurrent sticky fault count is stored in
nonvolatile memory and is preserved across power cycles.

paramOverTempStkyFltCnt
Parameters
 paramid 54
 value Non-zero to reset the over temperature sticky fault count after reading it, 0 to maintain the

existing count value
Get the Over Temperature Sticky Fault Count. The Over Temperature Sticky Fault Count is the number of times
that a new over temperature fault has occurred. Specifying a non-zero value in the value field of the PARAMSET
packet will clear the count after it has been read into the PARAMRESP packet. The over temperature fault count
is stored in nonvolatile memory and is preserved across power cycles.

paramUnderVoltageStkyFltCnt
Parameters
 paramid 55
 value Non-zero to reset the under voltage sticky fault count after reading it, 0 to maintain the existing

count value
Get the Under Voltage Sticky Fault Count. The Under Voltage Sticky Fault Count is the number of times that a
new under voltage fault has occurred. Specifying a non-zero value in the value field of the PARAMSET packet
will clear the count after it has been read into the PARAMRESP packet. An under voltage fault occurs when the
input voltage is below 5.75 volts for 5 consecutive seconds. The under voltage fault count is stored in
nonvolatile memory and is preserved across power cycles.

paramGateDriverStkyFltCnt
Parameters
 paramid 56
 value Non-zero to reset the gate driver sticky fault count after reading it, 0 to maintain the existing

count value
Get the Gate Driver Sticky Fault Count. The Gate Driver Sticky Fault Count is the number of times that a new
bridge driver fault has occurred. Specifying a non-zero value in the value field of the PARAMSET packet will clear
the count after it has been read into the PARAMRESP packet. Gate driver faults typically indicate that a short-
circuit has occurred. Therefore, the user should check to see if the M+ or M- leads are shorted to the chassis,
each other, or the power supply. The gate driver fault count is stored in nonvolatile memory and is preserved
across power cycles.

paramCommStkyFltCnt
Parameters
 paramid 57
 value Non-zero to reset the communications sticky fault count after reading it, 0 to maintain the

existing count value
Get the Communications Sticky Fault Count. The Communications Sticky Fault Count is the number of times that
the connection to the CAN bus has been lost since the last power cycle. Specifying a non-zero value in the value
field of the PARAMSET packet will clear the count after it has been read into the PARAMRESP packet.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 27 of 34

paramContinuousCurrentLimit
Parameters
 paramid 61
 value signed 16.16 continuous current limit (in amps)
Configure the Continuous Current Limit. The DMC60C continuously measures the load current. If load current
exceeds the Peak Current Limit for longer than the Peak Current Duration and current limiting is enabled, then
the load current will be limited to the value specified by the Continuous Current Limit. If the Continuous Current
Limit is set to a value that’s greater than or equal to the Peak Current Limit and current limiting is enabled, then
the DMC60C will limit begin limiting the load current immediately after the first time that it detects that the
Continuous Current Limit has been exceeded.

paramPeakCurrentLimit
Parameters
 paramid 62
 value signed 16.16 peak current limit (in amps)
Configure the Peak Current Limit. The DMC60C continuously measures the load current. If load current exceeds
the Peak Current Limit for longer than the Peak Current Duration and current limiting is enabled, then the load
current will be limited to the value specified by the Continuous Current Limit. If the Peak Current Duration is set
to 0 and current limiting is enabled, then the DMC60C will begin applying the Continuous Current Limit
immediately after the first time that it detects that the Peak Current Limit has been exceeded. If the Peak
Current Limit is set to a value that’s smaller than the Continuous Current Limit and current limiting is enabled,
then the DMC60C will begin applying the Continuous Current Limit immediately after it detects that the
Continuous Current Limit has been exceeded.

paramPeakCurrentDuration
Parameters
 paramid 63
 value 16-bit unsigned peak current duration (in milliseconds)
Configure the Peak Current Duration. The DMC60C continuously measures the load current. If load current
exceeds the Peak Current Limit for longer than the Peak Current Duration and current limiting is enabled, then
the load current will be limited to the value specified by the Continuous Current Limit. If the Peak Current
Duration is set to 0 and current limiting is enabled, then the DMC60C will begin applying the Continuous Current
Limit immediately after the first time that it detects that the Peak Current Limit has been exceeded. If the Peak
Current Limit is set to a value that’s smaller than the Continuous Current Limit and current limiting is enabled,
then the DMC60C will begin applying the Continuous Current Limit immediately after it detects that the
Continuous Current Limit has been exceeded.

paramCurrentLimitEnable
Parameters
 paramid 64

 value 1 Current Limit is enabled

 0 Current Limit is disabled

Configure the Current Limit enable state. The Current Limit can be enabled by setting the value field to a ‘1’
or disabled by setting the value field to a ‘0’. When the Current Limit is disabled the DMC60C will not limit
the load current regardless of the values specified for the Continuous Current Limit, Peak Current Limit, and
Peak Current Duration.

paramStatusAnalogFrameRate
Parameters
 paramid 91
 value 32-bit unsigned status message frame rate in milliseconds

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 28 of 34

Configure the rate at which the DMC60C transmits Analog Input, Current, Temperature, and Battery Voltage
Status Frames. These status frames are formatted as STSANALOG packets and are described in the Periodic
Status Messages section. The frame rate can be set to any value between 1 millisecond and 30000 milliseconds.
Power cycling the DMC60C will result in the device reverting to the default frame rate, which is 100
milliseconds.

paramStatusEncoderFrameRate
Parameters
 paramid 92
 value 32-bit unsigned status message frame rate in milliseconds
Configure the rate at which the DMC60C transmits Quadrature Encoder Status Frames. These status frames are
formatted as STSENCODER packets and are described in the Periodic Status Messages section. The frame rate
can be set to any value between 1 millisecond and 30000 milliseconds. Power cycling the DMC60C will result in
the device reverting to the default frame rate, which is 100 milliseconds.

paramStatusGeneralFrameRate
Parameters
 paramid 93
 value 32-bit unsigned status message frame rate in milliseconds
Configure the rate at which the DMC60C transmits General Status Frames. These status frames are formatted as
STSGENERAL packets and are described in the Periodic Status Messages section. The frame rate can be set to
any value between 1 millisecond and 50 milliseconds. Power cycling the DMC60C will result in the device
reverting to the default frame rate, which is 10 milliseconds.

Periodic Status Frames

Overview

Once the DMC60C has detected the presence of the CAN bus it will begin transmitting periodic status frames.

Periodic status frames provide regular feedback to the Robot Controller (or host) and may be useful in

implementing certain types of control applications. Additionally, they provide information that may be useful for

debugging closed loop control configuration parameters.

The rate at which periodic status frames are broadcast is specific to each type of status frame and can be adjusted

setting the appropriate configuration parameter. The DMC60C will contain to broadcast status frames until it

detects the loss of the CAN bus. This occurs when the DMC60C has transmitted too many frames that haven’t

received an acknowledgement (indicating loss of Robot Controller) or too many consecutive frame errors occur.

Message Identifiers and Data Structures

Periodic Status Frame Message Identifiers

Message Identifier Value Default Period

msgidStsGeneral 0x02061400 10 milliseconds

msgidStsEncoder 0x02061480 100 milliseconds

msgidStsAnalog 0x020614C0 100 milliseconds
Note: All message identifiers transmitted as part of a period status frame
should include a Device Number in the lower 6 bits of the extended identifier.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 29 of 34

STSGENERAL Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

errCLoopH errCLoopM errCLoopL fs2 fs1 fs0 dtcApplied

dtcApplied Signed 16-bit integer corresponding to the output duty cycle currently applied to the H-Bridge

fs0 Bit 3 2 1 0

 fFwdLimitNormalClosed fFwdLimitDisabled fFwdLimitHit fFwdLimitPin

 fFwdLimitPin 1 when forward limit pin is high, 0 otherwise
 fFwdLimitHit 1 when forward limit is active, 0 otherwise
 fFwdLimitDisabled 1 when forward limit is disabled, 0 when forward limit is enabled
 fFwdLimitNormalClosed 1 when forward limit switch is normally closed, 0 when normally open

 Bit 7 6 5 4

 fRevLimitNormalClosed fRevLimitDisabled fRevLimitHit fRevLimitPin

 fRevLimitPin 1 when the reverse limit pin is high, 0 otherwise
 fRevLimitHit 1 when the reverse limit is active, 0 otherwise
 fRevLimitDisabled 1 when the reverse limit is disabled, 0 when reverse limit is enabled
 fRevLimitNormalClosed 1 when reverse limit switch is normally closed, 0 when normally open

fs1 Bit 3 2 1 0

 fSoftFwdLimitHit fRevLimitDisableOvrd fFwdLimitDisableOvrd fFwdRevLimitOverride

 fFwdRevLimitOverride 1 when limit switch enable state is being overridden by the control frame, 0
otherwise

 fFwdLimitDisableOvrd 1 when forward limit switch is disabled by the control frame, 0 when forward
limit switch is enabled by the control frame

 fRevLimitDisableOvrd 1 when reverse limit switch is disabled by the control frame, 0 when reverse limit
switch is enabled by the control frame

 fSoftFwdLimitHit 1 when forward soft limit is active, 0 otherwise

 Bit 7 6 5 4

 fCurrentLimitActive fSoftRevLimitEnabled fSoftRevLimitHit fSoftFwdLimitEnabled

 fSoftFwdLimitEnabled 1 when soft forward limit is enabled, 0 when disabled
 fSoftRevLimitHit 1 when reverse limit is active, 0 otherwise
 fSoftRevLimitEnabled 1 when soft reverse limit is enabled, 0 when disabled
 fCurrentLimitActive 1 when the current limit is being enforced, 0 otherwise

fs2 Bit 7 6 5 4 3 2 1 0

 fDivErrBy256 modeSelect fGateDriverFault fUnderVoltageFault fOverTempFault

 fOverTempFault 1 when over temperature fault is active, 0 otherwise
 fUnderVoltageFault 1 when under voltage fault is active, 0 otherwise
 fGateDriverFault 1 when bridge driver fault is active, 0 otherwise

 modeSelect Control Mode
 0: modeVoltage - Open Loop Voltage Control (Duty Cycle)
 1: modeVelocity - Closed Loop Velocity Control
 2: modePosition - Closed Loop Position Control
 3: modeCurrent - Closed Loop Current Control
 4: modeVComp - Voltage Compensation Mode
 5: modeFollower - Slave Follower Mode
 15: modeNoDrive - No Drive (output disabled)
 Note: all other values reserved for future use.

 fDivErrBy256 1 if the returned closed loop error has been divided by 256, 0 otherwise

errCLoopL Low byte of the Closed Loop Error. Meaning is specific the control mode specified in modeSelect
errCLoopM Middle byte of the Closed Loop Error. Meaning is specific the control mode specified in modeSelect
errCLoopH High byte of the Closed Loop Error. Meaning is specific the control mode specified in modeSelect

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30 of 34

STSENCODER Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

flgsEnc rsv1 rsv0 velcntL velcntH poscntL poscntM poscntH

poscntH High byte of the encoder’s current position count. Units are native to the encoder being used.
poscntM Middle byte of the encoder’s current position count. Units are native to the encoder being used.
poscntL Low byte of the encoder’s current position count. Units are native to the encoder being used.
velcntH High byte of the velocity count in native units per 100 milliseconds.
velcntL Low byte of the velocity count in native units per 100 milliseconds.
rsv0 Reserved for future use.
rsv1 Reserved for future use.

flgsEnc Bit 7 6 5 4 3 2 1 0

 rsv2 fQEIdxPin fQEBPin fQEAPin fDivVelBy4 fDivPosBy8

 fDivPosBy8 1 if the returned position count has been divided by 8.
 fDivVelBy4 1 if the returned velocity count has been divided by 4.
 fQEAPin 1 when quadrature encoder A pin is high, 0 otherwise.
 fQEBPin 1 when quadrature encoder B pin is high, 0 otherwise.
 fQEIdxPin 1 when quadrature encoder Index pin is high, 0 otherwise.
 rsv2 Reserved for future use.

STSANALOG Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

vltgVbus tmpAmbient crntOutput vltgAnalogIn

vltgAnalogIn Signed 8.8 input voltage (in volts) corresponding to the voltage on the AIN1 pin.
crntOutput Signed 8.8 load current (in amps) corresponding to the H-Bridge output.
tmpAmbient Signed 8.8 ambient temperature (in degrees C) corresponding to the internal case temperature.
vltgVbus Signed 8.8 input voltage (in volts) corresponding to the motor controller’s bus (battery) voltage.

Quadrature Encoder Status Frames

The DMC60’s internal hardware features a quadrature decoder module that monitors each edge transition on the

channel A and B signals of an attached encoder. Each time an edge transition is detected, the internal position and

velocity count registers are incremented or decremented. An encoder that specifies 1024 cycles per revolution will

report a position count value of 4096 for each revolution that occurs in the forward direction.

Quadrature encoder status frames are encapsulated in a STSENCODER packet and transmitted with

msgidStsEncoder. These frames include the position and velocity count measured by a quadrature encoder that

may be attached to expansion header of the DMC60. The position count is returned as a signed 24-bit value

through the poscntH, poscntM, and poscntL fields of the STSENCODER packet. The Robot Controller (or host)

should multiply the received position count value by 8 when the fDivPosBy8 field is set to a ‘1’. In effect this makes

the position count a signed 27-bit value and limits the measured position to be between -67108864 and 67100863.

Velocity is returned as a signed 16-bit value through the velcntH and velcntL fields of the STSENCODER packet. The

Robot Controller (or host) should multiply the received velocity count value by 4 when the fDivVelBy4 field is set to

a ‘1’. In effect this makes the velocity count a signed 18-bit value and limits measured velocity count to be

between -131072 and 131071. The maximum velocity (in RPM) that can be measured by the DMC60C depends on

the resolution of the encoder being used. While higher resolution encoders provide better accuracy, they also

reduce the maximum velocity that can be measured. For example, an encoder that specifies 1024 cycles per

revolution (4096 counts per revolution) will be limited to measuring velocities between -19200 RPM and

19199.85352 RPM. If a wider measurement range is required, then a lower resolution encoder must be used.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 31 of 34

Velocity is returned as a signed value that indicates the number of native counts (velcnt) that have occurred over a

100ms period. This value can be converted into revolutions per minute (RPM) using the following formulate:

𝑅𝑃𝑀 =
𝑣𝑒𝑙𝑐𝑛𝑡×600

𝐶𝑃𝑅
 . Please note that CPR is the number of counts per revolution (4x the number of cycles per

revolution). For example, if an encoder specifies 20 cycles per revolution then the formula used to calculate RPM is

𝑅𝑃𝑀 =
𝑣𝑒𝑙𝑐𝑛𝑡×600

80
.

Analog Input, Current, Temperature, and Battery Voltage Status

Frame

The DMC60C features onboard circuitry for monitoring an external voltage applied to the AIN1 pin of the

expansion header, the load current of the H-Bridge, the ambient temperature inside of the case, and the bus

voltage (battery input voltage). The firmware uses the on-chip analog to digital converter (ADC) to measure the

voltage output by each of monitoring circuits every 500 µs. The digitized values are then scaled and converted to

the appropriate format for monitoring and performing closed loop control. This information is encapsulated in a

STSANALOG packet and transmitted with msgidStsAnalog.

Each STSANALOG packet contains four fields: vltgAnalogIn, crntOutput, tmpAmbient, and vltgVbus. The

vltgAnalogIn field is a signed 8.8 fixed point value that contains the voltage (in volts) measured on the AIN1 pin of

the expansion header. The AIN1 pin is capable of measuring voltages between 0 and 3.3 volts. The crntOutput field

is a signed 8.8 fixed point value that contains the current (in amps) that’s being consumed by a load attached to

the output of the H-Bridge. The tmpAmbient field is a signed 8.8 fixed point value that contains the ambient

temperature (in degrees C) measured inside the case by the onboard temperature sensor. The vltgVbus field is a

signed 8.8 fixed point value that contains the voltage (in volts) measured for the battery input voltage.

Output Control Protocol

Overview

The DMC60C supports a variety of open loop and closed loop control modes, which may be used to drive a motor

attached to the M+ and M- wires. The following modes are presently supported: Voltage Mode (open loop duty

cycle), Closed Loop Velocity Mode, Closed Loop Position Mode, Closed Loop Current Mode, Voltage Compensation

Mode, and Slave Follower Mode. The use of the Closed Loop Position or Closed Loop Velocity modes requires an

external quadrature encoder to be attached to the DMC60’s expansion header.

The desired control mode and setpoint (target duty cycle, velocity, position, current, or voltage) are specified by

the Robot Controller (or host) as part of a CANCTRL0 packet that’s transmitted with the msgidControl0 identifier.

Each time the DMC60C receives a CANCTRL0 packet it makes any required adjustments to its output and then

restarts an internal heartbeat timer, which is used to implement a 104 millisecond timeout. If the heartbeat timer

expires then the DMC60’s output is disabled, and it enters a halted state, which will cause the LEDs to display

orange, alternating side to side. The DMC60C will then remain in the halted state until a new control frame

specifying a non-zero setpoint is received or until the loss of the CAN bus is detected. Therefore, it is important for

the Robot Controller to send control frames to the DMC60C on a regular basis. Specifying modeNoDrive in the

modeSelect field will also place the DMC60C in the halted state.

The target setpoint is specified through the trgtH, trgtM, and trgtL fields of the CANCTRL0 packet. The units

specified for the trgt field are specific to the control mode (modeVoltage, modeVelocity, modePosition,

modeCurrent, modeVComp, modeFollower) that’s specified in the modeSelect field. When Voltage Mode

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 32 of 34

(modeVoltage) is specified in the modeSelect field trgtM and trgtL specify the 16-bit signed duty cycle used to drive

the H-Bridge. If a value of 0 is specified in the vltgRampSet field, then the output throttle will be immediately set to

the target duty cycle the next time the control loop executes. If a non-zero value is specified in the vltgRampSet

field, then the number of throttle units that the output can change by each time the control loop executes will be

limited to the value that was specified. For example, if the output throttle is currently set to 5000, the trgt field

specifies 10000, and the vltgRampSet field specifies 2500, then the control loop will need to execute twice before

the output throttle is set to a target duty cycle of 10000. The control loop executes every 500 µs. In this example it

may take up to 1 millisecond for the output throttle to be set to the target duty cycle.

When Closed Loop Velocity Mode (modeVelocity) is specified in the modeSelect field trgtH, trgtM, and trgtL specify

a 24-bit signed value that corresponds to the number of native counts (encoder ticks) required in a 100ms period

to achieve the desired velocity. The number of native counts (velcnt) required to achieve a specific RPM can be

calculated using the following formula: 𝑣𝑒𝑙𝑐𝑛𝑡 =
𝑅𝑃𝑀×𝐶𝑃𝑅

600
. Please note that CPR is the number of counts per

revolution (4x the number of cycles per revolution) specified for the quadrature encoder attached to the DMC60’s

expansion header. Each time the control loop executes in Closed Loop Velocity Mode it calculates the error

between measured velocity and the target velocity, uses the constants associated with the motor control profile

slot specified by the pidsltSelect field to calculate a target throttle, and then adjusts the H-Bridge’s output throttle.

When Closed Loop Position Mode (modePosition) is specified in the modeSelect field trgtH, trgtM, and trgtL specify

a 24-bit signed value that corresponds to the number of position counts (encoder ticks) required to achieve the

desired position. Each time the control loop executes in Closed Loop Position Mode it calculates the error between

measured position and the target position, uses the constants associated with the motor control profile slot

specified by the pidsltSelect field to calculate a target throttle, and then adjusts the H-Bridge’s output throttle.

When Closed Loop Current Mode (modeCurrent) is specified in the modeSelect field trgtH, trgtM, and trgtL specify

a signed 8.16 fixed point value that corresponds to the desired load current in amps. Each time the control loop

executes in Closed Loop Current Mode it calculates the error between the measured load current and the target

load current, uses the constants associated with the motor control profile slot specified by the pidsltSelect field to

calculate a target throttle, and then adjusts the H-Bridge’s output throttle.

When Voltage Compensation Mode (modeVComp) is specified in the modeSelect field trgtH, trgtM, and trgtL

specify a signed 8.16 fixed point value that corresponds to the desired output voltage in volts. Each time the

control loop executes in Voltage Compensation Mode the input voltage (bus voltage) is measured and used to

compute the target duty cycle required to achieve the specified target voltage. If the specified output voltage

exceeds the input voltage, then the computed target duty cycle is limited to 100% (32767 or -32768). If a value of 0

is specified in the vltgRampSet field, then the output throttle will be immediately set to the target duty cycle. If a

non-zero value is specified in the vltgRampSet field, then the number of throttle units that the output can change

by each time the control loop executes will be limited to the value that was specified. For example, if the output

throttle is currently set to 5000, the computed target duty cycle is 10000, and the vltgRampSet field specifies 2500,

then output throttle will be set to 7500. If the target duty cycle remains the same, then the output throttle will be

set to 10000 the next time the control loop executes (500 µs later).

When Slave Follower Mode (modeFollower) is specified in the modeSelect field the trgtH and trgtM fields are

ignored and the trgtL field is used to specify the device number of the DMC60C (master) to be followed. In Slave

Follower Mode the DMC60C behaves similar to Voltage Mode (modeVoltage). The primary difference between the

two modes is that the output throttle is set to replicate that of the master, which the master broadcasts through

periodic STSGENERAL packets with msgidStsGeneral. If the DMC60C does not receive a valid STSGENERAL packet

from the master within 104ms then a timeout will occur, and the output throttle will be set to zero.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 33 of 34

The fOverrideBC and fBrakeCoast fields of the CANCTRL0 packet allow the Robot Controller to override the existing

Brake / Coast Mode setting. Specifying a ‘1’ in the fOverrideBC field will result in the DMC60C either Braking

(fBrakeCoast = ‘1’) or Coasting (fBrakeCoast = ‘0’) when the neutral throttle is applied regardless of the previous

Brake / Coast setting. The Brake / Coast LED is updated accordingly to reflect the active setting. If the control frame

specifies a ‘1’ for fOverrideBC and then later specifies ‘0’, the DMC60C reverts to the previous Brake / Coast

setting.

The fRevFeedbackSensor field of the CANCTRL0 packet allows the Robot Controller to instruct the DMC60C to

reverse direction of the feedback sensor (quadrature encoder). If a ‘1’ is specified for fRevFeedbackSensor and

rotation in the clockwise direction previously resulted in a positive position/velocity count, then rotation in the

clockwise direction will now result in a negative position/velocity count. This alleviates the need to physically swap

the QEA and QEB signals when the direction of the quadrature encoder does not match that of the motor. Please

note that the fRevFeedbackSensor field is ignored while operating in Slave Follower Mode.

The fRevMotor field of the CANCTRL0 packet allows the Robot Controller to instruct the DMC60C reverse the

direction of its output. If a ‘1’ is specified for fRevMotor and positive target value previously resulted in clockwise

rotation, then a positive target value will now result in counter-clockwise rotation. This alleviates the need to

physically swap the M+ and M- connections to the motor, which would typically be required when mounting

motors opposite of one another on a drivetrain.

The fsLimitOverride field of the CANCTRL0 packet contains the fEnableLimitOverride, fDisableFwdLimit, and

fDisableRevLimit flags. When the fEnableLimitOverride flag is set to a ‘1’ the fDisableFwdLimit and fDisableRevLimit

flags specify whether the forward and reverse limit switch inputs are enabled. When the fEnableLimitOverride flag

is set to a ‘0’ the forward and reverse limit switch inputs behave as configured through their applicable

configuration parameters.

Message Identifiers and Data Structures

Control 0 Message Identifier

Message Identifier Value

msgidControl0 0x02060000
Note: All message identifiers transmitted as part of a control frame should
include a Device Number in the lower 6 bits of the extended identifier.

CANCTRL0 Data Structure

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

vltgRampSet trgtM trgtL trgtH rsv2 fs1 fs0

fs0 Bit 7 6 5 4 3 2 1 0

 fRevFeedbackSensor pidsltSelect fBrakeCoast fOverrideBC modeSelect

 modeSelect Control Mode
 0: modeVoltage - Open Loop Voltage Control (Duty Cycle)
 1: modeVelocity - Closed Loop Velocity Control
 2: modePosition - Closed Loop Position Control
 3: modeCurrent - Closed Loop Current Control
 4: modeVComp - Voltage Compensation Mode
 5: modeFollower - Slave Follower Mode
 15: modeNoDrive - No Drive (output disabled)
 Note: all other values reserved for future use.

DMC60C™ CAN PROTOCOL

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 34 of 34

 fOverrideBC Enable Brake / Coast Mode Override
 1: Override brake/coast mode setting with the one specified by fBrakeCoast
 0: Use existing brake/coast mode setting and ignore fBrakeCoast

 fBrakeCoast Brake / Coast Override Setting
 1: Brake when neutral throttle is applied
 0: Coast when neutral throttle is applied

 pidsltSelect Motor control profile slot used for closed loop control modes
 1: Slot 1 selected during closed loop control mode
 0: Slot 0 selected during closed loop control mode

 fRevFeedbackSensor Reverse the direction of the feedback sensor
 1: Reverse feedback sensor direction for closed loop velocity/position mode
 0: Use normal feedback sensor direction for closed loop velocity/position mode

fs1 Bit 7 6 5 4 3 2 1 0

 rsv1 fsLimitOverride fRevMotor

 fRevMotor Reverse Motor Direction
 1: Motor is driven in the opposite direction of that specified by the setpoint
 0: Motor is driven in the direction specified by the setpoint

 fsLimitOverride Bit 3 2 1

 fEnableLimitOverride fDisableRevLimit fDisableFwdLimit

 fDisableFwdLimit Enable / Disable Forward Limit Switch
 1: Disable forward limit switch
 0: Enable forward limit switch

 fDisableRevLimit Enable / Disable Reverse Limit Switch
 1: Disable reverse limit switch
 0: Enable forward limit switch

 fEnableLimitOverride Enable / Disable Limit Switch Override
 1: Enable limit switch override
 0: Disable limit switch override

 rsv1 Reserved for future use

rsv2 Reserved for future use
trgtH High byte of target setpoint. Meaning is specific to the control mode specified in modeSelect
trgtL Low byte of target setpoint. Meaning is specific to the control mode specified in modeSelect
trgtM Middle byte of target setpoint. Meaning is specific to the control mode specified in modeSelect
vltgRampSet 16-bit unsigned throttle ramp rate

