
5 Steps to Creating and Deploying
Android™ Data Acquisition Apps
Android™-
based tablets
and
smartphones
are growing at
a phenomenal
rate. You can
do so much on
them – why
not use them
for data
acquisition
applications?

With the
Universal
Library (UL)
for Android
API, you can easily create custom data acquisition apps for Android devices. UL for Android
communicates with supported Measurement Computing DAQ devices over the Android 3.1
platform (API level 12) and later.

The first data acquisition board supported by UL for Android is the BTH-1208LS (/wireless-data-
acquisition/BTH-1208LS.aspx). The BTH-1208LS was designed with tablets and smartphones
in mind as it offers reliable and easy-to-set-up Bluetooth connectivity along with rechargeable
batteries. Later in 2013, UL for Android will be expanded to support a full line of MCC USB data
acquisition devices. For a full list of data acquisition devices supported by UL for Android,
please visit http://www.mccdaq.com/ULforAndroid (/daq-software/universal-library-
android.aspx).

https://www.mccdaq.com/wireless-data-acquisition/BTH-1208LS.aspx
https://www.mccdaq.com/daq-software/universal-library-android.aspx


Step 1 – Download Android SDK
Download the Android Software Development Kit (SDK) for free at
http://developer.android.com/sdk/index.html (http://developer.android.com/sdk/index.html).

While most text-based data acquisition programs are created with C#, most Android
development is performed in Java. Luckily for C# programmers, the two languages have similar
syntax.

Even though the syntax's are similar, if you are unfamiliar with the Android OS and Java
programming, you should first study the Android OS features and the Java API.

Step 2 – Download “UL for Android”
Download “UL for Android” for free at http://www.mccdaq.com/ULforAndroid (/daq-
software/universal-library-android.aspx).

Before you begin programming your DAQ application, it is important to understand the classes
that you need to work with to communicate with MCC data acquisition products. The following
table describes the most important Universal Library for Android classes. For a complete list
and detailed description of the API, please consult the “UL for Android” help file.

Class Description
DaqDeviceManager Allows you to detect and create DAQ devices.

DaqDevice
Represents a DAQ device and contains methods to access its
I/O subsystems, identifying information, and configurations.

http://developer.android.com/sdk/index.html
https://www.mccdaq.com/daq-software/universal-library-android.aspx


AiDevice

Represents an analog input subsystem on a DAQ Device, and
contains analog input methods such as aIn() and aInScan().
This class also contains methods to access AI subsystem
information and configuration.

AoDevice

Represents an analog output subsystem on a DAQ device,
and contains analog output methods such as aOut() and
aOutScan(). This class also contains methods to access AO
subsystem information and configuration.

DioDevice

Represents a digital I/O subsystem on a DAQ device, and
contains digital I/O methods such as dIn() and dOut(). This
class also contains methods to access DIO subsystem
information and configuration.

CioDevice

Represents a counter I/O subsystem on a DAQ device, and
contains counter I/O methods such as cIn() and cClear() This
class also contains methods to access CIO subsystem
information and configuration.

TmrDevice

Represents a timer I/O subsystem on a DAQ device, and
contains timer I/O methods such as tmrOutStart() and
tmrOutStop(). This class also contains methods to access Tmr
subsystem information and configuration.

Step 3 – Download Android Example Projects
MCC provides an array of examples to get you up a running quickly. The examples, listed in the
table below, offer a variety of DAQ functionality. The example projects can be compiled into
downloadable apps.

Some of the examples below are also available as ready-to-run demo apps on Google Play
(https://play.google.com/store/search?q=mccdaq&c=apps&hl=en)™.

Example Project Name Description

AIn Reads an A/D input channel.

AIn_Log
Reads a range of A/D input channels at a specified rate, and
stores the acquired data in a .csv file.

AInScan
Scans a range of A/D input channels and stores the sample
data in an array.

AInScan_Continuous
Scans a range of A/D input channels continuously in the
background and stores the data in an array.

AInScan_Events
Scans D/A channels, displays the latest sample acquired
every EventSize or more samples, and updates the latest
sample upon scan completion or end.

AInScan_ExtClock
Scans a range of A/D input channels and stores the sample
data in an array at a sample rate specified by an external
clock.

https://play.google.com/store/search?q=mccdaq&c=apps&hl=en


AInScan_ExtTrigger
Selects the trigger source used to initiate the A/D conversion
using DaqDevice.aInScan() with the
AiScanOption.EXTTRIGGER option.

AInScan_LoadQueue
Prepares a channel gain queue and loads it to the board. An
analog input function demonstrates how the queue values
work.

AInScan_Plot
Scans a range of A/D input channels continuously in the
background, and plots the latest acquired samples.

AOut Writes a value to a specified D/A output channel.
AOutScan Writes values to a specified D/A output channel.
CIn Resets and reads the event counter.
DBitIn Reads the status of single digital input bit.
DBitOut Sets the state of a single digital output bit.

DBitSetIn
Configures the selected port for input, if necessary, then reads
and displays the value on the port.

DIn Reads a digital input port.
DOut Writes a value to a specified digital output port.
TIn Reads a temperature channel and displays the value.
TmrOut Sends a frequency output to a specified timer.

Step 4 – Import Example Source Code into Eclipse
Eclipse is an Integrated Development Environment (IDE) that is included with the Android SDK
(ADT Bundle). The steps below will import the “UL for Android” example project into the Eclipse
workspace:

Run Eclipse, choose a workspace folder, and click OK. To create a new folder, enter a
name in the Workspace textbox.
Select File»New»Project. The New Project dialog box opens.
Expand the Android folder, select Android Project from Existing Code, and click Next. .
The Import Projects dialog box opens.
Click Browse and navigate to the folder containing the example projects.
Select the Copy projects into workspace checkbox. . When this checkbox is selected, the
projects are copied into the current workspace. This is useful if you want to maintain a
copy of the example project that is separate from the source file. If you do not select this
checkbox, any modifications to the example project are made to the source file.
Click Finish.
Select Window»Show View»Package Explorer to open the example in the Package
Explorer.

Step 5 – Deploying and Running the Example App on a Connected Device
Before you can run the example apps, you must set up the device as follows:

Enable USB debugging on the Android device. Refer to the device documentation for
more information about how to do this.



If using a Bluetooth data acquisition device, make sure that the device is already paired
with the host Android system.

The steps below will complete the process to deploy and run the app on an Android tablet or
smartphone.

From the Package Explorer, select the folder containing the project to run.
Select Run»Run and choose Android Application from the Run As dialog box that opens;
click OK. Eclipse installs the example app on the connected device; the example
automatically opens when installation is complete.


