	Digilent chipKIT IOXP Reference Manual

	[image: image2.png]®

	

	Revision: December 10th, 2014
	1300 NE Henley Court, Suite 3
Pullman, WA 99163

(509) 334 6306 Voice | (509) 334 6300 Fax
	

IOXP Library

[image: image1.wmf] Digilent, Inc.

Introduction

The Digilent PmodIOXP is an I/O expansion module powered by the Analog Devices ADP5589 circuit. Digilent provides a driver library for this module.
This document provides an overview of the operation of this driver library and describes the functions that control its programming interface. Some of the functionality is still under construction and is documented in the IOXP.h.
Overview

The ADP5589 is a 19 I/O port expander with built-in keypad matrix decoder, programmable logic, reset generator, and PWM generator. I/O expanders can be used to increase the number of I/Os available to a processor or to reduce the number of I/Os required through interface connectors for front panel designs. The PmodIOXP device communicates via the I2C interface.
The library offers user access to all the ADP5589 functionality.
The library offers functions that:

· Read / Write register bits. The library provides definitions for register bits to be specified when calling this function.
· Read / Write register group of bits. The library provides definitions for register bits groups to be specified when calling this function.
· Read / Write GPIO related values for all 19 GPIOs (using groups of bits for each GPIO), using multi register access. Apart from these functions, Read / Write registers bits functions can be used in order to access each GPIO value.
· Define Interrupt behavior, specifying

· Event mask

· Function to handle the interrupt

· External interrupt pin where the INT pin is physically connected

· Possibility to define a numeric value for each key.

· Read / Write events related values, identifying events by:

· Key value (for key events, if defined)

· Key row, column (for key events)

· GPI number (for GPI events)

· Logic number (for Logic events)

For more information about the hardware and functional interface of the PmodIOXP refer to the PmodIOXP Reference Manual available for download from the Digilent web site (www.digilentinc.com) and to the ADP5589 datasheet.
Library Operation

Library Interface
The header file IOXP.h defines the functions of the PmodIOXP driver. The library is accessed via the methods defined for the IOXP object class. In order to use this library, the user has to instantiate one library object.
Configuration / Status bits access
All the configuration bits from different registers can be accessed using the SetRegisterBit / GetRegisterBit functions.

The calling of these functions is made by specifying the bit to be accessed.

The library provides definitions for all the needed register bits.
Configuration / Status groups of bits access

There are registers that host fields storing multiple bits values.

They can be accessed using the SetRegisterBitsGroup / GetRegisterBitsGroup functions.

Calling these functions is made by specifying the bits group to be accessed.

The library provides definitions for all the register needed bits groups.

Values involved are right justified, considering the LSb (least semnificative bit) from the group bits as being on position 0, regardless of the position of the bits group in the register.
Key values
The library allows the user to associate a numeric value for each key. This functionality is not offered by ADP5589, its approach only deals with rows and columns to identify a key.
If the keyboard is the one provided by Digilent PmodKYPD, normally, this key value would be the symbol (letter or number) printed as label on the key. If this key value is defined, the user can specify the key value in order to identify the key. If the user does not define key values, the other way to identify the keys is by using the rows and columns information.
By default, the key values are defined as corresponding to PmodKYPD plugged into J1 connector of PmodIOXP. The user can change this by defining a different key mapping.
Events driven functionality
The ADP5589 device is mainly oriented on event driven functionality.
For an easier way of specifying an event, the library implements functions with default value for arguments; thus events are specified in the following manner:
· Normally an event is specified by providing the complete set of parameters:

· (key value, key row, key column, GPI number, Logic number)

· Using default values for arguments, events are specified by providing the parameters:
· (Key value) for key events, when key values are defined

· (-1, key row, key column) for key events, when key values are not defined (unlikely)
· (-1, -1, -1, GPI no) for GPI events

· (-1, -1, -1, -1, Logic no) for Logic events

When more keys have that same value associated, then only the first one of them will be identified with that value.
When events are decoded, all the parameters that receive values must be provided.

GPIO related functions
Many functions accessing GPIO data are implemented in a multi byte approach: data is manipulated for all GPIOs, using multi-register access and multiple byte structures. Apart from these functions, Read / Write registers bits functions can be used in order to access each GPIO value.
This multi byte approach is more efficient when multiple GPIOs must be accessed.

IOXP Library Functions
Communication configuration functions

void begin ()
This function initializes the library.
This function must be called before any other functions in the library are called.

Data access functions
void SetRegisterBit(uint16_t wBitDef, uint8_t bBitVal)

Parameters:

· uint16_t wBitDef
- the definition of the bit to be written.

This definition consists of two bytes: high byte is the register address, low byte is the mask corresponding to the specified bit. It can be one of the values listed in Appendix A: List of defined bits definitions.
· uint8_t bBitVal

- the value to be written to the specified bit. If this is 0, the bit will be cleared, otherwise it will be set.
This function sets the value of the specified bit to the specified value.
The bit specification is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified bit.

Apart from the pre-defined values listed above, the user may use this function to access any register bit, by providing its bit definition.
uint8_t GetRegisterBit(uint16_t wBitDef)

Parameters:

· uint16_t wBitDef
- the definition of the bit to be read.

This definition consists of two bytes: high byte is the register address, low byte is the mask corresponding to the specified bit. It can be one of the values listed in Appendix A: List of defined bits definitions.

Return value

uint8_t - the bit value (0 or 1)

This function returns the value of the specified bit.

The bit definition is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified bit.

Apart from the pre-defined values listed above, the user may use this function to access any register bit, by providing its bit definition.
void SetRegisterBitsGroup(uint16_t wBitDef, uint8_t bVal)
Parameters:

· uint16_t wBitDef
- the definition of the group of bits to be written

The group of bits definition is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified group of bits. Can be one of the values listed in Appendix B: List of groups of bits definitions.
· uint8_t bBitsVal
- the value to be written to the specified group of bits.

This function sets the value of the specified group of bits to the specified value.

A group of bits is a register section that is made of more than one bit, grouped according to their function.
The value is right justified, considering the LSb from the group of bits as being on position 0, regardless of the position of the group of bits in the register.
The group of bits definition is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified group of bits.

Apart from the pre-defined values listed above, the user may use this function to access any register group of bits, by providing its specification.
uint8_t GetRegisterBitsGroup(uint16_t wBitDef)
Parameters:

uint16_t wBitDef
- - the definition of the group of bits to be read

The group of bits definition is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified group of bits. Can be one of the values listed in Appendix B: List of groups of bits definitions.
Return value:

uint8_t - the value of the specified group of bits
This function gets the value of the specified bits group.

A bits group is a field of a register that is made of more than one bit.

The value is right justified, considering the LSb from the group of bits as being on position 0, regardless of the position of the group of bits in the register.
The group of bits definition is made of two bytes: high byte is the register address, low byte is the mask corresponding to the specified group of bits.

Apart from the pre-defined values listed above, the user may use this function to access any register group of bits, by providing its specification.

void SetRegister(uint8_t bAddress, uint8_t bVal)

Parameters:

· uint8_t bAddress - the register address.

The same definitions for the addresses as the name of the register (capital letters) can be used, prefixed with IOXP_ADDR (ex. IOXP_ADR_INT_STATUS, for INT_STATUS register)

· uint8_t bVal - the value to be written to the register.

This function writes the specified value to the specified register.

uint8_t GetRegister(uint8_t bAddress)

Parameters:

· uint8_t bAddress - the register address.

The same definitions for the addresses as the name of the register (capital letters) can be used, prefixed with IOXP_ADDR (ex. IOXP_ADR_INT_STATUS, for INT_STATUS register)
Return value:

uint8_t - the value read from the register

This function returns the value read from the specified register.

Configuration management functions

void SetKeyboardPinConfig(uint8_t bRowCfg, uint16_t wColCfg)
Parameters:

· uint8_t bRowCfg
- one byte containing keyboard rows configuration (Rows 0-7), as a bitmap:

· if bit x from the byte is set, then the pin corresponding to row x is used for keyboard.
· if bit x from the byte is not set, then the pin corresponding to row x is not used for keyboard (used as GPIO).

· uint16_t wColCfg
- two bytes containing keyboard columns configuration (Columns 0-10), as a bitmap:

· if bit x of one of the two bytes is set, then the pin corresponding to column x is used for keyboard.

· if bit x of one of the two bytes is not set, then the pin corresponding to column x is not used for keyboard (used as GPIO).

This function configures the IO pins to be used for keyboard. The input parameters describe rows and columns configuration, as bitmaps containing 1 value for rows / columns used by the keyboard.
void ConfigureInterrupt(uint8_t bParExtIntNo, uint16_t wEventMask, void (*pfIntHandler)())
Parameters:

· uint8_t bParExtIntNo
- The parameter indicating the external interrupt number where the INT pin is physically connected.

It can be one of the parameters from the following list:
	PAR_EXT_INT0
	External interrupt 0

	PAR_EXT_INT1
	External interrupt 1

	PAR_EXT_INT2
	External interrupt 2

	PAR_EXT_INT3
	External interrupt 3

	PAR_EXT_INT4
	External interrupt 4

· uint8_t bEventMask
- The events that are enabled to trigger the interrupt. It can be one or more (OR-ed) parameters from the following list:
	IOXP_INT_EN_EVENT_IEN
	events can trigger interrupt

	IOXP_INT_EN_GPI_IEN
	GPI interrupt enabled

	IOXP_INT_EN_OVERFLOW_IEN
	overflow condition can trigger interrupt

	IOXP_INT_EN_LOCK_IEN
	lock and unlock can trigger interrupt

	IOXP_INT_EN_LOGIC1_INT
	Logic 1 can trigger interrupt

	IOXP_INT_EN_LOGIC2_INT
	Logic 2 can trigger interrupt

· void (*pfIntHandler)()
- pointer to a function that will serve as interrupt handler.
The function configures the interrupt by:

· associating it to a set of events

· associating it to an external interrupt number (0-4)

· associating it to an interrupt handler

Make sure that the interrupt pin of the PmodIOXP is physically connected to the external interrupt pin number corresponding to bParExtIntNo parameter.

void SetIntMaskTimer(uint8_t bIntMaskTimer)

Parameters:

· uint8_t bIntMaskTimer
- the information to be set for INT_MASK_TIMER bits. It can be one of the following time values:
	IOXP_UNLOCK_TIMERS_INT_MASTER_TIMER_DIS
	disabled

	IOXP_UNLOCK_TIMERS_INT_MASTER_TIMER_1SEC
	 1 sec

	IOXP_UNLOCK_TIMERS_INT_MASTER_TIMER_2SEC
	 2 sec

	IOXP_UNLOCK_TIMERS_INT_MASTER_TIMER_30SEC
	30 sec

	IOXP_UNLOCK_TIMERS_INT_MASTER_TIMER_31SEC
	31 sec

This function sets the INT_MASK_TIMER information of the UNLOCK_TIMERS register.
uint8_t GetIntMaskTimer()
Return value:

uint8_t - the information read from INT_MASK_TIMER bits. For possible values see the SetIntMaskTimer function.
This function returns the INT_MASK_TIMER information of the UNLOCK_TIMERS register.

void SetUnlockTimer(uint8_t bUnlockTimer)

Parameters:

· uint8_t bUnlockTimer
- the information to be set for UNLOCK_TIMER bits. It can be one of the following time values:
	IOXP_UNLOCK_TIMER_DIS
	disabled

	IOXP_UNLOCK_TIMER_1SEC
	1 sec

	IOXP_UNLOCK_TIMER_2SEC
	2 sec

	IOXP_UNLOCK_TIMER_3SEC
	3 sec

	IOXP_UNLOCK_TIMER_4SEC
	4 sec

	IOXP_UNLOCK_TIMER_5SEC
	5 sec

	IOXP_UNLOCK_TIMER_6SEC
	6 sec

	IOXP_UNLOCK_TIMER_7SEC
	7 sec

This function sets the UNLOCK_TIMER information of the UNLOCK_TIMERS register.
uint8_t GetUnlockTimer()
Return value:

uint8_t - the information read from UNLOCK_TIMER bits. For possible values see the SetUnlockTimer function.
This function returns the UNLOCK_TIMER information of the UNLOCK_TIMERS register.

void SetRPullConfig(uint8_t *rgbVals)

Parameters:

uint8_t *rgbVals
- the array containing five bytes corresponding to RPULL_CONFIG registers. Each byte contains PULL UP / DOWN options for four rows or columns, according to ADP5589 documentation.
This function sets the value for all five RPULL_CONFIG registers by providing an array containing five bytes.

Each byte contains PULL UP / DOWN options for four rows or columns, according to ADP5589 documentation.

The possible options for each row or column are:

	IOXP_RPULL_CONFIG_300KPU
	enable 300 kΩ pull-up

	IOXP_RPULL_CONFIG_300KPD
	enable 300 kΩ pull-down

	IOXP_RPULL_CONFIG_100KPD
	enable 100 kΩ pull-up

	IOXP_RPULL_CONFIG_300KPD
	disable all pull-up/pull-down resistors

Note that this information can be accessed for each row or column:

- for rows using SetRegisterBitsGroup(IOXP_RPULL_CONFIG_R_PULL_CFG(bRowNo)) (bRowNo between 0 and 7).

- for columns using SetRegisterBitsGroup(IOXP_RPULL_CONFIG_C_PULL_CFG(bColNo)) (bColNo between 0 and 10).
void GetRPullConfig(uint8_t *rgbVals)

Parameters:

uint8_t *rgbVals
- the array containing five bytes corresponding to RPULL_CONFIG registers. Each byte contains PULL UP / DOWN options for four rows or columns, according to ADP5589 documentation.
This function retrieves the PULL UP / DOWN option for all rows and columns into an array containing five bytes.

Each byte contains PULL UP / DOWN options for four rows or columns, according to ADP5589 documentation.

The possible options for each row or column are shown for SetRPullConfig function.

Note that this information can be accessed for each row or column:

- for rows using GetRegisterBitsGroup(IOXP_RPULL_CONFIG_R_PULL_CFG(bRowNo)) (bRowNo between 0 and 7).

- for columns using GetRegisterBitsGroup(IOXP_RPULL_CONFIG_C_PULL_CFG(bColNo)) (bColNo between 0 and 10).
void SetPollTime(uint8_t bPollTime)

Parameters:

· uint8_t bPollTime
- the information to be set for POLL_TIME bits. It can be one of the following time values:
	IOXP_POLL_TIME_CFG_KEY_POLL_TIME_10MS
	10 ms

	IOXP_POLL_TIME_CFG_KEY_POLL_TIME_20MS
	20 ms

	IOXP_POLL_TIME_CFG_KEY_POLL_TIME_30MS
	30 ms

	IOXP_POLL_TIME_CFG_KEY_POLL_TIME_40MS
	40 ms

This function sets the POLL_TIME information of the POLL_TIME_CFG register.
uint8_t GetPollTime ()
Return value:

uint8_t - the information read from POLL_TIME bits. For possible values see the SetPollTime function.
This function returns the POLL_TIME information of the POLL_TIME_CFG register.

void SetCoreFreq(uint8_t bCoreFreq)
Parameters:

· uint8_t bCoreFreq
- the information to be set for CORE_FREQ bits. It can be one of the following:
	IOXP_GENERAL_CFG_B_CORE_FREQ_50K
	 50 kHz

	IOXP_GENERAL_CFG_B_CORE_FREQ_100K
	100 kHz

	IOXP_GENERAL_CFG_B_CORE_FREQ_200K
	200 kHz

	IOXP_GENERAL_CFG_B_CORE_FREQ_500K
	500 kHz

This function sets the CORE_FREQ information of the GENERAL_CFG_B register.
uint8_t GetCoreFreq ()
Return value:

uint8_t - the information read from CORE_FREQ bits. For possible values see the SetCoreFreq function.
This function returns the CORE_FREQ information of the GENERAL_CFG_B register.

Events related functions

void ReadFIFO(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

Parameters:

· int &iKeyVal
- key value - output parameter where the key value will be stored.

It contains -1 value if the event is not a keyboard event or if the key map table contains -1 value.

· uint8_t &bRow
- key row - output parameter where the keyboard row value will be stored.

It contains 0xFF value if the event is not a keyboard event.

· uint8_t &bCol
- key column - output parameter where the keyboard column value will be stored.

It contains 0xFF value if the event is not a keyboard event or if the event corresponds to (Rx, GND)

· uint8_t &bGPI
- GPI no - output parameter where the GPI value will be placed.

It contains 0xFF value if the event is not a GPI event.

· uint8_t &bLogic
- Logic no - output parameter where the Logic value will be placed.

It contains 0xFF value if the event is not a Logic event.

· uint8_t &bEventState
- Event state - output parameter where the state of the event will be stored.
For keys events:

1 - key is pressed

0 - key is released

For GPI and Logic events:

1 - GPI/logic is active

0 - GPI/logic is inactive

This function reads the last event on FIFO, decodes it and returns the specific information.
If the event is a key event, key value, row and column, the information corresponding to the key is stored in output parameters, while the other parameters corresponding to GPI events (bGPI) and Logic events (bLogic) are set to 0xFF.

If the event is a GPI event, the GPI number is stored in bGPI while the other parameters corresponding to key events (keyVal, bRow, bCol) and to Logic events (bLogic) are set to -1 (keyVal) and 0xFF.

If the event is a Logic event, the Logic number is updated in bLogic, while the parameters corresponding to key events (keyVal, bRow, bCol) and to Key events (bLogic) are set to -1 (keyVal) and 0xFF.
The following functions share the same arguments list, and therefore are detailed only once,

and is under construction due to not fully working:
void SetLockEvent(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetUnlock1Event(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetUnlock2Event(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetReset1EventA(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetReset1EventB(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetReset1EventC(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetReset2EventA(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

void SetReset2EventB(int iKeyVal, uint8_t bRow, uint8_t bCol, uint8_t bGPI, uint8_t bLogic, uint8_t bEventState)

Parameters:

· int iKeyVal
- key value

It contains -1 value if the event is not a keyboard event or if the key is specified by row and column information.

· uint8_t &bRow
key row value

It contains 0xFF value if the iKeyVal specifies the key or if the event is not a keyboard event. This parameter has a default value of 0xFF.

· uint8_t &bCol
- key column value

It contains 0xFF value if the iKeyVal specifies the key or if the event is not a keyboard event or if the event corresponds to (Rx, GND). This parameter has a default value of 0xFF.

· uint8_t &bGPI
- GPI number

It contains 0xFF value if the event is not a GPI event. This parameter has a default value of 0xFF.
· uint8_t &bLogic
- Logic number

It contains 0xFF value if the event is not a Logic event. This parameter has a default value of 0xFF.
· uint8_t &bEventState
- Event state -

For keys events:

1 - key is pressed

0 - key is released

For GPI and Logic events:

1 - GPI/logic is active

0 - GPI/logic is inactive

This parameter has a default value of 1.

This function sets the Lock / Unlock1 / Unlock2 / Reset1EventA / Reset1EventB / Reset2EventA / Reset2EventB event (each event corresponding to specific function prototype) according to the specified information.

When more keys have that same value associated, then only the first one of them will be identified with that value
If no key corresponds to the specified key value, no event will be created.

The last five parameters have default values.
The following functions share the same arguments list and therefore are detailed only once:
void GetLockEvent(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetUnlock1Event(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetUnlock2Event(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetReset1EventA(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetReset1EventB(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetReset1EventC(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetReset2EventA(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

void GetReset2EventB(int &iKeyVal, uint8_t &bRow, uint8_t &bCol, uint8_t &bGPI, uint8_t &bLogic, uint8_t &bEventState)

Parameters:

· int &iKeyVal
- key value - output parameter where the key value will be stored.

It contains -1 value if the event is not a keyboard event or if the key map table contains -1 value.

· uint8_t &bRow
- key row - output parameter where the keyboard row value will be stored.
It contains 0xFF value if the event is not a keyboard event.

· uint8_t &bCol
- key column - output parameter where the keyboard column value will be stored.

It contains 0xFF value if the event is not a keyboard event or if the event corresponds to (Rx, GND)

· uint8_t &bGPI
- GPI no - output parameter where the GPI value will be stored.

It contains 0xFF value if the event is not a GPI event.

· uint8_t &bLogic
- Logic no - output parameter where the Logic value will be stored.

It contains 0xFF value if the event is not a Logic event.

· uint8_t &bEventState
- Event state - output parameter where the state of the event will be stored.

For keys events:

1 - key is pressed

0 - key is released

For GPI and Logic events:

1 - GPI/logic is active

0 - GPI/logic is inactive

This function reads the Lock / Unlock1 / Unlock2 / Reset1EventA / Reset1EventB / Reset2EventA / Reset2EventB event (each event corresponding to specific function prototype), decodes it and returns the specific information.

If the event is a key event, keyVal, row and column information corresponding to the key are stored while the other parameters corresponding to GPI events (bGPI) and Logic events (bLogic) are set to 0xFF.

If the event is a GPI event, the GPI number is stored in bGPI while the other parameters corresponding to key events (keyVal, bRow, bCol) and to Logic events (bLogic) are set to -1 (keyVal) and 0xFF.

If the event is a Logic event, the Logic number is updated in bLogic, while the parameters corresponding to key events (keyVal, bRow, bCol) and to Key events (bLogic) are set to -1 (keyVal) and 0xFF respectively.

Keyboard related functions
All the functions in the Events related functions apply to keyboard events.

void SetKeyMap(int table[IOXP_KB_ROWS][IOXP_KB_COLS])
Parameters:

· int table[IOXP_KB_ROWS][IOXP_KB_COLS] - the table containing key mappings
This function sets the value for keys using the values from specified table.

Mapping values on keys is optional, user may use keys just by specifying row and column.

GPIOs related functions
All the functions in the Events related functions apply to GPIO events.

uint32_t GetGPIIntStat()

Return value:

uint8_t - the 32-bit value containing in its 19 LSbs the value of the GPI_INT bits, for each GPI pin. These bits are grouped in the three GPI_INT_STAT 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPI_INT bits, for each GPI pin. These bits are grouped in the three GPI_INT_STAT 8-bit registers corresponding to each of the 19 GPIs.
This is the function used to read which of the GPI pin triggered an interrupt.

Note that each GPI_INT bit can be accessed using the function GetRegisterBit(IOXP_GPI_INT_STAT_GPI_INT(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPIStat()
Return value:

uint8_t - the 32-bit value containing in its 19 LSbs the value of the GPI_STAT bits, for each GPI pin. These bits are grouped in the three GPI_STATUS 8-bit registers
This function returns a value containing in its 19 LSbs the value of the GPI_STAT bits, for each GPI pin. These bits are grouped in the three GPI_STATUS 8-bit registers.
This is the function used to read the input value of the GPIOs defined as inputs.

Note that each GPI_STAT bit can be accessed using the function GetRegisterBit(IOXP_GPI_STATUS_GPI_STAT(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPIIntLevel(uint32_t dwBitMap)
Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPI_INT_LEVEL bits, for each GPI pin. These bits are grouped in the three GPI_INT_LEVEL 8-bit registers.
This function sets the value of the GPI_INT_LEVEL bits from GPI_INT_LEVEL registers for all 19 pins by providing a 32 bit value containing in its 19 bits the specified values.

Note that each GPI_INT_LEVEL bit can be accessed using the function: SetRegisterBit(IOXP_INT_LEVEL_GPI_INT_LEVEL(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPIIntLevel()
Return value:

uint32_t - 32-bit value containing in its 19 LSbs the value of the GPI_INT_LEVEL bits, for each GPI pin. These bits are grouped in the three GPI_INT_LEVEL 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPI_INT_LEVEL bits, for each GPI pin. These bits are grouped in the three GPI_INT_LEVEL 8-bit registers.
Note that each GPI_INT_LEVEL bit can be accessed using the function: GetRegisterBit(IOXP_INT_LEVEL_GPI_INT_LEVEL(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPIEventEn(uint32_t dwBitMap)

Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPI_EVENT_EN bits, for each GPI pin. These bits are grouped in the three GPI_EVENT_EN 8-bit registers.
This function sets the value of the GPI_EVENT_EN bits from GPI_EVENT_EN registers for all 19 pins by providing a 32 bit value containing in its 19 bits the specified values.

Note that each GPI_EVENT_EN bit can be accessed using the function: SetRegisterBit(IOXP_GPI_EVENT_EN_GPI_EVENT_EN(bGPIONo)), where bGPIONo in the 1 - 19 range.
uint32_t GetGPIEventEn()
Return value:

uint32_t - the 32-bit value containing in its 19 LSbs the value of the GPI_EVENT_EN bits, for each GPI pin. These bits are grouped in the three GPI_EVENT_EN 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPI_EVENT_EN bits, for each GPI pin. These bits are grouped in the three GPI_EVENT_EN 8-bit registers.
Note that each GPI_EVENT_EN bit can be accessed using the function: GetRegisterBit(IOXP_GPI_EVENT_EN_GPI_EVENT_EN(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPIDebounceDis(uint32_t dwBitMap)

Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPI_DEB_DIS bits, for each GPI pin. These bits are grouped in the three DEBOUNCE_DIS 8-bit registers.
This function sets the value of the GPI_DEB_DIS bits from DEBOUNCE_DIS registers for all 19 pins by providing a 32-bit value containing in its 19 bits the specified values.

Note that each GPI_DEB_DIS bit can be accessed using the function: SetRegisterBit(IOXP_DEBOUNCE_DIS_GPI_DEB_DIS(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPIDebounceDis()
Return value:

uint32_t - the 32-bit value containing in its 19 LSbs the value of the GPI_DEB_DIS bits, for each GPI pin. These bits are grouped in the three DEBOUNCE_DIS 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPI_DEB_DIS bits, for each GPI pin. These bits are grouped in the three DEBOUNCE_DIS 8-bit registers.
Note that each GPI_DEB_DIS bit can be accessed using the function: GetRegisterBit(IOXP_DEBOUNCE_DIS_GPI_DEB_DIS(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPODataOut(uint32_t dwBitMap)

Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPO_DATA bits, for each GPI pin. These bits are grouped in the three GPO_DATA_OUT 8-bit registers.
This function sets the value of the GPO_DATA bits from GPO_DATA_OUT registers for all 19 pins by providing a 32-bit value containing in its 19 bits the specified values.

Note that each GPO_DATA bit can be accessed using the function:SetRegisterBit(IOXP_GPO_DATA_OUT_GPO_DATA(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPODataOut()
Return value:

uint32_t - the 32-bit value containing in its 19 LSbs the value of the GPO_DATA bits, for each GPI pin. These bits are grouped in the three GPO_DATA_OUT 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPO_DATA bits, for each GPI pin. These bits are grouped in the three GPO_DATA_OUT 8-bit registers.
Note that each GPO_DATA bit can be accessed using the function GetRegisterBit(IOXP_GPO_DATA_OUT_GPO_DATA(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPODataOutMode (uint32_t dwBitMap)

Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPO_OUT_MODE bits, for each GPI pin. These bits are grouped in the three GPO_OUT_MODE 8-bit registers.
This function sets the value of the GPO_OUT_MODE bits from GPO_OUT_MODE registers for all 19 pins by providing a 32-bit value containing in its 19 bits the specified values.

Note that each GPO_OUT_MODE bit can be accessed using the function: SetRegisterBit(IOXP_GPO_OUT_MODE_GPO_OUT_MODE(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPODataOutMode()
Return value:

uint32_t - the 32-bit value containing in its 19 LSbs the value of the GPO_OUT_MODE bits, for each GPI pin. These bits are grouped in the three GPO_OUT_MODE 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPO_OUT_MODE bits, for each GPI pin. These bits are grouped in the three GPO_OUT_MODE 8-bit registers.
Note that each GPO_OUT_MODE bit can be accessed using the function GetRegisterBit(IOXP_GPO_OUT_MODE_GPO_OUT_MODE(bGPIONo)), where bGPIONo is in the 1 - 19 range.
void SetGPIODirection(uint32_t dwBitMap)

Parameters:

· uint32_t dwBitMap
- the 32-bit value containing in its 19 LSbs the value of the GPIO_DIR bits, for each GPI pin. These bits are grouped in the three GPIO_DIRECTION 8-bit registers.
This function sets the value of the GPIO_DIR bits from GPIO_DIRECTION registers for all 19 pins by providing a 32 bit value containing in its 19 bits the specified values.

Note that each GPIO_DIR bit can be accessed using the function SetRegisterBit(IOXP_GPIO_DIRECTION_GPIO_DIR(bGPIONo)), where bGPIONo is in the 1 - 19 range.
uint32_t GetGPIODirection()
Return value:

uint32_t - the 32-bit value containing in its 19 LSbs the value of the GPIO_DIR bits, for each GPI pin. These bits are grouped in the three GPIO_DIRECTION 8-bit registers.
This function returns a value containing in its 19 LSbs the value of the GPIO_DIR bits, for each GPI pin. These bits are grouped in the three GPIO_DIRECTION 8-bit registers.
Note that each GPIO_DIR bit can be accessed using the function GetRegisterBit(IOXP_GPIO_DIRECTION_GPIO_DIR(bGPIONo)), where bGPIONo is in the 1 - 19 range.
Logic blocks related functions
All the functions in the Events related functions apply to Logic block events.

void SetLogicSel1(uint8_t bLogicSel)

Parameters:

· uint8_t bLogicSel - the information to be set for LOGIC1_SEL. It can be one of the following values:
	IOXP_LOGIC_CFG_LOGIC_SEL_OFF
	off/disable

	IOXP_LOGIC_CFG_LOGIC_SEL_AND
	AND

	IOXP_LOGIC_CFG_LOGIC_SEL_OR
	OR

	IOXP_LOGIC_CFG_LOGIC_SEL_XOR
	XOR

	IOXP_LOGIC_CFG_LOGIC_SEL_FF
	FF

	IOXP_LOGIC_CFG_LOGIC_SEL_IN_LA
	IN_LA

	IOXP_LOGIC_CFG_LOGIC_SEL_IN_LB
	IN_LB

	IOXP_LOGIC_CFG_LOGIC_SEL_IN_LC
	IN_LC

This function sets the LOGIC1_SEL information of the LOGIC1_CFG register.
uint8_t GetLogicSel1()
Return value:

uint8_t - the information read from LOGIC1_SEL. For possible values see the SetLogicSel1 function.
This function returns the LOGIC1_SEL information of the LOGIC1_CFG register.
void SetLogicSel2(uint8_t bLogicSel)

Parameters:

· uint8_t bLogicSel - the information to be set for LOGIC2_SEL. For possible values see the SetLogicSel1 function.
This function sets the LOGIC2_SEL information of the LOGIC2_CFG register.
uint8_t GetLogicSel2()
Return value:

uint8_t - the information read from LOGIC2_SEL. For possible values see the SetLogicSel1 function.
This function returns the LOGIC2_SEL information of the LOGIC2_CFG register.
Reset generator related functions
void SetResetCfgResetTriggerTime(uint8_t bResetTriggerTime)
Parameters:

· uint8_t bResetTriggerTime
- the information to be set for RESET_TRIGGER_TIME bits. It can be one of the following time values:
	IOXP_RESET_CFG_RESET_TRIGGER_TIME_IMMED
	Immediate

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_1D0SEC
	1.0 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_1D5SEC
	1.5 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_2D0SEC
	2.0 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_2D5SEC
	2.5 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_3D0SEC
	3.0 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_3D5SEC
	3.5 sec

	IOXP_RESET_CFG_RESET_TRIGGER_TIME_4D0SEC
	4.0 sec

This function sets the RESET_TRIGGER_TIME information of the RESET_CFG register.
uint8_t GetResetCfgResetTriggerTime ()
Return value:

uint8_t - the information read from RESET_TRIGGER_TIME. For possible values see the SetResetCfgResetTriggerTime function.
This function returns the RESET_TRIGGER_TIME information of the RESET_CFG register.

void SetResetCfgResetPulseWidth(uint8_t bResetPulseWidth)
Parameters:

· uint8_t bResetPulseWidth
- the information to be set for RESET_PULSE_WIDTH bits bits. It can be one of the following time values:
	IOXP_RESET_CFG_RESET_PULSE_WIDTH_500US
	500 us

	IOXP_RESET_CFG_RESET_PULSE_WIDTH_1MS
	1 ms

	IOXP_RESET_CFG_RESET_PULSE_WIDTH_2MS
	2 ms

	IOXP_RESET_CFG_RESET_PULSE_WIDTH_10MS
	10 ms

This function sets the RESET_PULSE_WIDTH information of the RESET_CFG register.
uint8_t GetResetCfgResetPulseWidth ()
Return value:

uint8_t - the information read from RESET_PULSE_WIDTH bits. For possible values see the SetResetCfgResetPulseWidth function.
This function returns the RESET_PULSE_WIDTH information of the RESET_CFG register.

PWM related functions
void SetPWMOffTimeUS(uint16_t wOffTime)
Parameters:

· uint16_t wOffTime
 - the 16 bits value containing the off time (in us).
This function sets the PWM off time (expressed in micro seconds) by providing a 16 bits value corresponding to PWM_OFFT_LOW and PWM_OFFT_HIGH registers.
uint16_t GetPWMOffTimeUS()
Return value:

uint16_t - the 16 bits value containing the off time (in us).
This function returns the PWM off time (expressed in micro seconds) as a 16 bits value contained in PWM_OFFT_LOW and PWM_OFFT_HIGH registers.
void SetPWMOnTimeUS(uint16_t wOnTime)

Parameters:

· uint16_t wOnTime
 - the 16 bits value containing the on time (in us).
This function sets the PWM on time (expressed in micro seconds) by providing a 16 bits value corresponding to PWM_ONT_LOW and PWM_ONT_HIGH registers.
uint16_t GetPWMOnTimeUS()
Return value:

uint16_t - the 16 bits value containing on time (in us).
This function returns the PWM on time (expressed in micro seconds) as a 16 bits value contained in PWM_ONT_LOW and PWM_ONT_HIGH registers.
Clock divider related functions
void SetClkDivClkDiv(uint8_t bClkDiv)
Parameters:

· uint8_t bClkDiv
- the information to be set for CLK_DIV. It can be one of the following:
	IOXP_CLOCK_DIV_CFG_CLK_DIV_DIV1
	divide by 1 (pass-through)

	IOXP_CLOCK_DIV_CFG_CLK_DIV_DIV2
	divide by 2

	IOXP_CLOCK_DIV_CFG_CLK_DIV_DIV3
	divide by 3

	IOXP_CLOCK_DIV_CFG_CLK_DIV_DIV4
	divide by 4

	IOXP_CLOCK_DIV_CFG_CLK_DIV_DIV32
	divide by 32

This function sets the CLK_DIV information of the CLOCK_DIV_CFG register.
uint8_t GetClkDivClkDiv()
Return value:

uint8_t - the information read from CLK_DIV. For possible values see the SetClkDivClkDiv function.
This function returns the CLK_DIV information of the CLOCK_DIV_CFG register.

Library usage

This section of the document describes the library usage.

· PmodIOXP has to be attached to the board using the I2C #1 interface pins of the board.

· The library files have to be placed in C:\Users\Name\Documents\Arduino\Libraries\IOXP folder.
· If the MPIDE is open, it has to be closed and reopened and under the Sketch menu ->Import library -> Contributed - the name of the library should be found.
· In the sketch, include the IOXP library header file

#include <IOXP.h>
· In the sketch, instantiate one library object called, for example, myIOXP
IOXP myIOXP;
· In the sketch, use library functions by calls such as:
myIOXP.SetLockEvent(9);
IOXP demo applications

Together with the IOXP, two demos are provided:
· IOXPDemo
· This demo Uses IOXP library with a PmodKYPD connected on J1 connector of the PmodIOXP.

· Events are generated on keys and change value of the GPIO 5 input. Events generate interrupts. Interrupt handler raises a flag that is recognized in the loop function, calling the task function that displays the event details.
· Input pins are read, and an output pattern is sent to GPIO 13 – 16
· IOXPDemoPWM

· This demo uses the IOXP library in order to generate a PWM signal on the R3 pin of the PmodIOXP.
Appendix A: List of bits definitions

	IOXP_INT_STATUS_EVENT_INT
	EVENT_INT bit of the INT_STATUS register

	IOXP_INT_STATUS_GPI_INT
	GPI_INT bit of the INT_STATUS register

	IOXP_INT_STATUS_ALL
	all bits of the INT_STATUS register

	IOXP_INT_STATUS_OVERFLOW_INT
	OVERFLOW_INT bit of the INT_STATUS register

	IOXP_INT_STATUS_LOCK_INT
	LOCK_INT bit of the INT_STATUS register

	IOXP_INT_STATUS_LOGIC1_INT
	LOGIC1_INT bit of the INT_STATUS register

	IOXP_INT_STATUS_LOGIC2_INT
	LOGIC2_INT bit of the INT_STATUS register

	IOXP_STATUS_LOCK_STAT
	LOCK_STAT bit of the Status register

	IOXP_STATUS_LOGIC1_STAT
	LOGIC1_STAT bit of the Status register

	IOXP_STATUS_LOGIC2_STAT
	LOGIC2_STAT bit of the Status register

	IOXP_UNLOCK1_UNLOCK1_STATE
	UNLOCK1_STATE bit of the UNLOCK1 register

	IOXP_UNLOCK2_UNLOCK2_STATE
	UNLOCK2_STATE bit of the UNLOCK2 register

	IOXP_EXT_LOCK_EVENT_EXT_LOCK_STATE
	EXT_LOCK_STATE bit of the EXT_LOCK register

	IOXP_LOCK_CFG_LOCK_EN
	LOCK_EN bit of the LOCK_CFG register

	IOXP_RESET1_EVENT_A_RESET1_EVENT_A_LEVEL
	RESET1_EVENT_A_LEVEL bit of the RESET1_EVENT_A register

	IOXP_RESET1_EVENT_B_RESET1_EVENT_B_LEVEL
	RESET1_EVENT_B_LEVEL bit of the RESET1_EVENT_B register

	IOXP_RESET1_EVENT_C_RESET1_EVENT_C_LEVEL
	RESET1_EVENT_C_LEVEL bit of the RESET1_EVENT_C register

	IOXP_RESET2_EVENT_A_RESET2_EVENT_A_LEVEL
	RESET2_EVENT_A_LEVEL bit of the RESET2_EVENT_A register

	IOXP_RESET2_EVENT_B_RESET2_EVENT_B_LEVEL
	RESET2_EVENT_B_LEVEL bit of the RESET2_EVENT_B register

	IOXP_RESET_CFG_RST_PASSTHRU_EN
	RST_PASSTHRU_EN bit of the RESET_CFG register

	IOXP_RESET_CFG_RESET1_POL
	RESET1_POL bit of the RESET_CFG register

	IOXP_RESET_CFG_RESET2_POL
	RESET2_POL bit of the RESET_CFG register

	IOXP_PWM_CFG_PWM_EN
	PWM_EN bit of the PWM_CFG register

	IOXP_PWM_CFG_PWM_MODE
	PWM_MODE bit of the PWM_CFG register

	IOXP_PWM_CFG_PWM_IN_AND
	PWM_IN_AND bit of the PWM_CFG register

	IOXP_CLOCK_DIV_CFG_CLK_INV
	CLK_INV bit of the CLOCK_DIV_CFG register

	IOXP_CLOCK_DIV_CFG_CLK_DIV_EN
	DIV_EN bit of the CLOCK_DIV_CFG register

	IOXP_LOGIC_1_LA1_INV
	LA1_INV bit of the LOGIC_1 register

	IOXP_LOGIC_1_LB1_INV
	LB1_INV bit of the LOGIC_1 register

	IOXP_LOGIC_1_LC1_INV
	LC1_INV bit of the LOGIC_1 register

	IOXP_LOGIC_1_LY1_INV
	LY1_INV bit of the LOGIC_1 register

	IOXP_LOGIC_2_LA2_INV
	LA2_INV bit of the LOGIC_2 register

	IOXP_LOGIC_2_LB2_INV
	LB2_INV bit of the LOGIC_2 register

	IOXP_LOGIC_2_LC2_INV
	LC2_INV bit of the LOGIC_2 register

	IOXP_LOGIC_2_LY2_INV
	LY2_INV bit of the LOGIC_2 register

	IOXP_LOGIC_2_LY1_CASCADE
	LY1_CASCADE bit of the LOGIC_2 register

	IOXP_LOGIC_FF_CFG_FF1_CLR
	FF1_CLR bit of the LOGIC_FF_CFG register

	IOXP_LOGIC_FF_CFG_FF1_SET
	FF1_SET bit of the LOGIC_FF_CFG register

	IOXP_LOGIC_FF_CFG_FF2_CLR
	FF2_CLR bit of the LOGIC_FF_CFG register

	IOXP_LOGIC_FF_CFG_FF2_SET
	FF2_SET bit of the LOGIC_FF_CFG register

	IOXP_LOGIC_INT_EVENT_EN_LOGIC1_INT_LEVEL
	LOGIC1_INT_LEVEL bit of the LOGIC_INT_EVENT_EN register

	IOXP_LOGIC_INT_EVENT_EN_LOGIC1_EVENT_EN
	LOGIC1_EVENT_EN bit of the LOGIC_INT_EVENT_EN register

	IOXP_LOGIC_INT_EVENT_EN_LY1_DBNC_DIS
	LY1_DBNC_DIS bit of the LOGIC_INT_EVENT_EN register

	IOXP_LOGIC_INT_EVENT_EN_LOGIC2_INT_LEVEL
	LOGIC2_INT_LEVEL bit of the LOGIC_INT_EVENT_EN register

	IOXP_LOGIC_INT_EVENT_EN_LOGIC2_EVENT_EN
	LOGIC2_EVENT_EN bit of the LOGIC_INT_EVENT_EN register

	IOXP_LOGIC_INT_EVENT_EN_LY2_DBNC_DIS
	LY2_DBNC_DIS bit of the LOGIC_INT_EVENT_EN register

	IOXP_PIN_CONFIG_D_R0_EXTEND
	R0_EXTEND bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_C9_EXTEND
	C9_EXTEND bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_R3_EXTEND_0
	R3_EXTEND_0 bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_R3_EXTEND_1
	R3_EXTEND_1 bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_C6_EXTEND
	C6_EXTEND bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_R4_EXTEND
	R4_EXTEND bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_C4_EXTEND
	C4_EXTEND bit of the PIN_CONFIG_D register

	IOXP_PIN_CONFIG_D_PULL_SELECT
	PULL_SELECT bit of the PIN_CONFIG_D register

	IOXP_GENERAL_CFG_B_RST_CFG
	RST_CFG bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_INT_CFG
	INT_CFG bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_LCK_TRK_GPI
	RST_CFG bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_LCK_TRK_LOGIC
	TRK_GPI bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_CORE_FREQ0
	CORE_FREQ0 bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_CORE_FREQ1
	CORE_FREQ1 bit of the GENERAL_CFG_B register

	IOXP_GENERAL_CFG_B_OSC_EN
	OSC_EN bit of the GENERAL_CFG_B register

	IOXP_INT_EN_EVENT_IEN
	EVENT_IEN bit of the INT_EN register

	IOXP_INT_EN_GPI_IEN
	GPI_IEN bit of the INT_EN register

	IOXP_INT_EN_OVERFLOW_IEN
	OVERFLOW_IEN bit of the INT_EN register

	IOXP_INT_EN_LOCK_IEN
	LOCK_IEN bit of the INT_EN register

	IOXP_INT_EN_LOGIC1_INT
	LOGIC1_IEN bit of the INT_EN register

	IOXP_INT_EN_LOGIC2_INT
	LOGIC2_IEN bit of the INT_EN register

	IOXP_PIN_CONFIG_D_R0_EXTEND
	R0_EXTEND bit of the PIN_CONFIG_D register

	IOXP_GPI_EVENT_EN_GPI_EVENT_EN(x)
	GPI_EVENT_EN bit of the GPI_EVENT_EN registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_GPI_INT_STAT_GPI_INT(x)
	GPI_INT bit of the GPI_INT_STAT registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_GPI_STATUS_GPI_STAT(x)
	GPI_STAT bit of the GPI_STATUS registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_INT_LEVEL_GPI_INT_LEVEL(x)
	GPI_INT_LEVEL bit of the GPI_INT_LEVEL registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_DEBOUNCE_DIS_GPI_DEB_DIS(x)
	GPI_DEB_DIS bit of the DEBOUNCE_DIS registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_GPO_DATA_OUT_GPO_DATA(x)
	GPO_DATA bit of the GPO_DATA_OUT registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_GPO_OUT_MODE_GPO_OUT_MODE(x)
	GPO_OUT_MODE bit of the GPO_OUT_MODE registers corresponding to GPIO no x (x between 1 and 19)

	IOXP_GPIO_DIRECTION_GPIO_DIR(x)
	GPIO_DIR bit of the GPIO_DIRECTION registers corresponding to GPIO no x (x between 1 and 19)

Appendix B: List of groups of bits definitions.
	IOXP_ID_MAN_ID
	MAN_ID[3:0] field of the ID register

	IOXP_ID_REV_ID
	REV_ID[3:0] field of the ID register

	IOXP_STATUS_EC
	all bits [7:0] of INT_STATUS register

	IOXP_INT_STATUS_ALL
	EC[4:0] field of the Status register

	IOXP_UNLOCK1_UNLOCK1
	UNLOCK1[6:0] field of the UNLOCK1 register

	IOXP_UNLOCK2_UNLOCK2
	UNLOCK2[6:0] field of the UNLOCK2 register

	IOXP_EXT_LOCK_EVENT_EXT_LOCK_EVENT
	EXT_LOCK_EVENT[6:0] field of the EXT_LOCK_EVENT register

	IOXP_UNLOCK_TIMERS_INT_MASK_TIMER
	INT_MASK_TIMER[4:0] field of the UNLOCK_TIMERS register

	IOXP_UNLOCK_TIMERS_UNLOCK_TIMER
	UNLOCK_TIMER[2:0] field of the UNLOCK_TIMERS register

	IOXP_RESET1_EVENT_A_RESET1_EVENT_A
	RESET1_EVENT_A[6:0] field of the RESET1_EVENT_A register

	IOXP_RESET1_EVENT_B_RESET1_EVENT_B
	RESET1_EVENT_B[6:0] field of the RESET1_EVENT_B register

	IOXP_RESET1_EVENT_C_RESET1_EVENT_C
	RESET1_EVENT_C[6:0] field of the RESET1_EVENT_C register

	IOXP_RESET2_EVENT_A_RESET2_EVENT_A
	RESET2_EVENT_A[6:0] field of the RESET2_EVENT_A register

	IOXP_RESET2_EVENT_B_RESET2_EVENT_B
	RESET2_EVENT_B[6:0] field of the RESET2_EVENT_B register

	IOXP_RESET_CFG_RESET_PULSE_WIDTH
	RESET_PULSE_WIDTH[1:0] field of the RESET_PULSE_WIDTH register

	IOXP_RESET_CFG_RESET_TRIGGER_TIME
	TRIGGER_TIME[2:0] field of the RESET_PULSE_WIDTH register

	IOXP_CLOCK_DIV_CFG_CLK_DIV
	CFG_CLK_DIV[4:0] field of the CLOCK_DIV register

	IOXP_LOGIC_1_CFG_LOGIC1_SEL
	LOGIC1_SEL[1:0] field of the LOGIC_1_CFG register

	IOXP_LOGIC_2_CFG_LOGIC2_SEL
	LOGIC2_SEL[2:0] field of the LOGIC_2_CFG register

	IOXP_POLL_TIME_CFG_KEY_POLL_TIME
	KEY_POLL_TIME[1:0] field of the POLL_TIME_CFG register

	IOXP_PIN_CONFIG_D_R3_EXTEND
	R3_EXTEND[1:0] field of the PIN_CONFIG_D register

	IOXP_GENERAL_CFG_B_CORE_FREQ
	CORE_FREQ[1:0] field of the GENERAL_CFG_B register

	IOXP_RPULL_CONFIG_R_PULL_CFG(x)
	R_PULL_CFG field of the RPULL_CONFIG registers corresponding to Row x (x between 0 and 7)

	IOXP_RPULL_CONFIG_C_PULL_CFG(x)
	C_PULL_CFG field of the RPULL_CONFIG registers corresponding to Column x (x between 0 and 10)

page 1 of 23
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.
www.digilentinc.com

page 5 of 23
Copyright Digilent, Inc. All rights reserved. Other product and company names mentioned may be trademarks of their respective owners.

[image: image1.wmf][image: image2.png]_1067005269.vsd

