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1 Introduction 

This unit demonstrates how to use interrupts and the core timer to decode two IrDA protocols, in an effort to 

teach approaches for decoding different IrDA protocols used for remote device control. The IrDA is an 

implementation of wireless serial communications capable of simplex as well as half-duplex operation. 

I have encountered no fewer than 100 IrDA encoding protocols using pulse modulated infrared beams of light. Of 

the four IR remote control units I have found around my home, no two use the same encoding scheme. With so 

many existing IrDA protocols used for remote control devices, I present a method for decoding and encoding the 

NEC protocol that can be used on different schemes. I have verified this methodology for decoding the Pulse 

Length (also called Pulse Distance Modulated) protocol. Lab 5 will challenge you to follow the methodology 

presented to develop an interface for an IrDA remote control device of your own choosing.  

Some silicon devices will decode NED encoded IrDA to 9600 Baud UART outputs, such as the ST3679. Other silicon 

devices will alleviate the burden of pulse encoding and decoding, such as the Microchip MCP2122, which allows 

direct interface with the processor UART. The above two IrDA hardware devices are designed to implement 

wireless line-of-sight asynchronous communications and do not interface with NEC IR remote control devices.  

 

2 Objectives 

1. Identify the IrDA protocol by capturing the bit stream on the IR_RX pin using the Analog Discovery 2. 

2. Develop a C function that executes an algorithm to decode the IrDA bit stream. 

3. Display the received codes on the LCD and send to the UART communications port. 

 

3 Basic Knowledge 

1. How to configure I/O pins on a Microchip® PIC32 PPS microprocessor.  

2. How to configure the Analog Discovery 2 to display logic traces. 

3. How to implement the design process for embedded processor based systems. 

  

http://www.sunrom.com/p/st3679-infrared-remote-control-decoder-nec-format
http://www.sunrom.com/p/st3679-infrared-remote-control-decoder-nec-format
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4 Equipment List 

4.1 Hardware 

1. Basys MX3 trainer board 

2. Standard USB A to micro-B cable 

3. Workstation computer running Windows 10 or higher, MAC OS, or Linux 

In addition, we suggest the following instruments: 

4. Analog Discovery 2 Logic Analyzer 

4.2 Software 

The following programs must be installed on your development workstation: 

1. Microchip MPLAB X® v3.35 or higher 

2. PLIB Peripheral Library 

3. XC32 Cross Compiler 

4. WaveForms 2015 

5. PuTTY Terminal Emulator 

 

5 Takeaways 

1. Understanding of the basics of IrDA protocols. 

2. Using instrumentation to characterize data streams. 

3. Use processor external interrupts to decode signal timing patterns. 

4. Approaches to using state machines to process data. 

 

6 Fundamental Concepts 

6.1 IrDA Concepts 

It is reported that 99% of all consumer electronics use IrDA remote controllers.1 These remote control devices use 

low-cost, near infrared LEDs and photo-sensitive transistors to transmit and receive intensity modulated light 

beams. The fact that these semiconductor devices have a narrow, unobstructed field of view is seen either as a 

security advantage or a communications limitation, depending on your point of view. This is in comparison to RF 

communications, such as Bluetooth. 

IrDA communications has two major applications: high speed data and remote control. Remote control 

applications use small data packets at low data rates, whereas high speed data applications require a 

communications stack to manage the re-assemblage of data packets. Table 6.1 compares the key features of IrDA 

and Bluetooth. 

                                                                 

1 “What is infrared?” http://irdajp.info/what.html 

http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/
http://store.digilentinc.com/usb-a-to-micro-b-cable/
http://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://store.digilentinc.com/waveforms-2015-download-only/
http://www.putty.org/
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Protocol_stack
http://irdajp.info/what.html
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Table 6.1. IrDA vs. Bluetooth features comparison.2 

 IrDA-Data Bluetooth 

Physical Media Infrared RF (2.4 GHz) 

Communications Range Up to at least 1m 10cm to 100m 

Connection Type, 
Direction 

Point-to-Point, Narrow Angle (30 
degrees) 

Multipoint, Omni-directional 

Maximum Data Rate 4Mbps (16Mbps on the way) 1Mbps (aggregate) 

Security 
Physical limitations offer some built-in 
protection 

Authentication, encryption, spread 
spectrum 

Approximate Cost under $2 under $5 

 

7 Background Information 

7.1 IrDA Physical Layer 

The Basys MX3 platform is equipped with a Rohm RPM973-H11 infrared communications module that provides the 

digital interface, as shown in Fig. 7.1. The three microprocessor control pins shown in Fig. 7.2 are the IR_TX, IR_RX, 

and the IR_PDOWN. The Rohm RPM973-H11 is in a low power mode whenever the IR_PDOWN control signal is in 

the high state. The IR_PDOWN must be in a low state to transmit or receive infrared signals. Both IR_TX and IR_RX 

are active low signals. 

 

Figure 7.1. RPM973-H11 block diagram. 

                                                                 

2 http://www.barrgroup.com/Embedded-Systems/How-To/Wireless-Bluetooth-IrDA 

https://en.wikipedia.org/wiki/Logic_level
http://www.barrgroup.com/Embedded-Systems/How-To/Wireless-Bluetooth-IrDA


Unit 5: IrDA Communications Protocols  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 10 

 

 

Figure 7.2. Schematic diagram of PIC32 connection to the RPM841-H11 Infrared Module. 

Reference 3 lists 21 modulation protocols used for remote control devices. This reference also lists standard carrier 

frequencies used by these devices. In addition to different kinds of coding and different carrier frequencies, there 

are further variations in the data formats: with and without pre-burst, with different numbers of bits in a 

command, and with different bit lengths. As one soon realizes, one must match the IrDA protocol before two IrDA 

devices can communicate. The IrDA support reported in the PIC32MX370 data sheet (see Section 20 of Reference 

6) requires an external IrDA Encoder/Decoder, such as the MC2120 suggested in the Microchip Analog Design Note 

ADN006. The Basys MX3 processor platform DOES NOT contain any hardware IrDA encoder/decoder. The Rohm 

RPM973-H11 simply asserts the IR_RX signal low whenever an IR signal of sufficient intensity is detected. Likewise, 

the IR LED is turned on whenever the IR_TX signal is asserted high. When using the Rohm RPM973-H11 on the 

Basys MX3 processor platform, all encoding and decoding of the IR pulses must be implemented by the PIC32 

processor. 

7.2 Characterization of the NEC IrDA Protocol 

The NEC protocol will be characterized to illustrate the methodology of discovering the protocol used by an IrDA 

remote controller. The general procedure is to capture logic analyzer traces and match the data profile to an 

existing IrDA protocol. This is commonly referred to as reverse engineering. 

Figure 7.3 shows that the IR LED modulation for a 38 kHz carrier is determined as the inverse of the period 

between LED pulses. The LED is only on for about 2.4 μs out of the 26.3 μs carrier frequency period. The duty cycle 

of the LED is less than 10% resulting in lower power consumption. 

http://ww1.microchip.com/downloads/en/DeviceDoc/60001185E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21618b.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/adn006.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/adn006.pdf
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Figure 7.3. IrDA 38 kHz carrier signal. 

Figure 7.4 shows a complete IrDA message using the NEC protocol. The signal is low whenever an infrared light is 

detected. The NEC protocol message contains 32 bits organized in eight bit bytes sent with LSB first. After a 9 ms 

leader and a 4.5 ms gap, a 560 μs bit marker signals the start of the LSB of the first data byte, as shown in Fig. 7.5.    

 

Figure 7.4. Screen capture of a NEC IrDA control message. 

Figures 7.5 and 7.6 show expanded views of portions of the NEC IrDA protocol, showing the sync followed by three 

of the 24 data bits. Note that the differentiation between a ONE bit and a ZERO bit is the length of the gap 

following each 560 μs period of 38 kHz modulated infrared pulses. The last byte contains 9 pulse bursts to allow 

the last bit to be framed correctly. 

 

Figure 7.5. Details of the message leader and first three data bits. 
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Figure 7.6. 38 kHz pulse burst timing representing two ZERO bits and a ONE bit. 

Figures in Reference 4 are reproduced below to illustrate the timing of the NEC protocol. The encoding of an NEC 

protocol message in Fig. 7.7 shows that the entire packet consists of two bytes of data: the address byte and the 

command byte. Each byte is followed by its one’s complement. The consequence of this encoding is that although 

the time to transmit a ONE bit is twice that of transmitting a ZERO bit, the time to send any NEC encoded message 

is constant regardless of the value of the address and control bytes. 

 

Figure 7.7. NEC encoded IrDA message. 

If the key on the remote control unit is held depressed for longer than 110 ms, a repeat code is continuously sent 

that contains no address or command data, as illustrated in Fig. 7.8. 

 

Figure 7.8. Timing diagram of a repeated NEC encoded IrDA message. 

7.3 Decoding the NEC IrDA Protocol with the PIC32MX370 

Processor 

From the previous discussion, it is obvious that the PIC32 UART is not suitable for implementing the IrDA NEC 

remote control protocol. My investigation of internet documents has not produced any meaningful information as 

to how to implement this design. From my 30 years of microprocessor design experience, I have concluded that 

there are two possible approaches: application of digital signal processing concepts, namely Fast Fourier 

Transforms (FFT), or edge timing using PIC32 Input Compare capability or external interrupts. Interestingly, both 

methods involve frequency domain concepts.  

https://en.wikipedia.org/wiki/Ones%27_complement
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The modulation and demodulation of the IrDA signal involves binary coding of the 38 kHz carrier signal. As shown 

above, the bit value information for the NEC protocol is contained in the period length between the 38 kHz IR 

beam oscillations. 

My approach is to first map the PPS input of the IR_RX signal on Port B pin 6 to the external interrupt INT1 as 

shown in Table 7.1 below. The INT1 is configured to generate an interrupt on the falling (negative) edge of the 

IR_RX signal using the initialization code shown in Listing 7.1. 

Listing 7.1. Initialization of INT1 

// Set up IrDA RX interface 
   INT1R = 0b00000101;     // Mapping IrDA Rx to RPB6 --> INT1 
// Set up INT1 for negative edge triggering 
   IEC0bits.INT1IE = 0;    // Disable INT1 
   IPC1bits.INT1IP = 2;    // Set Interrupt 1 for priority level 2 
   IPC1bits.INT1IS = 0;    // Set Interrupt 1 for sub-priority level 0 
   INTCONbits.INT1EP = 0;  // Set for falling edge 
   IFS0bits.INT1IF = 0;    // Clear the INT1 interrupt flag 
   IEC0bits.INT1IE = 1;    // Enable INT1  
 

Table 7.1. Table 12-1 from the PIC32MX370 datasheet for the PPS Input Pin Selection for the PIC32MX370 

Processor. 

Peripheral Pin [pin name]R SFR [pin name]R bits 
[pin name]R Value to RPn Pin 
Selection 

INT1 INT1R INT1R<3:0> 0000 = RPD1 
0001 = RPG9 
0010 = RPB14 
0011 = RPD0 
0100 = RPD8 
0101 = RPB6 
0110 = RPD5 
0111 = RPB2 
1000 = RPF3(4) 

1001 = RPF13(3) 

1010 = Reserved 
1011 = RPF2(1) 
1100 = RPC2(3) 
1101 = RPE8(3) 
1110 = Reserved 
1111 = Reserved 

T3CK T3CKR T3CKR<3:0> 

IC1 IC1R IC1R<3:0> 

U3CTS̅̅ ̅̅ ̅̅ ̅̅ ̅ U3CTSR U3CTSR<3:0> 

U4RX U4RXR U4RXR<3:0> 

U5RX U5RXR U5RXR<3:0> 

SS2̅̅ ̅̅ ̅ SS2R SS2R<3:0> 

OCFA OCFAR OCFAR<3:0> 

1. This selection is not available on 64-pin USB devices. 

2. This selection is only available on 100-pin General Purpose devices. 

3. This selection is not available on 64-pin USB and General Purpose devices. 

4. This selection is not available when USBID functionality is used. 

When the interrupt occurs, the value of the core timer operating at 40 MHz is captured. The previous core timer 

value is subtracted from the present core timer value to determine the period between interrupts. If this period is 

approximately 560 μs, a 38 kHz signal is present. The actual IR pulse length is of little concern provided it is 

sufficiently long to generate a processor interrupt. For our characterization case, the actual measured IR beam 

pulse width is 2.377 μs. 

Listing 7.2 shows the C code implementing the INT1 ISR. The time between interrupts contains the needed 

information, hence variable “t1_2” must be declared as static. The static variable, “start_timing” remembers that 
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the variable “t1_2” has been initialized after a system reset. The only information needed by the NEC decoding 

algorithm is the time since the last interrupt. 

Listing 7.2. INT1 ISR 

void __ISR(_EXTERNAL_1_VECTOR, IPL2SOFT) ext_int1_isr(void) 
{ 
unsigned long t1_1;           // Current time of interrupt 
static unsigned long t2_1;    // Time of previous interrupt 
unsigned long dt_1;           // Time interval between edges 
unsigned int bitCount = 0;    // Number of decoded bits 
static int start_timing = 0;  // Time capture buffer has been initialized. 
 

   t1_1 = ReadCoreTimer(); 
   if(!start_timing)         // Check for first interrupt after reset 
   { 
       t2_1 = t1_1;          // Initialize previous time on reset. 
       start_timing = 1; 
   } 
   else 
   { 
       dt_1 = t1_1 - t2_1;      // Compute time interval 
       bitCount = irda_nec(dt_1);  // Call decoding function 
       t2_1 = t1_1;             // Update time of last interrupt 
   } 
   IFS0bits.INT1IF = 0;      // Clear the interrupt flag 
} 
 

The core timer increments at the rate of a count for each 1/40,000,000 seconds or 0.0025 μs per count. Referring 

back to the NEC characterization figures, we find that the sync period should be reported 0.0045 seconds 

multiplied by 40,000,000 counts per second, or approximately 180000 core timer counts. When a ONE bit is 

encoded, the number of core timer counts since the last interrupt is (0.0025 – 0.00056) seconds multiplied by 

40,000,000 counts per second, or approximately 67000 core timer counts. When a ZERO bit is encoded, the 

number of core timer counts since the last interrupt is (0.00112 – 0.00056) seconds multiplied by 40,000,000 

counts per second, or approximately 22400 core timer counts. Since the accuracy of the crystals used to generate 

the IR pulses is unknown, 2% accuracy can be assumed and still allow for adequate discrimination between 

symbols. Table 7.2 lists the core timer count range for the NEC protocol symbols. 

Table 7.2. Core Timer Count ranges. 

Symbol Minimum Core Timer Count Maximum Core Timer Count 

Sync 176400 183600 

ONE bit 65660 68340 

Zero bit 21952 22848 

 

7.4 Encoding the NEC IrDA Protocol with the PIC32MX370 

Processor 

In order to encode an IrDA for the NEC protocol, the 38 kHz modulated bit stream must be generated. I chose to 

generate the 38 kHz pulsed signal using the PWM output of the PIC32 processor. Table 7.3 is a copy from the 

PIC32MX370 data sheet showing the PPS mapping of OC5 to Port B bit 7, which is connected to the IR_TX signal 

line. Listing 7.3 is the code for the IrDA initialization. 
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Table 7.3. PIC32MX370 PPS output mapping for bit 7 of Port B. 

RPn Port Pin RPnR SFR RPnR bits RPnR Value to Peripheral Selection 

RPD9 RPD9R RPD9R<3:0> 

0000 = No Connect 

0001 = U3RTS̅̅ ̅̅ ̅̅ ̅̅ ̅ 
0010 = U4TX 
0011 = REFCLKO 
0100 = U5TX 
0101 = Reserved 
0110 = Reserved 

0111 = SS1̅̅ ̅̅ ̅ 
1000 = SDO1 

1001 = Reserved 

1010 = Reserved 
1011 = OC5 
1100 = Reserved 
1101 = C1OUT 
1110 = Reserved 
1111 = Reserved 

RPG6 RPG6R RPG6R<3:0> 

RPB8 RPB8R RPB8R<3:0> 

RPB15 RPB15R RPB15R<3:0> 

RPD4 RPD4R RPD4R<3:0> 

RPB0 RPB0R RPB0R<3:0> 

RPE3 RPE3R RPE3R<3:0> 

RPB7 RPB7R RPB7R<3:0> 

RPB2 RPB2R RPB2R<3:0> 

RPF12(4) RPF12R RPF12R<3:0> 

RPD12(4) RPD12R RPD12R<3:0> 

RPF8(4) RPF8R RPF8R<3:0> 

RPC3(4) RPC3R RPC3R<3:0> 

RPE9(4) RPE9R RPE9R<3:0> 

 

The 38 kHz carrier signal is generated by setting the Timer 2 counter register equal to the PBCLOCK divided by 

38000. The PWM output is turned off by setting the OC5 reset time greater than the Timer 2 period. The 9% duty 

cycle 38 kHz signal is turned on by setting the OC5 reset time to the product of 0.09 times the Timer 2 period. 

Generating the NEC sync signal and encoding the one’s and zero’s is just a matter of turning the PWM on and off 

for the specific duration, as specified by Reference 3. 

Listing 7.3. IrDA initialization 

#define IRDA_38K_IDLE        264 
#define IRDA_38K_ON          23 
#define IRDA_38KHZ_PD        262 
void irda_init(void) 
{ 
int i; 
// IrDA Power Down Control 
   TRISGCLR = BIT_1;       // Set IR_pdown as output(); 
   LATGCLR =  BIT_1;       // Set IR_pdown(0); 
   
// Set up IrDA TX interface 
   PORTSetPinsDigitalOut(IOPORT_B, BIT_7); // IR_TX 
   RPB7R = 0b00001011;     // Mapping OC5 to RPB7 
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// Enable OC5 for PWM operation    
   OpenTimer2((T2_ON | T2_SOURCE_INT | T2_PS_1_1), IRDA_38KHZ_PD);    
   OpenOC5((OC_ON|OC_TIMER_MODE16|OC_TIMER2_SRC|OC_PWM_FAULT_PIN_DISABLE),  
           IRDA_38K_IDLE, IRDA_38K_IDLE); 
   
// Set up IrDA RX interface 
   INT1R = 0b00000101;     // Mapping IrDA Rx to RPB6 --> INT1 
   PORTSetPinsDigitalIn(IOPORT_B, BIT_6); // IR_RX 
// Set up INT1 for negative edge triggering 
   IEC0bits.INT1IE = 0;    // Disable INT1 
   IPC1bits.INT1IP = 2;    // Set Interrupt 1 for priority level 2 
   IPC1bits.INT1IS = 0;    // Set Interrupt 1 for sub-priority level 0 
   INTCONbits.INT1EP = 0;  // Set for falling edge 
   IFS0bits.INT1IF = 0;    // Clear the INT1 interrupt flag 
   IEC0bits.INT1IE = 1;    // Enable INT1 
} 
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