
Petalinux and OpenCL
Adam Taylor

© Adiuvo Engineering and Training, Ltd. 2020

Session 1

Introduction to

Xilinx FPGA

Session 2

Processing in

Xilinx FPGA

Session 3

Embedded

Linux

Session 4

Accelerating

Solutions

History of PetaLinux

Linux was created as a free version of Unix for the x386 Intel CPU by Linus Torvalds in

1991

Linux was ported to ARM in 1994 on the Acorn processor which was not embedded

The first embedded project that Linux was ported to is unclear, it is believed to have

been an x86 variant in 1997

2012 Xilinx acquires embedded Linux company: PetaLogix

PetaLinux first public release in 2013

Yocto build system utilized since version 2016.3

3

Linux Elements

© Adiuvo Engineering and Training, Ltd. 2020 4

What is PetaLinux? (a set of tools)

Petalinux Tools enable, build and customization of
» First Stage Boot Loader

» U-Boot (Second Stage Boot loader)

» Linux Kernel and Device Tree

» Root File System – User Applications, Libraries and Kernel Modules

PetaLinux is a build tool, all component can be built without PetaLinux if sufficiently
experienced

Components from other build processes can be integrated

5

PetaLinux Tools Flow

6

Petalinux Multitasking Capabilities

Embedded Linux (like Linux) is a multi-tasking multi-user operating system
» On the Arty Z7 there are two cores, on Gensys ZU there are four APU cores

Petalinux multitasking means:
» Fast (Two, 32-bit or Four 64-bit cores) but not a real-time OS (RTOS)

» If your application requires real-time, use the MicroBlaze or R5 cores. These core
cannot run PetaLinux but can run FreeRTOS etc.

» Communication between the A9, A53 (PetaLinux) and MicroBlaze, R5 (FreeRTOS
etc.) can use OpenAMP

» Even though PetaLinux is not a pure RTOS it can still be used for many applications
(with careful system architecture, design and expectations)

7

Creating a PetaLinux Project

8

Configuring a PetaLinux Project

9

© Adiuvo Engineering and Training, Ltd. 2020 10

Vitis

What is Vitis

• Vitis is unified software
development environment from
Xilinx

• Offers Unified edge and cloud
development methodologies

• Support embedded and
accelerated flows

Vitis Accelerated Libraries

Ultra96 PetaLinux 12

• Several Open Source
acceleration ready libraries

• Common Libraries – offer a
set of common functionality

• Domain specific libraries –
offer out of the box functions
for specific domains e.g.
vision

Vitis Core Development Kit

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 13

GUI & Command line tools for
compilation, debug and analysis of C,
C++ and OpenCL designs.

Can use preferred GUI or integrated
GUI

Supports embedded and accelerated
flows

Vitis Target Platforms

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 14

Embedded
» SoC – MPSoC, RFSoC, Zynq

» FPGA – MicroBlaze

Cloud – Alveo / AWS F1 Instance

Embedded SoC and Cloud
applications can use acceleration flow.

All required files and boot elements are
generated

Xilinx Runtime library

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 15

Xilinx Runtime library (XRT) enables
communication between the host and
accelerator

Cloud based – Host x86

Embedded – Arm A9 or A53

Provides all libraries, APIs, drivers and
utilities.

Xilinx Runtime library

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 16

Key Functions of the Runtime include

Downloading the FPGA binary

Memory Management between Host
and Accelerator

Execution Management

Board Management

Element of Vitis

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 17

All projects required a platform
» Hardware element – makes available

AXI connections, clocks and Interrupts
in the PL to Vitis Compiler

» Software element – provides boot,
XRT and QEMU support

» Linux element – FS, Image and
SysRoot

Vitis Output

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 18

Compiled binary (host) and XCLbin
(accelerator)

Embedded System Output
» SD Card Image

• Image

• File System

• Binary and XCLBin

Cloud output
» Binary and XCLBin

Vitis Development Flow

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 19

Software Emulation – Syntax errors &
algorithm verification

Hardware Emulation – Optimize
Performance, Interfacing & Resources

© Adiuvo Engineering and Training, Ltd. 2020 20

OPENCL

An open industry standard
–For parallel computing

–Of heterogeneous systems

Enables cross-platform functional portability
–No code changes

–Portable across CPU, GPU, FPGA, DSP, etc.
• Can run on cell phones, laptops, super computers

– Important: No performance portability

Wide market adoption
–Support implemented by

• Apple, AMD, Xilinx, Intel, ARM, Nvidia, Qualcomm, etc.

–Many companies developing applications
• Image, video, audio processing, scientific calculations, medical imaging, and more

OpenCL Framework
1-

9

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Platform model
–Defines representation of ANY platform

–Contains

•Single host

•One or more OpenCL devices (compute device)

OpenCL Framework
1-
1
1

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Platform model

–Defines representation of ANY platform

–Contains

• Single host

• One or more OpenCL devices (compute

device)

Execution model

OpenCL application: Two parts

–Host program

• Manages the entire application: OpenCL

APIs

–Kernels (OpenCL C language)

• Functions to accelerate, run on OpenCL

devices

OpenCL Framework
1-
1
2

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Platform model

–Defines representation of ANY platform

–Contains

• Single host

• One or more OpenCL devices (compute

device)

Execution model
OpenCL application: Two parts

–Host program

• Manages the entire application: OpenCL

APIs

–Kernels (OpenCL C language)

• Functions to accelerate: run on OpenCL

devices

OpenCL Framework

V++

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Interaction between host and device occurs via
command queues

– Created by host

– Attached to a single device

• Note: Multiple command queues can be active
within context

Three command types

– Kernel execution commands

– Memory commands

• Transfer data between host and different memory
objects

– Synchronization commands

• Put constraints on in the order in which
commands are executed

Execution Model – Command Queues

1-
1
1

142304

142337**slide

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Three types of memory objects

– Buffer objects

• Contiguous block of memory

• Available to kernels for read/write

• Programmer can write data to buffers

• Access to data via pointers

– Image objects (not a part of embedded profile)

• Hold images only

• Storage/format can be optimized for specific OpenCL device

• OpenCL framework provides functions to manipulate images

– Pipes

• Data organized as FIFO

• Accessed (read/write) via built in

• Pipe not accessible from the host

Memory Model

1-
1
2

142304

142340**slide

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

Host memory

– Visible to host only

– OpenCL framework only defines how host memory interacts with
OpenCL objects

Global memory

– Visible to host and device

– All work items in all workgroups can read/write there

– Global on-chip memory – visible to device only

Constant memory

– Region of global memory

– Work items – read access only

Local memory

– Local to workgroup (shared by all work-items in a group)

Private memory

– Accessible by a work-item

Five Sub-regions of Memory Objects

1-
1
3

142304

142343**slide

© Copyright 2020 Adiuvo Engineering & Training, Ltd.

© Adiuvo Engineering and Training, Ltd. 2020 28

High Level Synthesis

Amdahl's law

• S: overall performance improvement

• Alpha: percentage of the algorithm that
can be sped up with hardware
acceleration

• 1-alpha: percentage of the algorithm that
cannot be improved.

• p: is the speedup due to acceleration (%).

• Set Alpha to 0.1 and select speed up -
even with large acceleration P defined,
speed up is close to 1

• Set Alpha to 0.5 and select same speed
up – close to factor of two improvement.

Getting the best from HLS

Functions we accelerate into logic often need optimising
» Loops need unrolling

» Memory Structures need optimising

» Resource allocation

HLS controlled via #pragma in the accelerated function

Who has Used HLS before ?

HLS came of age over the last 5 years

HLS is excellent for data flow acceleration e.g. signal processing, image
processing, Artificial Intelligence and Machine Learning

Scheduling Binding Control Extraction

Example of HLS

Looking a little deeper

Terminology

C to RTL

HLS synthesizes the C
code in different ways

Top-level function
arguments synthesize
into RTL I/O ports

C functions
synthesizes into blocks
in the RTL hierarchy

Loops in the C
functions are kept
rolled by default

Arrays in the C code
synthesize into block
RAM in the final design

1
-

9

Interfacing

© Adiuvo Engineering and Training, Ltd. 2020 37

Optimization

Optimization

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 38

Optimization Possible at both Host and
Kernel

Enables most responsive solution

Host optimization

Kernel optimization possible in
OpenCL and C/C++

» Optimization Syntax differs

Host Optimization

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 39

Optimize the data movement in the
application before optimizing
computation

Compute Unit Scheduling
» Multiple In-Order Command Queues

» Single Out-of-Order Command Queue

Host Optimization

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 40

Multiple In-Order Command Queues
• Single Out-of-Order

Command Queue

Kernel Optimization – Data Types

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 41

Avoid native C data types e.g. int, float,
double

Best performance is using bit accurate
types (C/C++ Kernels)

» Arbitrary Precision Integer

» Arbitrary Precision fixed point

Enables smaller & faster logic
implementations

Kernel Optimization – Interfacing

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 42

Two types of data transfer
» Data Pointers via global memory

(M_AXI)

» Scalar direct to kernel (AXI_LITE)

Vitis automatically selects interface
type

Max data width is 512 bits – maximum
performance leverages this

Kernel Optimization – Pipelining

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 43

By default, every iteration of a loop
only starts when the previous iteration
has finished

Pipelining the loop executes
subsequent iterations in a pipelined
manner

Kernel Optimization – Unrolling

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 44

Unrolling a loop enables the full
parallelism

Full or Partial Unroll

Data dependencies in loops can
impact the results of loop pipelining or
unrolling

Kernel Optimization – DataFlow

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 45

Improve kernel performance by
enabling task-level pipelining

Be careful of

Single producer-consumer violations.
» Bypassing tasks.

» Feedback between tasks.

» Conditional execution of tasks.

» Loops with multiple exit conditions or
conditions defined within the loop

Kernel Optimization – Memory

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 46

Limited BRAM access bandwidth, can
heavily impact the overall performance

Ability to partition and reshape arrays
can increase bandwidth

Partition – Separates into different
BRAMS

Reshape – allows combination of
words

Kernel Optimization - Pragmas

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 47

Optimization C/C++ OpenCL

Pipeline #pragma HLS PIPELINE __attribute__((xcl_pipeline_loop))

Unroll #pragma HLS UNROLL __attribute__((opencl_unroll_hint))

DataFlow #pragma HLS DATAFLOW __attribute__ ((xcl_dataflow))

Memory #pragma HLS ARRAY_PARTITION

Further information can be found at

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/optimizingperformance.html#fhe1553474153030

https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/optimizingperformance.html#fhe1553474153030

Vitis GUI – Project Settings

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 48

Vitis GUI – Project Setting

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 49

Vitis-Debug

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 50

Can Debug
» Software Emulation

» Hardware Emulation

Hardware flow insert ILA

Debugging will use QEMU and Logic
Simulator

www.adiuvoengineering.com

adam@adiuvoengineering.com

