
Session Four

How do FPGA do Math?

2

Why do we need to do math in FPGA

Programmable Logic enables accelerated applications

• Image Processing – Noise removal, edge detection, filtering

• Radar Processing – Signal generation, reply processing

• Signal Processing – Signal filtering & manipulation

• Robotics – End Effector positioning, Navigation

• Control Systems – Kalman Filtering, PID Loops

• Motor Control – Servo Motor, DC Motor Control

All these applications require the ability of FPGA to do Maths and implement
algorithms.

Example applications

© Adiuvo Engineering and Training, Ltd. 2020 4

Background Removal &

Substitution Fractals AI/MLEdge Detection

Signal Processing

FPGA Architecture

FPGA are register and logic rich

• Configurable Logic Blocks contain
• Registers

• Look Up Table

• Distributed RAM

• Carry Mux

Logic resources are the basic building
blocks of our algorithms. It is where we
implement our mathematical
algorithms

© Adiuvo Engineering and Training, Ltd. 2020 5

DSP Elements

Implementing math directly in logic is costly

• Resources – increased resources

• Performance – reduced performance

Manufactures to address this include
dedicated DSP elements e.g. DSP48

Capable of doing 48 bit Multiply accumulator

• Pre-Adder

• Multiply

• Accumulator

• Can do advance things SIMD – More later!

© Adiuvo Engineering and Training, Ltd. 2020 6

FPGA Math's

So far, we have looked at Logic & DSP elements, but they all have one thing
in common ?

They are all ideal for the implementation of fixed-point solutions.

What is the difference between fixed point and floating-point numbers ?

© Adiuvo Engineering and Training, Ltd. 2020 7

Fixed Point Number

Fixed-point representation maintains the decimal point within a fixed position allowing for
straight forward arithmetic operations.

The major drawback of fixed-point representation is that to represent larger numbers or to
achieve a more accurate result with fractional numbers, a larger number of bits are required.

A fixed-point number consists of two parts called the integer and fractional parts.

But in programmable logic Fixed Point Maths can be very fast

© Adiuvo Engineering and Training, Ltd. 2020 8

Floating Point Number

Floating point representation
allows the decimal point to float to
different places within the number
depending upon the magnitude.

The floating-point number is
standardized by an IEEE / ANSI
Standard 754-1985 the basic IEEE
floating point number

© Adiuvo Engineering and Training, Ltd. 2020 9

Why Fixed Point

• Less complex to implement in logic

• Enables a faster solution

• Can be more power efficient

• FPGA are register rich!

• No standard for implementation but, Q format is popular
• Q15 – 15 fractional bits

• M,N – M integer bits and N fractional bits

© Adiuvo Engineering and Training, Ltd. 2020 10

Number schemes

Fixed point numbers need to represent positive and negative numbers

• Sign and Magnitude - Utilises the left most bit to represent the sign of the
number (0 = positive, 1 = negative) the remainder of the bits represent the
magnitude. BUT! Positive and Negative Numbers

• Ones Complement – Same unsigned representation for positive numbers as
Sign and Magnitude representation. However, for negative numbers the
inversion (ones complement) of the positive number are used. Requires end
around carry for subtraction – Added complexity.

• Twos Complement – Positive are represented in the same manner as an
unsigned numbers. While negative numbers are represented as the binary
number you add to a positive number of the same magnitude to get zero

© Adiuvo Engineering and Training, Ltd. 2020 11

Twos Compliment

A negative twos complement number is calculated by first taking the ones
complement (inversion) of the positive number and then adding one to it.
The twos complement number system allows subtraction of one number
form another by performing an addition of the two numbers. The range a
twos complement number can represent is given by

- (2n-1) to + (2n-1 – 1)

One method we can use to convert a number to its twos complement format
is to work right to left leaving the number the same until the first one is
encountered, after this each bit is inverted.

© Adiuvo Engineering and Training, Ltd. 2020 12

Fixed Point

How many bits do we need to represent my value ?

For example, the number of integer bits required to represent a value
between 0.0 and 423.0

© Adiuvo Engineering and Training, Ltd. 2020 13

=

2

ximumInteger_Ma
Required BitsInteger

 10

 10

LOG

LOG
Ceil

=

2LOG

423LOG
9

 10

 10
Ceil

Fixed Point
How do we work out fractional bit ? Trade off between bit length and accuracy

To store the number 1.45309806319x10-4

Multiply by 2^16 1.45309806319x10-4 * 65536 = 9.523023

Can only store 9 in the FPGA registers.

9/65536 = 1.37329101563x10-4

Significant loss of accuracy, how can we address this?

© Adiuvo Engineering and Training, Ltd. 2020 14

Fixed Point

We can obtain a more accurate result by scaling the number up by a factor
of 2 that produces a result of between 32768 and 65535 therefore still
allowing storage in a 16-bit number

268435456 * 1.45309806319x10-4 = 39006.3041205

Stored number therefore 1.45308673382x10-4 (39006/ 268435456)

Number is formatted as Q28 or 1,28

© Adiuvo Engineering and Training, Ltd. 2020 15

Fixed Point Rules

Fixed Point Arithmetic does have some rules which must be followed.

• Addition - Decimal points must be aligned

• Subtraction – Decimal points must be aligned

• Division – Decimal Points must be aligned

• Multiplication – Decimal points do not need to be aligned

© Adiuvo Engineering and Training, Ltd. 2020 16

Fixed Point Result Sizes

Operation

A + B Max(A’left, B’left) + 1 downto Min (A’right, B’right)

A - B Max(A’left, B’left) + 1 downto Min (A’right, B’right)

A * B (A’left + B’left) + 1 downto A’right + B’right

A / B - Unsigned A’left - B’left downto (A’right + B’right) -1

A / B - Signed (A’left - B’left) +1 downto A’right + B’right

© Adiuvo Engineering and Training, Ltd. 2020 17

Implementing in VHDL
Two options

• Numeric Standard (pre VHDL 2008)
• Unsigned

• Signed

• Need to keep track of decimal point – Range of number from X downto 0

• Quantisation needs to be performed by developer

• No in-built checking, requires design to check correct sizing / overflow etc

• Fixed Point (VHDL 2008)
• Ufixed

• Sfixed

• Decimal point located between the 0 and -1 bit

• Inbuilt checking to ensure correct sizing of results

© Adiuvo Engineering and Training, Ltd. 2020 18

Fixed Package

Integer bits are represented in the range MSB down to 0

Fractional bits are represented in the range -1 down to LSB

SIGNAL example : ufixed(3 DOWNTO -3);

Which represents the vector of 000.000 allowing for a range of 0.0 to 7.875

To help initialise signals, variables and constants in our algorithm we can
use the to_ufixed and to_sfixed, these can be used with integers, real,
ufixed, sfixed and std_logic_vectors.

© Adiuvo Engineering and Training, Ltd. 2020 19

What about more complex math

How would I implement the following functions

• Sine / Cosine / ArcTan

• SineH / CosH / ArcTanH

• Square Root

• Exponential

• Ln

Taylor / Maclaurin Series? Look Up Table ?

But how do we achieve performance ?

© Adiuvo Engineering and Training, Ltd. 2020 20

CORDIC Algorithm

CORDIC (COordinate Rotation DIgital
Computer) algorithm invented by Jack Volder
for B58 Program

Deployed in first scientific calculator HP35

Shift and Add algorithm which can be used to
implement transcendental functions.

No dedicated Multiplier required.

© Adiuvo Engineering and Training, Ltd. 2020 21

CORDIC Algorithm

Three configurations - Linear /
Hyperbolic / Circular

Each mode has two modes – Rotation /
Vectoring

Enable a range of complex math's
functions to be implemented.

© Adiuvo Engineering and Training, Ltd. 2020 22

Configuration Rotation Vectoring

Linear

Hyperbolic

Circular Op X = Cos(X)

Op Y = Sin(Y)

Op Z = ArcTan(Y)

Op X = SQR(X2 + Y2)

Op Y = X * Y Op Z = X / Y

Op X = CosH(X)

Op Y = SinH(Y)
Op Z = ArcTanH

Additional Functions

Tan = Sin / Cos

TanH = Sinh / Cosh

Exponential = Sinh + Cosh

Natural Logarithm = 2 * ArcTanH note 1

SQR = (X2 – Y2)0.5

More Complex Algorithm

© Adiuvo Engineering and Training, Ltd. 2020 23

How would you implement the following algorithm

Typical Platinum Resistance Thermometer conversion equation used in
industrial applications

𝑡 =
−𝑅0 × 𝑎 + 𝑅0

2 × 𝑎2 − 4 × 𝑅0 × 𝑏 × (𝑅0 − 𝑅)

2 × 𝑅0 × 𝑏

More Complex Algorithm

© Adiuvo Engineering and Training, Ltd. 2020 24

0.0000

100.0000

200.0000

300.0000

400.0000

500.0000

600.0000

700.0000

800.0000

900.0000

100 150 200 250 300 350 400

T
e
m

p
e
ra

tu
re

Resistance

Temperature vs Resistance

Polynomial Approximation

© Adiuvo Engineering and Training, Ltd. 2020 25

y = 2E-09x4 - 4E-07x3 + 0.0011x2 + 2.403x - 251.26

0.0000

100.0000

200.0000

300.0000

400.0000

500.0000

600.0000

700.0000

800.0000

900.0000

100 150 200 250 300 350 400

T
e
m

p
e
ra

tu
re

Resistance

Temperature vs Resistance

Polynomial Approximation
Leverage FPGA DSP rich environment – Addition and Multiplication easy to
do in FPGA especially as we now know how!

If Accuracy is difficult with one overall polynomial equation – Segment it to
several elements

© Adiuvo Engineering and Training, Ltd. 2020 26

Uniform segmentation Non-uniform segmentation

What about signal processing

Finite Impulse Response Filters – Leverage the Multiple Accumulate
Capability

Assume an ideal filter in the frequency domain – Brick Wall

© Adiuvo Engineering and Training, Ltd. 2020 27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 37 42 47 52 57 62

Frequency

A
m

p
li

tu
d

e

FIR Filter

IFFT of the brick wall filter gives us the Windowed Sync Pulse

The ripples extend to infinity and never settle to zero.

© Adiuvo Engineering and Training, Ltd. 2020 28

Windowed Sinc Pulse

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45

Samples

Am
pl

itu
de Truncated Sinc

FIR Filter

Truncating the impulse response gives us ripples – Windowing helps
address this

© Adiuvo Engineering and Training, Ltd. 2020 29

Windowed Sinc Pulse

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45

Samples

A
m

pl
itu

de

Truncated Sinc

Blackman Sinc

Hamming Sinc

FIR Filter

Filter Response is improved with window

© Adiuvo Engineering and Training, Ltd. 2020 30

Frequency Response of Truncated Sinc, Blackman and Hamming Windows

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

Frequency

Am
pl

itu
de Truncated Sinc Freq Response

Blackman Window Freq Response

Hamming Window Frequency Response

FIR Filter

When Implemented (Input top / Output bottom)

© Adiuvo Engineering and Training, Ltd. 2020 31

What is PYNQ – Introduction to PYNQ
framework

32

What is PYNQ?

PYNQ is an open source project started by Xilinx, which fuses the
productivity of Python with the acceleration provided by programmable logic
within the Zynq / Zynq MPSoC

Hosted at PYNQ.io

33

Why should I learn PYNQ ?

Tight coupling of processing system (PS) and programmable logic (PL) in
the Zynq / Zynq MPSoC creates a system which is

» Responsive – Leverage the parallel processing capability provided by the PL

» Deterministic – Creates processing pipeline competing for fewer shared resources

» Power Efficient – Less off chip transactions to or from DDR memory, dedicated
hardware implementation is more efficient than

PYNQ frees Python programmers from the sequential software world
and opens up the acceleration of programmable logic without the need
to be a digital designer.

34

Why should I learn PYNQ ?

Simple example of PYNQ in a image processing application
» Image Filtering

• SW < 20 Frames per Second

• HW > 60 Frames per Second

» Optical Flow

• SW < 1 Frame per Second

• HW > 120 Frames per Second

35

PYNQ Framework: interfacing Python with
Xilinx SoC

PYNQ Components

To achieve performance PYNQ is comprised of
» Jupyter Notebooks

» PYNQ Package

» PYNQ Libs

» PYNQ Classes

» PYNQ IP

» PYNQ Overlays

37

PYNQ Architecture

Pynq is built upon Xilinx Petalinux flow

Standard way to create PYNQ for a custom board is via petalinux BSP as
we will see

38

Working with the PL

1. Bitstream — This configures the programmable logic for
the desired application. In the PYNQ framework, the
xdevcfg driver is used.

2. GPIO — This provides simple IO in both directions. In the
PYNQ framework, this is supported by the sysgpio driver.

3. Interrupts — Support interrupt generation from the
programmable logic to the processing system. In the
PYNQ framework, this is supported by the Userspace IO
driver.

4. Master AXI Interfaces — These are used to transfer data
between the PS to the PL when the PS is the initiator of
the transaction. The PYNQ framework uses devmem
when employing master AXI interface.

5. Slave AXI Interfaces — These are used to transfer data
between the PS and PL when the PL is the initiator of the
transaction. The PYNQ framework uses xlnk to enable
these transfers.

39

Available PYNQ boards

Several PYNQ builds for existing boards:
» Pynq Z1 — Zynq SoC 7020 & Arty Z7-20

» Pynq Z2 — Zynq SoC 7020

» ZCU104 — Zynq MPSoC XCZU7EV

» ZCU111 — Zynq RFSoC XCZU28DR

» Ultra96 — Zynq MPSoC ZU3EG

40

Overlays

Overlays are the design loaded into the programmable logic

Can be custom created or accessed via the PYNQ.IO community

Range of Overlays in the community including
» Machine Learning

» Image Processing

» RISC-V

» Kalman filter

Base Overlay is the initial overlay which is created with the PYNQ Image

Download and work with new overlays as required

Of course you can also create you own – As we will see

41

http://www.pynq.io/community.html

PYNQ Libraries

PYNQ provides several libraries which provide support for management of the processor and allow access
to the low level hardware including

IP Cores – Audio, AXI GPIO, AXI IIC, DMA, Logic Tools, Video

IOP – Arduino, Grove, RPI, PMOD

PYNQ MicroBlaze – MicroBlaze Subsystem RPC and Library

PS / PL Interface – Interrupt, MMIO, PS GPIO, Xlnk

PS Control – PMBus

PL Control – Overlay, PL and Bitstream Classes

42

PYNQ In Industry

Working with THALES – Major
Defense Client – High Speed
Image processing (3000 > 10,000
FPS)

ZCU102 Development board

“The use of Pynq to rapidly test and evaluate
design patterns for image processing has been
invaluable. Not only has it sped up design, but it
also reduces the necessary team size to a
manageable level.”

© Adiuvo Engineering and Training, Ltd. 2020 43

© Adiuvo Engineering and Training, Ltd. 2020 44

Vitis AI

with 6D7 Technologies LLC

Vitis AI Development Environment

• Vitis AI enables acceleration
of AI inference at edge &
Cloud

• Supports leading frameworks
such as TensorFlow, Caffe
and Pytorch

• Works with fixed point
representation and Xilinx
Deep Learning Processor
Unit

© Copyright 2020 Adiuvo Engineering & Training, Ltd. 45

with 6D7 Technologies LLC

Deep Learning Processing Unit

Deep Learning Processing Unit

(DPU) is a programmable engine

optimized for convolutional neural

networks

Can be used to implement

VGG, ResNet, GoogLeNet, YOLO,

SSD, MobileNet, and FPN

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
46

with 6D7 Technologies LLC

DPU Development flow

• Use Vitis / Vivado to generate
bit stream

• Vitis AI to generate the neural
network.

• Can come from Xilinx Model
Zoo

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
47

with 6D7 Technologies LLC

Example Application

AI is only a small part (but
important part) of the solution

Need to be able to get image
into or out of the system.

For example, MIPI camera
interface

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
48

with 6D7 Technologies LLC

Clocking the DPU

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
49

• s_axi_aclk is used for the register configuration module. This

module receives the DPU configuration though the S_AXI

interface. The S_AXI clock can be configured as common

with the M-AXI clock or as an independent clock.

• The primary function of the data controller module is to

schedule the data flow in the DPU IP. The data controller

module works with m_axi_dpu_aclk. The data transfer

between the DPU and external memory happens in the data

controller clock domain, so m_axi_dpu_aclk is also the AXI

clock for the AXI_MM master interface in the DPU IP

• The DSP slices in the computation unit module are in the

dpu_2x_clk domain, which runs at twice the clock frequency

of the data controller module. The two related clocks must

be edge-aligned.

with 6D7 Technologies LLC

DPU is configurable

• Depending on flow either IP
integrator or in script (Vitis)

• Can control performance and
resource usage

• Can be deployed in

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
50

with 6D7 Technologies LLC

Performance Optimisation

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
51

with 6D7 Technologies LLC

Resource Optimization

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
52

with 6D7 Technologies LLC

Model Zoo
Networks and many others are often made available for different frameworks in a Model Zoo

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
53

with 6D7 Technologies LLC

Model Zoo

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
54

with 6D7 Technologies LLC

Vitis AI Optimizer

Optimizes the network

Reduce model complexity by
5x to 50x with minimal
accuracy degradation

Requires a commercial license

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
55

with 6D7 Technologies LLC

Vitis AI Quantizer

• Converts the 32-bit floating-
point weights and activations
to fixed-point e.g. INT8

• Fixedpoint network model
requires less memory
bandwidth, thus providing
faster speed and higher
power efficiency than the
floating-point mode

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
56

with 6D7 Technologies LLC

Vitis AI Compiler

• Maps the AI model to the
instruction set and dataflow
model

• Performs optimizations such
as
• layer fusion,

• instruction scheduling

• reuses on-chip memory.

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
57

with 6D7 Technologies LLC

Putting it all Together

© Adiuvo Engineering and Training, Ltd. 2021

with 6d7 Technologies LLC.
58

www.adiuvoengineering.com

adam@adiuvoengineering.com

