
Introduction to FPGA
Adam Taylor

Xilinx Tools and Frameworks

© Adiuvo Engineering and Training, Ltd. 2020 2

VitisAI

Enables the implementations of

machine learning inference, using

Tensor Flow, Caffe and PyTorch.

*Requires a SoC/RFSoC/Alveo

Vitis

Embedded and accelerated SW

development. Used to develop

software solutions for MicroBlaze,

Arm R5, A9, A53 and A72.

Petalinux

Embedded Linux solutions

PYNQ

Python framework for rapid

prototyping on SoC/RFSoC/Alveo

Vitis / Vivado HLS

High Level Synthesis tool

supporting C/C++/OpenCL

Vivado

Design Capture and

implementation for the base

platform

© Adiuvo Engineering and Training, Ltd. 2020

Session 1

Introduction to

Xilinx FPGA

Session 2

Processing in

Xilinx FPGA

Session 3

Embedded

Linux

Session 4

Accelerating

Solutions

What is an FPGA

A field-programmable gate array is an integrated circuit designed to be
configured by a designer after manufacturing.

Field-Programmable – Means the user can program it in the field

FPGA Architecture

5

What is programmable logic

6

Look Up Table

• The key to programmable logic is how logic equations are implemented in
the device.

• It is of course very difficult for the device designers to include a range of
AND, OR gates etc. as the number of each gate type will vary for each
application

• Device manufacturers addressed this challenge in a very smart manner.
In place of discrete gates, they used they use a several input look up
table (LUT) which is programmed to implement the combinatorial logic
equations.

© Adiuvo Engineering and Training, Ltd. 2020 7

Look Up Table

© Adiuvo Engineering and Training, Ltd. 2020 8

Configurable Logic Block

• LUT allows implementation of Combinatorial Circuit

• BUT we design synchronous circuits what about the FF

• flip flop to act as storage for the combinatorial output such that we can

implement sequential structures

• This combination of a LUT and Flip Flop is often called a Configurable Logic

Block (CLB) and a programmable logic device will consist of many thousands of

these CLBs. To provide the most flexibility additional multiplexers will be used to

support a wide range of CLB configurations.

© Adiuvo Engineering and Training, Ltd. 2020 9

Configurable Logic Block

© Adiuvo Engineering and Training, Ltd. 2020 10

Interconnect Routing

A collection of wires and
programmable switches.

These are responsible for
connecting CLBs and other
building blocks within the FPGA.

These are also called routing
channels.

© Adiuvo Engineering and Training, Ltd. 2020 11

Tools

• Requirements Capture tool

• Editors – Ideal with ability to LINT and check structural issues e.g HDL Creator

• Synthesis Tool – Third Party or Vendor Supplied

• Implementation – Vendor supplied – some open source for lattice

• Simulation – Third Party or Vendor

• Source Control – Subversion, GIT

• Configuration control – often called PLM tool

• Specialist e.g. Fault Injection

Vivado Overview

• Foundation of all design and higher-

level tools is Vivado

• Vivado enables us to capture designs

using VHDL or Verilog

• Large IP library to accelerate our

designs

• Integrates Vivado / Vitis HLS IP cores

© Adiuvo Engineering and Training, Ltd. 2020

✓ Simulate designs using

Vivado Simulator

✓ Synthesize, place and

route the design

✓ Generate power

estimations

✓ Create Xilinx Support

Architecture

Vivado Overview

© Adiuvo Engineering and Training, Ltd. 2020

Synthesis – Translates the HDL design into a series of logic equations

which are then mapped onto the resources available in the target FPGA.

Synthesis – Place – The logic resources determined by the synthesis tool

are placed at available locations within the target device.

Routing – The placed logic resources in the design are interconnected

using routing and switch matrixes to implement the final application.

Bit File – The generation of the final programming file for the target FPGA.

FPGA Implementation Flow

We can control the flow

implementation settings

by using Constraints

(XDC file) and

implementation Strategies

Xilinx Devices

Xilinx Offer a range of devices

FPGA – Spartan, Artix, Kintex, Virtex – Seven / UltraScale / UltraScale+

Heterogeneous SoC – Zynq, Zynq MPSoC, RFSoC

Adaptive Compute Acceleration Platform– Versal

Accelerator Card - Alveo

FPGA

© Adiuvo Engineering and Training, Ltd. 2020 17

Vivado / Vitis / PetalinuxISE

Device Capacity

Bandwidth

Fmax

Heterogeneous SOC

Combine diverse processing elements with programmable logic

Processing elements are silicon implementations

Processing element is the master – it boots just like any other processor

Enables highly optimized solutions be implemented using processor and
logic to exploit natural strengths

© Adiuvo Engineering and Training, Ltd. 2020 18

Zynq

© Adiuvo Engineering and Training, Ltd. 2020 19

Zynq MPSoC

© Adiuvo Engineering and Training, Ltd. 2020 20

Zynq RFSoC

© Adiuvo Engineering and Training, Ltd. 2020 21

Versal

© Adiuvo Engineering and Training, Ltd. 2020 22

Alveo

Accelerator card based around OpenCL

© Adiuvo Engineering and Training, Ltd. 2020 23

24

Clocking

Clocking

FPGA Designs are Synchronous!

Clocks are high fan out, as such dedicated pins are required to be used.

FPGA typically will have multiple clock regions

Clock pins are places in IO banks

➢ UltraScale / UltraScale+ GC pins or global clock pins

➢ Seven Series CC and GC pins – GC global clocks CC restricted to close CR

➢ Special Clock pins e.g. Byte-Lane Clocks (DBC and QBC) typical in memory

applications

© Adiuvo Engineering and Training, Ltd. 2020 25

Vertical and Horizontal Clocks

© Adiuvo Engineering and Training, Ltd. 2020 26

Clocking Resources

FPGA have a range of clock resources to
simply solutions

1. Clock Buffers e.g. bufgctl

2. Clock Management Tiles
» Mixed Mode Clock Manager (MMCM) &

2 Phase Locked Loops

© Adiuvo Engineering and Training, Ltd. 2020 27

Clocking Resources

Bufgctl - drive the routing and distribution

resources across the entire device.

Can switch between 2 clocks seamlessly.

Basis of many structures including

Bufgce_1, Bufgmux etc.

Read Seven Series, UltraScale clocking

guides

© Adiuvo Engineering and Training, Ltd. 2020 28

What is a Clock Domain?

Same clock domain if:

» Same source and integer multiple frequencies

Different clock domain if:

» Different source

• Even if frequency specification is the same!

• All specifications have error bars

» Not integer multiple frequencies, even if same source

By default, Vivado assumes all clocks are in the same domain – Unless you tell it otherwise!

Not telling it clock relationships can make a significantly longer implementation times as Vivado

tries to close timing which is impossible

© Adiuvo Engineering and Training, Ltd. 2020 29

Clock Domain Crossing

Clock Domain Crossing
Ideal solution uses one clock and the entire design is synchronous.

BUT!

Modern devices have multiple clocks to address different clock domains e.g.
ADC / DAC clocks, source synchronous interfaces.

Brings with it the need to transfer data, and signals safely and reliability
between the clock domains

31 © Adiuvo Engineering and Training, Ltd. 2020

Metastability

One issue which can arise with incorrect domain crossing is metastability

This can lead to corruption of data or incorrect behaviour

Occurs when a flip flops set up or hold time is violated

32 © Adiuvo Engineering and Training, Ltd. 2020

Metastability

33 © Adiuvo Engineering and Training, Ltd. 2020

Clock Domain Crossing

Several Techniques which can be used depending upon what needs to be transferred

• Two stage synchroniser – Ideal for single bit data

• Grey Code Synchroniser – Encodes data bus in grey code and transfer between

domains – Ideal for counters as input to be converted to grey code can only decrement /

increment by one from previous value

• Hand shake synchroniser – Transfers data bus between two clock domains using

handshake signals

• Pulse synchroniser – transfer pulse from one clock domain to another

• Asynchronous FIFO – transfers data from one domain to another, useful for high

throughput / burst transfers

34 © Adiuvo Engineering and Training, Ltd. 2020

Clock Domain Crossing

To support reset functionality across clock domains we may need the
following synchronisers structures.

» Asynchronous Reset Synchroniser – enables asynchronous assertion and
synchronous de-assertion.

» Synchronous Reset Synchroniser – synchronises a synchronous reset to another
clock domain.

35 © Adiuvo Engineering and Training, Ltd. 2020

How many synchronisers do I need ?

Standard two stage synchroniser assumes the first flip flop, will recover
from metastability before the signal is clocked into the second flip flop.

How do we know this is the case and what if we need more stages

36 © Adiuvo Engineering and Training, Ltd. 2020

CDC in Xilinx
Xilinx Parameterised Macros (XPM) – provide CDC structures

Use registers optimised for CDC in the fabric
» Registers located close together and have small set up and hold windows

Described within UG953 Libraries Guide

Described within UG 974 UltraScale Architecture Libraries

37 © Adiuvo Engineering and Training, Ltd. 2020

CDC Design Analysis tools

Detecting all CDC issues can be a challenge in large designs

» Are all IP IO on the correct clock domain

» Very easy to associate signal with wrong domain e.g. FIFO empty and WR clock

CDC issues can be very difficult to find changing on each start up and may be
intermittent

Can be hard to find in simulation – Timing simulation required, takes a long time
simulate the system

Static analysis tools are better suited to find the CDC issues.

38 © Adiuvo Engineering and Training, Ltd. 2020

Vivado CDC Report

Page 39

Following Synthesis – in TCL window run the command report_cdc

© Adiuvo Engineering and Training, Ltd. 2020

Vivado Timing Analysis – Clock Interaction

Page 40

Generated From Flow Navigator when implementation is

open

Yellow show unrelated clock – Indicates CDC issues as well

Means we need to define constraints

© Adiuvo Engineering and Training, Ltd. 2020

Vivado Timing Analysis – Inter clock Issues

Page 41

Detailed path report – Source and Destination Clocks different

If you forget to report_cdc

following synthesis. CDC issues

will be apparent in the timing

report if we have not correctly

addressed the constraints

© Adiuvo Engineering and Training, Ltd. 2020

Vivado Flow - Schematic

Page 42

Engineer can use

information

provided in the text

report to navigate

to the schematic to

understand where

CDC might be.

© Adiuvo Engineering and Training, Ltd. 2020

43

Block RAM

BRAM
Used for storage of the Data in the FPGA, more efficient than using registers.

BRAM can be used as Single / Dual Port – Great for clock conversion

BRAM can be used to implement FIFOs – Great for Clock Domain Crossing

What might we store in the BRAMs

• Filter Coefficients

• Image Lines

• Signal Data

• System Configuration Data

© Adiuvo Engineering and Training, Ltd. 2020 44

Block RAM

• RAMS can be protected by error protection codes

• Depending upon the device these are hard coded into the RAMS and

transparent to the user or require user implementation

• Regardless of how they are implemented it is a good idea to use a scrubbing

algorithm which will read back contents out of the memory periodically and

ensure correction of any errors to prevent a build up of errors

• If these RAMS are being used to store the configuration of the system it is a

good idea to have a copy of this configuration on the ground payload control

system to ease recovery in the worse case

© Adiuvo Engineering and Training, Ltd. 2020

BRAM in Xilinx

• Inherent support for ECC

• Cannot initialise BRAM with a COE file it ECC is used

• BRAM 64 bit data width and greater Hard Hamming Implementation

• BRAM less than 64 bit data width soft hamming implementation

• Can optimise for performance / power

© Adiuvo Engineering and Training, Ltd. 2020

ECC In Block Memory Generator

© Adiuvo Engineering and Training, Ltd. 2020

Injection of Error in to BRAM

© Adiuvo Engineering and Training, Ltd. 2020

Read out of Error

© Adiuvo Engineering and Training, Ltd. 2020

BRAM Optimisations

• Optimise BRAM for power / performance

• 6K by 256 RAM implemented using a 64

BRAMS configured as 8K by 4 bits

• 7 BRAMS configured as 1K by

36 repeated 6 times + one 8k x4 using 43

BRAMS

• RAM_decomposition constraint can be

used for second structure

© Adiuvo Engineering and Training, Ltd. 2020

BRAM Optimisations

• Can also use RAM cascade_height

constraint

• Not just a choice between power

and performance

• Also possible to combine the

cascade_height and

ram_decomposition

© Adiuvo Engineering and Training, Ltd. 2020

52

DSP48

DSP
Mathematical structures such as add / subtract / Multiply / Division can be

implemented in FPGA using LUT and Flip Flops

• Not efficient for high performance - Better to have dedicated resources in the

FPGA

Enter the DSP48

© Adiuvo Engineering and Training, Ltd. 2020 53

DSP

Applications

• Fixed- and floating-point Fast Fourier Transform (FFT) functions

• Systolic FIR filters

• MultiRate FIR filters

• CIC filters

• Wide real/complex multipliers/accumulators

© Adiuvo Engineering and Training, Ltd. 2020 54

55

Multi Giga Bit Transcievers

Multi Giga Bit Transceivers

Xilinx FPGA implement high speed interfaces such as SATA, USB3, PCIe,
Display port and Chip to Chip communications using MGTs

Special dedicated transceivers in the device – Normally in Quads with
refence clock as well

Differential signaling and use Current Mode Logic

PMA Physical Media Attachment

PCS Physical Coding Sublayer

© Adiuvo Engineering and Training, Ltd. 2020 56

MGT Internals

© Adiuvo Engineering and Training, Ltd. 2020 57

Bandwidths Supported

© Adiuvo Engineering and Training, Ltd. 2020 58

59

Constraints

Constraints

Help us instruct and guide the implementation tool

Multiple different types of constraints

• Timing constraints— The timing relationships required for correct operation

• Timing Exceptions— Define any exceptions to those constraints e.g. Multi Cycle

Paths or False Paths

• Implementation constraints—Constraints used in the design’s placement and

routing e.g. IO location / type / location in the device

60

Device Selection

Clock Constraints

Vivado has several different types of clock constraints

• Primary Clocks – those that enter through an I/O pin

• Generated Clocks – those which are generated automatically via an internal PLL

or by the design (for instance, dividing a clock by two with a flip-flop). With

generated clocks, one describes how the master clock (either a prime or other

generated clock) modifies the waveform

• Virtual Clocks – These are not attached to anything within the design netlist but

can be used for I/O timing

© Adiuvo Engineering and Training, Ltd. 2020 61

Clock Constraints

Vivado has three different types of clocks

• Synchronous Clocks – Synchronous clocks have a predictable timing/phase relationship, which is normally the case

for a primary clock and its generated clocks because they share a common root clock and will therefore have a

common period.

• Asynchronous Clocks – Asynchronous clocks have no predictable timing/phase relationship, which is normally the

case for different primary clocks (and the clocks generated from these primary clocks). Asynchronous clocks have

different roots.

• Unexpandable Clocks – Two clocks are unexpandable if a common period cannot be determined over 1000 clock

cycles. If a common clock period cannot be established, then Vivado uses the worst case set-up relationship over the

1000 cycles. However, there is no guarantee that this relationship truly represents the actual worst case. That estimate

is just the best that Vivado can do with the information provided.

© Adiuvo Engineering and Training, Ltd. 2020 62

Placement Constraints
Vivado has a range of constraints we can use

•Placement Constraints – define cell location

•Routing Constraints – define signal routing

•I/O Constraints – define I/O location and I/O parameters

•Configuration Constraints – define configuration methods

© Adiuvo Engineering and Training, Ltd. 2020 63

Placement Constraints

© Adiuvo Engineering and Training, Ltd. 2020 64

65

Device Selection

Benefit of FPGA

FPGA’s offer several benefits to the system designer

• Flexibility of Design – performance, upgrades

• Reduction in NRE and Cost.

• Reliability – One Device as opposed to lots if using discrete

devices - increased reliability with reduced solder connections.

• Time to market can be reduced.

• Maintainability – ability with some FPGA to update in the field.

Device Selection - SRAM, OTP or FLASH ?

• SRAM: The FPGA program is stored in an external memory and loaded
into the FPGA each time it is powered.

• FLASH: The FLASH architecture of the FPGA also contains the program;
no external memory device is needed.

• One Time Programmable (OTP): The FPGA is applied by blowing fuses in
the device. Once programmed, it cannot be modified.

67

Device Selection

• SRAM

• Higher Performance (+)

• Higher Capacity (+)

• Needs configuration at power up (-)

• Higher Power (-)

• Susceptible to Configuration Corruption (-) – but there are mitigation

schemes

• OTP

• Live at power up (+)

• Cannot be updated / fixed design (-)

• Lower Power (+)

• Lowest Performance (-)

• Flash based

• Live at power up (+)

• No Configuration Corruption (+)

• Updateable in the field (+)

• Middling Performance (-)

68

Device Selection

Typical use cases

• SRAM
• Software defined radio, image processing, satellite communications, EW, AI etc.

• OTP
• Control and communication, security functions e.g. crypto

• Flash
• Control & Communication, Crypo, image processing, SDR

69

Vivado IP Integrator

Vivado IP Integrator (IPI)

© Adiuvo Engineering and Training, Ltd. 2020

Create system-level designs
• Instantiate and interconnect IP cores

• IP-centric design flow
• Plug-and-play IP

• Vast IP catalog

• Accelerates
• Integration

• Productivity

• Example applications
• Embedded

• DSP

• Video

• Analog

• Networking

Vivado IP Integrator:
Intelligent IP Integration

© Adiuvo Engineering and Training, Ltd. 2020

• Automated IP subsystems

• Block automation for rapid design creation

• One click IP customization

• Board aware

• Support all 7 Series FPGAs and Zynq

SoCs

• Built-in presets, accelerating design

creation

Interface Connections with

Live DRCs

System Hierarchy

View

Tcl Console

Hierarchy

Support

Extensible IP Catalog

Vivado IP Integrator:
Intelligent IP Integration

© Adiuvo Engineering and Training, Ltd. 2020

Correct-by-construction

• Interface level connections

• Extensible IP repository

• Real-time DRCs and parameter

propagation / resolution

• Designer assistance

Reducing Run Time

Design Check Points

© Adiuvo Engineering and Training, Ltd. 2020

• Vivado uses a physical design database to

store placement and routing information

• Design checkpoint files (.dcp) allow you to

save and restore this physical database at key

points in the design flow

Vivado – Reducing Compile Time
• Implementing a FPGA design can take a considerable time > 1 Hour

• Iterating the design can therefore be an issue, there are several options which can

reduce the implementation time both in synthesis and place and route

© Adiuvo Engineering and Training, Ltd. 2020

Synthesis

Global Performs a traditional top-down synthesis of the entire design. Selecting this

option takes the longest time because you need to re-run the entire synthesis

every time you make a change.

Out of Context Per IP Runs synthesis and creates a Design Check Point (DCP) for every individual

IP block within your design. These check points are then collected into a

black-box at the top-level implementation. Using this option means that only

the blocks you change need to be re-synthesized, which saves time. OOC-IP

also creates an IP customization file (XCI) for each IP block, allowing for

customization and OOC XDC files. OOC-IP is the default setting for synthesis

within Vivado. This option applies to all IP within the block diagram.

Out of Context Per Block Diagram Like the OOC-IP option however this option allows you to define the entire

block diagram as OOC

Vivado – Reducing Compile Time

© Adiuvo Engineering and Training, Ltd. 2020

• Incremental synthesis can also be used when

the changes are small

• Write out incremental synthesis to the post

synthesis design check point

• Selecting incremental synthesis then provides

two options

• Automatically use previous DCP

• Use a defined DCP

Vivado – Reducing Compile Time

© Adiuvo Engineering and Training, Ltd. 2020

• Incremental implementation allows use of

Design Check Point as the starting point

• Preserves QoR predictability by reusing

prior placement and routing from a

reference design

• Speeds up place and route run time or

attempts last mile timing closure

Strategies and Reports

Vivado – Strategies

• Strategies are a defined set of Vivado implementation feature options that control the implementation

results.

• These strategies can be used to explore:

• Timing Performance (e.g., Performance_Explore)

• Congestion - Strategies to reduce routing congestion in areas of the design

• Area - Optimise for area

• Power – Optimise for power

• Quick Flow – Reduced implementation time

We should always of course try to achieve timing closure

© Adiuvo Engineering and Training, Ltd. 2020

Vivado – Reports

• Vivado provides several reports which can be used to help focus in on performance

issues in the design:

• Design Analysis Report – Provides information on design timing, congestion, and

complexity of design

• Quality of Result Report – Provides overall design assessment and methodology

check – QOR can also make suggestions to fix issues in the design.

• Both are very useful to achieve timing closure of the design

© Adiuvo Engineering and Training, Ltd. 2020

Vivado – Design Analysis Report

© Adiuvo Engineering and Training, Ltd. 2020

Design Analysis Report provides information on:

• Timing – Provides information on the timing and
physical characteristics of timing paths.

• Complexity – Provides information on routing
complexity and LUT distribution.

• Congestion – Provides information on routing
congestion

No need to run full implementation.

Generate report after running opt_design

command in TCL

Vivado – Design Analysis Report

• Along with timing information, DAR can provide information on design complexity

including indicating design risk for implementation

• Low Risk Rent Analysis <0.65 and Fan Out <4

• High Risk Rent Analysis >0.65 <0.85 and Fan Out >4 % <5 – May be difficult to place

without congestion

• Very High Risk, Rent Analysis >0.85 and Fan Out >5 – May not implement

© Adiuvo Engineering and Training, Ltd. 2020

Vivado – Quality of Result

• Quality of Result Assessment (QoRA) and Quality of Result Suggestions

(QoRS) since both provide information that can be used to achieve timing

closure

• Like Design Analysis Report – Run initially after doing the Opt

© Adiuvo Engineering and Training, Ltd. 2020

Vivado – Quality of Results

SCORE MEANING CORRECTIVE ACTION

1 Design will not implement Redesign RTL / HLS modules
2 Design will implement timing

problems
Review constraints & RTL HLS

3 Design Runs have a small
chance of success

Use QoR suggestions, review
clocking, ML strategies

4 Design should meet timing if
directives used

Use QoR suggestions, ML
strategies

5 Design will implement without
timing issues

Run Implementation

© Adiuvo Engineering and Training, Ltd. 2020

Vivado – Quality of Results

© Adiuvo Engineering and Training, Ltd. 2020

Verification

Verification

Before we can deploy an FPGA based solution we must be sure it functions as expected, across

all use cases. This is where verification and validation come in, for those unfamiliar with the

terms

• Verification – Does the FPGA function in line with the specification

• Validation – Is the specification correct i.e. does it address the needs of the use case.

While validation takes place mostly within the higher levels of system engineering domain,

verification takes place at the FPGA level. Depending upon the needs of the applications

verification can range from being very complex and time consuming to simply confirming the

expected behaviour.

At the heart of verification is simulation and the simulator.

© Adiuvo Engineering and Training, Ltd. 2020 88

Simulation

© Adiuvo Engineering and Training, Ltd. 2020 89

Simulation

Verification can be used at several different levels

• Functional Simulation only – This check if the design is functionally correct

• Functional Simulation & Code Coverage – This checks that along with the

functional correctness of the design that, all of the code within the design has

been tested.

• Gate Level Simulation – This verifies the functionality of the design when back

annotated with timing information from the final implemented design, this can

take a considerable time to perform.

© Adiuvo Engineering and Training, Ltd. 2020 90

Verification What else can we do?

• Static Timing Analysis – This analyses the final design to ensure the
timing performance of the module is achieved.

• Formal Equivalence Checking - This is used to check the equivalence of
netlists against RTL files

© Adiuvo Engineering and Training, Ltd. 2020 91

www.adiuvoengineering.com

adam@adiuvoengineering.com

