
1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com

PmodSF™ Reference Manual

Revised April 16, 2015 This manual applies to the PmodSF rev. C

Overview

The Digilent PmodSF is a small serial flash module that helps demonstrate the uses of non-volatile memory.

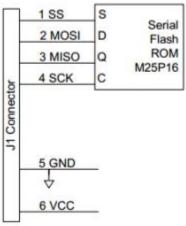
Features include:

- ST Microelectronics M25P16 serial flash memory integrated circuit
- 16Mbit (2Mbyte) of flash memory
- More than 20 years of data retention

The PmodSF.

1 Functional Description

The PmodSF utilizes ST Microelectronics M25P16 which provides 16 Mbits of flash memory that can be accessed through the SPI protocol. Although this amount of memory is very small compared to modern flash drives, the PmodSF is a great way to get introduced to controlling non-volatile memory and can be easily incorporated into projects that need a way to store some information without using the USB interface.


2 Interfacing with the Pmod

The PmodSF communicates with the host board via the SPI protocol. By bringing the Chip Select (CS) line low, users are able to issue a variety of read, write, and erase commands to the memory chip. A table of the available commands for the M25P16 from its respective datasheet is provided below:

Instruction	Description	One-Byte Instruction Code	Number of Address Bytes	Number of Dummy Bytes	Number of Data Bytes
WREN	Write Enable	0x06	0	0	0
WRDI	Write Disable	0x04	0	0	0
RDID	Read Identification	0x9F	0	0	1 to 3
RDSR	Read Status Register	0x05	0	0	1 to ∞
WRSR	Write Status Register	0x01	0	0	1
READ	Read Data Bytes	0x03	3	0	1 to ∞
FAST_READ	Read Data Bytes at Higher Speed	0x0B	3	1	1 to ∞
PP	Page Program	0x02	3	0	1 to 256
SE	Sector Erase	0xD8	3	0	0
BE	Bulk Erase	0xC7	0	0	0
DP	Deep Power-down	0xB9	0	0	0
RES	Release from DP and Read Electronic Signature	0xAB	0	3	1 to ∞
	Release from DP		0	0	0

The address bits range from 0x000000 to 0x1FFFFF, with the first two hexadecimal bits indicating which memory sector the data is located in. Thankfully, users do not have to explicitly worry about writing to and reading from the memory module, as there is a library that takes care of these commands for us.

Ιŀ			
l ŀ	Description	Signal	Pin
5	Chip Select	~CS	1
ect	Master-Out-Slave-In	MOSI	2
LUO	Master-In-Slave-Out	MISO	3
0	Serial Clock	SCK	4
2	Power Supply Ground	GND	5
۱ŀ	Positive Power Supply (3.3V)	VCC	6

Any external power applied to the PmodSF must be within 2.7V and 3.6V; it is recommended that Pmod is operated at 3.3V.

2 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 1 inch long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.