

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.store.digilent.com

Lab 4c: Communications – SPI Serial Protocols

Revised April 25, 2017
This manual applies to Unit 4, Lab 4c.

Unit 4, Lab 4c Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 19

1 Objectives

1. Learn how to configure an SPI channel on the PIC32MX370 processor.

2. Learn the difference between software and hardware handshaking.

3. Learn how to communicate with an SPI FLASH memory device.

2 Basic Knowledge

1. How to configure I/O pins on a Microchip PIC32 PPS microprocessor.

2. How to configure the Analog Discovery 2 to display logic traces.

3. How to implement code reuse that integrates previously developed processor code into new application

projects.

3 Equipment List

3.1 Hardware

1. Basys MX3 trainer board

2. Workstation computer running Windows 10 or higher, MAC OS, or Linux

3. 2 Standard USB A to micro-B cables

In addition, we suggest the following instruments:

4. Analog Discovery 2

3.2 Software

The following programs must be installed on your development work station:

1. Microchip MPLAB X® v3.35 or higher

2. PLIB Peripheral Library

3. XC32 Cross Compiler

4. WaveForms 2015 (if using the Analog Discovery 2)

5. PuTTY Terminal Emulation

http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/
http://store.digilentinc.com/usb-a-to-micro-b-cable/
http://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-and-variable-power-supply/
http://www.microchip.com/mplab/mplab-x-ide
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://store.digilentinc.com/waveforms-2015-download-only/
http://www.putty.org/

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 19

4 Project Takeaways

1. Understanding of requirements and implementations of synchronous communications.

2. Understanding of the SPI protocol.

3. How to generate instruction sets for controlling SPI devices.

5 Fundamental Concepts

Serial Peripheral Interface (SPI) is a master-slave interface bus commonly used to send data between

microcontrollers and small peripherals such as analog-to-digital converters, instrumentation sensors, and solid

state memory devices. It uses a separate clock, send and receive data lines, and a device select signal. The

PIC32MX370 has built-in hardware circuits to support two SPI channels. Since SPI and I2C have been used in similar

applications, there is frequently a comparison of the two protocols, such as presented in Reference 4.

5.1 Software Handshaking

We can see the application of hardware handshaking for synchronizing data transfers for both the asynchronous

UART that used start and stop bits, and synchronous I2C communications that uses the ACK bit. Software

handshaking involves exchanging data that indicates the status of slave devices. An example of software

handshaking with parallel I/O is polling the LCD busy flag. When using the UART, there is the XON/XOFF

handshaking that is used for information flow control.

We will see that the flash memory device used on the Basys MX3 board requires command strings to place the

device in different operating modes and to read device internal registers for determining status. Since SPI is a

synchronous communications protocol, the clock signal manages the hardware element of the device

synchronization.

5.2 SPI Communications

The SPI serial protocol is capable of higher data rates than I2C because it can generally operate at higher clock

rates, and is not limited to 8-bits per word. Although I2C requires only two wires (thus conserving processor pins),

rather than four wires required by SPI, I2C has bandwidth overhead due to the time required for device selection

by sending the ID as a serial byte. Unlike I2C, SPI has no device acknowledge capability.

SPI is a full-duplex synchronous serial communications bus protocol developed by Motorola and has become a de

facto standard that has not been adopted by any national or international standards organizations. As with the I2C

protocol, the SPI bus implements a master-slave communications scheme where the master device alone controls

the data exchange with slave devices. The master device has exclusive control of the serial clock (SCK) signal that is

used to clock the data to and from a slave device.

SPI requires four wires for full-duplex operation and supports only one master but multiple slave devices. The

master writes data to the slave using the Master Out Slave In (MOSI) line. The slave devices are able to send data

to the master over the Master In Slave Out (MISO) line. Other than the clock signal, all handshaking is handled by

an explicit slave select (SS) or chip select (CS) signal.

Figures 5.1 and 5.2 illustrate the two common SPI bus connection configurations. Figure 5.1 shows that the

multiple slave devices share SCK, MOSI, and MISO signals. For this connection configuration, the slave devices are

https://en.wikipedia.org/wiki/Software_flow_control
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/Duplex_(telecommunications)

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 19

explicitly selected by multiple dedicated SS microprocessor outputs. This is the more common SPI connection

configuration.

Figure 5.2 shows a daisy-chain configuration where slave devices share both the SCK and SS signals, and the MOSI

and MISO signals are routed through a series of slave devices. Using this configuration, data intended for the last

device in the chain must be clocked through the preceding slave devices. Data that is to be read from the first slave

device in the chain must also be clocked through the slave devices that follow it in the chain. This additional data

transfer time is the cost of conserving processor I/O pins used for enabling slave devices. Due to the excessive data

transfer time for systems with many slave devices, this configuration is seldom used.

Figure 5.1. Parallel multiple slave SPI bus configuration with

individual device select signals.

Figure 5.2. Daisy chain multiple slave SPI bus configuration with a

common device select signal.

When the microprocessor is connected to a slave device that has both input and output capability using SPI, as

data is clocked out of the master, data is also clocked in from the slave device. This results in efficient data

transfers for some slave devices. The loosely defined SPI interface requires careful consideration of the slave clock-

data timing, as well as using a microprocessor that can be configured to support various timing requirements.

Figure 5.3 shows the clock-data timing for the four SPI operating modes. The clock polarity (CPOL) controls the idle

level of the SCK output from the master. If CPOL is high, then the idle level of SCK is high. The clock phase (CPHA)

specifies when the data is to be changed or written to MOSI by the master and to MISO by the slave device. For

example, when CPHA is low, the data signal (MISO for master and MOSI for the slave) is sampled by the receiving

device when SCK makes a transition from the idle level to the active level.

Figure 5.3. SPI timing modes.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 19

Figure 5.4 shows the PIC32 settings for clock edge (CKE) and clock polarity (CKP). Table 5.1 provides the correlation

between the conventional definitions of SPI mode CPHA and CPOL to those CKE and CKP settings. (Note: There is

an apparent error in the Microchip table shown in Fig. 5.4. Both CKE and CKP should be equal to 1 for the fourth

case of the SCK timing diagrams.) It is important to match the master processor operation to what the slave device

is expecting. For some designs, it is possible for different slave devices to expect the master to operate in modes

that are not the same. The PIC32 operating modes can be changed during program execution, but the modes

should not be changed when the processor is actively clocking data on the SPI bus.

Table 5.1. SPI SCK operational modes.

SPI Mode Active Level
Sample
Transition

CPOL CPHA PIC32 CKP PIC32 CKE

0 (or 0,0) High Idle to Active 0 0 0 1

1 (or 0,1) High Active to Idle 0 1 0 0

2 (or 1,0) Low Idle to Active 1 0 1 1

3 (or 1,1) Low Active to Idle 1 1 1 0

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 19

Figure 5.4. PIC32 SPI control setting to specify the sample timing (Reproduced from Microchip PIC32 Family Reference Guide Section 23, Fig. 23-

7).

SPI master-slave communications can be operated in either simplex or full-duplex modes. Simplex communications

occur when the slave device can only send or receive data. Regardless of which device, master or slave, is sending

the data, the master always provides the SCK signal. Although the phase and sample timing can differ between

devices using SPI, the data is always active high (a high level represents a logical 1.)

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 19

Data is sent and received by transferring the most significant bit (MSB) on the first clock pulse. We will define a

transfer transaction as the exchange of data while the SS signal is continuously asserted in the active state (usually

a low level.) For a specific transaction, if multiple bytes are to be transferred, the byte counter in the slave device is

reset when the SS signal is asserted. There is no start and stop sequence or byte acknowledge like that used with

I2C. Data can be transferred as 8-, 16-, or 32-bit words. There is no limit to how much data can be transferred in a

single transaction.

A data bit is shifted into the receiving device at the same time as the data bit is shifted out. Hence, once a word of

data has been sent, the device has also received the next word. The SPI uses SCK clock edges to implement each

bit transfer. At one SCK edge, each data sends a bit of data on the send line. The opposite clock edge a half of SCK

clock cycle later, a data bit on the receive line is clocked into the receiving device. The specific clock edges are

specified by the SPI mode of operation. The SCK signal can be asymmetrical as long as the period of the high or low

state is greater than the inverse of two times the maximum data rate.

6 Problem Statement

You are to develop a software system that allows the PIC32MX370 to write an arbitrary number of 8-bit bytes to

an arbitrary address location in the SPI flash memory device. You must be able to read back this stored data and

determine if the data read matches the data written.

7 Background Information

7.1 PIC32MX370 SPI I/O

Figure 7.1 shows the signal connections to the S25FL132K flash memory IC. Table 7.1 lists the PIC32MX370

processor pins that these signals are connected to. The PIC32 processor pin for the SPI_CE signal is configured as a

digital output pin, as shown in Listing B.1. To implement the wiring configuration shown in Fig. 7.1, processor I/O

pins PORT F:2 and PORTF:7 are mapped to SPI1T and SPI1R respectively using the first two statements in Listing B.2

in Appendix B. The PIC32MX370 PORTF:6 has a fixed assignment to SCK1.

Figure 7.1. SPI flash memory IC schematic diagram.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 19

Table 7.1. SPI Flash Memory to PIC32MX370 connection table.

Function Flash Memory Pin PIC32MX370 Pin

Chip Enable SPI_CE – 1 PORT F Pin 8

Serial Clock SPI_SCK – 6 PORT F Pin 6 – SCK1

Flash Serial Input SPI_SI – 5 PORT F Pin 2 – SPI1R (MISO)

Flash Serial Output SPI_SO – 2 PORT F Pin 7 – SPI1T (MOSI)

7.2 Interface with SPI Flash Memory

Using the SPI initialization shown in Listing B.2, the PIC32 processor is configured for SPI Mode 0 operation. Figure

7.2 shows that the bit output is held constant when the clock pulse makes a positive transition. Figure 7.2 also

shows that the bit rate is 1 MHz.

Figure 7.2. SPI Bit timing for Mode 0 configuration.

As Fig. A.2 shows, the same SPIxSR serial shift buffer is used for input and output, thus requiring the common SCKx

clock signal. Hence, when a byte of data is shifted out of the SDOx pin, data is also being shifted into the SPIxSR

from the SDIx pin. In other words, to receive SPI serial data, you must send SPI serial data.

Listing B.3 shows the function that can be used to send, receive, or exchange a byte of data using SPI

communications. In most cases, when the SPI master is sending header data to the slave, the master SPI ignores

the data received on the SDIx pin. Similarly, as the master continues to send non-consequential data during a SPI

slave read operation, the slave SPI discards the data sent to it. The SPI master clock must be generated for both

sending and receiving.

7.2.1 SPI Flash Memory Software

We will use the S25FL132K SPI FLASH 132 MB memory device that is populated on the Basys MX3 processor board

to demonstrate SPI device communications. The characteristics of this FLASH device are not representative of all

control protocol used by SPI silicon devices. The FLASH memory device has command and status/configuration

registers that can be accessed independently of the memory data.

Each device transaction is started with a command from the PIC32 processor. The command set of the S25FL132K

Flash Memory is fully controlled through the SPI bus. Commands are initiated with the falling edge of Chip Select

(CS#). The first byte of data clocked into the SI input provides the instruction code. Data on the SI input is sampled

on the rising edge of clock with most significant bit (MSB) first.

Commands vary in length from a single byte to several bytes. Each command begins with an instruction code and

may be followed by address bytes, a mode byte, read latency (dummy/don’t care) cycles, or data bytes.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 19

Commands are completed with the rising edge of edge CS#. Clock relative sequence diagrams for each command

are included in the command descriptions. All read commands can be completed after any data bit. However, all

commands that Write, Program, or Erase must complete on a byte boundary (CS# driven high after a full 8 bits

have been clocked) otherwise the command will be ignored. This feature further protects the device from

inadvertent writes. Additionally, while the memory is being programmed or erased, all commands except for Read

Status Register and Suspend commands will be ignored until the program or erase cycle has completed. When the

Status Register is being written, all commands except for Read Status Register will be ignored until the Status

Register write operation has completed.

Since the data sheet for this Flash memory device is quite daunting, excerpts from that manufacturers data sheets

are shown in Table 7.2 through 7.5 with the commands highlighted that can be used to implement basic FLASH

memory management.

The highlighted commands in Table 7.2 allow for reading basic device identification parameters. Each command is

sent to the device followed by zero to five read bytes. It is recommended that the “Release Power down/Device

ID” command be sent as part of a Flash initialization process. Figure 7.3 shows the screen capture for the SPI

transaction of this command. For the S25FL132K Flash part, the device ID is 21 or 0x15 as demonstrated in Fig. 7.3.

Table 7.2. Command Set (ID and Security Commands)1

Command Name
BYTE 1
(Instruction)

BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6

Deep Power-down B9h

Release Power
Down / Device ID

ABh Dummy Dummy Dummy Device ID (1)

Manufacturer /
Device ID (2)

90h Dummy Dummy 00h Manufacturer Device ID

JEDEC ID 9Fh Manufacturer
Memory
Type

Capacity

Read SFDP Register
/ Read Unique ID
Number

5Ah 00h 00h A7-A0 Dummy (D7-D0, …)

Read Security
Registers (3)

48h A23-A16 A15-A8 A7-A0 Dummy (D7-D0, …)

Erase Security
Registers (3)

44h A23-A16 A15-A8 A7-A0

Program Security
Registers (3)

42h A23-A16 A15-A8 A7-A0 D7-D0, …

1 S25FL132K and S25FL164K Data Sheet, http://www.mouser.com/ds/2/380/S25FL132K_164K_00-268210.pdf

http://www.mouser.com/ds/2/380/S25FL132K_164K_00-268210.pdf

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 19

Figure 7.3. Release Power Down/Read Device ID SPI transaction.

The flash memory status register, SR0, has two volatile bits, bits 0 and 1, that indicate the current operational

status of the memory chip. When WEL (bit 1) is set high, the device can be written to erase or program. The Page

Program command (0x02) allows from one byte to 256 bytes (a page) of data to be programmed at previously

erased (0xFF) memory locations. A Write Enable command must be executed before the device will accept the

Page Program Command (Status Register bit WEL= 1). The command is initiated by driving the CS# pin low then

shifting the instruction code “02h,” followed by a 24-bit address (A23-A0) and at least one data byte, into the SI

pin. The CS# pin must be held low for the entire length of the command while data is being sent to the device.

Refer to section 8 of the Flash Memory data sheet (Reference 5) for additional information.

Table 7.3. Command set (Configuration, Status, Erase, Program Commands)2

Command
Name

BYTE 1
(Instruction)

BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6

Read Status
Register - 1

05h SR1[7:0] (2)(4)

Read Status
Register - 2

35h SR2[7:0] (2)(4)

Read Status
Register - 3

33h SR3[7:0] (2)

Write Enable 06h

Write
Disable

04h

Write Status
Registers

01h SR1[7:0] SR2[7:0] SR3[7:0]

Set Burst
with Wrap

77h Xxh Xxh Xxh SR3[7:0] (3)

Set Block /
Pointer
Protection
(S25FL132K /
S25FL164K)

39h A23-A16
A15-A10, x,
x

xxh

Page
Program

02h A23-A16 A15-A8 A7-A0 D7-D0

2 S25FL116K, S25FL132K, S25FL164K, http://www.cypress.com/file/196886/download

http://www.cypress.com/file/196886/download

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 19

Sector Erase
(4 kB)

20h A23-A16 A15-A8 A7-A0

Block Erase
(64 kB)

D8h A23-A16 A15-A8 A7-A0

Chip Erase C7h / 60h

Erase /
Program
Suspend

75h

Erase /
Program
Resume

7Ah

Table 7.4. Status Register 0 bit definitions.

Bits
Field
Name

Function Type
Default
State

Description

7 SRP0
Status
Register
Protect 0

Non-volatile
and Volatile
versions

0

0 = WP# input has no effect of Power
Supply Lock Down mode
1 = WP# input can protect the Status
Register or OTP Lock Down.

6 SEC
Sector / Block
Protect

0
0 = BP2-BP0 protect 64 kB blocks
1 = BP2-BP0 protect 4 kB sectors

5 TB
Top / Bottom
Protect

0
0 = BP2-BP0 protect from the Top down
1 = BP2-BP0 protect from the Bottom up

4 BP2
Block Protect
Bits

0

000b = No protection 3 BP1 0

2 BP0 0

1 WEL
Write Enable
Latch

Volatile, Read
only

0

0 = Not Write Enabled, no embedded
operation can start
1= Write Enabled, embedded operation
can start

0 BUST
Embedded
Operation
Status

Volatile, Read
only

0
0 = Not Bust, no embedded operation in
progress
1 = Busy, embedded operation in progress

Any number of bytes can be read from the flash device starting at any address. As Table 7.5 illustrates, a read

command (0x03) initializes the starting address. The read operation is terminated whenever the CS# pin is asserted

high.

Table 7.5. Command Set (Read Commands).

Command
Name

BYTE 1
(Instruction)

BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6

Read Data 03h A23-A16 A15-A8 A7-A0
(D7-D0,
…)

Fast Read 0Bh A23-A16 A15-A8 A7-A0 Dummy (D7-D0, …)

Fast Read Dual
Output

3Bh A23-A16 A15-A8 A7-A0 Dummy
(D7-D0, …)
(1)

Fast Read Quad
Output

6Bh A23-A16 A15-A8 A7-A0 Dummy
(D7-D0, …)
(3)

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 19

Fast Read Dual
I/O

BBh A23-A8 (2)
A7-A0, M7-
M0 (2)

(D7-D0, …)
(1)

Fast Read Quad
I/O

EBh
A23-A0, M7-
M0 (4)

(x, x, x, x,
D7-D0, …) (5)

(D7-D0, …)
(3)

Continuous Read
Mode Reset (6)

FFh FFh

Figure 7.4. SPI Flash Read Byte command and three-byte address followed by reading data 'A', 'B', 'C', etc.

8 Lab 4c

8.1 Requirements

1. The PIC32MX370 UART channel 4 must operate at 38400 BAUD with no parity.

2. Two buffers must be created of size 1024 bytes.

3. Generate a 550-byte data set using the following code:

#define nBytes 550

for(i=0; i<nBytes; i++) // Initialize array for FLASH write
{
 wrBuffer[i] = (BYTE) ('A' + i);
}

4. Whenever the push button, BTNR, is pressed, 550 bytes of data must be written to the flash starting at

address 100 (0x64). The following sequence must be executed:

a. 4K bytes of flash memory must be erased starting at address 0.

b. You must verify that the memory space that will be programmed has been erased (data value set

to 0xFF).

c. The preset data stream must be programmed into the flash memory at the starting address.

d. A message is sent to the workstation terminal stating that the programming has completed.

5. All bytes in a receive buffer must be initialized to 0.

6. 550 bytes of flash memory starting at address 100 must be read and each byte compared to the original

data set.

7. If all the bytes compare, the message “No memory error!” is sent to the terminal.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 19

8. If any byte does not compare, the message “Error at address ###: ## written - ## read” where ‘’###”

refers to the specific values.

9. Steps 4 through 8 must be repeated once each second.

8.2 Design Phase

1. Develop a data flow diagram for the software components needed for the requirements of Lab 4c.

2. Schematic diagrams: Provide a block diagram of the equipment used for Lab 4c.

3. Flow diagrams: Provide a complete software control flow diagram for lab 4c.

8.3 Construction Phase

1. Create a new project named Lab4c.

2. Add C program files for configuring the processor and initializing the I/O for the switches and LEDs on

Basys MX3 board.

3. And C program files developed for previous labs that provide an interface to the UART.

4. Develop a file containing the all SPI functions listed Appendix B.

5. Using the primitive control function listed Appendix B, complete the requirements for Lab4c using the call

graphs provided in Fig. 8.1 and Fig. 8.2.

Figure 8.1. Call map for SPI FLash Write Page.

Figure 8.2. Call map for SPI Flash Erase.

6. Download the completed functional project to the PIC32MX370 processor and test by running the project.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 19

8.4 Testing

1. Executing the program must result in the message “No memory error!” being sent to the terminal once

each second.

8.5 SPI Design Challenge

Replace the code in Listing B.7 for the function “SPIFLASH_WritePage” that uses software-intensive “for” loops

with one that uses DMA.

9 Questions

1. Why does SPI normally have higher data transfer rates?

2. Is it necessary for the SPI SCK signal to have a 50% duty cycle?

3. Can text data be sent using SPI communications?

4. Can SPI master be configured for only receiving data without transmitting data?

5. How many slave devices can be connected to the SPI bus?

6. What will happen to the SPI communications is an interrupt occurs in the middle of a transmission?

10 References

1. Embedded Computing and Mechatronics with the PIC32 Microcontroller, 1st Edition, by Kevin

Lynch (Author), Nicholas Marchuk (Author), Matthew Elwin (Author),

https://www.amazon.com/Embedded-Computing-Mechatronics-PIC32-Microcontroller/dp/0124201652

2. “PIC32MX330/350/370/430/4450/470 32 Bit Microcontroller Datasheet (60001185E)”,

http://ww1.microchip.com/downloads/en/DeviceDoc/60001185E.pdf

3. “Overview and Use of the PICmicro Serial Peripheral Interface”,

http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf

4. Introduction to I²C and SPI protocols, http://www.byteparadigm.com/applications/introduction-to-i2c-

and-spi-protocols/

5. 16 Mbit (2 Mbyte), 32 Mbit (4 Mbyte), 64 Mbit (8 Mbyte) 3.0 V NVM,

http://www.cypress.com/file/196886/download

6. S25FL132K and S25FL164K Data Sheet, http://www.mouser.com/ds/2/380/S25FL132K_164K_00-

268210.pdf

7. Implementing File I/O Functions Using Microchip’s Memory Disk Drive File System Library,

http://ww1.microchip.com/downloads/en/AppNotes/01045b.pdf

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Kevin+Lynch&search-alias=books&field-author=Kevin+Lynch&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Kevin+Lynch&search-alias=books&field-author=Kevin+Lynch&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Nicholas+Marchuk&search-alias=books&field-author=Nicholas+Marchuk&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Matthew+Elwin&search-alias=books&field-author=Matthew+Elwin&sort=relevancerank
https://www.amazon.com/Embedded-Computing-Mechatronics-PIC32-Microcontroller/dp/0124201652
http://ww1.microchip.com/downloads/en/DeviceDoc/60001185E.pdf
http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/
http://www.cypress.com/file/196886/download
http://www.mouser.com/ds/2/380/S25FL132K_164K_00-268210.pdf
http://www.mouser.com/ds/2/380/S25FL132K_164K_00-268210.pdf
http://ww1.microchip.com/downloads/en/AppNotes/01045b.pdf

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 19

Appendix A: Lab 4 Parts Configuration

Figure A.1. Unit 4 hardware and instrumentation configuration.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 19

Figure A.2. SPI block diagram from the Microchip PIC32MX370 data sheet.

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 19

Appendix B: Allocating a Heap in MPLAB X

Listing B.1. Flash Memory SPI Initialization

#define SPIFLASH_SEL LATFbits.LATF8

#define SPIFLASH_CS_TRIS TRISFbits.TRISF8

unsigned int flash_mem_init(void)

{

unsigned int bitrate;

 bitrate = init_SPI1();

 SPIFLASH_CS_TRIS = 0; // Set FLASH select as output

 SPIFLASH_SEL = 1; // Reset FLASH chip select

 return bitrate; // Has no meaning at this time

}

Listing B.2. SPI Channel 1 initialization for Master Mode

#define MAX_SPI_CLK_FREQ 1000000
#define GetPeripheralClock() (GetSystemClock()/8)
unsigned int init_SPI1(void)
{
unsigned int pbFreq;
unsigned int SPI_Clk_Freq;
unsigned int berg_val;

// Map PPS pins to SDI1
 SDI1R = 0x0F; // Map SDI1 to RF7 - Input (MISO))
 RPF2R = 0x08; // MAP SDO1 to RF2 - Output (MOSI))
// SCK1 has fixed assignment to RF6

// Initialize the direction of the SPI interface signals. The device SS
// is not assigned in this initialization since the pin assignment can be
// hardware dependent.
 SDI1_TRIS = 1; // FLASH SO
 SDO1_TRIS = 0; // FLASH SI
 SCK1_TRIS = 0; // FLASH SCK
 SPI1_SDO = 0;
 SPI1_SCK = 0;

// Peripheral Bus Frequency = System Clock / PB Divider
// PB Frequency can be maximum 40 MHz *
 pbFreq = GetPeripheralClock();
// Compute proper BERG value for specified SPI bit rate
 berg_val = SpiBrgVal(pbFreq, MAX_SPI_CLK_FREQ);
// Compute actual SPI bit rate
 SPI_Clk_Freq = pbFreq / (2 * (berg_val+1));

// Enable SPI1, Set to Master Mode & Set CKE bit 1 for SPI MODE 0
// Serial output data changes on transition from Active clock state to Idle
// clock state. Idle clock state is low.
 SPI1BRG = berg_val; // Set SPI bit rate
 SPI1CONbits.MSTEN = 1; // SPI Master enable
 SPI1CONbits.CKE = 1; // Set for SPI Mode 0
 SPI1CONbits.ON = 1; // Enable SPI1
 return SPI_Clk_Freq;
}

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 19

Listing B.3. SPI Channel 1 Byte Transaction.

BYTE spiXfer(BYTE data_out)
{
 SpiChnPutC(1, data_out);
 DelayUs(1); // Not required – testing only
 return SpiChnGetC(1);
}

Listing B.4. FLASH Transfer Bytes

void SPIFLASH_TrasferBytes(int nBytes, unsigned char *pbRdData,
 unsigned char *pbWrData)
{
 int i;
 SPIFLASH_SEL = 0; // Activate CS
 for(i = 0; i< nBytes; i++)
 {
 SPIFLASH_SendByte(pbWrData[i]); // Write byte to SPI FLash
 pbRdData[i] = SPI1BUF;
 }
 SPIFLASH_SEL = 1; // Deactivate CS
}

Listing B.5. FLASH Release Power Down and read Device ID

void SPIFLASH_ReleasePowerDownGetDeviceID(BYTE *rd)
{
BYTE wr[5] = {0};

 spi_wr[0] = SPIFLASH_CMD_PWRDWN_DEVID;
 spi_wr[1] = 0;
 spi_wr[2] = 0;
 spi_wr[3] = 0;
 spi_wr[4] = 0;
 SPIFLASH_TrasferBytes(5, rd, wr);
}

Listing B.6. SPI Write data to Flash

int SPIFLASH_WriteData(int nBytes, BYTE *pbWrData, unsigned int flashAddr)
{
int error = 0;
unsigned int pageAddrS; // Page start programming address
unsigned int pageAddrE; // Page end programming address
unsigned int pageAddrL; // Last Page end programming address
unsigned int pageBytes; // Bytes to program in current page
unsigned int nPages;
BYTE *dataPtr; // Updated data array pointer

 dataPtr = pbWrData;
 pageAddrS = flashAddr;
 pageAddrL = pageAddrS + nBytes;

// Write data one page at a time until error or write is complete.
 while((pageAddrS < pageAddrL) && !error)
 {
 pageAddrE = (pageAddrS & 0xFFFFFF00) + SPIFLASH_PAGE_SIZE;
 if(pageAddrE >= pageAddrL)
 {
 pageAddrE = pageAddrL;
 }
 pageBytes = pageAddrE - pageAddrS;

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 19

// Program one full page (256 bytes) or partial page within page boundaries
 error |= SPIFLASH_WritePage(pageBytes, dataPtr, pageAddrS);
 pageAddrS = pageAddrE;
 dataPtr += pageBytes;
 }

 return error;
}

Listing B.7. SPI Write Page data to Flash

static int SPIFLASH_WritePage(int nBytes, unsigned char *pbWrData,
 unsigned int data_addr)
{
BYTE wr_hdr[5] = {0}; // Used for command and address
BYTE rd_hdr[5] = {0};
BYTE tmpBuffer1[256]; // Read buffer for checking page erased
unsigned int pageAddr; // Start write address
int error = 0; // Process error
BYTE chk_flag = 0xFF; // Check erased flag
int i; // General index
BYTE FLASHStatus; // Flash memory busy flag

// Test page constraint
 if(((data_addr & 0x000000FF) + nBytes) > 256)
 {
 error = 1; // Write beyond page boundary
 }
 else
 {

// Read existing page contents
 SPIFLASH_ReadData(nBytes, tmpBuffer1, data_addr);

// Check for memory erased
 chk_flag = 0xFF;
 for(i=0; i<nBytes; i++)
 {
 chk_flag &= tmpBuffer1[i];
 }
 if(chk_flag != 0xFF)
 {
 error = 1;
 return error;
 }

 wr_hdr[0] = SPIFLASH_CMD_WREN; // Unlock FLASH for writing
 SPIFLASH_TrasferBytes(1, rd_hdr, wr_hdr);

// Poll Status Register 1 until WEL bit is set and BUSY flag is reset.
 do {
 FLASHStatus = SPIFLASHReadStatus();
 } while(FLASHStatus != SPIFLASH_WEL_STATUS_BIT);

// Setup write header
 wr_hdr[0] = SPIFLASH_CMD_WRITE;
 wr_hdr[1] = (BYTE) (data_addr >> 16);
 wr_hdr[2] = (BYTE) (data_addr >> 8);
 wr_hdr[3] = (BYTE) (data_addr);
 wr_hdr[4] = 0;

 SPIFLASH_SEL = 0; // Activate CS
 for(i=0; i<4; i++) // SPI Write command and address
 {
 SPIFLASH_SendByte(wr_hdr[i]);

Lab 4c: Communications – SPI Serial Protocols

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 19

 rd_hdr[0] = SPI1BUF; // Ignore returned bytes
 }
 for(i=0; i<nBytes; i++) // Write data
 {
 SPIFLASH_SendByte(*pbWrData++);
 rd_hdr[0] = SPI1BUF; // Ignore returned bytes
 }
 SPIFLASH_SEL = 1; // deactivate CS

 wr_hdr[0] = SPIFLASH_CMD_WRDI; // Disable SPI FLash write

 SPIFLASH_TrasferBytes(1, rd_hdr, wr_hdr);
 do {
 FLASHStatus = SPIFLASHReadStatus();
 } while(FLASHStatus != 0); // Wait until write is complete

 }
 return error;
}

