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8. Introduction and Chapter Objectives
Second order systems are, by definition, systems whose input-output relationship is a second order differential
equation.  A second order differential equation contains a second order derivative but no derivative higher than
second order.  Second order systems contain two independent energy storage elements, per our comments in
Chapter 7 pertaining to the relationship between the number of energy storage elements in a system and the
system order.

Second order systems, like first order systems, are an extremely important class of systems.  In previous chapters,
we saw that the natural response of first order systems decays exponentially with time – the natural response
decays monotonically to zero.  The natural response of second order systems can, however, oscillate with time –
we will see that a second order systems response can contain sinusoidal components.  The motion of a pendulum,
for example, can be modeled by a second order system.  These oscillations are due to the transfer of energy
between the two energy storage mechanisms; a pendulum, for example, oscillates because of the cyclic exchange of
potential and kinetic energy of the mass.

Since the natural response of second-order systems can oscillate with time, their response can be fundamentally
different than the response of first order systems.  In the introduction to chapter 7, we noted that it is common to
approximate higher-order systems as first order systems (at the time, we said that such a system has dominant first
order modes).  This approximation is not possible if the natural response of the higher order system oscillates.
However, it may be possible to approximate the response of such a system as a second order system.  Systems
which behave approximately as second order systems have what are called dominant second order modes.  In fact,
the natural response of any higher order system can be considered in terms of the responses of multiple first
and/or second order systems1.  This is why an understanding of first and second order system responses is so
crucial to the engineer – these responses provide the building blocks for understanding the responses of all linear
systems.

In this textbook, of course, we are interested in the response of electrical circuits.  Thus, we begin this chapter with
a presentation of two simple second order electrical circuits: the series RLC and parallel RLC circuits.  In section
8.1, we derive the governing equations for these circuits and use the results to write the general form of the
differential equation governing second order systems.  This equation is in terms of two very important
parameters: the system natural frequency and the system damping ratio.  The homogeneous solution of this
general equation is determined in sections 8.2 and 8.4.  In section 8.2, we develop the form of the solution (in
terms of the natural frequency and damping ratio).  Since the response of second order systems contains complex
exponential functions, we provide some material (in section 8.3) relative to complex exponentials and sinusoidal
signals.  This material will provide us the necessary background to allow us to determine the natural response.
Section 8.3 is optional for readers who are comfortable with complex exponential and sinusoidal signals.  The
overall natural response is developed in section 8.4, using the solution form presented in section 8.2 and the
background material on complex exponentials in section 8.3.

1 In fact, in this chapter we will see that the responses of some second order systems can be interpreted in terms of
two first order system responses.
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After completing this chapter, you should be able to:

 Write differential equations governing second order circuits
 Define damping ratio and natural frequency from the coefficients of a second order differential equation
 Express the form of the natural response of an arbitrary second order system in terms of complex

exponentials, the damping ratio, and the natural frequency.
 Summarize the behavior of the complex exponentials in the system natural response for the damping ratio

ranges below:
 Damping ratio greater than one
 Damping ratio less than one
 Damping ratio equal to one

 Write complex numbers in terms of complex exponentials
 Express sinusoidal signals in terms of complex exponentials
 Classify overdamped, underdamped, and critically damped systems according to their damping ratio
 Identify the expected shape of the natural response of over-, under-, and critically damped systems
 State from memory the definition of an underdamped second order system’s overshoot, rise time, and

steady-state response
 Use the coefficients of a second order system’s governing equation to estimate the system’s overshoot, rise

time, and steady-state response
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8.1: Introduction to Second Order Systems

We will develop our discussion of second order systems in the context of two electrical circuits examples.

Example 8.1: Series RLC circuit:

Consider the circuit shown in Figure 8.1 below, consisting of a resistor, a capacitor, and an inductor (this type of
circuit is commonly called an RLC circuit).  The circuit contains two energy storage elements: an inductor and a
capacitor.  The energy storage elements are independent, since there is no way to combine them to form a single
equivalent energy storage element.  Thus, we expect the governing equation for the circuit to be a second order
differential equation.  We will develop equations governing both the capacitor voltage, vC(t) and the inductor
current, iL(t) as indicated in Figure 8.1.

Figure 8.1.  Series RLC circuit

In order to determine the governing equations for vC(t) and iL(t) we will attempt to write two first-order
differential equations for the system and then combine these equations to obtain the desired second order
differential equation.  To facilitate this process, the circuit of Figure 8.1 is repeated in Figure 8.2 with the node and
loop we will use labeled.  Note that we also label the current through the capacitor in terms of the capacitor
voltage and the voltage across the inductor in terms of the inductor current.

Figure 8.2.  Series RLC circuit with node and loop defined.

The voltage-current relationships for inductors and capacitors indicate that, in Figure 8.2,
dt

)t(dv
C)t(i C

C  and

dt
)t(di

L)t(v L
L  .  Using the latter of these relations, KVL around the indicated loop in Figure 8.2 provides:
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dt
di

L)t(v)t(Ri)t(v L
CLs  (8.1)

KCL at node A, along with the voltage-current relation for the capacitor, indicates that:

)t(i
dt

)t(dv
C L

C  (8.2)

We can determine the equation governing the capacitor voltage by differentiating equation (8.2) with respect to
time to obtain an expression for the derivative of the inductor current:

dt
)t(di

dt
)t(vd

C LC 2

2

(8.3)

Substituting equations (8.2) and (8.3) into equation (8.1) results in:

2

2

dt
)t(vd

LC)t(v
dt

)t(dv
RC)t(v C

C
C

S 

Rearranging this slightly results in

)t(v
LC

)t(v
LCdt

)t(dv
L
R

dt
)t(vd

SC
CC 11

2

2

 (8.4)

To determine the relationship governing the inductor current, we can again use equation (8.2) to write the
capacitor voltage as:

dt)t(i
C

)t(v
t

LC 
0

1
(8.5)

where we assume that the voltage across the capacitor at time t = 0 is zero; e.g. 00 )(vC .

Substituting equation (8.5) into equation (8.1) results in the integro-differential equation:

dt
di

Ldt)t(i
C

)t(Ri)t(v L
t

LLs  
0

1

In general, we prefer not to work with a mixture of derivatives and integrals in the same equation, so we
differentiate the above to obtain our final expression for iL(t):

dt
)t(dv

L
)t(i

LCdt
)t(di

L
R

dt
)t(id S

L
LL 11

2

2

 (8.6)
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Important Tip:

Equations (8.1) and (8.2) consist of two coupled first order differential equations in two unknowns: )t(iL and
)t(vC .  This set of differential equations completely describes the behavior of the circuit – if we are given

appropriate initial conditions and the input function )t(vS they can be solved to determine the inductor currents
and capacitor voltages.  Once the capacitor voltage and inductor current are known, the energy in the system is
completely defined and we can determine any other desired circuit parameters.  Any manipulations of equations
(8.1) and (8.2) we performed subsequently do not fundamentally increase the information we have about the
circuit – we were simply rearranging equations (8.1) and (8.2) to create a single equation with the desired
unknown.

Example 8.2: Parallel RLC circuit

Our second exemplary circuit is the parallel combination of a resistor, capacitor, and inductor shown in Figure
8.3.  The circuit is, for relatively obvious reasons, called a parallel RLC circuit.  The forcing function to the circuit
is provided by a current source, iS(t).  The circuit of Figure 8.3, like that of Figure 8.2, contains two independent
energy storage elements –we expect the governing equations for the circuit to be second order differential
equations.  We will again develop equations governing both the capacitor voltage, vC(t) and the inductor current,
iL(t) as indicated in Figure 8.3.

Figure 8.3.  Parallel RLC circuit.

Consistent with our approach for the series RLC circuit, we will write first order differential equations using the
variables vC(t) and iL(t) and subsequently combine these equations to eliminate the undesired unknown.  Figure
8.4 shows the node and loop we will use to generate these equations.  Figure 8.4 also shows the current through
the capacitor in terms of the capacitor voltage and the voltage across the inductor in terms of the inductor current.

is(t) CR vC(t)

+

-

L iL(t)

iC(t)

vL(t)

+

-

A

KVL

Figure 8.4.  Parallel RLC circuit with node and loop defined.
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KVL around the indicated loop provides:

)t(v
dt

)t(di
L C

L  (8.7)

KCL at node A provides:

dt
)t(dv

C)t(i
R

)t(v
)t(i C

L
C

S  (8.8)

As in example 8.1, equations (8.7) and (8.8) completely describe the circuit’s response.  However, to gain
additional insight into the individual parameters vC(t) and iL(t), we rearrange these equations into second order
differential equations in a single dependent variable.  For example, we can differentiate equation (8.7) to obtain

dt
)t(dv

dt
)t(id

L CL 2

2

(8.9)

Equations (8.7) and (8.9) can be substituted into equation (8.8) to obtain a second order differential equation in
the variable iL(t).  After some manipulation, the resulting equation is

)t(i
LC

)t(i
LCdt

)t(di
RCdt

)t(id
SL

LL 111
2

2

 (8.10)

Likewise, we can integrate equation (8.7) and use the result to write equation (8.8) in terms of the capacitor
voltage:

dt
)t(dv

C
)t(v

LCdt
)t(dv

RCdt
)t(vd S

C
CC 111

2

2

 (8.11)

The important thing to note about the above examples is that equations (8.4), (8.6), (8.10), and (8.11) can all be
written in the form:

)t(f)t(y
dt

)t(dy
dt

)t(yd
nn  2

2

2

2  (8.12)

where y(t) is the system parameter of interest (for example, a voltage or current in an electrical circuit), n is the
undamped natural frequency and  is the damping ratio; the physical significance of these parameters will be
presented later in this series of chapters.  The point being made here is that the governing equation for any second
order system can be written in the form of equation (8.12); thus, we will focus on this format for our discussion of
the solution of second order differential equations.
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Section Summary:

 Second order systems have two independent energy storage elements.  These circuits are governed by second
order differential equations.

 Unlike first order circuits, the natural response of second order circuits can oscillate.  This oscillation is due to
energy exchanges between the two energy storage elements (inductors and/or capacitors, in electrical circuits).
The oscillations will die out with time due to energy dissipation elements (resistors, in electrical circuits).

 The general differential equation governing second order circuits is of the form:

)t(f)t(y
dt

)t(dy
dt

)t(yd
nn  2

2

2

2  ,

where y(t) is a voltage or current of interest in the circuit.

 In the equation above, n is called the undamped natural frequency and  is called the damping ratio. These
parameters (along with the DC gain of the circuit, as presented in section 7.5) govern the shape of the circuit
natural response.
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Exercises:

1. The differential equation governing a circuit’s natural response is:

064322

2

 )t(y
dt

)t(dy
dt

)t(yd

Where y(t) is the circuit response.  What are:
a. The circuit’s natural frequency and,
b. The circuit’s damping ratio

2. The differential equation governing a circuit’s natural response is:

06482

2

 )t(y
dt

)t(dy
dt

)t(yd

Where y(t) is the circuit response.  What are:
a. The circuit’s natural frequency and,
b. The circuit’s damping ratio

3. For the circuit below, determine the differential equation for iL(t), t>0. (Hint: write KCL at node A and KVL
around loop 1 to get two equations in two unknowns, vc(t) and iL(t). Then combine the equations to eliminate
vc(t).)

4. For the circuit shown below, apply KCL at node A and KVL around loop 1 to write two first order differential
equations in two unknowns: the current through the inductor and the voltage across the capacitor. Combine
these equations to write a single second order differential equation in the voltage v(t).
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8.2: Second Order System Natural Response — Part I
In section 8.1, we determined that the the differential equation governing a second-order system could be written
in the form

)t(f)t(y
dt

)t(dy
dt

)t(yd
nn  2

2

2

2 

where y(t) is any system parameter of interest (for example, a voltage or current in an electrical circuit), n and 
are the undamped natural frequency and the damping ratio of the system, respectively, and f(t) is a forcing
function applied to the system.  In general, f(t) is an arbitrary function of the physical input to the system.  (The
physical input to the system can be, for example, a voltage or current source; f(t) is a function of these power
sources.  In section 8.1, we saw examples in which f(t) was proportional to an applied voltage or current or
proportional to the derivative of an applied voltage or current.)

In this chapter, we will develop the homogeneous solution to the above second order differential equation.  For
the homogeneous case, the forcing function f(t) = 0.

In this chapter, we develop the homogeneous solution to the differential equation provided in equation (8.12) of
section 8.1.  The appropriate differential equation to be solved is thus

02 2
2

2

 )t(y
dt

)t(dy
dt

)t(yd
hn

h
n

h  (8.13)

In equation (8.13), yh(t) is the solution to the homogeneous, or unforced differential equation given by equation
(8.13).  A second order differential equation requires two initial conditions in order to solve it; we will take our
initial conditions to be the value of the function y(t) at t = 0 and the derivative of the function y(t) at t = 0.  We will
state our initial conditions as:

0
0

00

'y
dt

)t(dy
y)t(y

t







(8.14)

Our approach to the solution of equation (8.13) will be consistent with our previous approach to the solution of
first order homogeneous differential equations: we will assume the form of the differential equation (8.13) plug
this assumed solution into equation (8.13) and then use our initial conditions to determine any unknown
constants in the solution.

Examination of equation (8.13) leads us to conclude that the solution )t(yh of equation (8.13) must be a
function whose form does not change upon differentiation.  Thus, we assume (consistent with our approach in
section 7.3) that the solution to equation (8.13) will be of the form:

st
h Ke)t(y  (8.15)
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Substituting equation (8.15) into equation (8.13) results in

02 22  st
n

st
n

st eKe)Ks(e)Ks( 

The above can be simplified to

  02 22  st
nn Kess 

The solutions to the above equation are 0stKe and 02 22  nn ss  .  The first of these results in the
trivial solution, K = 0, which in general will not allow us to satisfy our initial conditions.  Thus, in our solution
given by equation (8.15), we choose s according to:

02 22  nn ss  (8.16)

Since equation (8.16) is quadratic, values of s which satisfy it are given by:

   
2

2422 22
nnnns
 



After simplification, this provides:

12   nns (8.17)

Equations (8.15) and (8.17) indicate that there are two possible solutions to equation (8.13).  Since the original
differential equation is linear, we know that superposition is valid and our overall solution can be a linear
combination of the two solutions provided by equations (8.15) and (8.17).  Thus, we take our overall solution to
be of the form:

tsts
h eKeK)t(y 21

21 

where s1 and s2 are provided by equation (8.17) so that

tt

h
nnnn eKeK)t(y






 





 


1

2

1

1

22 

which can be re-written as:
















 





  ttt

h
nn

n eKeKe)t(y
1

2

1

1

22  (8.18)

The initial conditions, given by equations (8.14) can be used to determine the unknown constants, K1 and K2.

Let us briefly examine the form of equation (8.18) before providing examples of the homogeneous solution for
specific circuit-related examples.  We do this by examining individual terms in equation (8.18):

 In equation (8.18), the term tne  is an exponential function of the form discussed in section 6.2.  Thus,
we know that this term corresponds to a decaying exponential, as long as the term n is positive.
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 There are three possible forms which the term
tne





  12

can take:

1. If 1 , the terms
tne





  12

are either growing or decaying exponentials of the form discussed in

section 6.2 (if 1 ,
tne





 12

grows exponentially with time and
tne





  12

decays exponentially
with time).

2. If 1 , the terms
tne





  12

are constant and equal to one (  te 0 = 1).

3. If 1 , the terms
tne





  12

are complex exponentials.  (The term 22 11   j , where

1j .  Thus, the term
tne





  12

=
tj ne





  21 

and we have an exponential raised to an
imaginary power.

Before examining the above results in more detail and performing some physical, circuit-related examples, we
present some material in section 8.3 relative to complex exponentials and sinusoidal signals.  This material will
provide us a context within which we can place our solution of equation (8.18).  Section 8.3 is optional for readers
who are comfortable with complex exponential and sinusoidal signals.

Section Summary:

 The form of the natural response of a general second order system is:
















 





  ttt

h
nn

n eKeKe)t(y
1

2

1

1

22 

where K1 and K2 are constants which depend upon the system initial conditions.

 The form of the
tne





  12

terms in the system response depends strongly upon the damping ratio.  If
1 , these terms become growing or decaying exponentials.  If 1 , these terms are complex

exponentials, and the solution will have sinusoidal components.  The relationship between complex

exponentials is presented in more depth in section 8.3.  If 1 , the
tne





  12

are simply one.

 The tne  term in the natural response causes the overall solution to decay as time increases.  Thus, the
natural response goes to zero as t→∞.
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8.3: Sinusoidal Signals and Complex Exponentials
Sinusoidal signals and complex exponentials are extremely important to any engineer who is concerned with
determining the dynamic response of a system.  Electrical circuits, in particular, are often characterized by their
response to sinusoidal inputs.

This chapter provides some background relative to these signals.

Sinusoidal Signals:

Sinusoidal signals are represented in terms of sine and/or cosine functions.  In general, we will represent sinusoids
as cosine functions.  Our general expression for a sinusoidal signal is:

)tcos(V)t(v P   (8.19)

where VP is the zero-to-peak amplitude of the sinusoid,  is the radian frequency of the sinusoid (we will always
use radians/second as the units of ) and  is the phase angle of the sinusoid (in units of either radians or degrees
are used for phase angle – recall that 2 radians = 360).  A representative plot of a sinusoidal signal is provided in
Figure 8.5.  In Figure 8.5, the frequency of the sinusoid is indicated as a period of the signal (the period is defined
as the shortest time interval at which the signal repeats itself).  The radian frequency of a sinusoid is related to the
period by:

T
 2

 (8.20)

Figure 8.5.  Arbitrary sinusoidal signal.
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Note:

Complex exponential signals have both real and imaginary parts; when we introduce complex exponentials later
in this chapter, we will see that the cosine function is the real part of a complex exponential signal.  Complex
exponentials make dynamic systems analysis relatively simple – thus, we often analyze a signals response in terms
of complex exponentials.  Since any measurable quantity is real-valued, taking the real part of the analytical result
based on complex exponentials will result in a cosine function.  Thus, cosines become a natural way to express
signals which vary sinusoidally.

The frequency of a sinusoidal signal is alternately expressed in units of Hertz (abbreviated Hz).  A Hertz is the
number of cycles which the sinusoid goes through in one second.  Thus, Hertz correspond to cycles/second.  The
frequency of a signal in Hertz is related to the period of the signal by

T
f 1
 (8.21)

Radian frequencies relate to frequencies in Hertz by:


2

f  f 2 (8.22)

Although frequencies of signals are often expressed in Hertz, it is not a unit which lends itself to calculations.
Thus, all our calculations will be performed in radian frequency – if given a frequency in Hertz, it should be
converted to radians/second before any calculations are performed based on this frequency.

Complex Exponentials:

In our presentation of complex exponentials, we first provide a brief review of complex numbers.  A complex
number contains both real and imaginary parts.  Thus, we may write a complex number A as:

A = a +jb (8.23)

where

1j (8.24)

The complex number A can be represented on orthogonal axes representing the real and imaginary part of the
number, as shown in Figure 8.6.  (In Figure 8.6, we have taken the liberty of representing A as a vector, although it
is really just a number.)  We can also represent the complex number in polar coordinates, also shown in Figure
8.6.  The polar coordinates consist of a magnitude A and phase angle A , defined as:

22 baA  (8.25)
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





 

a
btanA

1 (8.26)

Notice that the phase angle is defined counterclockwise from the positive real axis.  Conversely, we can determine
the rectangular coordinates from the polar coordinates from

  )cos(AARea A (8.27)

  )sin(AAImb A (8.28)

where the notation  ARe and  AIm denote the real part of A and the imaginary part of A, respectively.

The polar coordinates of a complex number A are often represented in the form:

AAA  (8.29)

)cos(A A

)sin(A A

Figure 8.6.  Representation of a complex number in rectangular and polar coordinates.

An alternate method of representing complex numbers in polar coordinates employs complex exponential
notation.  Without proof, we claim that

 1je (8.30)

Thus, je is a complex number with magnitude 1 and phase angle .  From Figure 8.6, it is easy to see that this
definition of the complex exponential agrees with Euler’s equation:

 sinjcose j  (8.31)

With the definition of equation (8.30), we can define any arbitrary complex number in terms of complex
exponentials.  For example, our previous complex number A can be represented as:

AjeAA  (8.32)
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We can generalize our definition of the complex exponential to time-varying signals.  If we define a time varying
signal tje  , we can use equation (8.31) to write:

tsinjtcose tj   (8.33)

The signal tje  can be visualized as a unit vector rotating around the origin in the complex plane; the tip of the
vector scribes a unit circle with its center at the origin of the complex plane.  This is illustrated in Figure 8.7.  The

vector rotates at a rate defined by the quantity  -- the vector makes one complete revolution every

2

seconds.

The projection of this rotating vector on the real axis traces out the signal tcos , as shown in Figure 8.7, while
the projection of the rotating vector on the imaginary axis traces out the signal tsin  , also shown in Figure 8.7.

Thus, we interpret the complex exponential function tje  as an alternate “type” of sinusoidal signal.  The real part
of this function is tcos while the imaginary part of this function is tsin  .

Figure 8.7.  Illustration of tje  .



Real Analog – Circuits 1
Chapter 8.3: Sinusoidal Signals and Complex Exponentials

© 2012 Digilent, Inc. 16

Section Summary:

 We will represent sinusoidal signal in terms of cosine functions.  The general form of our sinusoidal signals is
)tcos(V)t(v P   .

 Sinusoidal signals can also be represented as complex exponentials.  The relationship is an extension of Euler’s
equation, and is

tsinjtcose tj  

 By extension, cosine signals can be represented in terms of complex exponentials as:

2
)cos(

tjtj eet







 The above general sinusoidal signal can be expressed as the real part of a complex exponential:

 )(Re)cos(   tj
PP eVtV

Exercises:

1. A complex valued signal v(t) is given by )t(je)t(v
30  .  What is the real part of the signal?

2. Represent the signal )tcos()t(v 300 in terms of complex exponentials.

3. Represent the complex number 3 - j3 in polar coordinates.

4. Represent the complex number je in rectangular coordinates.

5. Represent the complex number 2je in rectangular coordinates.
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8.4: Second Order System Natural Response — Part II
In section 8.2, we developed the form of the solution of the differential equation governing the natural response of
second order systems.  The form of the solution contained so-called complex exponentials; the background
material relative to these signals was provided in section 8.3.  We are thus now in a position to re-examine and
interpret the solution presented in section 8.2.

In section 8.2, we noted that the form of the natural response of a second order system was strongly dependent
upon the damping ratio, .  If the damping ratio was greater than one, all terms in the response decay
exponentially, but if the damping ratio was between zero and one some terms in the response became complex
exponentials – in section 8.3, we saw that this corresponded to an oscillating signal.  Thus, depending upon the
value of damping ratio, the response could decay exponentially or oscillate. In this chapter, we will quantify and
formalize these results.  This section concludes with an extended example of a second order system natural
response.

In section 8.1, the differential equation governing the natural response of a second order system was written as

02 2
2

2

 )t(y
dt

)t(dy
dt

)t(yd
hn

h
n

h  (8.34)

where y(t) is any system parameter of interest, n is the undamped natural frequency and  is the damping ratio.
The initial conditions are the value of the function y(t) at t = 0 and the derivative of the function y(t) at t = 0:

0
0

00

'y
dt

)t(dy
y)t(y

t







(8.35)

In section 8.2, we wrote the solution to equation (8.34) in the form
















 





  ttt

h
nn

n eKeKe)t(y
1

2

1

1

22  (8.36)

where K1 and K2 are unknown coefficients which can be determined by application of the initial conditions
provided in equation (8.35).  The form of the solution of equation (8.36) will fall into one of three categories,
depending on the value of damping ratio.  The three possible cases are:

1. If 1 , all terms in the solution will be either growing or decaying exponentials and the solution will
decay exponentially with time.  If the damping ratio is large, this decay rate can be very slow.  A system
with 1 is said to be overdamped.

2. If 1 , the terms
tne





  12

are complex exponentials.  Thus, have terms in our solution which are
exponentials raised to an imaginary power and the solution can oscillate.  A system with 1 is said to
be underdamped.
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3. 1 ; the form of the solution in this case is approximately that of case 1 above, in that the solution will
decay exponentially.  However, in this case, the response decay rate will be faster than the response of any
overdamped system with the same natural frequency.  Systems with 1 are said to be critically damped.

Details of the responses for each of the above three cases are provided in the subsections below.

1. Overdamped System:

For an overdamped system, 1 , and equation (8.36) becomes as shown in equation (8.37).

   


















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  1

2
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2
01

2
0

2
0 22

12

1

12

1 







 t

n

nt

n

nt
h

nnn e
yy

e
yy

e)t(y


(8.37)

In equation (8.37), the tne  term is a decaying exponential with time constant
n

1 .  The 12 tne is a

growing exponential with time constant
1

1
2 n

.  The 12  tne term is a decaying exponential, also with

time constant
1

1
2 n

.  Thus, the overall system response is a sum of two decaying exponential signals, one

which is proportional to 12   tt nn ee and the other which is proportional to 12   tt nn ee .

The term 12   tt nn ee is the product of two exponentials: one which grows with time, and the other which

decays with time.  The decaying exponential time constant,
n

1 , is smaller than the growing exponential time

constant,
1

1
2 n

.  Thus, the product of the two will decay with time, though the decay rate may be very

slow.  (Note that in the limit as  ,
1

11
2 




nn
, the two time constants are nearly identical, and

this term becomes constant with time.)

The term 12   tt nn ee is the product of two decaying exponentials; this term will, in general, decay quickly

relative to the 12   tt nn ee term.

An example of the response of an overdamped system is shown in Figure 8.8, for various values of damping ratio.
The two system time constants are readily observable in this example.  Note that as the damping ratio increases,
the overall time required for the system response to decay to zero increases.  The response of overdamped systems
cannot oscillate, however, the response can change sign once (e.g. the function is allowed one zero-crossing).



Real Analog – Circuits 1
Chapter 8.4: Second Order System Natural Response — Part II

© 2012 Digilent, Inc. 19

Figure 8.8.  Overdamped system response.

2. Underdamped System:

For an underdamped system, 1 , and equation (8.36) becomes as shown in equation (8.38).

   














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  2

0
2

2
00 11

1




 tcosytsinyye)t(y nn

n

nt
h

n


(8.38)

The solution is a decaying sinusoid.  The decay rate is set by the term tne  , while the oscillation frequency of the

sinusoid is 21  n .  The oscillation frequency seen in the natural response is thus not identically the natural
frequency of the system; it is also influenced by the damping ratio.  This leads to the definition of the damped
natural frequency:

21   nd (8.39)

Oscillations seen in the system response will have radian frequency d; thus, the period of the oscillations is
d
2

.

Example responses for underdamped systems are shown in Figure 8.9; the responses shown are all for the same
natural frequency and initial conditions – only the damping ratio varies.  Note that smaller damping ratios result
in slower decay rates for the response, oscillations persist for longer and are more pronounced for smaller
damping ratios.
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d
2

Figure 8.9.  Underdamped system response.

3. Critically Damped System

For a critically damped system, 1 , and equation (8.36) becomes as shown in equation (8.40).

  tyyye)t(y n
t

h
n

000     (8.40)

The critically damped system response does not oscillate although, as with the overdamped case, one zero crossing
of the function is allowed.  The importance of the critically damped system response is that, for a particular
natural frequency, it has the shortest decay time without oscillation of any system.  An example response of a
critically damped system is shown in Figure 8.10
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Figure 8.10.  Critically damped system response.

Example 8.3:

For the circuit shown below:

a) Write the differential equation for vC(t).
b) If L = 1H, R = 200, and C = 110-6F, find the undamped natural frequency, the damping ratio, and the

damped natural frequency.
c) For the conditions in part (b), is the system underdamped, overdamped, or critically damped?
d) For the values of L and C in part (b), determine the value of R that makes the system critically damped.
e) If vC(0) = 1V and iL(0) = 0.01A, what are the appropriate initial conditions to solve the differential

equation determined in part (a)?

a) As usual, we define the voltage across the capacitor and the current through the inductor as our variables and
write KVL and KCL in terms of these variables.  The figure below shows these variables, along with the
associated currents through capacitors and voltages across inductors.
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dt
dvC C

dt
diL L

KCL at the indicated node results in:

0
dt

)t(dv
C)t(i C

L (8.41)

KVL around the indicated loop provides

)t(v)t(Ri
dt

)t(di
L CL

L  2 (8.42)

The above two equations can be combined to obtain an equation for vC(t).  To do this, we use the first
equation to obtain:

(8.43)

Differentiating equation (8.43) provides:

2

2

dt
)t(vd

C
dt

)t(di CL  (8.44)

Substituting equations (8.43) and (8.44) into equation (8.42) results in:

)t(v
dt

)t(dv
RC

dt
)t(vd

LC C
CC  22

2

Dividing the above by LC and grouping terms gives our final result

012
2

2

 )t(v
LCdt

)t(dv
L
R

dt
)t(vd

C
CC (8.45)

dt
)t(dv

C)t(i C
L 
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b) Equation (5) is of the form

02 2
2

2

 )t(y
dt

)t(dy
dt

)t(yd
nn  (8.46)

Equating coefficients in equations (8.45) and (8.46) and substituting L = 1H, R = 200, and C = 110-6F
results in:

40022 
L
R

n (8.47)

62 1011


LCn (8.48)

Solving equation (8) for the natural frequency results in 1000n rad/sec.  Substituting this result into
equation (8.47) and solving for the damping ratio gives  = 0.2.  The damped natural frequency is

21   nd = 979.8 rad/sec.

c) The damping ratio determined in part (b) is  = 0.2; since this is less than one, the system is underdamped.

d) In order for the system to be critically damped, the damping ratio  = 1.  From equation (8.47) with  = 1, we
obtain:

 1000
1
210001222 R
H
R))((

L
R

n

e) Initial conditions on vC(t) are vC(0) and
0t

C

dt
)t(dv

.  We are given vC(0) = 1V in the problem statement, but

we need to determine ; the current through the inductor, iL(0) can be used to determine this.  The

current through the inductor is related to the capacitor voltage via equation (8.43) above:

so at time t = 0,

A.
dt

)t(dv
)F()(i

t

C
L 0101010
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C)t(i C
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Solving for
0t

C

dt
)t(dv

,

00010
101
01001
6

0

,
F

A.)(i
Cdt

)t(dv
L

t

C 







V/sec

We conclude this example with plots of the system response for underdamped, critically damped, and
overdamped conditions.

Figure 8.11 shows the response of the circuit described by the differential equation determined in part (a) above,
for the circuit parameters provided in part (b), to the initial conditions of part (e).  Thus, the governing
differential equation is

012
2

2

 )t(v
LCdt

)t(dv
L
R

dt
)t(vd

C
CC

with L = 1H, R = 200, and C = 110-6F, the differential equation becomes:

0101400 6
2

2

 )t(v
dt

)t(dv
dt

)t(vd
C

CC

the initial conditions are, from part (e):

vC(0) = 1V

00010
0

,
dt

)t(dv

t

C 


V/sec

Using MATLAB to evaluate the differential equation results in Figure 8.11. Figure 8.11 agrees with our
expectations based on the calculations of part (b).  In part (b), we determined that the damping ratio  = 0.2, so
that the system is underdamped – Figure 8.11 exhibits the oscillations (multiple zero axis crossings) that we would
expect from an underdamped system.  Likewise, we determined in part (b) that the damped natural frequency of
the system is approximately 980 rad/sec.  The period of the oscillations we would expect to see in the response is
therefore:

006402 .T
d





seconds.

This value is consistent with the period of the oscillations seen in Figure 8.11.
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Figure 8.11.  Underdamped response to initial conditions.

In part (d) above, we determined that the value of R resulting in a critically damped system is R = 1000.  Re-
evaluating the above governing differential equation with this value for R results in

01012000 6
2

2

 )t(v
dt

)t(dv
dt

)t(vd
C

CC

the initial conditions are as in the above example:

vC(0) = 1V

00010
0

,
dt

)t(dv

t

C 


V/sec

The resulting response is shown in Figure 8.12.  This plot also matches our expectations, though we have fewer
quantitative results against which to compare it.  The response does not oscillate (the response does have one and
only one zero crossing, which is allowable for a critically damped or overdamped system.  The response also
appears to be composed of exponential signals, which is consistent with our expectations.
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Figure 8.12.  Critically damped system response.

In order to obtain a better understanding of critically damped vs. overdamped systems, we increase R to 3000.
The resulting damping ratio is  = 3; increasing R above the critically damped value will result in an overdamped
system since the damping ratio is proportional to R.  We will expect the response shape to be somewhat like that
shown in Figure 8.12 (it will still be composed of decaying exponential functions) but the overdamped system
should decay more slowly.  This overdamped system response is shown in Figure 8.13.  This response agrees with
our qualitative expectations – the response does not oscillate, and the decay time is longer than that shown in
Figure 8.12.
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Figure 8.13.  Overdamped system response.

Section Summary:

 It is common to categorize second order systems by their damping ratio.  This also characterizes the shape of
their natural response.  The three categories are:
o If 1 , the system is said to be overdamped.   For this case, the response will decay exponentially with

time with no oscillations.  If the damping ratio is large, this decay rate can be very slow.
o If 1 , the system is said to be underdamped.   In this case, the natural response can oscillate.

Increasing the damping ratio tends to reduce the amplitude of the oscillations, and cause the oscillations
to die out more quickly.

o 1 , the solution is said to be critically damped.  In this case, the response will not oscillate, and the
decay rate of the response will be faster than the response of any overdamped system with the same
natural frequency.

For an underdamped system, the oscillations observed in the response have a radian frequency d defined as:

21   nd

d; is called the damped natural frequency of the system.  The period of the oscillations in the natural

frequency (the time between successive peaks) is
d
2

.
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Exercises:

1. The differential equation governing a circuit with output y(t) is given by:

014462

2

 )t(y
dt

)t(dy
dt

)t(yd

What are the damping ratio and natural frequency of the circuit?  Is the circuit under-, over-, or critically
damped?

2. The differential equation governing a circuit’s natural response is:

064322

2

 )t(y
dt

)t(dy
dt

)t(yd

Where y(t) is the circuit response.  What are:
a. The circuit’s natural frequency,
b. The circuit’s damping ratio, and
c. The two time constants governing the circuit

3. The differential equation governing a circuit’s natural response is:

06482

2

 )t(y
dt

)t(dy
dt

)t(yd

Where y(t) is the circuit response.  What are:
a. The circuit’s natural frequency,
b. The circuit’s damping ratio, and
c. The circuit’s damped natural frequency?
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8.5: Second Order System Step Response
In this section, we address the case in which the input to a second order system consists of the sudden application
of a constant voltage or current to the circuit; this type of input can be modeled as a step function.  The response
of a system to this type of input is called the step response of the system.

The material presented in this section will emphasize the development of qualitative relationship between the
damping ratio and natural frequency of a system and the system’s time-domain response.  We will also see that we
can quantitatively relate several specific response parameters to the system’s damping ratio and natural frequency.
This approach allows us to infer a great deal about the expected system response directly from the damping ratio
and natural frequency of the system, without explicitly solving the differential equation governing the system.
This approach is also useful in system design, since we can readily determine the damping ratio and natural
frequency necessary to provide the desired response shape.  Since the damping ratio and natural frequency are
typically functions of resistances, capacitances, and inductances, we can readily design a system to produce the
desired response.

In section 8.1, we wrote a general differential equation governing a second order system as:

)t(f)t(y
dt

)t(dy
dt

)t(yd
nn  2

2

2

2  (8.49)

where y(t) is any system parameter of interest (for example, a voltage or current in an electrical circuit), n and 
are the undamped natural frequency and the damping ratio of the system, respectively, and f(t) is a forcing
function applied to the system.

In this chapter section, we restrict our attention to the specific case in which )t(f is a step function.  Thus, the
forcing function to the system can be written as
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)t(Au)t(f (8.50)

Thus, the differential equation governing the system becomes:

)t(Au)t(y
dt
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)t(yd
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2   (8.51)

In addition to the above restriction on the forcing function, we will assume that the initial conditions are all zero
(we sometimes say that the system is initially relaxed).  Thus, for the second-order system above, our initial
conditions will be

0
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



tdt
)t(dy

)t(y
(8.52)
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Solving equation (8.51) with the initial conditions provided in equations (8.52) results in the step response of the
system.

As in our discussion of forced first order system responses in section 8.1, we write the overall solution of the
differential equation of equation (8.51) as the sum of a particular solution and a homogeneous solution.  Thus,

)t(y)t(y)t(y ph 

The homogeneous solution of second order differential equations has been discussed in sections 8.1 and 8.4 and
will not be repeated here.  The particular solution of the differential equation (8.51) can be obtained by examining
the solution to the equation after the homogeneous solution has died out.  Letting t in equation (8.51) and

noting that the forcing function is a constant as t allows us to set 02

2







dt
)t(dy

dt
)t(yd

and thus,
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n
PPn

A)t(yA)t(y


  (8.53)

Combining the particular and homogeneous solutions, assuming the system is underdamped ( 1 ), and
employing the initial conditions results in our final expression for the step response of an underdamped second
order system:
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1 (8.54)

where 21   nd is the damped natural frequency of the system, previously defined in chapter 8.4.

It is common to interpret an underdamped second order system’s response in terms of the damping ratio and the
natural frequency, rather than direct evaluation of equation (8.54).  Figure 8.14 shows a typical step response for
an underdamped second order system.  The system response overshoots to a maximum value yp and has steady-
state response yss.  The maximum overshoot is generally normalized by the steady-state response and is presented
in terms of a variable MP defined as:

ss

ssp
P y

yy
M


 (8.55)

MP is often presented as a percent, obtained by multiplying equation (8.55) by 100.  Other parameters of interest
in characterizing the step response are the period of any oscillations in the response (T in Figure 8.14) and the rise
time, tr.  The rise time is defined as the time required for the system response to go from 10% to 90% of the steady
state response.  The rise time is often used as an indication of how quickly a second order system responds.

The time domain parameters MP, tr, and T are readily related to the parameters , n, and d.  We provide the
following relations here, without proof:

21/   eM P (8.56)
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n
rt

8.1

 (8.57)

d

T

2

 (8.58)

Note: for small damping ratios, (<0.6), equation (8.56) is often approximated as

6.0
1 
PM (8.59)

Time (sec)

Am
pl

itu
de

Figure 8.14.  Underdamped second order system step response.
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Section Summary:

 Typical parameters used to characterize the step response of an underdamped system are the rise time, the
maximum overshoot, and the frequency of the oscillations in the response.  These parameters are defined as
follows:
o The rise time, tr, is the time required for the response to go from 10% to 90% of its steady-state response
o The maximum overshoot provides the maximum value achieved by the response.  The maximum

overshoot is a normalized value, defined as:

ss

ssp
P y

yy
M




Where yp is the peak (or maximum) value of the response and yss is the steady state system response. MP
is often expressed as a percent, by multiplying the above quantity by 100.

o The radian frequency of the oscillations in the step response is given by the damped natural frequency:

21   nd

The period of the oscillations in the response is then given by:

d

T

2



 The rise time and maximum overshoot can be related to the damping ratio and natural frequency of the
system.  The appropriate relations are provided below:

o
n

rt

8.1



o 21/   eM P or
6.0

1 
PM (for small damping ratios, <0.6)

The period of the oscillations can be used to cross-check the above results, since it depends upon both the
damping ratio and natural frequency.
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Exercises:

1. The differential equation governing the circuit shown below is:

)t(u)t(v
dt

)t(dv
dt

)t(vd 400400122

2



If u(t) = 2u0(t), what are:
a. The circuit’s natural frequency,
b. The circuit’s damping ratio,
c. The percent overshoot (MP), the rise time (tr), and the steady-state response of the capacitor voltage
d. What is the maximum value seen by the capacitor voltage?


