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6 Introduction and Chapter Objectives 

So far, we have considered circuits that have been governed by algebraic relations. These circuits have, in general, 

contained only power sources and resistive elements. All elements in these circuits, therefore, have 

either supplied power from external sources or dissipated power. For these resistive circuits, we can apply either 

time-varying or constant signals to the circuit without really affecting our analysis approach. Ohm’s law, for 

example, is equally applicable to time-varying or constant voltages and currents: 

𝑉 = 𝐼 ∙ 𝑅 ⟺ 𝑣(𝑡) = 𝑖(𝑡) ∙ 𝑅 

Since the governing equation is algebraic, it is applicable at every point in time – voltages and currents at a point in 

time are affected only by voltages and currents at the same point in time. 

We will now begin to consider circuit elements, which are governed by differential equations. These circuit 

elements are called dynamic circuit elements or energy storage elements. Physically, these circuit elements store 

energy, which they can later release back to the circuit. The response, at a given time, of circuits that contain these 

elements is not only related to other circuit parameters at the same time; it may also depend upon the parameters 

at other times. 

This chapter begins with an overview of the basic concepts associated with energy storage. This discussion focuses 

not on electrical systems, but instead introduces the topic qualitatively in the context of systems with which the 

reader is already familiar. The goal is to provide a basis for the mathematics, which will be introduced 

subsequently. Since we will now be concerned with time-varying signals, section 6.2 introduces the basic signals 

that we will be dealing with in the immediate future. This chapter concludes with presentations of the two 

electrical energy storage elements that we will be concerned with: capacitors and inductors. The method by which 

energy is stored in these elements is presented in sections 6.3 and 6.4, along with the governing equations relating 

voltage and current for these elements. 

After completing this chapter, you should be able to: 

• Qualitatively state the effect of energy storage on the type of mathematics governing a system 

• Define transient response 

• Define steady-state response 

• Write the mathematical expression for a unit step function 

• Sketch the unit step function 

• Sketch shifted and scaled versions of the unit step function 

• Write the mathematical expression for a decaying exponential function 

• Define the time constant of an exponential function 

• Sketch a decaying exponential function, given the function’s initial value and time constant 

• Use a unit step function to restrict an exponential function to times greater than zero 



Real Analog Chapter 6: Energy Storage Elements  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 58 

 

• Write the circuit symbol for a capacitor 

• State the mechanism by which a capacitor stores energy 

• State the voltage-current relationship for a capacitor in both differential and integral form 

• State the response of a capacitor to constant voltages and instantaneous voltage changes 

• Write the mathematical expression describing energy storage in a capacitor 

• Determine the equivalent capacitance of series and parallel combinations of capacitors 

• Sketch a circuit describing a non-ideal capacitor 

• Write the circuit symbol for an inductor 

• State the mechanism by which an inductor stores energy 

• State the voltage-current relationship for an inductor in both differential and integral form 

• State the response of an inductor to constant voltages and instantaneous current changes 

• Write the mathematical expression describing energy storage in an inductor 

• Determine the equivalent inductance of series and parallel combinations of inductors 

• Sketch a circuit describing a non-ideal inductor 

6.2 Fundamental Concepts 

This section provides a brief overview of what it meant by energy storage in terms of a system-level description of 

some physical process. Several examples of energy storage elements are presented, for which the reader should 

have an intuitive understanding. These examples are intended to introduce the basic concepts in a qualitative 

manner; the mathematical analysis of dynamic systems will be provided in later chapters. 

We have previously introduced the concept of representing a physical process as a system. In this viewpoint, the 

physical process has an input and an output. The input to the system is generated from sources external to the 

system – we will consider the input to the system to be a known function of time. The output of the system is the 

system’s response to the input. The input-output equation governing the system provides the relationship 

between the system’s input and output. A general input-output equation has the form: 

𝑦(𝑡) = 𝑓{𝑢(𝑡)}          Eq. 6.1 

The process is shown in block diagram form in Fig. 6.1. 

 

Figure 6.1.  Block diagram representation of a system. 

The system of Fig. 6.1 transfers the energy in the system input to the system output. This process transforms the 

input signal u(t) into the output signal y(t). In order to perform this energy transfer, the system will, in general, 

contain elements that both store and dissipate energy. To date, we have analyzed systems which contain only 

energy dissipation elements. We review these systems briefly below in a systems context. Subsequently, we 

introduce systems that store energy; our discussion of energy storage elements is mainly qualitative in this chapter 

and presents systems for which the reader should have an intuitive understanding. 
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6.2.1 Systems with no Energy Storage 

In previous chapters, we considered cases in which the input-output equation is algebraic. This implies that the 

processes being performed by the system involve only sources and components which dissipate energy. For 

example, output voltage of the inverting voltage amplifier of Fig. 6.2 is: 

𝑉𝑂𝑈𝑇 = − (
𝑅𝑓

𝑅𝑖𝑛
𝑉𝑖𝑛)         Eq. 6.2 

This circuit contains only resistors (in the form of Rf and Rin) and sources (in the form of Vin and the op-amp power 

supplies) and the equation relating the input and output is algebraic. Note that the op-amp power supplies do not 

appear in equation (6.2), since linear operation of the circuit of Fig. 6.2 implies that the output voltage is 

independent of the op-amp power supplies. 

Figure 6.2.  Inverting voltage amplifier. 

One side effect of an algebraic input-output equation is that the output responds instantaneously to any changes 

in the input.  For example, consider the circuit shown in Fig. 6.3.  The input voltage is based on the position of a 

switch; when the switch closes, the input voltage applied to the circuit increases instantaneously from 0V to 2V.  

Fig. 6.3 indicates that the switch closes at time t = 5 seconds; thus, the input voltage as a function of time is as 

shown in Fig. 6.4(a).  For the values of Rf and Rin shown in Fig. 6.3, the input-output equation becomes: 

𝑉𝑂𝑈𝑇(𝑡) = −5𝑉𝑖𝑛(𝑡)         Eq. 6.3 

And the output voltage as a function of time is as shown in Fig. 6.4(b).  The output voltage responds immediately 

to the change in the input voltage. 

+
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Figure 6.3.  Switched voltage amplifier. 
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0V

2V

Vin

Time, sec5 -10V

0V

Vout

Time, sec

5

 (a) Input voltage             (b) Output voltage 

Figure 6.4.  Input and output signals for circuit of Figure 3. 

6.2.2 Systems with Energy Storage 

We now consider systems, which contain energy storage elements. The inclusion of energy storage elements 

results in the input-output equation for the system, which is a differential equation. We present the concepts in 

terms of two examples for which the reader most likely has some expectations based on experience and intuition. 

Example 6.1:  Mass-damper system 

As an example of a system, which includes energy storage elements, consider the mass-damper system shown in 

Fig. 6.5.  The applied force F(t) pushes the mass to the right. The mass’s velocity is v(t). The mass slides on a surface 

with sliding coefficient of friction b, which induces a force, which opposes the mass’s motion. We will consider the 

applied force to be the input to our system and the mass’s velocity to be the output, as shown by the block 

diagram of Fig. 6.6. This system models, for example, pushing a stalled automobile. 

The system of Fig. 6.5 contains both energy storage and energy dissipation elements. Kinetic energy is stored in the 

form of the velocity of the mass. The sliding coefficient of friction dissipates energy. Thus, the system has a single 

energy storage element (the mass) and a single energy dissipation element (the sliding friction). In section 4.1, we 

determined that the governing equation for the system was the first order differential equation: 

𝑚
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑏𝑣(𝑡) = 𝐹(𝑡)         Eq. 6.4 

The presence of the energy storage element causes the input-output equation to be a differential equation. 

Mass, m

Surface with sliding 

coefficient of friction, b

Mass’s

velocity, v(t)

Externally applied 

force, F(t)

Figure 6.5. Sliding mass on surface with friction coefficient, b. 

 

System
Input, 

 F(t)

Output,

v(t)

Figure 6.6.  Mass-damper system represented as a block diagram. 
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We will examine the effect that the energy storage element has upon the system response in qualitative terms, 

rather than explicitly solving equation (6.4). If we increase the force applied to the mass, the mass will accelerate 

and the velocity of the mass increases. The system, therefore, is converting the energy in the input force to a 

kinetic energy of the mass. This energy transfer results in a change in the output variable, velocity. 

The energy storage elements of the system of Fig. 6.5 do not, however, allow an instantaneous change in velocity 

to an instantaneous change in force. For example, say that before time t = 0 no force is applied to the mass and the 

mass is at rest. At time t = 0 we suddenly apply a force to the mass, as shown in Fig. 6.7(a) below. At time t = 0 the 

mass begins to accelerate but it takes time for the mass to approach its final velocity, as shown in Fig. 6.7(b). This 

transitory stage, when the system is in transition from one constant operating condition to another is called 

the transient response. After a time, the energy input from the external force is balanced by the energy dissipated 

by the sliding friction, and the velocity of the mass remains constant. When the operating conditions are constant, 

the energy input is exactly balanced by the energy dissipation, and the system’s response is said to be in steady-

state. We will discuss these terms in more depth in later chapters when we perform the mathematical analysis of 

dynamic systems. 

t
t=0

F(t)

Figure 6.7(a).  Force applied to mass. 

t

v(t)

t=0

Final

Velocity

 

Transient

Response

 

Steady-state

Response

Figure 6.7(b).  Velocity of mass. 

Example 6.2 

Our second example of a system, which includes energy storage elements, is a body that is subjected to some heat 

input. The overall system is shown in Figure 6.8. The body being heated has some mass m, specific heat Cp, and 

temperature TB. Some heat input qin is applied to the body from an external source, and the body transfers 

heat qout to its surroundings. The surroundings are at some ambient temperature T0. We will consider the input to 
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our system to be the applied heat input qin and the output to be the temperature of the body TB, as shown in the 

block diagram of Fig. 6.9. This system is a model, for example, of the process of heating a frying pan on a stove. 

Heat input is applied by the stove burner and the pan dissipates heat by transferring it to the surroundings. 

Body with:

  mass m,

  specific heat cP,

  temperature TB 

Heat Input,

qin

Heat Dissipation,

qout

Ambient Temperature, 

T0

Figure 6.8.  Body subjected to heating. 

System
Input, 

 qin(t)

Output,

TB(t)

Figure 6.9.  System block diagram. 

The system of Fig. 6.8 contains both energy storage and energy dissipation elements. Energy is stored in the form 

of the temperature of the mass. Energy is dissipated in the form of heat transferred to the surroundings. Thus, the 

system has a single energy storage element (the mass) and a single energy dissipation element (the heat 

dissipation). The governing equation for the system is the first order differential equation: 

𝑚𝑐𝑝
𝑑(𝑇𝐵−𝑇0)

𝑑𝑡
+ 𝑞𝑂𝑈𝑇 = 𝑞𝑖𝑛        Eq. 6.5 

The presence of the energy storage element causes the input-output equation to be a differential equation. 

We again examine the response of this system to some input in qualitative rather than quantitative terms in order 

to provide some insight into the overall process before immersing ourselves in the mathematics associated with 

analyzing the system quantitatively. If the heat input to the system is increased instantaneously (for example, if we 

suddenly turn up the heat setting on our stove burner) the mass’s temperature will increase. As the mass’s 

temperature increases, the heat transferred to the ambient surroundings will increase. When the heat input to the 

mass is exactly balanced by the heat transfer to the surroundings, the mass’s temperature will no longer change 

and the system will be at a steady-state operating condition. Since the mass provides energy storage, the 

temperature of the mass will not respond instantaneously to a sudden change in heat input – the temperature will 

rise relatively slowly to its steady-state operating condition. (We know from experience that changing the burner 

setting on the stove does not immediately change the temperature of our pan, particularly if the pan is heavy.) The 

process of changing the body’s temperature from one steady state operating condition to another is the 

system’s transient response. 

The process of changing the body’s temperature by instantaneously increasing the heat input to the body is 

illustrated in Fig. 6.10. The signal corresponding to the heat input is shown in Fig. 6.10(a), while the resulting 

temperature response of the body is shown in Fig. 6.10(b). 
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t

qin(t)

t=0
t

TB(t)

Final

Temperature

Initial

Temperature

t=0

 (a) Heat input     (b) Temperature response 

Figure 6.10.  Temperature response to instantaneous heat input. 

Section Summary 

• Systems with energy storage elements are governed by differential equations. Systems that contain only 

energy dissipation elements (such as resistors) are governed by algebraic equations. 
• The responses of systems governed by algebraic equations will typically have the same “shape” as the 

input. The output at a given time is simply dependent upon the input at that same time – the system does 

not “remember” any previous conditions. 

• The responses of systems governed by differential equations will not, in general, have the same “shape” 

as the forcing function applied to the system. The system “remembers” previous conditions – this is why 

the solution to a differential equation requires knowledge of initial conditions. 

• The response of a system that stores energy is generally considered to consist of two parts: 

the transient response and the steady-state response. These are described as follows: 

o The transient response typically is shaped differently from the forcing function. It is due to initial 

energy levels stored in the system. 

o The steady-state response is the response of the system as 𝑡 ⟶ ∞. It is the same “shape” as the 

forcing function applied to the system. 

In differential equations courses, the transient response corresponds (approximately) to the homogeneous 

solution of the governing differential equation, while the steady-state response corresponds to the particular 

solution of the governing differential equation. 

6.1 Exercises 

1. A mass is sliding on a surface with an initial velocity of 5 meters/seconds.  All external forces (except for 

the friction force on the surface) are removed from the mass at time t = 0 seconds.  The velocity of the 

mass as a function of time is shown below.  What is the steady-state velocity of the mass? 
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v(t)

5 m/sec

time0

 

6.2 Basic Time-varying Signals 

Since the analysis of dynamic systems relies upon time-varying phenomenon, this chapter section presents some 

common time-varying signals that will be used in our analyses. Specific signals that will be presented are step 

functions and exponential functions. 

6.2.1 Step Function 

We will use a step function to model a signal, which changes suddenly from one constant value to another. These 

types of signals can be very important. Examples include digital logic circuits (which switch between low and high 

voltage levels) and control systems (whose design specifications are often based on the system’s response to a 

sudden change in input). 

We define a unit step function, uo(t) as follows: 

𝑢0(𝑡) = {
0, 𝑡 < 0
1, 𝑡 > 0

         Eq. 6.6 

The unit step function is illustrated in Fig. 6.11 below. For now, it will not be necessary to define a value for the 

step function at time t=0. 

u0(t)

t0

1

Figure 6.11.  Unit step function. 

Physically, the step function models a switching process. For example, the output voltage Vout of the circuit shown 

in Figure 6.12, in which a constant 1V source supplies voltage through a switch which closes at time t=0, is a unit 

step function. 
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+

-
1V

t = 0 sec

+

-

VOUT

Figure 6.12.  Circuit to realize a unit step function. 

The unit step function can be scaled to provide different amplitudes. Multiplication of the unit step function by a 

constant K results in a signal which is zero for times less than zero and K for times greater than zero, as shown in 

Fig. 6.13. 

Ku0(t)

t0

K

Figure 6.13.  Scaled step function Ku0(t); K>0. 

The step function can also be shifted to model processes which switch at times other than t=0. A step function 

with amplitude K which occurs at time t=a can be written as Ku0(t−a): 

𝐾𝑢0(𝑡 − 𝑎) = {
0, 𝑡 < 𝑎
𝐾, 𝑡 > 𝑎

         Eq. 6.7 

The function is zero when the argument t−a is less than zero and K when the argument t-a is greater than zero, as 

shown in Fig. 6.14. If a>0, the function is shifted to the right of the origin; if a<0, the function is shifted to the let of 

the origin. 

Ku0(t-a)

t0

K

a

Figure 6.14.  Shifted and scaled step function Ku0(t-a); K>0 and a>0. 

Switching the sign of the above argument in equation (6.7) results in: 

𝐾𝑢0(−𝑡 + 𝑎) = 𝐾𝑢𝑎(𝑎 − 𝑡) = {
𝐾, 𝑡 < 𝑎
0, 𝑡 > 𝑎

       Eq. 6.8 

And the value of the function is K for t<a and zero for t>a, as shown in Fig. 6.15. As above, the transition from K to 

zero is to the right of the origin if a>0 and to the left of the origin if a<0. 
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Ku0(a-t)

t0

K

a

Figure 6.15.  The function step function Ku0(a-t); K>0 and a>0. 

Step functions can also be used to describe finite-duration signals. For example, the function: 

𝑓(𝑡) = {
0, 𝑡 < 0

1,0 < 𝑡 < 2
0, 𝑡 > 2

 

Illustrated in Fig. 6.16, can be written in terms of sums or products of unit step functions as follows: 

𝑓(𝑡) = 𝑢0(𝑡) − 𝑢0(𝑡 − 1) 

Or  

𝑓(𝑡) = 𝑢0(𝑡) ∙ 𝑢0(2 − 𝑡) 

f(t)

t0

1

2

Figure 6.16.  Finite-duration signal. 

The step function can also be used to create other finite-duration functions. For example, the finite-

duration ramp function: 

𝑓(𝑡) = {
0, 𝑡 < 0

𝑡, 0 < 𝑡 < 1
0, 𝑡 > 1

 

Shown in Fig. 6.17, can be written as a single function over the entire range −∞ < 𝑡 < ∞ by using unit step 

functions, as follows: 

𝑓(𝑡) = 𝑡 ∙ [𝑢0(𝑡) − 𝑢0(𝑡 − 1)] 

f(t)

t0

1

1

Figure 6.17.  Finite-duration “ramp” signal. 
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6.2.2 Exponential Functions 

A function that appears commonly in the analysis of linear systems is the decaying exponential: 

𝑓(𝑡) = 𝐴𝑒−𝑎𝑡 

Where a>0. The function f(t) is illustrated in Fig. 6.18. The value of the function is A at t=0 and decreases to zero 

as 𝑡 ⟶ ∞. As 𝑡 ⟶ −∞ the function increases without bound. The constant a dictates the rate at which the 

function decreases as time increases. 

f(t)

t
0

A

Figure 6.18.  Decaying exponential function. 

We will usually be interested in this function only for positive values of time. We will also commonly write our 

exponential function in terms of a time constant, τ, rather than the constant a. Thus, the decaying exponential 

function we will generally use is: 

𝑓(𝑡) = {
0, 𝑡 < 0

𝐴𝑒
−1

𝜏 , 𝑡 > 0
         Eq. 6.10 

Or, using the unit step function to limit the function to positive values of time: 

𝑓(𝑡) = 𝐴𝑒
−𝑡

𝜏 ∙ 𝑢0(𝑡)         Eq. 6.11 

The function of equations (6.10) and (6.11) is illustrated in Fig. 6.19. The time constant, τ, is a positive number 

which dictates the rate at which the function will decay with time. When the time 𝑡 = 𝜏, 𝑓(𝑡)𝐴𝑒−1 = 0.368𝐴 and 

the function has decayed to 36.8% of its original value. In fact, the function decreases by 36.8% every τ seconds. 

Therefore, a signal with a small time constant decays more rapidly than a signal with a large time constant, as 

illustrated in Fig. 6.20. 
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t0 t

f(t)

A

0.368A

Figure 6.19.  Exponential function 𝑓(𝑡) = 𝐴𝑒
−𝑡

𝜏 𝑢0(𝑡).
 

t

f(t)

0

t increasing

Figure 6.20.  Exponential function variation with time cons. 

Section Summary 

• Step functions are useful for representing conditions (generally inputs), which change from one value to 

another instantaneously. In electrical engineering, they are commonly used to model the opening or 

closing of a switch that connects a circuit to a source, which provides a constant voltage or current. 

Mathematically, an arbitrary step function can be represented by: 

𝐾𝑢0(−𝑡 + 𝑎) = 𝐾𝑢0(𝑎 − 𝑡) = {
𝐾, 𝑡 < 𝑎
0, 𝑡 > 𝑎

 

So that the step function turns “on” at time t=a, and has an amplitude K. 

• An exponential function, defined for t>0, is mathematically defined as: 

𝑓(𝑡) = 𝐴𝑒
−𝑡
𝜏 ∙ 𝑢0(𝑡) 
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The function has an initial value, A, and a time constant, τ. The time constant indicates how quickly the function 

decays; the value of the function decreases by 63.2% every τ seconds. Exponential functions are important to use 

because the solutions of linear, constant coefficient, ordinary differential equations typically take the form of 

exponentials. 

6.2 Exercises 

1. Express the signal below in terms of step functions. 

-1 1 2 3 4

1

-1

-2

Time, sec

f(t)

2. The function shown below is a decaying exponential.  Estimate the function from the given graph. 

6

4

2

0

10 200 30 Time, milliseconds

f(t)

 

6.3 Capacitors 

We begin our study of energy storage elements with a discussion of capacitors. Capacitors, like resistors, are 

passive two-terminal circuit elements. That is, no external power supply is necessary to make them function. 

Capacitors consist of a non-conductive material (or dielectric) which separates two electrical conductors; 

capacitors store energy in the form of an electric field set up in the dielectric material. 

In this section, we describe physical properties of capacitors and provide a mathematical model for 

an ideal capacitor. Using this ideal capacitor model, we will develop mathematical relationships for the energy 

stored in a capacitor and governing relations for series and parallel connections of capacitors. The section 

concludes with a brief discussion of practical (non-ideal) capacitors. 

6.3.1 Capacitors 

Two electrically conductive bodies, when separated by a non-conductive (or insulating) material, will form 

a capacitor. Figure 6.21 illustrates the special case of a parallel plate capacitor. The non-conductive material 
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between the plates is called a dielectric; the material property of the dielectric, which is currently important to us, 

is its permittivity, ε. When a voltage potential difference is applied across the two plates, as shown in Fig. 6.21, 

charge accumulates on the plates – the plate with the higher voltage potential will accumulate positive charge q, 

while the plate with the lower voltage potential will accumulate negative charge, −q. The charge difference 

between the plates induces an electric field in the dielectric material; the capacitor stores energy in this electric 

field. The capacitance of the capacitor is a quantity that tells us, essentially, how much energy can be stored by the 

capacitor. Higher capacitance means that more energy can be stored by the capacitor. Capacitance has units 

of Farads, abbreviated F. 

The amount of capacitance a capacitor has is governed by the geometry of the capacitor (the shape of the 

conductors and their orientation relative to one another) and the permittivity of the dielectric between the 

conductors. These effects can be complex and difficult to quantify mathematically; rather than attempt a 

comprehensive discussion of these effects, we will simply claim that, in general, capacitance is dependent upon 

the following parameters: 

• The spacing between the conductive bodies (the distance d in Fig. 6.21). As the separation between the 

bodies increases, the capacitance decreases. 

• The surface area of the conductive bodies. As the surface area of the conductors increases, the 

capacitance increases. The surface area referred to here is the area over which both the conductors and 

the dielectric overlap. 

• The permittivity of the dielectric. As the permittivity increases, the capacitance increases. 

The parallel-plate capacitor shown in Fig. 6.21, for example, has capacitance: 

𝐶 =
𝜀 ∙ 𝐴

𝑑
 

+

-
v(t)

Upper conductive plate with 

area, A, and charge +q

Dielectric material with 

permittivity, e

d

+ + + + + + + +
+

+

- - - - - -
-

-
-

-

Lower conductive plate with 

area, A, and charge -q

Electric 

Field, E

Figure 6.21.  Parallel plate capacitor with applied voltage across conductors. 

Mathematically, the capacitance of the device relates the voltage difference between the plates and the charge 

accumulation associated with this voltage: 

𝑞(𝑡) = 𝐶𝑉(𝑡)           Eq. 6.12 

Capacitors that obey the relationship of equation (6.12) are linear capacitors, since the potential difference 

between the conductive surfaces is linearly related to the charge on the surfaces. Please note that the charges on 

the upper and lower plate of the capacitor in Fig. 6.21 are equal and opposite – thus, if we increase the charge on 

one plate, the charge on the other plate must decrease by the same amount. This is consistent with our previous 

assumption electrical circuit elements cannot accumulate charge, and current entering one terminal of a capacitor 

must leave the other terminal of the capacitor. 
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Since current is defined as the time rate of change of charge, 𝑖(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
, equation (6.12) can be re-written in 

terms of the current through the capacitor: 

𝑖(𝑡) =
𝑑

𝑑𝑡
[𝐷𝑣(𝑡)]          Eq. 6.13 

Since the capacitance of a given capacitor is constant, equation (6.13) can be written as: 

𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
           Eq. 6.14  

The circuit symbol for a capacitor is shown in Fig. 6.22, along with the sign conventions for the voltage-current 

relationship of equation (6.14). We use our passive sign convention for the voltage-current relationship – positive 

current is assumed to enter the terminal with positive voltage polarity. 

+

-

i(t)

v(t) C

Figure 6.22.  Capacitor circuit symbol and voltage-current sign convention. 

Integrating both sides of equation (6.14) results in the following form for the capacitor’s voltage-current 

relationship: 

𝑣(𝑡) =
1

𝐶
∫ 𝑖(𝜉)𝑑𝜉 + 𝑣(𝑡0)

𝑡

𝑡0
        Eq. 6.15 

Where v(t0) is a known voltage at some initial time, t0. We use a dummy variable of integration, ξ, to emphasize 

that the only “t” which survives the integration process is the upper limit of the integral. 

Important result: The voltage-current relationship for an ideal capacitor can be stated in either differential or 

integral form, as follows: 

• 𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

• 𝑣(𝑡) =
1

𝐶
∫ 𝑖(𝜉)𝑑𝜉 + 𝑣(𝑡0)

𝑡

𝑡0
 

Example 6.3 

If the voltage as a function of time across a capacitor with capacitance C=1μF is as shown below, determine the 

current as a function of time through the capacitor. 
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0 < 𝑡 < 1: The voltage rate of change is 10 V/s. Thus, 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
= (1 × 10−6𝐹) (10

𝑉

𝑠
) = 10𝜇𝐴. 

1 < 𝑡 < 2: The voltage is constant. Thus, 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
= 0𝐴.  

2 < 𝑡 < 3: The voltage rate of change is -15V/s. Thus, 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
= (1 × 10−6𝐹) (−15

𝑉

𝑠
) = −15𝜇𝐴. 

3 < 𝑡 < 4: The voltage is constant. Thus, 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
= 0𝐴 

A plot of the current through the capacitor as a function of time is shown below. 
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Example 6.4 

If the current as a function of time through a capacitor with capacitance C=10mF is as shown below, determine the 

voltage as a function of time across the capacitor. Assume that the voltage across the capacitor is 0V at time t=0. 
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• At time t=0, the voltage is given to be 0V. 

• In the time period 0<t<1 second, the current increases linearly and the voltage will increase quadratically. 

The total voltage change during this time period is the integral of the current, which is simply the area 

under the current curve divided by the capacitance: 
1

2

(10×10−3𝐴)(1s)

0.01𝐹
= 0.5𝑉. 

• In the time period 1<t<2 seconds, the current is constant at 10 mA. The voltage change is the area under 

the current curve divided by the capacitance: (10 × 10−3𝐴) 
(1𝑠)

0.01F
= 1V. The total voltage at t=2 seconds 

is, then, 0.5𝑉 + 1𝑉 = 1.5𝑉. 

• In the time period 2<t<3 seconds, the current is constant at -10 mA. The voltage change is the negative of 

the voltage change from 1<t<2 sec. The total voltage at t=3 seconds is, then, 1.5𝑉 − 1𝑉 = 0.5𝑉. 

• In the time period 3<t<4 seconds, the current is zero. The integral of zero over any time period is zero, so 

there is no change in voltage during this time range and the voltage remains constant at 0.5V. 

A plot of the voltage across the capacitor as a function of time is shown below. 
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It is often useful, when analyzing circuits containing capacitors, to examine the circuit’s response to constant 

operating conditions and to instantaneous changes in operating condition. We examine the capacitor’s response to 

each of these operating conditions below: 

• Capacitor response to constant voltage: 

o If the voltage across the capacitor is constant, equation (6.14) indicates that the current through 

the capacitor is zero. Thus, if the voltage across the capacitor is constant, the capacitor is 

equivalent to a open circuit. 

o This property can be extremely useful in determining a circuit’s steady-state response to 

constant inputs. If the inputs to a circuit change from one constant value to another, the 

transient components of the response will eventually die out and all circuit parameters will 

become constant. Under these conditions, capacitors can be replaced with open circuits and the 

circuit analyzed relatively easily. As we will see later, this operating condition can be useful in 

determining the response of circuits containing capacitors and in double-checking results 

obtained using other methods. 

• Capacitor response to instantaneous voltage changes: 

o If the voltage across the capacitor changes instantaneously, the rate of change of voltage is 

infinite. Thus, by equation (6.14), if we wish to change the voltage across a capacitor 

instantaneously, we must supply infinite current to the capacitor. This implies that infinite power 

is available, which is not physically possible. Thus, in any practical circuit, the voltage across a 

capacitor cannot change instantaneously. 

o Any circuit that allows an instantaneous change in the voltage across an ideal capacitor is not 

physically realizable. We may sometimes assume, for mathematical convenience, that an ideal 

capacitor’s voltage changes suddenly; however, it must be emphasized that this assumption 

requires an underlying assumption that infinite power is available and is thus not an allowable 

operating condition in any physical circuit. 

Important Capacitor Properties: 

• Capacitors can be replaced by open-circuits, under circumstances when all operating conditions are 

constant. 

• Voltages across capacitors cannot change instantaneously. No such requirement is placed on currents. 

6.3.2 Energy Storage 

The power dissipated by a capacitor is: 

𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡)         Eq. 6.16 
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Since both voltage and current are functions of time, the power dissipation will also be a function of time. The 

power as a function of time is called the instantaneous power, since it provides the power dissipation at any 

instant in time. 

Substituting equation (6.14) into equation (6.16) results in: 

𝑝(𝑡) = 𝐶 ∙ 𝑣(𝑡)
𝑑𝑣(𝑡)

𝑑𝑡
         Eq. 6.17 

Since power is, by definition, the rate of change of energy, the energy is the time integral of power. Integrating 

equation (6.17) with respect to time gives the following expression for the energy stored in a capacitor: 


− −−

===

t tt

C CvdvCvdt
dt

dv
CvtW )(
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1
)()(
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)()( 2 


  

Where we have set our lower limits of integration at 𝑡 = −∞ to avoid issues relative to initial conditions. We 

assume that no energy is stored in the capacitor at time 𝑡 = −∞ so that: 

𝑊𝐶(𝑡) =
1

2
𝐶𝑣2(𝑡)          Eq. 6.18 

From equation (6.18) we see that the energy stored in a capacitor is always a non-negative quantity, so WC(t)≥0. 

Ideal capacitors do not dissipate energy, as resistors do. Capacitors store energy when it is provided to them from 

the circuit; this energy can later be recovered and returned to the circuit. 

Example 6.5 

Consider the circuit shown below. The voltage applied to the capacitor by the source is as shown. Plot the power 

absorbed by the capacitor and the energy stored in the capacitor as functions of time. 
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Power is most readily computed by taking the product of voltage and current. The current can be determined from 

equation (6.14). The current as a function of time is plotted below. 
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The power absorbed by the capacitor is determined by taking a point-by-point product between the voltage and 

current. 
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Recall that power is absorbed or generated based on the passive sign convention. If the relative signs between 

voltage and current agree with the passive sign convention, the circuit element is absorbing power. If the relative 

signs between voltage and current are opposite to the passive sign convention, the element is generating power. 

Thus, the capacitor in this example is absorbing power for the first microsecond. It generates power (returns 

power to the voltage source) during the second microsecond). After the second microsecond, the current is zero 

and the capacitor neither absorbs nor generates power. 

The energy stored in the capacitor can be determined either from integrating the power or from application of 

equation (6.18) to the voltage curve provided in the problem statement. The energy in the capacitor as a function 

of time is shown below: 

W
C
(t

),
 m

J

0

50

1 2 3 4 Time, ms0  

During the first microsecond, while the capacitor is absorbing power, the energy in the capacitor is increasing.  The 

maximum energy in the capacitor is 50 mJ, at 1ms.  During the second microsecond, the capacitor is releasing 

power back to the circuit and the energy in the capacitor is decreasing.  At 2ms, the capacitor still has 12.5 mJ of 

stored energy.  After 2ms, the capacitor neither absorbs nor generates energy and the energy stored in the 

capacitor remains at 12.5mJ.   

6.3.3 Capacitors in Series 

Consider the series connection of N capacitors shown in Fig. 6.23. 

CN

+

-
v(t)

C1

+ -v1(t)

C2

+ -v2(t)

+

-

vN(t)

Figure 6.23.  Series connection of N capacitors. 

Applying Kirchhoff’s voltage law around the loop results in: 

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + ⋯ 𝑣𝑁(𝑡)        Eq. 6.19 

Using equation (6.15) to write the capacitor voltage drops in terms of the current through the loop gives: 
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𝑣(𝑡) = [
1

𝐶1

∫ 𝑖(𝜉)𝑑𝜉 + 𝑣1(𝑡0)

𝑡

𝑡0

] + [
1

𝐶2

∫ 𝑖(𝜉)𝑑𝜉 + 𝑣2(𝑡0)

𝑡

𝑡0

] + ⋯ + [
1

𝐶𝑁

∫ 𝑖(𝜉)𝑑𝜉 + 𝑣𝑁(𝑡0)

𝑡

𝑡0

] 

= [
1

𝐶1

∫ 𝑖(𝜉)𝑑𝜉 +
1

𝐶2

∫ 𝑖(𝜉)𝑑𝜉 + ⋯
1

𝐶𝑁

∫ 𝑖(𝜉)𝑑𝜉

𝑡

𝑡0

𝑡

𝑡0

𝑡

𝑡0

] + [𝑣1(𝑡0) + 𝑣2(𝑡0) + ⋯ + 𝑣𝑁(𝑡0)] 

= (
1

𝐶1

+
1

𝐶2

+ ⋯ +
1

𝐶𝑁

) ∫ 𝑖(𝜉)𝑑𝜉 + 𝑣(𝑡0)

𝑡

𝑡0

 

This can be re-written using summation notation as: 

𝑣(𝑡) = (∑
1

𝐶𝑘

𝑁
𝑘=1 )          Eq. 6.21 

Thus, the circuits of Fig. 6.23 and Fig. 6.24 are equivalent circuits, if the equivalent capacitance is chosen according 

to equation (6.21). 

+

-
v(t) Ceq

Figure 6.24.  Equivalent circuit to Figure 3. 

For the special case of two capacitors C1 and C2 in series, equation (6.21) simplifies to: 

𝐶𝑒𝑞 =
𝐶1𝐶2

𝐶1+𝐶2
          Eq. 6.22 

Equations (6.21) and (6.22) are analogous to the equations, which provide the equivalent resistance of parallel 

combinations of resistors. 

6.3.4 Capacitors in Parallel 

Consider the parallel combination of N capacitors, as shown in Fig. 6.25. 

CNi(t) C1 C2

i1(t) i2(t) iN(t) +

-

v(t)

Figure 6.25.  Series connection of N capacitors. 

Applying Kirchhoff’s current law at the upper node results in: 

𝑖(𝑡) = 𝑖1(𝑡) + 𝑖2(𝑡) + ⋯ 𝑖𝑁(𝑡)        Eq. 6.23 
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Using equation (6.14) to write the capacitor currents in terms of their voltage drop gives: 

𝑖(𝑡) = 𝐶1

𝑑𝑣(𝑡)

𝑑𝑡
+ 𝐶2

𝑑𝑣(𝑡)

𝑑𝑡
+ ⋯ + 𝐶𝑁

𝑑𝑣(𝑡)

𝑑𝑡
 

= (𝐶1 + 𝐶2 + ⋯ 𝐶𝑁)
𝑑𝑣(𝑡)

𝑑𝑡
 

Using summation notation results in: 

𝑖(𝑡) = (∑ 𝐶𝑘
𝑁
𝑘=1 )

𝑑𝑣(𝑡)

𝑑𝑡
         Eq. 6.24 

This is the same equation that governs the circuit of Fig. 6.26, if: 

𝐶𝑒𝑞 = ∑ 𝐶𝑘
𝑁
𝑘=1           Eq. 6.25 

Thus, the equivalent capacitance of a parallel combination of capacitors is simply the sum of the individual 

capacitances. This result is analogous to the equations, which provide the equivalent resistance of 

a series combination of resistors. 

+

-
v(t) Ceq

Figure 6.26.  Equivalent circuit to Figure 5. 

Summary: Series and Parallel Capacitors 

• The equivalent capacitance of a series combination of capacitors C1, C2, …, CN is governed by a relation 

which is analogous to that providing the equivalent resistance of a parallel combination of resistors: 

1

𝐶𝑒𝑞

= ∑
1

𝐶𝑘

𝑁

𝑘=1

 

• The equivalent of a parallel combination of capacitors C1, C2, …, CN is governed by a relation which is 

analogous to that providing the equivalent resistance of a series combination of resistors: 

𝐶𝑒𝑞 = ∑ 𝐶𝑘

𝑁

𝑘=1

 

6.3.5 Practical Capacitors 

Commercially available capacitors are manufactured in a wide range of both conductor and dielectric materials 

and are available in a wide range of capacitances and voltage ratings. The voltage rating of the device is the 

maximum voltage, which can be safely applied to the capacitor; using voltages higher than the rated value will 

damage the capacitor. The capacitance of commercially available capacitors is commonly measured in microfarads 

(μF; one microfarad is 10−6 of a Farad) or pico-farads (pF; one picofarad is 10−12 of a Farad). Large capacitors are 

available, but are relatively infrequently used. These are generally called “super-capacitors” or “ultra-capacitors” 
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and are available in capacitances up to tens of Farads. For most applications, however, using one would be 

comparable to buying a car with a 1000 gallon gas tank. 

Several approaches are used for labeling a capacitor with its capacitance value. Large capacitors often have their 

value printed plainly on them, such as “10μF” (for 10 microfarads). Smaller capacitors, appearing as small disks or 

wafers, often have their values printed on them in an encoded manner. For these capacitors, a three-digit number 

indicates the capacitor value in pico-farads. The first two digits provides the “base” number, and the third digit 

provides an exponent of 10 (so, for example, “104” printed on a capacitor indicates a capacitance value of 10 x 104 

or 100000 pF). Occasionally, a capacitor will only show a two-digit number, in which case that number is simply the 

capacitor value in pF. (For completeness, if a capacitor shows a three-digit number and the third digit is 8 or 9, 

then the first two digits are multiplied by .01 and .1 respectively). 

Capacitors are generally classified according to the dielectric material used. Common capacitor types include mica, 

ceramic, Mylar, paper, Teflon and polystyrene. An important class of capacitors which require special mention 

are electrolytic capacitors. Electrolytic capacitors have relatively large capacitances relative to other types of 

capacitors of similar size. However, some care must be exercised when using electrolytic capacitors – they 

are polarized and must be connected to a circuit with the correct polarity. The positive lead of the capacitor must 

be connected to the positive lead of the circuit. Connecting the positive lead of the capacitor to the negative lead 

of a circuit can result in unwanted current “leakage” through the capacitor or, in extreme cases, destroy the 

capacitor. Polarized capacitors either have a dark stripe near the pin that must be kept at the higher voltage, or a 

“-” near the pin that must be kept at a lower voltage. 

Practical capacitors, unlike ideal capacitors, will dissipate some power. This power loss is primarily due to leakage 

currents. These currents are due to the fact that real dielectric materials are not perfect insulators – some small 

current will tend to flow through them. The overall effect is comparable to placing a high resistance in parallel with 

an ideal capacitor, as shown in Fig. 6.27. Different types of capacitors have different leakage currents. Mica 

capacitors tend to have low leakage currents, the leakage currents of ceramic capacitors vary according to the type 

of capacitor, and electrolytic capacitors have high leakage currents. 

CR

Figure 6.27.  Model of practical capacitor including leakage current path. 

Section Summary 

• Capacitors store electrical energy. This energy is stored in an electric field between two conductive 

elements, separated by an insulating material. 
• Capacitor energy storage is dependent upon the voltage across the capacitor, if the capacitor voltage is 

known, the energy in the capacitor is known. 

• The voltage-current relationship for a capacitor is: 

𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
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Where C is the capacitance of the capacitor. Units of capacitance are Farads (abbreviated F). The capacitance of a 

capacitor, very roughly speaking, gives an indication of how much energy it can store 

• The above voltage-current relation results in the following important properties of capacitors: 

o If the capacitor voltage is constant, the current through the capacitor is zero. Thus, if the 

capacitor voltage is constant, the capacitor can be modeled as an open circuit. 

o Changing the capacitor voltage instantaneously requires infinite power. Thus (for now, anyway) 

we will assume that capacitors cannot instantaneously change their voltage. 

• Capacitors placed in series or parallel with one another can be modeled as a single equivalent 

capacitance. Thus, capacitors in series or in parallel are not “independent” energy storage elements. 

6.3 Exercises 

1. Determine the maximum and minimum capacitances that can be obtained from four 1μF capacitors. 

Sketch the circuit schematics that provide these capacitances. 

2. Determine voltage divider relationships to provide v1 and v2 for the two uncharged series capacitors 

shown below. Use your result to determine v2 if C1=C2=10μF. 

6.4 Inductors 

We continue our study of energy storage elements with a discussion of inductors. Inductors, like resistors and 

capacitors, are passive two-terminal circuit elements. That is, no external power supply is necessary to make them 

function. Inductors commonly consist of a conductive wire wrapped around a core material; inductors store energy 

in the form of a magnetic field set up around the current-carrying wire. 

In this section, we describe physical properties of inductors and provide a mathematical model for 

an ideal inductor. Using this ideal inductor model, we will develop mathematical relationships for the energy 

stored in an inductor and governing relations for series and parallel connections of inductors. The section 

concludes with a brief discussion of practical (non-ideal) inductors. 

6.4.1 Inductors 

Passing a current through a conductive wire will create a magnetic field around the wire. This magnetic field is 

generally thought of in terms of as forming closed loops of magnetic flux around the current-carrying element. 

This physical process is used to create inductors. Figure 6.28 illustrates a common type of inductor, consisting of a 

coiled wire wrapped around a core material. Passing a current through the conducting wire sets up lines of 

magnetic flux, as shown in Fig. 6.28; the inductor stores energy in this magnetic field. The inductance of the 

inductor is a quantity, which tells us how much energy can be stored by the inductor. Higher inductance means 

that the inductor can store more energy. Inductance has units of Henrys, abbreviated H. 

The amount of inductance an inductor has is governed by the geometry of the inductor and the properties of the 

core material. These effects can be complex; rather than attempt a comprehensive discussion of these effects, we 

will simply claim that, in general, inductance is dependent upon the following parameters: 

• The number of times the wire is wrapped around the core. More coils of wire results in a higher 

inductance. 

• The core material’s type and shape. Core materials are commonly ferromagnetic materials, since they 

result in higher magnetic flux and correspondingly higher energy storage. Air, however, is a fairly 

commonly used core material – presumably because of its ready availability. 

• The spacing between turns of the wire around the core. 
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Figure 6.28.  Wire-wrapped inductor with applied current through conductive wire. 

We will denote the total magnetic flux created by the inductor by ψ, as shown in Fig. 6.28. For a linear inductor, 

the flux is proportional to the current passing through the wound wires. The constant of proportionality is the 

inductance, L: 

𝜓(𝑡) = 𝐿𝑖(𝑡)          Eq. 6.26 

Voltage is the time rate of change of magnetic flux, so: 

𝑣(𝑡) =
𝑑𝜓(𝑡)

𝑑𝑡
          Eq. 6.27 

Combining equations (6.26) and (6.27) results in the voltage-current relationship for an ideal inductor: 

𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
          Eq. 6.28 

The circuit symbol for an inductor is shown in Fig. 6.29, along with the sign conventions for the voltage- current 

relationship of equation (6.28). The passive sign convention is used in the voltage-current relationship, so positive 

current is assumed to enter the terminal with positive voltage polarity. 

+

-

i(t)

v(t) L

Figure 6.29.  Inductor circuit symbol and voltage-current sign convention. 

Integrating both sides of equation (6.28) results in the following form for the inductor’s voltage-current 

relationship: 
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𝑖(𝑡) =
1

𝐿
∫ 𝑣(𝜉)𝑑𝜉 + 𝑖(𝑡0)

𝑡

𝑡0
        Eq. 6.29 

In equation (6.29), i(t0) is a known current at some initial time t0 and ξ is used as a dummy variable of integration 

to emphasize that the only “t” which survives the integration process is the upper limit of the integral. 

Important Result 

The voltage-current relationship for an ideal inductor can be stated in either differential or integral form, as 

follows: 

• 𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 

• 𝑖(𝑡) =
1

𝐿
∫ 𝑣(𝜉)𝑑𝜉 + 𝑖(𝑡0)

𝑡

𝑡0
 

Example 6.6 

A circuit contains a 100mH inductor. The current as a function of time through the inductor is measured and 

shown below. Plot the voltage across the inductor as a function of time. 

Time, msec

C
u

rr
e

n
t,
 m

A

0

5

10

1 2 3 4 5

-5

 

• In the time range 0<t<1ms, the rate of change of current is 10 A/sec. Thus, from equation (3), the voltage 

is 𝑣(𝑡) = (0.1𝐻)(10𝐴 ∕ 𝑠) = 1𝑉. 

• In the time range 1𝑚𝑠 < 𝑡 < 2𝑚𝑠, the rate of change of current is -5A/sec. The voltage is -0.5V. 

• In the time range 2𝑚𝑠 < 𝑡 < 3𝑚𝑠, the current is constant and there is no voltage across the inductor. 

• In the time range 3𝑚𝑠 < 𝑡 < 5𝑚𝑠, the rate of change of current is -5A/sec. The voltage is -0.5V 

The plot of voltage vs. time is shown below: 
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Power is the product of voltage and current. If the signs of voltage and current are the same according to the 

passive sign convention, the circuit element absorbs power. If the signs of voltage and current are not the same, 

the circuit element generates power. From the above voltage and current curves, the inductor is absorbing power 

from the circuit during the times 0<t<1ms and 4ms<t<5ms. The inductor returns power to the circuit during the 

times 1ms<t<2ms and 3ms<t<4ms. 
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Example 2: If the voltage as a function of time across an inductor with inductance L = 10 mH is as shown below, 

determine the current as a function of time through the capacitor. Assume that the current through the capacitor 

is 0A at time t=0. 
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• At time t=0, the current is given to be 0A. 

• In the time period 0<t<1 msec, the voltage is constant and positive so the current will increase linearly. 

The total current change during this time period is the area under the voltage curve curve, divided by the 

inductance: 
1

0.01
(10𝑉)(1 × 10−3s) = 1A 

• In the time period 1<t<2 msec, the voltage is decreasing linearly. The current during this time period is a 

quadratic curve, concave downward. The maximum value of current is 1.25A, at t=1.5 msec. The current 

at the end of this time period is 1A. 

• In the time period 2<t<3 seconds, the voltage is constant at -10V. The current change during this time 

period is the area under the voltage curve, divided by the inductance: 
1

0.01
(−10𝑉)(1 × 10−3s) = −1A. 

The total current at t=3 seconds is, then, 1A – 1A = 0A. 

• In the time period 3<t<4 seconds, the voltage is zero. The integral of zero over any time period is zero, so 

there is no change in current during this time range and the current remains constant at 0A. 

A plot of the current through the inductor as a function of time is shown below. 
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It is often useful, when analyzing circuits containing inductors, to examine the circuit’s response to constant 

operating conditions and to instantaneous changes in operating condition. We examine the inductor’s response to 

each of these operating conditions below: 
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• Inductor response to constant current: 

o If the current through the inductor is constant, equation (6.28) indicates that the voltage across 

the inductor is zero. Thus, if the current through the inductor is constant, the inductor is 

equivalent to a short circuit. 

• Inductor response to instantaneous current changes: 

o If the current through the inductor changes instantaneously, the rate of change of current is 

infinite. Thus, by equation (6.28), if we wish to change the current through an inductor 

instantaneously, we must supply infinite voltage to the inductor. This implies that infinite power 

is available, which is not physically possible. Thus, in any practical circuit, the current through an 

inductor cannot change instantaneously. 

o Any circuit that allows an instantaneous change in the current through an ideal inductor is not 

physically realizable. We may sometimes assume, for mathematical convenience, that an ideal 

inductor’s current changes suddenly; however, it must be emphasized that this assumption 

requires an underlying assumption that infinite power is available and is thus not an allowable 

operating condition in any physical circuit. 

Important Inductor Properties 

• Inductors can be replaced by short-circuits, under circumstances when all operating conditions are 

constant. 

• Currents through inductors cannot change instantaneously. No such requirement is placed on voltages. 

6.4.2 Energy Storage 

The instantaneous power dissipated by an electrical circuit element is the product of the voltage and current: 

𝑝(𝑡) = 𝑣(𝑡) ∙ 𝑖(𝑡)         Eq. 6.30 

Using equation (6.28) to write the voltage in equation (6.30) in terms of the inductor’s current: 

𝑝(𝑡) = 𝐿 ∙ 𝑖(𝑡)
𝑑𝑖(𝑡)

𝑑𝑡
         Eq. 6.31 

As was previously done for capacitors, we integrate the power with respect to time to get the energy stored in the 

inductor: 

𝑊𝐿(𝑡) = ∑ 𝐿𝑖(𝜉)
𝑑𝑖(𝜉)

𝑑𝑡
𝑑𝑡

𝑡

−∞

 

Which, after some manipulation (comparable to the approach taken when we calculated energy storage in 

capacitors), results in the following expression for the energy stored in an inductor: 

𝑊𝐿(𝑡) =
1

2
𝐿𝑖2(𝑡)          Eq. 6.32 

6.4.3 Inductors in Series 

Consider the series connection of N inductors shown in Fig. 6.30. 
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LN

+

-
v(t)

L1

+ -v1(t)

L2

+ -v2(t)

+

-

vN(t)

 

Figure 6.30.  Series connection of N inductors. 

Applying Kirchhoff’s voltage law around the loop results in: 

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + ⋯ 𝑣𝑁(𝑡)        Eq. 6.33 

Using equation (6.28) to write the inductor voltage drops in terms of the current through the loop gives: 

𝑣(𝑡) = 𝐿1

𝑑𝑖(𝑡)

𝑑𝑡
+ 𝐿2

𝑑𝑖(𝑡)

𝑑𝑡
+ ⋯ + 𝐿𝑁

𝑑𝑖(𝑡)

𝑑𝑡
 

= (𝐿1 + 𝐿2 + ⋯ 𝐿𝑁)
𝑑𝑖(𝑡)

𝑑𝑡
 

Using summation notation results in: 

𝑣(𝑡) = (∑ 𝐿_𝑘𝑁
𝑘=1 )

𝑑𝑖(𝑡)

𝑑𝑡
         Eq. 6.34 

This is the same equation that governs the circuit of Fig. 6.31, if: 

𝐿𝑒𝑞 = ∑ 𝐿𝑘

𝑁

𝑘=1

 

Thus, the equivalent inductance of a series combination of inductors is simply the sum of the individual 

inductances. This result is analogous to the equations which provide the equivalent resistance of 

a series combination of resistors. 

+

-
v(t) Leq

Figure 6.31.  Equivalent circuit to Figure 3. 

6.4.4 Inductors in Parallel 

Consider the parallel combination of N inductors, as shown in Fig. 6.32. 
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LNi(t) L1 L2

i1(t) i2(t) iN(t)
+

-

v(t)

 

Figure 6.32.  Parallel combination of I inductors. 

Applying Kirchhoff’s current law at the upper node results in: 

𝑖(𝑡) = 𝑖1(𝑡) + 𝑖2(𝑡) + ⋯ 𝑖𝑁(𝑡)        Eq. 6.36 

Using equation (6.29) to write the inductor currents in terms of their voltage drops gives: 

𝑖(𝑡) = [
1

𝐿1

∫ 𝑣(𝜉)𝑑𝜉 + 𝑖1(𝑡0)

𝑡

𝑡0

] + [
1

𝐿2

∫ 𝑣(𝜉)𝑑𝜉 + 𝑖2(𝑡0)

𝑡

𝑡0

] + ⋯ + [
1

𝐿𝑁

∫ 𝑣(𝜉)𝑑𝜉 + 𝑖𝑁(𝑡0)

𝑡

𝑡0

] 

= [
1

𝐿1

∫ 𝑣(𝜉)𝑑𝜉 +
1

𝐿2

∫ 𝑣(𝜉)𝑑𝜉 + ⋯
1

𝐿𝑁

∫ 𝑣(𝜉)𝑑𝜉

𝑡

𝑡0

𝑡

𝑡0

𝑡

𝑡0

] + [𝑖1(𝑡0) + 𝑖2(𝑡0) + ⋯ + 𝑖𝑁(𝑡0)] 

= (
1

𝐿1

+
1

𝐿2

+ ⋯ +
1

𝐿𝑁

) ∫ 𝑣(𝜉)𝑑𝜉 + 𝑖(𝑡0)

𝑡

𝑡0

 

This can be re-written using summation notation as: 

𝑖(𝑡) = (∑
1

𝐿𝑘

𝑁
𝑘=1 ) ∫ 𝑣(𝜉)𝑑𝜉 + 𝑖(𝑡0)

𝑡

𝑡0
       Eq. 6.37 

This is the same equation that governs the circuit of Fig. 6.31, if: 

1

𝐿𝑒𝑞
=

𝐿1𝐿2

𝐿1+𝐿2
          Eq. 6.39 

Equations (6.38) and (6.39) are analogous to the equations which provide the equivalent resistance 

of parallel combinations of resistors. 

Summary: Series and Parallel Inductors 

• The equivalent inductance of a series combination of inductors L1, L2, …, LN is governed by a relation 

which is analogous to that providing the equivalent resistance of a series combination of resistors: 

𝐿𝑒𝑞 = ∑ 𝐿𝑘

𝑁

𝑘=1

 

• The equivalent inductance of a parallel combination of inductors L1, L2, …, LN is governed by a relation 

which is analogous to that providing the equivalent resistance of a parallel combination of resistors: 

1

𝐿𝑒𝑞

= ∑
1

𝐿𝑘

𝑁

𝑘=1
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6.5 Practical Inductors  

Most commercially available inductors are manufactured by winding wire in various coil configurations around a 

core. Cores can be a variety of shapes; Fig. 6.28 in this chapter shows a core, which is basically a cylindrical bar. 

Toroidal cores are also fairly common – a closely wound toroidal core has the advantage that the magnetic field is 

confined nearly entirely to the space inside the winding. 

Inductors are available with values from less than 1 micro-Henry (1𝜇𝐻 = 10−6 Henries) up to tens of Henries. A 1H 

inductor is very large; inductances of most commercially available inductors are measured in millihenries (1𝑚𝐻 =

10−3 Henries) or microhenries. Larger inductors are generally used for low-frequency applications (in which the 

signals vary slowly with time). 

Attempts at creating inductors in integrated-circuit form have been largely unsuccessful; therefore many circuits 

that are implemented as integrated circuits do not include inductors. Inclusion of inductance in the analysis stage 

of these circuits may however, be important. Since any current-carrying conductor will create a magnetic field, 

the stray inductance of supposedly non-inductive circuit elements can become an important consideration in the 

analysis and design of a circuit. 

Practical inductors, unlike the ideal inductors discussed in this chapter, dissipate power. An equivalent circuit 

model for a practical inductor is generally created by placing a resistance in series with an ideal inductor, as shown 

in Fig. 6.33. 

L

R

Figure 6.33.  Equivalent circuit model for a practical inductor. 

Section Summary 

• Inductors store magnetic energy. This energy is stored in a magnetic field (typically) generated by a coiled 

wire wrapped around a core material. 
• Inductor energy storage is dependent upon the current through the inductor, if the inductor current is 

known, the energy in the inductor is known. 

• The voltage-current relationship for an inductor is: 

𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 

Where L is the inductance of the inductor. Units of inductance are Henries (abbreviated H). The inductance of an 

inductor, very roughly speaking, gives an indication of how much energy it can store. 

• The above voltage-current relation results in the following important properties of inductors: 

o If the inductor current is constant, the voltage across the inductor is zero. Thus, if the inductor 

current is constant, the inductor can be modeled as a short circuit. 
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o Changing the inductor current instantaneously requires infinite power. Thus (for now, anyway) 

we will assume that inductors cannot instantaneously change their current. 

• Inductors placed in series or parallel with one another can be modeled as a single equivalent inductance. 

Thus, inductors in series or in parallel are not “independent” energy storage elements. 

6.4 Exercises 

1. Determine the equivalent inductance of the network below: 

6H2H3H

4H

Leq  
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Real Analog Chapter 6: Lab Projects 

6.2.1: Time-varying Signals 

This assignment will focus on using an arbitrary waveform generator to generate time-varying signals and using an 

oscilloscope to measure time varying signals.   

In chapter 6 of the text book, we deal analytically only with step functions and exponential functions.  This lab will, 

however introduce us to a larger class of time-varying waveforms. 

The ability to apply and measure time varying signals will be crucial throughout the remainder of your career.  It is 

strongly recommended that you not only complete the specific steps outlined in this assignment, but that you 

spend some additional time “playing with” the tools we introduce in this assignment – it is guaranteed to be time 

well spent! 

 

Before beginning this lab, you should be able to: After completing this lab, you should be able to: 

 Define a step function. 
 State Ohm’s law for time-varying signals 

 

 Use a switch to create a step function 
 Use the Analog Discovery waveform generator to 

apply square, triangular, and sinusoidal waveforms 
 Use the Analog Discovery oscilloscope to measure 

and display time-varying waveforms 

This lab exercise requires: 

 Analog Discovery module 
 Digilent Analog Parts Kit 

Symbol Key: 

 Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade 
sheet, indicating that circuit operation is acceptable. 

 Analysis; include principle results of analysis in laboratory report. 

 Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis 
and/or simulation in laboratory report. 

 Record data in your lab notebook. 

General Discussion: 

Once we begin to deal in earnest with systems which include energy storage elements, it will be crucial apply time-

varying power to our electrical circuits and measure the circuits’ responses as functions of time.  This lab 

introduces the concepts necessary for application, measurement, and interpretation of time-varying signals. 

Since we have not yet been introduced to dynamic systems, the electrical circuit of interest in this assignment will 

be the voltage divider shown in Figure 1. 
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R1

+

-

vOUT(t)R2

+

-

vIN(t)

 

Figure 1.  Voltage divider circuit. 

In Figure 1, the output voltage, vOUT(t) is related to the input voltage vIN(t) via the voltage divider relation: 

𝑣𝑂𝑈𝑇(𝑡) = 𝑣𝐼𝑁(𝑡)
𝑅2

𝑅1+𝑅2
         Eq. 1 

Notice that the relationship between vIN(t) and vOUT(t) is algebraic – the value of vOUT at a particular time depends 

only upon the value of vIN at that same time. 

In order to familiarize ourselves with the fundamentals of applying and measuring time-varying signals, we will 

restrict ourselves to some of the most common signals encountered in engineering applications: sinusoidal waves, 

square waves, and triangular waves. The basic shapes of these signals are shown in Fig. 2. The signals of Fig. 2 are 

all periodic signals – that is, they repeat themselves at regular intervals. This interval is called the period 

(commonly denoted mathematically as T).  The period of each of the signals of interest to us is indicated on Fig. 2.  

The other primary attribute of the signals we will be dealing with is their amplitude (which we will denote as A).  

The amplitude of the signal is essentially the maximum (and minimum) value that the signal achieves1. 

v(t)

t

A

T
 

(a) Sinusoidal wave. 

                                                                 

1 For now, our signals will be symmetric with respect to the time axis.  That is, their average value (also called the 

offset) will be zero.  For the signals of immediate interest to us, this means that their minimum value will be the 

negative of their maximum value.  Later labs will explore the effects of a non-zero offset to the signal, and signals 

which are not symmetric with respect to the time axis. 
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v(t)

t

A

T
 

(b) Triangular wave 

v(t)

t

A

T  

(c.) Square wave 

Figure 2.  Basic signal shapes. 

Although we have used the signals period as a fundamental parameter defining the signal, it is more common for 

electrical instruments to use the frequency of the signal as a defining characteristic.  The frequency provides 

essentially the same information as the period; the frequency is just the inverse of the period: 

𝑓 =
1

𝑇
           Eq. 2 

As defined in equation (2), the units of frequency are in Hertz (abbreviated Hz) or cycles per second.  Sinusoidal 

signals, however, are more accurately defined mathematically in terms of their radian frequency, denoted as .  

Since there are 2 radians in one cycle, the conversion between frequency and radian frequency is: 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
          Eq. 3 

Mathematically, the sinusoidal wave of Fig. 2(a) can be represented as: 

𝑣(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜃) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜃)       Eq. 4 

Where  is the phase angle of the signal; it translates the sinusoid in time.  We will concern ourselves with phase 

later in the course. 

Pre-lab: 

In the circuit of Fig. 1, if R1 = R2, overlay sketches using the input and output voltages (vIN(t) and 

vOUT(t)) for the following cases: 

(a) vIN(t) is a sinusoidal wave with amplitude A and period T. 

(b) vIN(t) is a triangular wave with amplitude A and period T. 

(c) vIN(t) is a square wave with amplitude A and period T. 



Real Analog Chapter 6: Energy Storage Elements  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 35 of 58 

 

Label the amplitude and period of both the input and output waveforms on your sketch.  These 

values may be functions of A, T, R1 and R2. 

Lab Procedures: 

(a) Test the response of the circuit to a sinusoidal input voltage with 2kHz frequency and 2V 
amplitude.  Details are below: 
i. Set vIN(t) in the circuit of Fig. 1 to be a sinusoidal voltage with amplitude 2V and frequency 

1kHz across the voltage divider.  The average value of the sinusoid should be zero volts.  To 
do this, open the WaveGen instrument in the waveforms file. Click on the Basic tab (if it is 
not already selected) and then click on the Standard option. There should be a series of 
icons in a column below this option, indicating the shape of the associated waveform.  Click 
on the   icon to select a sinusoidal waveform. Choose 1kHz as the frequency (you can 
choose the desired frequency by selecting it from the drop-down menu, typing the desired 
value in the text box, or using the slider bar) and 2V as the amplitude2. The plot window on 
the waveform generator instrument will display one period the waveform you have set.  Use 
this plot window to double check that your signal has the correct frequency and amplitude. 
 

Note on selecting parameters: 

When choosing parameters describing signals(e.g. 

frequency, amplitude, offset, and symmetry) the 

allowable values are limited to the range specified by 

the values above and below the slider bar, as indicated 

on the figure to the right for the frequency parameter.  

When selecting a value, the desired value must be 

between the maximum and minimum values shown.  If 

you want a value outside the displayed range, simply re-

set the range using the appropriate drop-down menus.  

If the waveform generator will not let you set a desired 

value, be sure to check that the desired value is within 

the allowable range. 

ii. Use the oscilloscope to display the voltages vIN(t) and vOUT(t) of Figure 1.  To do this, open the 
Scope instrument.  Set the horizontal scale (or the time axis scale) to be 1msec/div.  
Horizontal axis settings are set in the time axis settings box on the oscilloscope window; this 
box and the desired settings for this lab are shown below: 

 

Horizontal 

(time axis)

settingsTime base

 

Trigger “time”

 

 

Set the vertical axis settings on both channel 1 and channel 2 (C1 and C2) to 500mv/div.  

Vertical axis settings are set in the channel axis settings boxes on the oscilloscope window; 

                                                                 

2 The offset should be zero, the symmetry 50%, and the phase 0 degrees.  These are the default values, and should 

not need to be re-set. 

Maximum 

allowable 

value

Minimum

allowable 

value

Desired 

value
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the settings box for channel 1 and its desired settings are shown below.  Use the same 

settings for channel 2. 

 

Vertical axis 

(voltage)

settingsC1 scale

C1 Offset

 

 

Click on               to acquire and display the data.  Record an image of the oscilloscope 

main time window to a file for later documentation. 

iii. From the time plots displayed in the oscilloscope window, determine the period and 
amplitude of vIN(t) and vOUT(t).  From your measured period, calculate the signal’s frequency 
in Hertz.  Create a table, showing the expected amplitude and frequency of vIN(t) and vOUT(t) 
and your measured amplitude and frequency of vIN(t) and vOUT(t). 

iv. Click on the            button on the oscilloscope window to open a measurements 
window.  Use the measurement window to measure the amplitude, period, and frequency 
of vIN(t) and vOUT(t).  Record the image of the oscilloscope window, showing the waveforms 
and their measured amplitudes, periods, and frequencies3.  Comment on the agreement 
between the oscilloscope’s measurements and the measurements you made in part iii 
above.   

v. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

vi. Vary the amplitude and frequency of the sinusoidal waveform using the waveform 
generator.  Change the horizontal and vertical axis scales in the oscilloscope.  Verify that the 
changes result in data that agree with your expectations.  Familiarizing yourself with these 
instruments now will be rewarded in later experiments – you can only interpret the results 
of future experiments if you are comfortable with measuring the data upon which the 
results depend! 

(b) Test the response of the circuit to a triangular input voltage with 1kHz frequency and 3V 
amplitude. 

i. Perform all the steps you did above for the sinusoidal input. 

ii. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

(c) Test the response of the circuit to a square wave input voltage with 500Hz frequency and 2.5V 
amplitude. 

i. Perform all the steps you did above for the sinusoidal input. 

ii. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

 

 

                                                                 

3 Holding down the “Alt” key and pressing “Print Screen” (commonly labeled as “PrtScn” or “PrtSc” on computer 

keyboards) will copy the currently active window to the clipboard.  You can then paste this image to a document.  

The        button on the oscilloscope instrument allows you to copy an image of the main time window to the 

clipboard or save it to a file in a variety of formats.  This option will not, however, display the measurement 

window – if you use this approach, you will want to record the measured values elsewhere. 
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Real Analog Chapter 6: Lab Worksheets 

6.2.1: Time-varying Signals (40 points total) 

1. Attach to this worksheet the input and output voltage sketches you created in the pre-lab for sinusoidal, 
triangular, and square waves.  (7 pts) 

 

2. Attach to this worksheet an image of the oscilloscope window, showing the sinusoidal waveforms and their 
measured amplitudes, periods, and frequencies.  In the space below, provide the amplitudes, periods, and 
frequencies determined directly from the time plot in the oscilloscope window.  Comment on the agreement 
between the two sets of data.   (8 pts) 

 

 

 

3. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for sinusoidal inputs.  (3 pts) 

 

TA Initials: _______ 

4. Attach to this worksheet an image of the oscilloscope window, showing the triangular waveforms and their 
measured amplitudes, periods, and frequencies.  In the space below, provide the amplitudes, periods, and 
frequencies determined directly from the time plot in the oscilloscope window.  Comment on the agreement 
between the two sets of data.   (8 pts) 

 

 

5. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for triangular inputs.  (3 pts) 

 

TA Initials: _______ 

6. Attach to this worksheet an image of the oscilloscope window, showing the square waveforms and their 
measured amplitudes, periods, and frequencies.  In the space below, provide the amplitudes, periods, and 
frequencies determined directly from the time plot in the oscilloscope window.  Comment on the agreement 
between the two sets of data.   (8 pts) 

 

7. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for square wave inputs.  (3 pts) 

 

TA Initials: _______ 
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Real Analog Chapter 6: Lab Projects 

6.3.1: Capacitor Voltage-current Relations 

In this assignment, we will measure the relationship between the voltage difference across a capacitor and the 

current passing through it.  We will apply several types of time-varying signals to a series combination of a resistor 

and a capacitor.  The voltage difference across the resistor, in conjunction with Ohm’s law, will provide an estimate 

of the current through the capacitor.  This current can be related to the voltage difference across the capacitor. 

The results of our voltage-current measurements will be compared to analytical expectations. 

 

Before beginning this lab, you should be able to: After completing this lab, you should be able to: 

 State voltage-current relationships for 
capacitors in both differential and integral form 

 Apply the capacitor voltage-current relations to 
calculate a capacitor’s voltage from its current 
and vice-versa 

 Use the Analog Discovery’s arbitrary waveform 
generator and oscilloscope to apply and 
measure time-varying waveforms (Lab 6.2.1) 

 

 Use the Analog Discovery oscilloscope’s math 
function to calculate the current through a known 
resistor from the measured voltage difference. 

 Verify a capacitor’s voltage-current relations using 
measured data 

This lab exercise requires: 

 Analog Discovery module 
 Digilent Analog Parts Kit 

Symbol Key: 

 Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade 
sheet, indicating that circuit operation is acceptable. 

 Analysis; include principle results of analysis in laboratory report. 

 Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis 
and/or simulation in laboratory report. 

 Record data in your lab notebook. 

General Discussion: 

We will use the circuit of Figure 1 in this lab assignment.  Both the voltage difference across the capacitor and the 

resistor (vC(t) and vR(t)) will be measured.  From this data, we can readily compare the voltage across the 

capacitor with the current through the capacitor.  Since the voltage across the resistor is measured, we can readily 

infer the current through the resistor via Ohm’s law: 

𝑖𝑅(𝑡) =
𝑣𝑅(𝑡)

𝑅
          Eq. 1 

The resistor and capacitor are in series, so the current through the capacitor is the same as the current through the 

resistor, so: 

𝑖𝐶(𝑡) =
𝑣𝑅(𝑡)

𝑅
          Eq. 2 
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Since we are also measuring the voltage difference across the capacitor, vC(t), we can readily compare these 

parameters with our expectations based on our mathematical models of the capacitor voltage-current 

relationships. 

R
+

-

vIN(t)
C

+ -vR(t)iR(t)

iC(t)

+

-

vC(t)

 

Figure 1.  Series RC circuit. 

Pre-lab: 

For the circuit of Figure 1, use the inductor voltage-current relations to overlay sketches of the 

capacitor voltage and the capacitor current (vC(t) and iC(t)) if the capacitor voltage is: 

(a)  A sinusoidal wave, v(t), with frequency (f) and amplitude (A) as shown in Figure 2 (a) 

(b)  A triangular wave, v(t), with frequency (f) and amplitude (A) as shown in Figure 2 (b). 

Label your sketch to show the amplitude and period of the capacitor current for both of the above 

cases.  Your results may be dependent up on the parameters A, f, R, and C.  Be sure that your 

sketches of voltage and current share the same time axis! 

 

v(t)

t

f

1

A

 

v(t)

t

f

1

A

 

(a)  Sinusoidal waveform                                            (b)  Triangular waveform 

Lab Procedures: 

Construct the circuit of Figure 1, using R = 100W and C = 1mF.  Use channel 1 of your oscilloscope to 

measure the resistor voltage difference, and channel 2 of your oscilloscope to measure the capacitor 

voltage difference.  Use channel 1 of your waveform generator (W1) to apply the voltage vin(t) in 

Figure 1.  Set up a math channel to calculate the current through the capacitor per equation (2) in the 
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pre-lab4.  Set the oscilloscope measurements to provide at least the amplitude of each of the three 

displayed waveforms. 

1. Apply a sinusoidal input voltage with frequency = 1kHz, amplitude = 2V, and offset = 0V to the 
circuit of Figure 1.  Use your oscilloscope to display the data listed above (waveforms 
corresponding to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, and 
M1).  Record the image of the oscilloscope window, showing the waveforms and their measured 
amplitudes. 

2. Apply a sinusoidal input voltage with frequency = 2 kHz, amplitude = 2V, and offset = 0V to the 
circuit of Figure 1.  Use your oscilloscope to display the data listed above (waveforms 
corresponding to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, and 
M1).  Record the image of the oscilloscope window, showing the waveforms and their measured 
amplitudes. 

3. Apply a triangular input voltage with frequency = 100 Hz, amplitude = 4V, and offset = 0V to the 
circuit of Figure 1.  Use your oscilloscope to display the data listed above (waveforms 
corresponding to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, and 
M1).  Record the image of the oscilloscope window, showing the waveforms and their measured 
amplitudes. 

4. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

 

Post-lab Exercises: 

For the three cases in the lab procedures (1kHz sinusoid, 2kHz sinusoid, 100Hz triangular wave), 

use your pre-lab results to sketch the expected capacitor current waveforms corresponding to 

the capacitor voltage waveforms you measured in the lab procedures.  Comment briefly on the 

agreement between the measured and expected capacitor currents for each of these cases.  In 

your comments, be sure to include a quantitative comparison (including percent difference) 

between the expected and measured amplitudes of the capacitor 

  

                                                                 

4 Detailed instructions for doing this are provided in Appendix A. 
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Real Analog Chapter 6: Lab Worksheets 

6.3.1: Capacitor Voltage-current Relations (35 points total) 

1. Attach to this worksheet the sketches of the capacitor voltage and current for both sinusoidal and triangular 
inputs.  (6 pts) 

 

 

2. Attach to this worksheet an image of the oscilloscope window, showing the capacitor voltage and current 
waveforms and the measured amplitudes of the waveforms for a 1kHz sinusoidal input.   (8 pts) 

 

 

3. Attach to this worksheet an image of the oscilloscope window, showing the capacitor voltage and current 
waveforms and the measured amplitudes of the waveforms for a 2kHz sinusoidal input.   (8 pts) 

 

 

4. Attach to this worksheet an image of the oscilloscope window, showing the capacitor voltage and current 
waveforms and the measured amplitudes of the waveforms for a 100Hz triangular input.  (8 pts) 

 

 

5. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for the triangular input.  (5 pts) 

 

TA Initials: _______ 
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Real Analog Chapter 6: Lab Projects 

6.3.2: Leakage Currents and Electrolytic Capacitors 

Voltage-current relationships for ideal capacitors do not always adequately explain measured capacitor behavior.  

In this assignment, we will focus on the effects of leakage currents on capacitor behavior.  As we saw in our 

discussion of non-ideal capacitors in section 6.3 of the text, models for realistic capacitors often include a resistor 

in parallel with an ideal capacitor; this resistor allows us to model leakage currents, which explain – among other 

effects – the inability of a capacitor to hold a charge indefinitely, even if the capacitor terminals are open-circuited.   

An important effect of leakage currents is in the case of electrolytic capacitors.  These capacitors are attractive in 

many cases, since a relatively large capacitance can be provided in a small package.  However, one must be aware, 

when using electrolytic capacitors, that their leakage currents can be significant and that they are not symmetric 

relative to the capacitor’s polarity.  Thus, reversing the polarity of the capacitor in a circuit can alter the behavior 

of the capacitor – this makes electrolytic capacitors undesirable in some applications (such as filtering) in which the 

behavior of the capacitor should be independent of the polarity of the voltage applied to the capacitor. 

 

Before beginning this lab, you should be able to: After completing this lab, you should be able to: 

 State voltage-current relationships for 
capacitors in both differential and integral form 

 Define the time constant of an exponential 
waveform 

 Use the Analog Discovery to apply and measure 
time-varying waveforms (Lab 6.2.1) 

 

 Model a non-ideal capacitor as an ideal capacitor in 
parallel with a resistor 

 Identify some effects of non-ideal capacitors 
 Describe how the polarity of an electrolytic capacitor 

affects the capacitor’s leakage current. 

This lab exercise requires: 

 Analog Discovery module 
 Digilent Analog Parts Kit 

Symbol Key: 

 Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade 
sheet, indicating that circuit operation is acceptable. 

 Analysis; include principle results of analysis in laboratory report. 

 Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis 
and/or simulation in laboratory report. 

 Record data in your lab notebook. 

General Discussion: 

In large part, this lab will be concerned with electrolytic capacitors.  Electrolytic capacitors are polarized – that is, 

one of their terminals is intended to always be at a higher voltage than the other.  The terminal which is intended 

to be at the higher voltage is called the anode, while the terminal which is to be at the lower polarity is the 

cathode.  A symbol for an electrolytic capacitor is shown in Figure 1 – the cathode side is indicated as a curved line.  

Physically, electrolytic capacitors are readily identifiable: the lead connected to the anode is a longer wire than 
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that of the cathode, and (if the capacitor is physically large enough) a bar is printed on the cathode side of the 

capacitor5. 

+

-

v(t)

i(t)

C

Anode

Cathode
 

Figure 1.  Electrolytic capacitor circuit symbol. 

Electrolytic capacitors are desirable in that their capacitance can be large relative to their volume.  However, they 

also have some undesirable qualities.  Chief among these is that they can fail rather spectacularly if the cathode 

voltage is significantly higher than the anode voltage for an extended period of time.  More subtle drawbacks 

include the fact that leakage currents can be large if the polarity of the capacitor is reversed6.  It is this latter 

characteristic that we will explore in this assignment. 

Caution:  

In order to explore leakage effects, we will be applying voltages with the opposite polarity as required by the 

electrolytic capacitor.  Due to the voltage levels we will use, it is unlikely that we will cause a failure of the 

capacitor.  However, it is recommended that you wear eye protection while doing this lab assignment. 

In this lab assignment, we will measure the voltage across an electrolytic capacitor for both of the cases shown in 

Fig. 2. In Fig. 2(a), the polarity of the capacitor is correct; the anode is always at the higher voltage. In Fig. 2(b), the 

polarity of the capacitor is reversed – the cathode is now at the higher voltage.  We will use a “switch” to change 

the voltage applied to the capacitor – our switch will be implemented simply by unplugging the positive voltage 

terminal of our power supply from the rest of the circuit. 

The resistor R in the circuit of Fig. 2 simply limits the amount of current the capacitor demands when it is being 

initially charged.  Capacitors require a large amount of current to charge rapidly; without the resistor, the capacitor 

will attempt to draw more current from the power supply than is available.   

                                                                 

5 In addition, the bar may have a negative sign printed on it, which further indicates that the cathode is to be at the 

lower (or negative) voltage. 

6 The non-symmetry of the leakage currents relative to capacitor voltage makes electrolytic capacitors poor 

choices for filter circuits.  Filter circuits typically require their operation to be identical for positive and negative 

voltage inputs, unless special biasing schemes are introduced to ensure that the voltage polarity does not change. 
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C
+
-

5V

R

+

-

vC(t)

t=0

C
+
-

5V

R

+

-

vC(t)

t=0

(a) Correct polarity      (b)  Reversed polarity. 

Figure 2.  Capacitor configurations used in this lab. 

Pre-lab: 

None 

Lab Procedures: 

 Using R = 100Ω and C = 10µF, implement the circuit of Figure 2(a).  (Recall that, in Figure 2(a), the 

anode is at the higher voltage.  Thus, the capacitor terminal with the longer lead is connected to 
the resistor R and the shorter lead is connected to ground.)  Use V+ to apply the 5V supply.   

i. Use channel 1 of your oscilloscope to measure the voltage across the capacitor, vC(t).  We 
will be monitoring the amount of time required for the capacitor to discharge once we open 
the switch in Figure 2(a); this will take a relatively long time, so set the time scale on your 
oscilloscope to 5 s/div.  Set the vertical scale of your scope to 1 V/div, with a -2V offset. 

ii. Turn on the power supply and click         to start acquisition of data.  The oscilloscope 
should indicate a +5V voltage across the capacitor. 

iii. Open the “switch” in Figure 2(a) by unplugging the power supply terminal from the circuit.  
(Simply pull the V+ connector out of the breadboard.)  The capacitor voltage displayed on 
the oscilloscope screen should decay exponentially.  Measure the time constant of the 
waveform7.  Record the image of the oscilloscope window, showing the waveform. 

iv. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

 Still using R = 100Ω and C = 10µF, implement the circuit of Figure 2(b).  (In Figure 2(b), the 

cathode is at the higher voltage.  Thus, the capacitor terminal with the shorter lead is connected 
to the resistor R and the longer lead is connected to ground.)  Use V+ to apply the 5V supply.  
Note that this circuit can be easily created from the circuit of Figure 2(a) by removing the 
capacitor, reversing the leads, and replacing it again. 

i. Measure the voltage across the capacitor, vC(t), as in part 1  Turn on the power supply and 

click    to start acquisition of data.  The oscilloscope should indicate a +5V voltage 

across the capacitor. 

ii. Open the “switch” in Figure 2(b) by unplugging the power supply terminal from the circuit.  
(Simply pull the V+ connector out of the breadboard.)  The capacitor voltage displayed on 
the oscilloscope screen should decay approximately exponentially.  Measure the time 
constant of the waveform.  Record the image of the oscilloscope window, showing the 
waveform. 

                                                                 

7 Recall that the time constant is the amount of time required for an exponential waveform to decay to 36.8% of its 
initial value. 
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iii. Demonstrate operation of your circuit to the Teaching Assistant.  Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

 In the circuits of Figure 2, there is no way for the capacitor’s voltage to decay – the charge 
difference on the plates cannot “leak” away, since there is (in our model, anyway) no path for the 
charge to get from one plate to the other.  The circuits of Figure 2 are not realistic, based on the 
capacitor behavior we observed in parts 1 and 2 above.  We must modify how we think about 
capacitors’ behavior in order to explain our data! 

In section 6.3 of the textbook, we modeled non-ideal capacitors as a resistance in parallel with an 

ideal capacitor.  Using this model, the circuits of Figure 2 can be modified to become Figure 3 

below.  Now there is a path – the resistor RC – which allows the capacitor voltage to decay after 

the switch opens, allowing us to explain our previous data! 

C+
-

5V

R

+

-

vC(t)

t=0

RC

Non-ideal capacitor

Figure 3.  Circuit of Figures 2, with non-ideal capacitor. 

As we observed in parts 1 and 2 above, the leakage rate in electrolytic capacitors changes, based 

on the polarity of the capacitor voltage. In essence, this means that the capacitor resistance, RC, 

in the model of Figure 3 depends on the polarity of the capacitor voltage8! 

To obtain an idea as to the variation in the capacitor resistance when the capacitor polarity is 

reversed, let’s normalize the time constants we measured in parts 1 and 2 above.  To do this, 

simply divide the time constant by the capacitance value: 

𝑅𝐶 ≈
𝜏

𝐶
          Eq. 1 

As we will see later, the units of equation (1) are consistent. 

i. Tabulate the results you obtained in parts 1, 2, and 3 above – for each polarity, list the 
measured time constant, and the estimated capacitor resistance as determined by equation 
(1).  Briefly comment on the magnitude of these resistances and the differences between 
the capacitor resistances for the two cases.  (Include a percent change in resistance induced 
by changing the capacitor polarity.) 

Post-lab Exercises: 

Suppose that we modify the circuit of Figure 2(a) so that there is a path for the capacitor to dissipate 

its voltage after the switch opens, as shown in Figure 4.  Based on the capacitor resistances you 

estimated in part (c) of the lab procedures, how large would the resistor R need to be in order for the 

capacitor resistance RC to change the rate at which the capacitor voltage dissipates by about 10%?  

                                                                 

8 This makes modeling electrolytic capacitors whose voltage changes polarity tedious, to say the least. 
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(E.g. how large would R need to be before the measured time constant of the capacitor voltage decay 

changes by 10% when the resistance RC is included?) 

Hint: the resistances R and RC are in parallel.  They can be combined to a single equivalent resistance 

seen by the capacitor. 

C+
-

VS R

+

-

vC(t)

t=0

RC

Non-ideal capacitor

 

Figure 4.  Circuit with external resistor connected across non-ideal capacitor. 
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Real Analog Chapter 6: Lab Worksheets 

6.3.2: Electrolytic Capacitor Leakage Currents (35 points total) 

1. Attach to this worksheet an image of the oscilloscope window, showing the capacitor voltage, resulting from 
opening the switch in Fig. 2(a).   (5 pts) 

 

2. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
when the electrolytic capacitor is connected with the correct polarity.  (5 pts) 

 

TA Initials: _______ 

3. Attach to this worksheet an image of the oscilloscope window, showing the capacitor voltage, resulting from 
opening the switch in Figure 2(b).  In the space below, provide your estimate of the time constant of the 
circuit.   (5 pts) 

 

4. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
when the electrolytic capacitor is connected in reversed polarity.  (5 pts) 

 

TA Initials: _______ 

 

5. In the space below, provide a table giving your estimated time constants and the calculated capacitor 
resistance for both capacitor polarities.  Comment on the differences between the two cases, including a 
percent change in resistance.  (8 pts) 

 

 

 

6. In the space below, provide your estimate of the resistance required in the circuit of Figure 4 which changes 
the time constant of the capacitor by 10%.  (7 pts) 
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Real Analog Chapter 6: Lab Projects 

6.4.1: Inductor Voltage-current Relations 

In this assignment, we will measure the relationship between the voltage difference across a capacitor and the 

current passing through it.  We will apply several types of time-varying signals to a series combination of a resistor 

and a capacitor.  The voltage difference across the resistor, in conjunction with Ohm’s law, will provide an estimate 

of the current through the capacitor.  This current can be related to the voltage difference across the capacitor. 

The results of our voltage-current measurements will be compared to analytical expectations. 

 

Before beginning this lab, you should be able to: After completing this lab, you should be able to: 

 State voltage-current relationships for inductors 
in both differential and integral form 

 Apply the inductor voltage-current relations to 
calculate a inductor’s voltage from its current 
and vice-versa 

 Use the Analog Discovery’s arbitrary waveform 
generator and oscilloscope to apply and 
measure time-varying waveforms (Lab 6.2.1) 

 

 Use the Analog Discovery oscilloscope’s math 
function to calculate the current through a known 
resistor from the measured voltage difference. 

 Export data acquired by the Analog Discovery to files 
for post-processing by other programs 

 Verify a inductor’s voltage-current relations using 
measured data 

This lab exercise requires: 

 Analog Discovery module 
 Digilent Analog Parts Kit 

Symbol Key: 

 Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade 
sheet, indicating that circuit operation is acceptable. 

 Analysis; include principle results of analysis in laboratory report. 

 Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis 
and/or simulation in laboratory report. 

 Record data in your lab notebook. 

General Discussion: 

We will use the circuit of Figure 1 in this lab assignment.  Both the voltage difference across the inductor and the 

resistor (vL(t) and vR(t)) will be measured.  From this data, we can readily compare the voltage across the 

inductor with the current through the inductor.  Since the voltage across the resistor is measured, we can readily 

infer the current through the resistor via Ohm’s law: 

𝑖𝑅(𝑡) =
𝑣𝑅(𝑡)

𝑅
          Eq. 1 

The resistor and inductor are in series, so the current through the inductor is the same as the current through the 

resistor, so: 

𝑖𝐿(𝑡) =
𝑣𝑅(𝑡)

𝑅
          Eq. 2 
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Since we are also measuring the voltage difference across the inductor, vL(t), we can readily compare these 

parameters with our expectations based on our mathematical models of the capacitor voltage-current 

relationships. 

R

+ -vR(t)

+

-

vL(t)

+

-

vIN(t)

iR(t)

L

iL(t)

 

Figure 1.  Series RL circuit. 

Pre-lab: 

In this lab, we will apply sinusoidal signals to the inductor of Fig. 1. Mathematically, the form of the 

inductor current will be: 

𝑖𝐿(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡)        Eq. 3 

Where A is the amplitude of the sinusoid (in volts) and f is the frequency (in Hz). The waveform is 

shown graphically in Fig. 2. For the circuit of Fig. 1, use the inductor voltage-current relations to 

calculate the inductor voltage resulting from application of the voltage of equation (3). Your results 

may be dependent up on the parameters A, f, and L. 

i(t)

t

f

1

A

 

Figure 2.  Basic waveform used in this lab. 

Lab Procedures: 

Construct the circuit of Fig. 1 with L = 1mH and R = 100Ω. Use channel 1 of your oscilloscope to 

measure the resistor voltage difference, and channel 2 of your oscilloscope to measure the inductor 

voltage difference.  Use channel 1 of your waveform generator (W1) to apply the voltage vin(t) in Fig. 

1. Set up a math channel to calculate the current through the inductor per equation (2) in the pre-
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lab9. Set the oscilloscope measurements to provide at least the amplitude of each of the three 

displayed waveforms. 

1.  Apply a sinusoidal input voltage with frequency = 1kHz, amplitude = 2V, and offset = 0V to the 

circuit of Fig. 1. Use your oscilloscope to display the data listed above (waveforms corresponding 

to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, and M1). Export the 

data in the oscilloscope time window to a .csv file for later processing. 

2.  Apply a sinusoidal input voltage with frequency = 2 kHz, amplitude = 2V, and offset = 0V to the 

circuit of Fig. 1. Use your oscilloscope to display the data listed above (waveforms corresponding 

to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, and M1). Export the 

data in the oscilloscope time window to a .csv file for later processing. 

3. Demonstrate operation of your circuit to the Teaching Assistant. Have the TA initial the 

appropriate page(s) of your lab notebook and the lab checklist. 

Post-lab Exercises: 

Import the data acquired in the lab procedures into your favorite numerical analysis software (e.g. 

Excel, Matlab, Octave, etc.). Use the software and the results of your pre-lab analysis to calculate the 

expected inductor voltage waveforms corresponding to the inductor current waveforms you 

measured in the lab procedures.  Use the software to overlay plots of the expected and measured 

inductor voltages for each of the cases tested in the lab procedures. Comment briefly on the 

agreement between the measured and expected inductor voltages for each of the cases. In your 

comments, be sure to include a quantitative comparison (including percent difference) between the 

expected and measured amplitudes of the inductor voltages. 

 

Appendix A: Math channel to calculate current from resistor’s voltage 

The analog discovery provides capabilities for performing mathematical operations on the displayed waveforms 

and displaying the result.  Essentially, there are two basic “types” of mathematical operations which can be 

performed: “Simple” and “Custom”. The simple math operations consist of addition, subtraction, or multiplication 

of the two channels. The custom operations are much more wide-ranging.  In order to determine the resistor 

current, we want to divide the resistor voltage by a constant (the resistance value), so we will create a custom 

math channel.  To do this, follow the steps below: 

1. Click on “Add Channel”. Select “Add Mathematic Channel” from the resulting drop-down menu and 

choose “Custom”. 

2. A custom math function window will open, as shown below. Type the desired math function (typically a 

function of the scope channels, C1 and C2) in the text box in this window or use the buttons in the 

window to create the function.  We are using channel 1 (C1) to measure the resistor voltage. The current 

through the resistor is simply the resistor voltage divided by the resistance value (100Ω), so our function 

is: C1/100, also shown in the Figure below. Click “OK” to display the function in the main window. 

                                                                 

9 Detailed instructions for doing this are provided in Appendix A. 
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3. The properties of the math channel display can be adjusted using the channel’s control box, just as any 

with any other channel displayed by the scope. A typical control box is shown below: 

 

4. The units of our math channel are amperes. It is nice to have the displayed units agree with the actual 

units of the measurement. To change the units, click on the Units icon on the control box and select 

“Units” from the resulting drop-down menu. Volts, will typically be the default unit; if you want the 

vertical axis in amps, click the drop-down arrow icon and select A from the resulting menu10. 

 

 

 

 

 

 

  

                                                                 

10 Choices of units are volts (V), amps (A), and watts (W). 
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Real Analog Chapter 6: Lab Worksheets 

6.4.1: Inductor Voltage-current Relations (40 points total) 

1. In the space below, provide the mathematical expression for the inductor voltage resulting from the provided 
current waveform.  (6 pts) 

 

 

 

 

 

2. Attach to this worksheet an image of the oscilloscope window, showing the inductor voltage, the resistor 
voltage, and the inductor current and the measured amplitudes of the waveforms for a 1kHz sinusoidal input.   
(8 pts) 

 

3. Attach to this worksheet an image of the oscilloscope window, showing the inductor voltage, the resistor 
voltage, and the inductor current and the measured amplitudes of the waveforms for a 2kHz sinusoidal input.   
(8 pts) 

 

4. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for the sinusoidal input.  (6 pts) 

 

TA Initials: _______ 

 

5. Attach to this worksheet plots of: 
a. Expected (per your pre-lab analysis) and measured inductor voltages for a 1kHz sinusoidal input  (6 pts) 
b. Expected (per your pre-lab analysis) and measured inductor voltages for a 2kHz sinusoidal input  (6 pts) 
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Real Analog Chapter 6: Lab Projects 

6.4.2: Non-Ideal Inductor Effects 

Voltage-current relationships for ideal inductors do not always adequately explain measured inductor voltages and 

currents. In this assignment, we will measure inductor voltages and currents which do not agree well with idealized 

inductor relationships we have employed earlier. After recognizing the differences between the measured data 

and our mathematical models, we will use a non-ideal inductor model to better approximate the physical behavior 

of the inductor.  

Before beginning this lab, you should be able to: After completing this lab, you should be able to: 

 Apply the inductor voltage-current relations to 
calculate a inductor’s voltage from its current 
and vice-versa 

 Use the Analog Discovery’s arbitrary waveform 
generator and oscilloscope to apply and 
measure time-varying waveforms (Lab 6.2.1) 

 Use a math channel on the Analog Discovery to 
determine the current through a resistor from 
the voltage drop across the resistor (Labs 6.3.1, 
6.4.1) 

 

 Model an non-ideal inductor as an ideal inductor in 
series with a resistor 

 Identify some effects of non-ideal inductors from 
measured data 

This lab exercise requires: 

 Analog Discovery module 
 Digilent Analog Parts Kit 
 Digital multimeter (DMM) 

Symbol Key: 

 Demonstrate circuit operation to teaching assistant; teaching assistant should initial lab notebook and grade 
sheet, indicating that circuit operation is acceptable. 

 Analysis; include principle results of analysis in laboratory report. 

 Numerical simulation (using PSPICE or MATLAB as indicated); include results of MATLAB numerical analysis 
and/or simulation in laboratory report. 

 Record data in your lab notebook. 

General Discussion: 

The basic circuit we will use in this assignment is the same series resistor-inductor circuit used in lab 6.4.1. This 

circuit is repeated in Fig. 1 below, for convenience. As in lab 6.4.1, the inductor voltage can be inferred from the 

voltage across the resistor and the resistance, as shown below: 

𝑖𝐿(𝑡) =
𝑣𝑅(𝑡)

𝑅
          Eq. 1 
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Figure 1.  Series RL circuit. 

In this assignment, we will apply triangular and square waveforms to the circuit of Fig. 1 above. The measured 

inductor voltage and current resulting from these waveforms will not agree well with the idealized inductor 

voltage-current relationships we have used to date. In order to interpret the data we acquire in this assignment, 

we will employ a non-idealized model of the inductor consisting of a series combination of an ideal inductor and a 

resistor as shown in Fig. 2. 

R

+ -vR(t)

+

-

vLI(t)

+

-

vIN(t)

i(t)

L

+

-

vRL(t)RL

+

-

vL(t)

 

Non-ideal 

inductor

 

Figure 2.  Circuit of Figure 1, with non-ideal model of inductor. 

Pre-lab: 

In this lab, we will apply triangular and square signals to the circuit of Fig. 111. The waveforms we will 

use are shown graphically in Fig. 3. In both cases, A is the amplitude of the signal (in amperes) and f is 

the frequency of the signal (in Hz).  

                                                                 

11 Please keep in mind that Figs. 1 and 2 are actually schematics of the same physical circuit. The difference between the two 

circuits is simply in the way the inductor is modeled mathematically – in Fig. 1 the inductor is modeled as being ideal, while in 

Fig. 2, the inductor is modeled as including a resistance.  In Fig. 2, we are simply accounting for the fact that any physical 

inductor will dissipate energy. 
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(a) Triangular wave                                                         (b)  Square wave 

Figure 3.  Basic waveforms used in this lab. 

For the circuit of Figure 1, use the inductor voltage-current relations to overlay sketches of the 

inductor voltage and the inductor current (vL(t) and i(t)) if the inductor current is: 

a. A triangular wave, i(t), with frequency (f) and amplitude (A) as shown in Fig. 2(a) 

b. A square wave, i(t), with frequency (f) and amplitude (A) as shown in Fig. 2(b). 

Label your sketch to show the amplitude and period of the inductor current for both of the above 

cases. Your results may be dependent on the parameters A, f, and L. Be sure that your sketches of 

voltage and current share the same time axis! 

Lab Procedures: 

1. Triangular waveform: Construct the circuit of Fig. 1 with L = 1mH and R = 100Ω. Use channel 1 of 

your oscilloscope to measure the resistor voltage difference, and channel 2 of your oscilloscope 
to measure the voltage across the inductor. Use channel 1 of your waveform generator (W1) to 
apply the voltage vin(t) in Fig. 1. Set up a math channel to calculate the current through the 
capacitor per equation (2) in the pre-lab. Set the oscilloscope measurements to provide at least 
the amplitude of each of the three displayed waveforms. 

i. Apply a triangular input voltage with frequency = 1kHz, amplitude = 1V, and offset = 0V to 
the circuit of Figure 1. Use your oscilloscope to display the data listed above (waveforms 
corresponding to C1, C2, and M1; measurement window displaying amplitudes of C1, C2, 
and M1). Export the image of the oscilloscope window, showing the waveforms and their 
measured amplitudes. 

ii. Demonstrate operation of your circuit to the Teaching Assistant. Have the TA initial the 
appropriate page(s) of your lab notebook and the lab checklist. 

iii. If the experiment goes according to plan, the measured voltage across the inductor will look 
something like the waveform shown in Fig. 4. This is not (hopefully) what your sketch of your 
expected response of the inductor voltage that you created in part (a) of the pre-lab looks 
like (since you were assuming that the inductor was ideal, per the assumptions of Fig. 1).  
We need to revisit our expectations as to how inductors actually behave! 

vL(t)

t

 

Figure 4.  Likely shape of the measured inductor voltage waveform. 
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iv. Now we will examine our measured inductor voltage response in the light of the non-ideal 
inductor model shown in Fig. 2. In Fig. 2, the measured inductor voltage is the sum of the 
“ideal” inductor voltage, vLI(t), and the voltage difference induced by the inductor’s internal 
resistance, vRL(t).  We can still assume that the measured current (i(t), in Figs. 1 and 2) is the 
current through both elements of our non-ideal inductor.  Using your digital multimeter as 
an ohmmeter, measure the resistance of your inductor.  Based on your measured waveform 
of the inductor current from part (b), sketch the voltages internal to the non-ideal inductor, 
vLI(t) and vRL(t).  Sketch the sum of these contributions and compare the result to the 
measured inductor voltage from part (b) above.  Briefly discuss the ideal, non-ideal, and 
measured inductor voltages. 

2. Apply a square wave input voltage with frequency = 100 Hz, amplitude = 2V, and offset = 0V to 
the circuit of Fig. 1. Repeat the process of part 1 of the experimental procedures to generate: 
v. The measured waveforms and amplitudes (as an image of the oscilloscope window). 

vi. A sketch of the expected inductor voltage using an ideal inductor model from the pre-lab. 
(Since the current is a piecewise constant value, the expected inductor voltage should be a 
constant, except when the current transitions from one value to another – during this 
transition, the inductor voltage should go to infinity.) 

vii. A sketch of your expected inductor voltage, based on the non-ideal inductor model of Fig. 3 
and your measured inductor current.  Include a brief discussion comparing the ideal, non-
ideal, and measured inductor voltage differences. 
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Real Analog Chapter 6: Lab Worksheets 

6.4.2: Non-ideal Inductor Effects (45 points total) 

1. Attach to this worksheet your sketches of the inductor voltage and current resulting from the triangular and 
square waves of Fig. 3.  (5 pts) 

 

2. Attach to this worksheet an image of the oscilloscope window, showing the resistor voltage, the inductor 
voltage, and the inductor current waveforms and the measured amplitudes of these waveforms resulting from 
the 1kHz triangular input. (8 pts) 

 

3. DEMO: Have a teaching assistant initial this sheet, indicating that they have observed your circuit’s operation 
for sinusoidal inputs.  (5 pts) 

 

TA Initials: _______ 

4. In the space below, provide the measured resistance of the inductor.  (2 pts) 
 

 

 

 

 

5. In the space below, sketch the expected voltages vLI(t) and vRL(t) as indicated in Fig. 2 (based on your 
resistance measurement of 4 above). Also sketch the sum of these contributions. Briefly discuss the 
relationships between this latter sketch and your measured inductor voltage waveform.  (5 pts) 

 

 

6. Attach to this worksheet an image of the oscilloscope window, showing the resistor voltage, the inductor 
voltage, and the inductor current waveforms and the measured amplitudes of these waveforms resulting from 
the 100 Hz square wave input.   (8 pts) 

 

7. In the space below, sketch the expected inductor voltage based on the non-ideal inductor model and your 
measured inductor current.  (7 pts) 

 

 

8. In the space below, briefly compare the ideal, non-ideal, and measured inductor voltages.  (5 pts) 
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Real Analog Chapter 6: Homework 

6.1 Determine the equivalent capacitance of the circuit below. 

1mF2mF

Ceq

4mF

2mF

 

 

6.2 The capacitor in the circuit to the left below is initially uncharged. A 1A current is applied to the capacitor 
for 1msec, as shown to the right below. Sketch the voltage across the capacitor. 

-1 1 2

1A

Time, msec

i(t)

1mFi(t)

 

6.3 Determine the equivalent inductance of the circuit below. 

0.3H

0.3H 0.6H

Leq  

6.4 The voltage across a 1mH inductor is as shown below. Sketch the current through the inductor. Assume that 
the inductor is relaxed at time t = 0. 

1 2

1V

Time, msec

v(t)

3

-1V

 

 

 


