
Real Analog - Circuits 1
Chapter 2: Circuit Reduction

© 2012 Digilent, Inc. 1

2.  Introduction and Chapter Objectives
In Chapter 1, we presented Kirchoff’s laws (which govern the interactions between circuit elements) and Ohm’s
law (which governs the voltage-current relationships for resistors). These analytical tools provide us with the
ability to analyze any circuit containing only resistors and ideal power supplies. However, we also saw in Chapter
1 that a circuit analysis, which relies strictly on a brute-force application of these tools can become complex
rapidly – we essentially must use as our unknowns the voltage differences across all resistors and the currents
through all resistors. This generally results in a large number of unknowns and a correspondingly large number of
equations, which must be written and solved in order to analyze any but the simplest circuit.

In the next few chapters, we will still apply Kirchoff’s laws and Ohm’s law in our circuit analysis, but we will focus
on improving the efficiency of our analyses. Typically this improvement in efficiency is achieved by reducing the
number of unknowns in the circuit, which reduces the number of equations, which must be written to describe
the circuit’s operation.

In this chapter, we introduce analysis methods based on circuit reduction. Circuit reduction consists of combining
resistances in a circuit to a smaller number of resistors, which are (in some sense) equivalent to the original
resistive network. Reducing the number of resistors, of course, reduces the number of unknowns in a circuit.

We begin our discussion of circuit reduction techniques by presenting two specific, but very useful, concepts:
series and parallel resistors. These concepts will lead us to voltage and current divider formulas. We then consider
reduction of more general circuits, which typically corresponds to identifying multiple sets of series and parallel
resistances in a complex resistive network. This chapter then concludes with two important examples of the
application of circuit reduction techniques: the analysis of non-ideal power sources and non-ideal measurement
devices; without an understanding of these devices, it is impossible to build practical circuits or understand the
consequences of a voltage or current measurement.

After completing this chapter, you should be able to:

 Identify series and parallel combinations of circuit elements
 Determine the equivalent resistance of series resistor combinations
 Determine the equivalent resistance of parallel resistor combinations
 State voltage and current divider relationships from memory
 Determine the equivalent resistance of electrical circuits consisting of series and parallel combinations of

resistors
 Sketch equivalent circuits for non-ideal voltage and current meters
 Analyze circuits containing non-ideal voltage or current sources
 Determine the effect of non-ideal meters on the parameter being measured
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2.1 Series Circuit Elements and Voltage Division
There are a number of common circuit element combinations that are quite easily analyzed. These “special cases”
are worth noting since many complicated circuits contain these circuit combinations as sub-circuits. Recognizing
these sub-circuits and analyzing them appropriately can significantly simplify the analysis of a circuit.

This chapter emphasizes two important circuit element combinations: elements in series and elements in parallel.
Also discussed is the use of these circuit element combinations to reduce the complexity of a circuit’s analysis.

Series Connections:

Circuit elements are said to be connected in series if all of the elements carry the same current.  An example of two
circuit elements connected in series is shown in Figure 2.1.  Applying KCL at node a and taking currents out of the
node as positive we see that:

-i1 + i2 = 0

or

i1 = i2 (2.1)

Equation (2.1) is a direct outcome of the fact that the (single) node a in Figure 2.1 interconnects only two elements
– there are no other elements connected to this node though which current can be diverted.  This observation is so
apparent (in many cases1) that equation (2.1) is generally written by inspection for series elements such as those
shown in Figure 2.1 without explicitly writing KCL.

Figure 2.1.  Circuit elements connected in series.

When resistors are connected in series, a simplification of the circuit is possible.  Consider the resistive circuit
shown in Figure 2.2(a).  Since the resistors are in series, they both carry the same current.  Ohm’s law gives:

iRv 11 
iRv 22  (2.2)

1 If there is any doubt whether the elements are in series, apply KCL!  Assuming elements are in series which are
not in series can have disastrous consequences.
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Applying KVL around the loop:

2121 0 vvvvvv  (2.3)

Substituting equations (2.2) into equation (2.3) and solving for the current i results in

21 RR
vi


 (2.4)

Now consider the circuit of Figure 2.2(b).  Application of Ohm’s law to this circuit and solution for the current I
gives

eqR
vi  (2.5)

(a) Series resistors                                 (b) Equivalent Circuit

Figure 2.2.  Series resistors and equivalent circuit.

Comparing equation (2.4) with equation (2.5), we can see that the circuits of Figures 2.2(a) and 2.2(b) are
indistinguishable if we select

21 RRReq  (2.6)

Figures 2.2(a) and 2.2(b) are called equivalent circuits if the equivalent resistance of Figure 2.2(b) is chosen as
shown in equation (2.6).  Req of equation (2.6) is called the equivalent resistance of the series combination of
resistors R1 and R2.

This result can be generalized to a series combination of N resistances as follows:

A series combination of N resistors R1, R2, …, RN can be replaced with a single equivalent resistance

Neq RRRR  21 .  The equivalent circuit can be analyzed to determine the current through the series
combination of resistors.
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Voltage Division:

Combining equations (2.2) with equation (2.4) results in the following expressions for v1 and v2:

v
RR
R

v
21

1
1 
 (2.7)

v
RR
R

v
21

2
2 
 (2.8)

These results are commonly called voltage divider relationships, because they state that the total voltage drop
across a series combination of resistors is divided among the individual resistors in the combination.  The ratio of
each individual resistor’s voltage drop to the overall voltage drop is the same as the ratio of the individual
resistance to the total resistance.

The above results can be generalized for a series combination of N resistances as follows:

The voltage drop across any resistor in a series combination of N resistances is proportional to the total voltage
drop across the combination of resistors.  The constant of proportionality is the same as the ratio of the
individual resistor value to the total resistance of the series combination.  For example, the voltage drop of the
kth resistance in a series combination of resistors is given by:

v
RRR

R
v

N

k
k 


21
(2.9)

where v is the total voltage drop across the series combination of resistors.

Example 2.1:

For the circuit below, determine the voltage across the 5 resistor, v, the current supplied by the source, i, and the
power supplied by the source.

The voltage across the 5 resistor can be determined from our voltage divider relationship:
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VVVv 5.215
30
515

10155
5












The current supplied by the source can be determined by dividing the total voltage by the equivalent resistance:

AVV
R
Vi
eq

5.0
30
15

10155
1515









The power supplied by the source is the product of the source voltage and the source current:

WVAivP 5.7)15)(5.0( 

We can double-check the consistency between the voltage v and the current i with Ohm’s law.  Applying Ohm’s
law to the 5 resistor, with a 0.5 A current, results in VAv 5.2)5.0)(5(  , which agrees with the result
obtained using the voltage divider relationship.

Section Summary:

 If only two elements connect at a single node, the two elements are in series.  A more general definition,
however, is that circuit elements in series all share the same current – this definition allows us to determine
series combinations that contain more than two elements.  Identification of series circuit elements allows us to
simplify our analysis, since there is a reduction in the number of unknowns: there is only a single unknown
current for all series elements.

 A series combination of resistors can be replaced by a single equivalent resistance, if desired.  The equivalent
resistance is simply the sum of the individual resistances in the series combination.  Therefore, a series
combination of N resistors R1, R2, …, RN can be replaced with a single equivalent resistance

Neq RRRR  21 .
 If the total voltage difference across a set of series resistors is known, the voltage differences across any

individual resistor can be determined by the concept of voltage division.  The term voltage division comes
from the fact that the voltage drop across a series combination of resistors is divided among the individual
resistors.  The ratio between the voltage difference across a particular resistor and the total voltage difference
is the same as the ratio between the resistance of that resistor and the total resistance of the combination.  If vk
is the voltage across the kth resistor, vTOT is the total voltage across the series combination, Rk is the resistance
of the kth resistor, and RTOT is the total resistance of the series combination, the mathematical statement of this
concept is:

TOT

k

TOT

k

R
R

v
v

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Exercises:

1. Determine the voltage V1 in the circuit below.
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2.2 Parallel Circuit Elements and Current Division
Circuit elements are said to be connected in parallel if all of the elements share the same pair of nodes.  An
example of two circuit elements connected in parallel is shown in Figure 2.3.  Applying KVL around the loop of
Figure 2.3 results in:

v1 = v2 (2.10)

This result is so common that equation (2.10) is generally written by inspection for parallel elements such as those
shown in Figure 2.3 without explicitly writing KVL.

Figure 2.3.  Parallel connection of circuit elements.

We can simplify circuits, which consist of resistors connected in parallel.  Consider the resistive circuit shown in
Figure 2.4(a).  The resistors are connected in parallel, so both resistors have a voltage difference of v.  Ohm’s law,
applied to each resistor results in:

2
2

1
1

R
vi

R
vi





(2.11)

Applying KCL at node a:

21 iii  (2.12)

Substituting equations (2.11) into equation (2.12):

v
RR

i 









21

11
(2.13)

or

i

RR

v 




21

11
1

(2.14)
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If we set
21

11
1

RR

Req



, we can draw Figure 2.4(b) as being equivalent to Figure 2.4(b).

We can generalize this result for N parallel resistances:

A parallel combination of N resistors R1, R2, …, RN can be replaced with a single equivalent resistance:

N

eq

RRR

R
111

1

21




(2.15)

The equivalent circuit can be analyzed to determine the voltage across the parallel combination of resistors.

(a) Parallel resistance combination                (b) Equivalent circuit

Figure 2.4.  Parallel resistances and equivalent circuit.

For the special case of two parallel resistances, R1 and R2, the equivalent resistance is commonly written as:

21

21

RR
RR

Req 
 (2.16)

This alternate way to calculate Req can be also used to calculate Req for larger numbers of parallel resistors since any
number of resistors could be combined two at a time.

Current Division:

Substituting equation (2.14) into equations (2.11) results in

21

1
1 11
1

RR

i
R

i



(2.17)
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simplifying:

21

2
1 RR

R
i


 (2.18)

Likewise for the current i2,

21

1
2 RR

R
i


 (2.19)

Equations (2.18) and (2.19) are the current divider relationships for two parallel resistances, so called because the
current into the parallel resistance combination is divided between the two resistors.  The ratio of one resistor’s
current to the overall current is the same as the ratio of the other resistance to the total resistance.

The above results can be generalized for a series combination of N resistances.  By Ohm’s law, iRv eq .
Substituting our previous result for the equivalent resistance for a parallel combination of N resistors results in:

i

RRR

v

N





111

1

21

 . (2.20)

Since the voltage difference across all resistors is the same, the current through the kth resistor is, by Ohm’s law,

k
k R
vi  (2.21)

where Rk is the resistance of the kth resistor.  Combining equations (2.20) and (2.21) gives:

i

RRR

R
i

N

k
k 




111

1

21


(2.22)

It is often more convenient to provide the generalized result of equation (2.20) in terms of the conductance of the

individual resistors.  Recall that the conductance is the reciprocal of the resistance, R
G 1
 .  Thus, equation (2.22)

can be re-expressed as follows:

The current through any resistor in a parallel combination of N resistances is proportional to the total current
into the combination of resistors.  The constant of proportionality is the same as the ratio of the conductance
of the individual resistor value to the total conductance of the parallel combination.  For example, the current
through the kth resistance in a parallel combination of resistors is given by:

i
GGG

G
i

N

k
k 


21
(2.23)

where i is the total current through the parallel combination of resistors.
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One final comment about notation: two parallel bars are commonly used as shorthand notation to indicate that
two circuit elements are in parallel.  For example, the notation R1||R2 indicates that the resistors R1 and R2 are in
parallel.  The notation R1||R2 is often used as shorthand notation for the equivalent resistance of the parallel
resistance combination, in lieu of equation (2.16).

Double checking results for parallel resistances:

 The equivalent resistance for a parallel combination of N resistors will always be less than the smallest
resistance in the combination.  In fact, the equivalent resistance will always obey the following
inequalities:

min
min RR
N
R

eq 

where Rmin is the smallest resistance value in the parallel combination.

 In a parallel combination of resistances, the resistor with the smallest resistance will have the largest
current and the resistor with the largest resistance will have the smallest current.

Section Summary:

 If several elements interconnect the same two nodes, the two elements are in parallel.  A more general
definition, however, is that circuit elements in paralell all share the same voltage difference.  As with series
circuit elements, identification of parallel circuit elements allows us to simplify our analysis, since there is
a reduction in the number of unknowns: there is only a single unknown voltage difference for all of the
parallel elements.

 A parallel combination of resistors can be replaced by a single equivalent resistance, if desired.  The
conductance of the parallel combination is simply the sum of the individual conductances of the parallel
resistors.  Therefore, a parallel combination of N resistors R1, R2, …, RN can be replaced with a single

equivalent resistance:
N

eq

RRR

R
111

1

21




.

 If the total current through a set of parallel resistors is known, the current through any individual resistor
can be determined by the concept of current division.  The term current division comes from the fact that
the current through a parallel combination of resistors is divided among the individual resistors.  The
ratio between the current through a particular resistor and the total current is the same as the ratio
between the conductance of that resistor and the total conductance of the combination.  If ik is the voltage
across the kth resistor, iTOT is the total current through the parallel combination,Gk is the conductance of
the kth resistor, andGTOT is the total conductance of the parallel combination, the mathematical statement
of this concept is:

TOT

k

TOT

k

G
G

i
v

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Exercises:

1. Determine the value of I in the circuit below.

2. Determine the value of R in the circuit below which makes I = 2mA.
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2.3 Circuit Reduction and Analysis
The previous results give us an ability to potentially simplify the analysis of some circuits.  This simplification
results if we can use circuit reduction techniques to convert a complicated circuit to a simpler, but equivalent,
circuit which we can use to perform the necessary analysis.  Circuit reduction is not always possible, but when it is
applicable it can significantly simplify the analysis of a circuit.

Circuit reduction relies upon identification of parallel and series combinations of circuit elements.  The parallel
and series elements are then combined into equivalent elements and the resulting reduced circuit is analyzed.  The
principles of circuit reduction are illustrated below in a series of examples.

Example 2.2:

Determine the equivalent resistance seen by the input terminals of the resistive network shown below.

The sequence of operations performed is illustrated below.  The 6 and 3 resistances are combined in parallel to
obtain an equivalent 2 resistance.  This 2 resistance and the remaining 6 resistance are in series, these are
combined into an equivalent 8 resistance.  Finally, this 8 resistor and the 24 resistor are combined in parallel
to obtain an equivalent 6 resistance.  Thus, the equivalent resistance of the overall network is 6.
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Example 2.3:

In the circuit below, determine the power delivered by the source.

In order to determine power delivery, we need to determine the total current provided by the source to the rest of
the circuit.  We can determine current easily if we convert the resistor network to a single, equivalent, resistance.
A set of steps for doing this are outlined below.

Step 1:  The four ohm and two ohm resistors, highlighted on the figure to the left below in blue, are in series.
Series resistances add directly, so these can be replaced with a single six ohm resistor, as shown on the figure to the
right below.

Step2:  The three ohm resistor and the two six ohm resistors are now all in parallel, as indicated on the figure to

the left below.  These resistances can be combined into a single equivalent resistor



 5.1

6
1

6
1

3
1
1

eqR
.  The

resulting equivalent circuit is shown to the right below.

The current out of the source can now be readily determined from the figure to the right above.  The voltage drop

across the 1.5 resistor is 6V, so Ohm’s law gives AVi 4
5.1
6



 .  Thus, the power delivered by the source is

WVAP 24)6)(4(  .  Since the sign of the current relative to the current does not agree with the passive sign
convention, the power is generated by the source.
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Example 2.4:

For the circuit shown below, determine the voltage, vs, across the 2A source.

The two 1 resistors and the two 2 resistors are in series with one another, as indicated on the figure to the left
below.  These can be combined by simply adding the series resistances, leading to the equivalent circuit shown to
the right below.

The three remaining resistors are all in parallel (they all share the same nodes) so they can be combined using the

relation



 1

4
1

4
1

2
1
1

eqR
.  Note that it is not necessary to combine all three resistors simultaneously, the

same result is obtained by successive combinations of two resistances.  For example, the two 4 resistors can be

combined using equation (2.16) to obtain: 



 2
44
44

1eqR .  The total equivalent resistance can then be

determined by a parallel combination of Req1 and the 2 resistor: 



 1
22
22

eqR .

The voltage across the source can now be determined from Ohm’s law: V)A)((vs 221  .  The assumed
polarity of the source voltage is correct.
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Example 2.5: Wheatstone bridge

A Wheatstone bridge circuit is shown below.  The bridge is generally presented as shown in the figure to the left;
we will generally use the equivalent circuit shown to the right.  A Wheatstone bridge is commonly used to convert
a variation in resistance to a variation in voltage.  A constant supply voltage Vs is applied to the circuit.  The
resistors in the circuit all have a nominal resistance of R; the variable resistor has a variation R from this nominal
value.  The output voltage vab indicates the variation R in the variable resistor.  The variable resistor in the
network is often a transducer whose resistance varies dependent upon some external variable such as temperature.

By voltage division, the voltages vb and va (relative to ground) are

Sb V
RR
RRv




2

)(
and 222

SS
a

V
R
RV

Riv 




The voltage vab is then

SSSbaab V
RR

RV
RR

RRRRV
RR
RRvvv 




























)2(2)2(2

)(2)2(
22

1

For the case in which RR 2 , this simplifies to:

R
R
V

v s
ab 

4

and the output voltage is proportional to the change in resistance of the variable resistor.

Practical Applications:

A number of common sensors result in a resistance variation resulting from some external
influence. Thermistors change resistance as a result of temperature changes; strain gages change
resistance as a result of deformation, generally due to application of a load to the part to which the
gage is bonded; photoconductive transducers, or photoresistors, change resistance as a result of
changes in light intensity.  Wheatstone bridges are commonly used in conjunction with these types
of sensors.
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Section Summary:

 In a circuit, which contains obvious series and/or parallel combinations of resistors, analysis can be simplified
by combining these resistances into equivalent resistances.  The reduction in the overall number of resistances
reduces the number of unknowns in the circuit, with a corresponding reduction in the number of governing
equations.  Reducing the number of equations and unknowns typically simplifies the analysis of the circuit.

 Not all circuits are reducible.

Exercises:

1. For the circuit shown, determine:
a) Req (the equivalent resistance seen by the source)
b) The currents I1 and I2
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2.4 Non-Ideal Power Supplies
In section 1.2, we discussed ideal power sources.  In that section, an ideal voltage supply was characterized as
providing a specified voltage regardless of the current requirements made upon the device.  Likewise, an ideal
current source was defined as providing a specified voltage regardless of the voltage potential difference across the
source.  These models are not realistic – since an ideal voltage source can provide infinite current with nonzero
voltage difference and an ideal current source can provide infinite voltage difference with nonzero current, either
device is capable of delivering infinite power.  In many cases, the ideal voltage and current source models will be
adequate, but in the cases where we need to more accurately replicate the operation of realistic power supplies, we
will need to modify our models of these devices.

In this section, we present simple models for voltage and current sources which incorporate more realistic
assumptions as to the behavior of these devices.

Non-Ideal Voltage Sources:

An ideal voltage source was defined in section 1.2 as providing a specified voltage, regardless of the current flow
out of the device.  For example, an ideal 12V battery will provide 12V across its terminals, regardless of the load
connected to the terminals.  A real 12V battery, however, provides 12V across its terminals only when its
terminals are open circuited.  As we draw current from the terminals, the battery will provide less than 12V – the
voltage will decrease as more and more current is drawn from the battery.  The real battery thus appears to have
an internal voltage drop which increases with increased current.

We will model a real or practical voltage source as a series connection of an ideal voltage source and an internal
resistance.  This model is depicted schematically in Figure 2.5, in which the non-ideal voltage source contains an
ideal voltage source providing voltage Vs and an internal resistance, Rs.  The non-ideal voltage source delivers a
voltage V and a current i, where:

ss RiVV  (2.24)

Equation (2.24) indicates that the voltage delivered by our non-ideal voltage source model decreases as the current
out of the voltage source increases, which agrees with expectations.
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Figure 2.5.  Non-ideal voltage source model.

Example 2.6:

Consider the case in which we connect a resistive load to the non-ideal voltage source.  The figure below provides
a schematic of the overall system; RL is the load resistance, VL is the voltage delivered to the load, and iL is the
current delivered to the load.

In the case above, the current delivered to the load is
Ls

s

RR
V

i


 and the load voltage is
Ls

L
sL RR
R

VV


 .

Thus, if the load resistance is infinite (the load is an open circuit), VL = Vs, but the power supply delivers no
current and hence no power to the load.  If the load resistance is zero (the load is a short circuit), VL = 0 and the

power supply delivers current
s

s
L R
Vi  to the load; the power delivered to the load, however, is still zero.
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Example 2.7: Charging a battery

We have a “dead” car battery which is providing only 4V across its terminals.  We want to charge the battery using
a spare battery which is providing 12 V across its terminals.  To do this, we connect the two batteries as shown
below:

If we attempt to analyze this circuit by applying KVL around the loop, we obtain 12V = 4V.  This is obviously
incorrect and we cannot proceed with our analysis – our model disagrees with reality!

To resolve this issue, we will include the internal resistances of the batteries.  Assuming a 3 internal resistance in
each battery, we obtain the following model for the system:

Applying KVL around the loop, and using Ohm’s law to write the voltages across the battery internal resistances
in terms of the current between the batteries results in:

04)3()3(12  ViiV

which can be solved for the current i to obtain:

AVVi 33.1
6
412







Notice that as the voltage of the “dead” battery increases during the charging process, the current delivered to the
“dead” battery decreases.
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Non-Ideal Current Sources:

An ideal current source was defined in section 1.2 as providing a specified current, regardless of the voltage
difference across the device.  This model suffers from the same basic drawback as our ideal voltage source model –
the model can deliver infinite power, which is inconsistent with the capabilities of a real current source.

We will use the circuit shown schematically in Figure 2.6 to model a non-ideal current source.  The non-ideal
model consists of an ideal current source, is, placed in parallel with an internal resistance, Rs.  The source delivers a
voltage V and current i.  The output current is given by:

S
S R
Vii  (2.25)

Equation (2.25) shows that the current delivered by the source decreases as the delivered voltage increases.

Figure 2.6.  Non-ideal current source model.
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Example 2.8:

Consider the case in which we connect a resistive load to the non-ideal current source.  The figure below provides
a schematic of the overall system; RL is the load resistance, VL is the voltage delivered to the load, and iL is the
current delivered to the load.

In the case above, the current delivered to the load can be determined from a current divider relation as

Ls

s
sL RR

Rii


 and the load voltage, by Ohm’s law, is
Ls

LS
sLLL RR

RRiRiV


 .  If the load resistance is zero

(the load is a short circuit), iL = is, but the power supply delivers no voltage and hence no power to the load.  In the
case of infinite load resistance (the load is an open circuit), iL = 0.  In this case, we can neglect Rs in the

denominator of the load voltage equation to obtain
L

LS
sL R
RRiV  so that SsL RiV  .  Since the current is zero,

however, the power delivered to the load is still zero.

If we explicitly calculate the power delivered to the load, we obtain
Ls

s

Ls

LS
sL RR

R
RR
RRiV





 2

.  A plot of the

power delivered to the load as a function of the load resistance is shown below; a logarithmic scale is used on the
horizontal axis to make the plot more readable.  As expected, the power is zero for high and low load resistances.
The peak of the curve occurs when the load resistance is equal to the source resistance, RL = Rs.
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Section Summary:

 In many cases, power supplies can be modeled as ideal power supplies, as presented in section 1.2.  However,
in some cases representation as a power supply as ideal results in unacceptable errors.  For example, ideal
power supplies can deliver infinite power, which is obviously unrealistic.

 In this section, we present a simple model for a non-ideal power supply.
a. Our non-ideal voltage source consists of an ideal voltage source in series with a resistance which is

internal to the power supply.
b. Our non-ideal current supply consists of an ideal current source in parallel with a resistance which is

internal to the power supply.
 Voltage and current divider formulas allow us to easily quantify the effects of the internal resistances of the

non-ideal power supplies.  Our analysis indicates that the non-ideal effects are negligible, as long as the
resistance of the load is large relative to the internal resistance of the power supply.

Exercises:

1. A voltage source with an internal resistance of 2Ω as shown below is used to apply power to a 3Ω resistor.
What voltage would you measure across the 3Ω resistor?

2. The voltage source of exercise 1 above is used to apply power to a 2kΩ resistor.  What voltage would you
measure across the 2kΩ resistor?
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2.5 Practical Voltage and Current Measurement
The process of measuring a physical parameter will almost invariably change the parameter being measured.  This
effect is both undesirable and, in general, unavoidable.  One goal of any measurement is to affect the parameter
being measured as little as possible.

The above statement is true of voltage and current measurements.  An ideal voltmeter, connected in parallel with
some circuit element, will measure the voltage across the element without affecting the current flowing through
the element.  Unfortunately, any real or practical voltmeter will draw some current from the circuit it is connected
to; this loading effect will change the circuit’s operating conditions, causing some difference between the measured
voltage and the corresponding voltage without the voltmeter present in the circuit.  Likewise, an ideal ammeter,
connected in series with some circuit element, will measure current without affecting the voltage in the circuit.  A
practical ammeter, like a practical voltmeter, will introduce loading effects which change the operation of the
circuit on which the measurement is being made.

In this section, we introduce some effects of measuring voltages and currents with practical meters.

Voltmeter and Ammeter Models:

We will model both voltmeters and ammeters as having some internal resistance and a method for displaying the
measured voltage difference or current.  Figure 2.7 shows schematic representations of voltmeters and ammeters.

The ammeter in Figure 2.7(a) has an internal resistance RM; the current through the ammeter is iA and the voltage
difference across the ammeter is VM.  The ammeter’s voltage difference should be as small as possible – an
ammeter, therefore, should have an extremely small internal resistance.

The voltmeter in Figure 2.7(b) is also represented as having an internal resistance RM; the current through the
meter is iV and the voltage difference across the meter is VV.  The current through the voltmeter should be as small
as possible – the voltmeter should have an extremely high internal resistance.

The effects of nonzero ammeter voltages and nonzero voltmeter currents are explored in more detail in the
following subsections.

(a) Ammeter Model (b) Voltmeter Model

Figure 2.7.  Ammeter and voltmeter models.
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Voltage Measurement:

Consider the circuit shown in Figure 2.8(a).  A current source, is, provides current to a circuit element with
resistance, R.  We want to measure the voltage drop, V, across the circuit element.  We do this by attaching a
voltmeter across the circuit element as shown in Figure 2.8(b).

In Figure 2.8(b) the voltmeter resistance is in parallel to the circuit element we wish to measure the voltage across
and the combination of the circuit element and the voltmeter becomes a current divider.  The current through the
resistor R then becomes:

M

M
s RR
R

ii


 (2.26)

The voltage across the resistor R is then, by Ohm’s law,

M

M
s RR

RR
iV



 (2.27)

If RM>>R, this expression simplifies to

s
M

M
s iR
R
RR

iV 


 (2.28)

and negligible error is introduced into the measurement – the measured voltage is approximately the same as the
voltage without the voltmeter.  If, however, the voltmeter resistance is comparable to the resistance R, the
simplification of equation (2.28) is not appropriate and significant changes are made to the system by the presence
of the voltmeter.

(a) original circuit (b) circuit with voltmeter

Figure 2.8. Voltage measurement
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Current Measurement:

Consider the circuit shown in Figure 2.9(a).  A voltage source, Vs, provides power to a circuit element with
resistance, R.  We want to measure the current, i, through the circuit element.  We do this by attaching an
ammeter in series with the circuit element as shown in Figure 2.9(b).

In Figure 2.9(b) the series combination of the ammeter resistance and the circuit element whose current we wish
to measure creates a voltage divider.  KVL around the single circuit loop provides:

)( RRiV Ms  (2.29)

Solving for the current results in

RR
V

i
M

S


 (2.30)

If RM << R, this simplifies to

R
V

i S (2.31)

and the measured current is a good approximation to current in the circuit of Figure 2.9(a).  However, if the
ammeter resistance is not small compared to the resistance R, the approximation of equation (2.31) is not
appropriate and the measured current is no longer representative of the circuit’s operation without the ammeter.

(a)  Original circuit (b) Circuit with ammeter.

Figure 2.9.  Current measurement.
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Caution:

Incorrect connections of ammeters or voltmeters can cause damage to the meter.  For example, consider the
connection of an ammeter in parallel with a relatively large resistance, as shown below.

In this configuration the ammeter current,
M

S
M R
V

i  .  Since the ammeter resistance is typically very small, this

can result in high currents being provided to the ammeter.  This, in turn, may result in excessive power being
provided to the ammeter and resulting damage to the device.

Ammeters are generally intended to be connected in series with the circuit element(s) whose current is being
measured.  Voltmeters are generally intended to be connected in parallel with the circuit element(s) whose voltage
is being measured.  Alternate connections can result in damage to the meter.

Section Summary:

 Measurement of voltage and/or current in a circuit will always result in some effect on the circuit’s behavior –
that is, our measurement will always change the parameter being measured.  One goal when measuring a
voltage or current is to ensure that the measurement effects are negligible.

 In this section, we present simple models for voltmeters and ammeters.  (Voltage and current measurement
devices, respectively.)
a. Our non-ideal voltmeter consists of an ideal voltmeter (which has infinite resistance, and thus draws no

current from the circuit) in parallel with a resistance which is internal to the voltmeter.  This model
replicates the finite current which is necessarily drawn from the circuit by a real voltmeter.

b. Our non-ideal ammeter consists of an ideal ammeter (which has zero resistance, and thus introduces no
voltage drop in the circuit) in series with a resistance which is internal to the ammeter.  This resistance
allows us to model the finite voltage drop which is introduced into the circuit by a real current
measurement.

 Voltage and current divider formulas allow us to easily quantify the effects of the internal resistances of
voltage and current meters.  Our analysis indicates that the non-ideal effects are negligible, as long as:
a. The resistance of the voltmeter is large relative to the resistance across which the voltage measurement is

being made.
b. The resistance of the ammeter is small compared to the overall circuit resistance.
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Exercises:

1. A voltmeter with an internal resistance of 10MΩ is used to measure the voltage vab in the circuit below.  What
is the measured voltage?  What voltage measurement would you expect from an ideal voltmeter?


