

1300 Henley Court
Pullman, WA 99163

509.334.6306
www.store.digilentinc.com

Unit 1: Microprocessor I/O

Revised March 9, 2017
This manual applies to Unit 1.

Unit 1 Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 1 of 23

1 Introduction

The goal for this series of laboratory designs is to teach not only how to manage the PIC32 processor to solve

engineering design problems, but also how to produce dependable (validated) and sustainable (verified) software

using best design practices. To that end, Unit 1 will begin by introducing engineering concepts that are important

in developing these best practices. Although some of these concepts may seem trivial at first, they are important in

measuring the ability of a system to meet design requirements and specifications, and will be implemented

throughout Units 1-7.

2 Objectives

1. How to develop a plan for a software-based microprocessor design.

2. Understand the management of basic microprocessor digital inputs and outputs.

3. Write an application that utilizes the Basys MX3 processor platform to perform basic calculator functions

and display the results on a 4-digit 7-segment LED display.

4. Become familiar with the circuits included on the Basys MX3 PCB.

3 Basic Knowledge

1. Fundamentals of digital combinational and sequential logic.

2. How to interpret a schematic diagram and electric circuits.

3. How to write a computer program using the C language.

4. How to launch a Microchip MPLAB X project.

4 Equipment List

4.1 Hardware

1. Basys MX3 trainer board

2. Micro USB cable

3. Workstation computer running Windows 10 or higher, MAC OS, or Linux

In addition, we suggest the following instruments:

https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Sequential_logic
http://www.tutorialspoint.com/cprogramming/index.htm
http://microchip.wikidot.com/tls0101:design-environment
http://store.digilentinc.com/basys-mx3-pic32mx-trainer-board-recommended-for-embedded-systems-courses/
http://store.digilentinc.com/usb-a-to-micro-b-cable/

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 23

4. Digilent Analog Discovery 2

4.2 Software

The following programs must be installed on your development workstation:

1. Microchip MPLAB X® v3.35 or higher

a. Installation help

b. Getting started

2. XC32 Cross Compiler

3. PLIB Peripheral Library

5 Project Takeaways

1. Know how to generate a microprocessor development project using MPLAB X.

2. Know how to generate a config_bits file for the PIC32MX370 processor.

3. Know how to configure the Microchip PIC32 processor pins as either digital inputs or outputs.

4. Understand the drive capability of a processor digital output.

5. Know how to write a C program for a specific application using an embedded system.

6. Know how to make speed performance measure on a processor-based system.

6 Fundamental Concepts

6.1 Project Planning

A software-based system consists of a collection of electrically interconnected electronic hardware components,

some of which require programming using a computer language. Software-based system design is an engineering

effort and requires a good process to obtain good results. The life cycle of system development uses a series of

activities that, when considered in proper order, minimize design effort and achieve maximum benefit using the

available resources of the software-based system.

Coding is one of the last phases when developing software-based systems. There are many methods and tools

available today to assist in code development planning. Not all software applications require exotic planning tools,

although all applications do require some degree of planning. After my 25 years of teaching a course on

microcontrollers, the most common mistake I have seen students make is writing code before they completely

understand the problem. Even a simple plan helps to guide the developer to design a system that meets the stated

requirements.

Table 6.1 provides an outline of minimal tasks to complete the design process as is commonly done in industry.

The first step is to have a complete understanding of the requirements or specifications. In other words, state in

common human language what it is that the final design will do. Although the life cycle process appears to be a

single pass, the final phase often results in cycling through the entire process numerous times to ensure that the

delivered system meets the customer’s expectations.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
http://www.microchip.com/mplab/mplab-x-ide
http://microchip.wikidot.com/mplabx:installation
http://microchip.wikidot.com/tls0101:start
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Software_design
https://en.wikipedia.org/wiki/Systems_development_life_cycle

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 23

Table 6.1. Life cycle of a software-based system design plan.1

Phase Activity Output Measure

Concept
Understanding the purpose, use, or
objectives

Problem statement
0 = Not adequate
10 = very precise

Requirements
Define specific characteristics and
capabilities – what the design will do.

Validated detailed
requirements and
specifications

0 = Incomplete
10 = Complete

Design
Describe how the requirements will be
met and compliance be measured.

A series of concept, circuit
diagrams, plans identifying
required resources.

0 = Incomplete
10 = Complete

Construction
Build hardware components and write
software code

A software based system
0 = Incomplete
10 = Complete

Test Verify system meets requirements Test compliance report
Rating on
compliance

Evaluation
Evaluation of reliability and
functionality

Recommendations for
improvements

Cost – benefit
analysis

In all lab exercises of this series, the purposes and requirements will be defined by a problem statement. In most

labs, the required hardware is provided on the Basys MX3 trainer board. In some instances, additional hardware

circuits will need to be constructed and connected to the trainer board.

Software development will be the focus of the design phase for this series of labs. A significant amount of effort

will be needed to understand the required resources of the PIC32MX370 processor along with the functionality of

sensors, actuators, displays, and controls used in each lab, as well as the interconnection of these I/O devices to

the PICMX370 processor. This includes application specific hardware, interconnection drawings, development

tools, and testing instrumentation. Part of processor resource allocation is a table that designates the processor

I/O pins and special functions such as timers, communications, and analog I/O. During the design phase, the

developer must consider how the system will be tested or validated. Frequently, this requires identifying hardware

instrumentation test points and test code that must be integrated with the system code.

6.1.1 Concepts Planning Using Graphical Representations

Concept maps are used as a mechanism for describing design plans. Figures 6.1 and 6.2 represent two common

concept maps used in software engineering. Figure 6.1 is a data flow diagram (DFD) that describes the system as a

collection of elements that transform inputs and outputs. The DFD is very useful in system partitioning to help

identify minimum dependency and interaction between portioned elements.

6.1.2 Concepts Planning Using Partitioning

Software and hardware engineering use the divide and conquer approach that divides a large problem into a series

of small tasks that are easier to complete. For software engineering, this requires partitioning the problem into

single-purpose functions that can be tested independently of other single-purpose functions. There are two

common approaches to partitioning: those based on hardware such as I/O devices or processor peripherals and

partitions based on software functionality so that minimum interaction with or dependency on other partitions is

necessary.

1 Real-Time Systems Design and Analysis an Engineers Handbook 2nd Ed., Phillip A. LaPlante, IEEE Press, Piscataway,
NJ, 08855-1331, ISBN 0-7803-1119-1, 1997, pp 88-96

https://en.wikipedia.org/wiki/Concept_map
https://en.wikipedia.org/wiki/Data_flow_diagram
https://effectivesoftwaredesign.com/2011/06/06/divide-and-conquer-coping-with-complexity/

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 23

PIC32

MX370

Logical pin mapping

Slide

Switches

Tri-Color

LED

Hardware

Initialization

SW0:SW2

LEDR,

LEDG,

LEDB

Figure 6.1. Data flow diagram - partitioning base on I/O resources for Lab
1a.

Initialize

Switchs and

Tri-Color LED

Light RGB

LED

Read Switches

SW0-SW2

Figure 6.2. Control flow diagram for Lab 1a.

A control flow diagram (CFD), as the one shown in Fig. 6.2, describes the order in which the transactions occur. The

CFD is useful when integrating the portioned elements in defining the order in which they are executed. One

should be able to determine where each line of software code is executed on the CFD graph. The CFD is also useful

during the testing phase to ensure that a scenario can be generated that causes the execution to transverse each

path through the CFD.

6.1.3 Concept Planning: Performance Evaluation – When and How to Test

Using the divide and conquer approach, each element in the partitioned project must be completely tested and

validated before integrating it with another element. You don’t want to design new code based on the

functionality of incorrectly functioning old code. It is a waste of time.

After integration of all partitioned elements, system tests determine how well your design effort satisfies the

stated requirements. One of the most straightforward ways is to make a table of the specified requirements to

serve as a check-off list to include in your final documentation.

7 Problem Statement

There are two lab assignments associated with this unit. Lab 1a is very limited in scope and complexity and focuses

on defining the PIC32MX370 I/O pins as digital inputs or outputs in a tutorial-like fashion. Lab 1b is more open-

ended and asks the student to extend the knowledge gained in Lab 1a by using the slide switches, push buttons,

and the 4-digit 7-segment LED display on the Basys MX3 trainer board to implement a basic calculator. Both labs

emphasize the engineering approach to embedded system design.

https://en.wikipedia.org/wiki/Control_flow_graph

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 23

8 Background Information

8.1 The Development Environment

The reader is expected to have acquired the basic knowledge of programming a computer in C. But as a review, we

offer web links to an online C Tutorial and Microchip MPLAB X IDE. Figure 8.1 illustrates a typical hardware

configuration for microcontroller development. The workstation computer can be running any Windows®, MAC®,

or Linux® operating system. The developer writes the program code on this workstation using the editor provided

by the MPLAB X IDE or a third party editor such as NotePad++®. A cross compiler converts the C programs into a

binary representation of the code that the PIC processor can execute. The file generated by the compiler is

downloaded to the target application processor with the aid of a programmer/debugger module (included on-

board the Basys MX3).

Figure 8.1. Integrated Development Hardware Diagram.

The diagram in Fig. 8.1 shows the Basys MX3 unit. The Basys MX3 has a built-in programmer/debugger that allows

a direct connection from the development workstation computer to the Basys MX3 board. If the

programmer/debugger is not built into the hardware platform, a separate programmer is required, such as the

PICkit 3 or a chipKIT Programmer.

8.2 General Notes of Interest

1. For optimal processor performance, include the instruction SYSTEMConfig(SystemClock,

SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); in the initialization portion of the main function. The

parameter, SystemClock, is set to 80,000,000 by the “config_bits” file.

2. In order to access all pins on PORT A as digital I/O, include the following statement in the initialization

portion of the main function. DDPCONbits.JTAGEN = 0;

http://www.tutorialspoint.com/cprogramming/index.htm
http://microchip.wikidot.com/tls0101:design-environment
http://www.microchip.com/mplab/mplab-ide-home
https://notepad-plus-plus.org/download/v6.9.1.html
http://store.digilentinc.com/pickit-3-in-circuit-debugger/
http://store.digilentinc.com/chipkit-pgm-programmer-debugger-for-use-with-digilent-chipkit-platforms/

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 23

3. If you are using “plib.h” functions, XC32 rev. 1.4 will generate numerous warnings concerning the

obsolescence of the plib functions. These warnings can be suppressed by adding the following definitions

to the top of the main.c file.

#ifndef _SUPPRESS_PLIB_WARNING

 #define _SUPPRESS_PLIB_WARNING

#endif

 #ifndef _DISABLE_OPENADC10_CONFIGPORT_WARNING

 #define _DISABLE_OPENADC10_CONFIGPORT_WARNING

 #endif

4. Table 8.1 below, reproduced from the MPLAB XC32 C/C++ Compilers User’s Guide, notes that the legacy

library option is automatically selected for new projects. If using MPLABX 3.40 or later, when starting a

new project, this option must not be checked, as shown in Fig. 8.2.

Table 8.1. XC32 (Global Options) all Options Category.

Option Description Command Line

Use legacy lib

Check to use the Standard C library in the format before XC32
v1.12. Uncheck to use the HTC LIBC version. The legacy libc is
the default for new projects created in MPLAB X v3.15 and
later.

-legacy-libc

&
-no-legacy-libc

Figure 8.2. Disable “Use Legacy libc” to use plib.h.

http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 23

5. Only the 8 individual LEDs labeled LD0 through LD7 are connected to contiguous I/O port pins (see Table

E.1 for Port A pins 0 through 7). These are the only I/O pins that may be set as a group. All other pins must

be individually assigned. The dispersion of pins and ports for common elements such as switches, buttons,

and segment LEDs requires a bit-banging approach rather than reading or setting a group of bits with a

single instruction.

8.3 Microcontroller Resources

Microcontrollers have three major resources: time access to the central processing unit (CPU execution time),

program and data memory, and input and output (I/O). Frequently, an application requires more of one of these

three resources than the selected processor can provide. Microprocessor resource management involves

compensating for a lack of one of these resources using excess capability in one or both of the other two. For

example, if an application requires more I/O than the processor has I/O pins, the designer can implement a parallel

pin multiplexing scheme that reduces the number of I/O pins but requires additional memory and CPU time to

execute the code. This concept will be explored when we interface the PIC32 processor with a 4-digit 7-segment

LED display.

9 References

1. Real-Time Systems Design and Analysis an Engineers Handbook 2nd Ed., Phillip A. LaPlante, IEEE Press,

Piscataway, NJ, 08855-1331, ISBN 0-7803-1119-1, 1997

2. The Art of Designing Embedded Systems, Jack Ganssle, Newness Press, ISBN 0-7506-9869-1, 1999

3. Best coding practices, https://en.wikipedia.org/wiki/Best_coding_practices

4. PIC32MX330/350/370/430/450/470 Family Data Sheet

5. MPLAB XC32 C/C++ Compiler User’s Guide,

http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf

6. Getting Started with MPLAB®X IDE and Microchip Tools, http://microchip.wikidot.com/tls0101:start

https://en.wikipedia.org/wiki/Bit_banging
https://en.wikipedia.org/wiki/Best_coding_practices
http://ww1.microchip.com/downloads/en/DeviceDoc/60001185E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://microchip.wikidot.com/tls0101:start

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 23

Appendix A: Starting a New MPLAB X Project

The following three steps are used to launch a new project. New MPLAB X users are also referred to Reference 6

above.

1. Generate Lab 1 Project:

a. Open the MPLAB X application on your workstation computer.

b. Start a new Microchip Embedded Standalone Project.

c. Select Device: PIC32MX370F512L

d. Select Tool: Licensed Debugger MCU Alpha One

e. Select Toolchain: XC32 compiler

f. Select Project Name and Folder:

i. Project Name: LABx

ii. Project Location: to be determined

g. Click on “Finish”

2. Generate a config_bits header file

a. Right-click on the Header Files and select “New” -> “XC32 Header.h”. Name this file

“config_bits.h”.

b. Click on “Windows” -> “PIC Memory Views” -> “Configuration Bits”.

c. Set the options as shown in Listing C.2 in the Appendix.

d. Click on “Generate Source Code to Output”.

e. Enter “CTRL A” to highlight the text in the output window and “CTRL C” to copy the text.

f. Double-click on “config_bits” under the Header Files tab to open that file in the editor window.

Delete lines 21 through 173 of the automatically generated code.

g. Change the three instances of the text “_EXAMPLE_FILE_NAME_H” to “_CONFIG_BITS_H”.

h. Position the cursor to the blank line – line 21.

i. Enter “CRTL V” to paste the config_bits text to the config_bits.h file. Enter “CTR_S” to save the

newly generated file to the project folder.

j. Make the appropriate edits to the automatically generated header comments.

k. Once a config_bits.h file is generated, it can be copied to other projects without needing to

complete steps a through j.

3. Generate a main function: All projects must contain a function called “main”.

a. Right-click on Source Files and select “New” -> “C Main File..”. Name this file “main.” and the

extension set to “c”, so it will be “main.c”.

b. The main.c file must contain the following elements:

i. #include “config_bits.h”. Other header files may be required.

ii. Declare global variables.

iii. Declare local functions other than the function main.

iv. Add a main function code as shown in Listing A.1. The return denotes an EXIT FAILURE

because embedded systems code should never exit from the function main because it

inherently has no place to return to.

Listing A.1. Format of a typical main function.

 int main(int argc, char** argv)

 {

 // Initialization code goes here

 while(1)

 {

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 23

 // User code in infinite loop

 }

 return (EXIT_FAILURE); // Failure if code executes

 // this line of code.

 } // End of main.c

i. Complete the project requirements by adding header and source files as elements of

building blocks. Each source file should have a header file that declares constants and

software function prototypes that are used as interfaces with other project files. The

project work is divided into independently testable units that can serve as libraries for

other projects that use the same hardware resources. For example, writing a decimal

number to a 4-digit 7-segment display is a common operation. Hence, a set of source-

header files will be written to display a 4-digit number.

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 23

Appendix B: Configuration Settings for the PIC32MX370F512L

Listing B.1. Configuration bits Settings for Basys MX3 Processor Board

/* ** */

/** Descriptive File Name

Company: DigilentInc

File Name: config_bits.h

Summary: Set configuration bits for the PIC32MX370F512L processor.

Description: The configurations settings set the processor to have a core frequency of

80MHz and a peripheral clock speed of 10MHz.

 */

/* ** */

#ifndef _CONFIG_BIYS_H_ /* Guard against multiple inclusion */

#define _CONFIG_BIYS_H_

// PIC32MX370F512L Configuration Bit Settings

// 'C' source line config statements

#include <xc.h>

// DEVCFG3

// USERID = No Setting

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set Priority Select

 //(SRS Priority 7)

#pragma config PMDL1WAY = OFF // Peripheral Module Disable

 // Configuration (Allow multiple

 // reconfigurations)

#pragma config IOL1WAY = OFF // Peripheral Pin Select Configuration

 // (Allow multiple reconfigurations)

// DEVCFG2

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider (2x Divider)

#pragma config FPLLMUL = MUL_20 // PLL Multiplier (20x Multiplier)

#pragma config FPLLODIV = DIV_1 // System PLL Output Clock Divider

 // (PLL Divide by 1)

// DEVCFG1

#pragma config FNOSC = PRIPLL // Oscillator Selection Bits (Primary

 // Osc w/PLL (XT+,HS+,EC+PLL))

#pragma config FSOSCEN = OFF // Secondary Oscillator Enable

 // (Disabled)

#pragma config IESO = OFF // Internal/External Switch Over

 // (Disabled)

#pragma config POSCMOD = XT // Primary Oscillator Configuration

 // (XT osc mode)

#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the

 // OSCO Pin (Disabled)

#pragma config FPBDIV = DIV_8 // Peripheral Clock Divisor (Pb_Clk is

 // Sys_Clk/8)

#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 23

 // (Clock Switch Disable, FSCM Disabled)

#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1:1048576)

#pragma config WINDIS = OFF // Watchdog Timer Window Enable

 // (Watchdog Timer in Non-Window Mode)

#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT Disabled

 // (SWDTEN Bit Controls))

#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window

 // Size is 25%)

// DEVCFG0

#pragma config DEBUG = OFF // Background Debugger Enable (Debugger

 // is Disabled)

#pragma config JTAGEN = OFF // JTAG Enable (JTAG Disabled)

#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select

 // (Communicate on PGEC1/PGED1)

#pragma config PWP = OFF // Program Flash Write Protect (Disable)

#pragma config BWP = OFF // Boot Flash Write Protect bit

 //(Protection Disabled)

#pragma config CP = OFF // Code Protect (Protection Disabled)

#endif /* _CONFIG_BIYS_H_ */

/* *********************************** End of File ******************************/

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 23

Appendix C: Basys MX3 Hardware Initialization

Listings C.1 and C.2 that are provided below initialize the Basys MX3 hardware inputs. Development time will be

reduced by including these two files in future projects. The hardware.h header file contains an extensive use of

macro instructions. Macro instructions are text replacement compiler directives that can result in better

documentation and all but eliminate magic numbers, which are a well-known programming bad practice. Macro

instructions can obfuscate code and can make it difficult when debugging; however, when properly used, macro

instructions can improve documentation and facilitate code portability. The macro instructions used in the

hardware.h header file are simple definitions, conditional compilation, and ternary operations all designed to

improve readability of the code.

Listing C.1. Hardware Initialization Header File

/* ** */
/** Descriptive File Name
 @ Author
 Richard Wall
 @ Date
 April 30, 2016

 @ Revised
 December 10, 2016

 @Company
 Digilent Inc.

 @File Name
 hardware.h

 @Summary
 Definition of constants and macro routines for the Basys MX3 processor board

 @Description
 The #define statements and macro C code provide high level access to the
 Basys MX3 trainer boards switches, push buttons, and LEDs.

*/
/* ** */
/* Conditional inclusion prevents multiple definition errors */
#ifndef _HARDWARE_H_
 #define _HARDWARE_H_

 #ifndef _SUPPRESS_PLIB_WARNING /* Suppress plib obsolesce warnings */
 #define _SUPPRESS_PLIB_WARNING
 #endif

 #ifndef _DISABLE_OPENADC10_CONFIGPORT_WARNING
 #define _DISABLE_OPENADC10_CONFIGPORT_WARNING
 #endif

/* Comment out the following define statement when programmer is NOT used to
* allow using BTNL and BTNU as user inputs. */
 #define DEBUG_MODE /* Inputs from push buttons BTNL and BRNU are not useable */

http://wiki.c2.com/?MagicNumber

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 23

/* This included file provides access to the peripheral library functions and
 must be installed after the XC32 compiler. See
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf and
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library */

 #include <plib.h>

/* The following definitions are for IO assigned on the Digilent Basys MX3
 processor board. */

/* The ANSELx register has a default value of 0xFFFF; therefore, all pins that
* share analog functions are analog (not digital) by default. All pins are
* initially set be digital followed be setting A_POT for the ANALOG INPUT
* CONTROL and A_MIC for the microphone input back to being analog input pins.*/
 #define ALL_DIGITAL_IO() (ANSELA=0,ANSELB=0,ANSELC=0,ANSELD=0,ANSELE=0,ANSELF=0,ANSELG = 0)
 #define SET_MIC_ANALOG() ANSELBbits.ANSB4 = 1
 #define SET_POT_ANALOG() ANSELBbits.ANSB2 = 1

/* Macros to configure PIC pins as inputs to sense switch settings */
/* BIT definitions are defined in port.h which is provided with the plib
 Library. */
 #define SW0_bit BIT_3 /* RF3 - 1<<3 */
 #define SW1_bit BIT_5 /* RF5 - 1<<5 */
 #define SW2_bit BIT_4 /* RF4 - 1<<4 */
 #define SW3_bit BIT_15 /* RD15 - 1<<15 */
 #define SW4_bit BIT_14 /* RD14 - 1<<14 */
 #define SW5_bit BIT_11 /* RB11 - 1<<11 */
 #define SW6_bit BIT_10 /* RB10 - 1<<10 */
 #define SW7_bit BIT_9 /* RB9 - 1<<9 */

/* The following macro instructions set switches as inputs. */
 #define Set_SW0_in() TRISFbits.TRISF3 = 1
 #define Set_SW1_in() TRISFbits.TRISF5 = 1
 #define Set_SW2_in() TRISFbits.TRISF4 = 1
 #define Set_SW3_in() TRISDbits.TRISD15 = 1
 #define Set_SW4_in() TRISDbits.TRISD14 = 1
 #define Set_SW5_in() TRISBbits.TRISB11 = 1
 #define Set_SW6_in() TRISBbits.TRISB10 = 1
 #define Set_SW7_in() TRISBbits.TRISB9 = 1

/* The following macro instruction seta the processor pins for all 8 switch inputs */
 #define Set_All_Switches_Input(); { Set_SW0_in(); Set_SW1_in(); Set_SW2_in();\
 Set_SW3_in(); Set_SW4_in(); Set_SW5_in();\
 Set_SW6_in(); Set_SW7_in(); }

/* The following macro instructions provide for reading the position of the 8 switches. */
 #define SW0() PORTFbits.RF3
 #define SW1() PORTFbits.RF5
 #define SW2() PORTFbits.RF4
 #define SW3() PORTDbits.RD15
 #define SW4() PORTDbits.RD14
 #define SW5() PORTBbits.RB11
 #define SW6() PORTBbits.RB10
 #define SW7() PORTBbits.RB9

/* Organize the SW bits into a unsigned integer */

/* Macro instructions to define the bit values for push button sensors */
 #define BTNL_bit BIT_0 /* RB0 1 << 0 */
 #define BTNR_bit BIT_8 /* RB8 1 << 8 */
 #define BTNU_bit BIT_1 /* RB1 1 << 1 */
 #define BTND_bit BIT_15 /* RA15 1 << 15 */

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 23

 #define BTNC_bit BIT_0 /* RF0 1 << 1 */

/* See http://umassamherstm5.org/tech-tutorials/pic32-tutorials/pic32mx220-tutorials/internal-

pull-updown-resistors */
/* Macro instructions to set the push buttons as inputs */
 #define Set_BTNL_in() (TRISBbits.TRISB0 = 1, CNPDBbits.CNPDB0 = 1)
// #define Set_BTNL_in() TRISBbits.TRISB0 = 1
 #define Set_BTNR_in() TRISBbits.TRISB8 = 1
 #define Set_BTNR_out() TRISBbits.TRISB8 = 0
 #define Set_BTNU_in() (TRISBbits.TRISB1 = 1, CNPDBbits.CNPDB1 = 1)
// #define Set_BTNU_in() TRISBbits.TRISB1 = 0
 #define Set_BTND_in() TRISAbits.TRISA15 = 1
 #define Set_BTND_out() TRISAbits.TRISA15 = 0
 #define Set_BTNC_in() TRISFbits.TRISF0 = 1

/* single macro instruction to configure all 5 push buttons */
 #ifndef DEBUG_MODE
 #define Set_All_PBs_Input() (

Set_BTNL_in(),Set_BTNR_in(),Set_BTNU_in(),Set_BTND_in(),Set_BTNC_in())
 #else
 #define Set_All_PBs_Input() (Set_BTNR_in(),Set_BTND_in(),Set_BTNC_in())
 #endif

/* Macro instructions to read the button position values. 1 = button pressed */
/* Include BTNL and BTNU only if NOT in debug mode */
 #ifndef DEBUG_MODE
 #define BNTL() PORTBbits.RB0
 #define BNTU() PORTBbits.RB1
 #endif
 #define BNTR() PORTBbits.RB8
 #define BNTD() PORTAbits.RA15
 #define BNTC() PORTFbits.RF0

/* Macros to define the PIC pin values for the board LEDs */
 #define LED0_bit BIT_0 /* RA0 */
 #define LED1_bit BIT_1 /* RA1 */
 #define LED2_bit BIT_2 /* RA2 */
 #define LED3_bit BIT_3 /* RA3 */
 #define LED4_bit BIT_4 /* RA4 */
 #define LED5_bit BIT_5 /* RA5 */
 #define LED6_bit BIT_6 /* RA6 */
 #define LED7_bit BIT_7 /* RA7 */
 #define All_LED_bits 0xff /* Set all LEDs off

/* Macros to configure PIC pins as outputs for board LEDs */
 #define Set_LED0_out() TRISAbits.TRISA0 = 0
 #define Set_LED1_out() TRISAbits.TRISA1 = 0
 #define Set_LED2_out() TRISAbits.TRISA2 = 0
 #define Set_LED3_out() TRISAbits.TRISA3 = 0
 #define Set_LED4_out() TRISAbits.TRISA4 = 0
 #define Set_LED5_out() TRISAbits.TRISA5 = 0
 #define Set_LED6_out() TRISAbits.TRISA6 = 0
 #define Set_LED7_out() TRISAbits.TRISA7 = 0

/* Macro instruction to configure all 8 LED pins for outputs */
 #define Set_All_LEDs_Output() TRISACLR = All_LED_bits

/* Macros to set board each LED on (1) or off (0) */
 #define setLED0(a); {if(a) LATASET = LED0_bit; else LATACLR = LED0_bit;}
 #define setLED1(a); {if(a) LATASET = LED1_bit; else LATACLR = LED1_bit;}
 #define setLED2(a); {if(a) LATASET = LED2_bit; else LATACLR = LED2_bit;}
 #define setLED3(a); {if(a) LATASET = LED3_bit; else LATACLR = LED3_bit;}
 #define setLED4(a); {if(a) LATASET = LED4_bit; else LATACLR = LED4_bit;}
 #define setLED5(a); {if(a) LATASET = LED5_bit; else LATACLR = LED5_bit;}
 #define setLED6(a); {if(a) LATASET = LED6_bit; else LATACLR = LED6_bit;}

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 23

 #define setLED7(a); {if(a) LATASET = LED7_bit; else LATACLR = LED7_bit;}
 #define Set_All_LEDs_On() LATASET = All_LED_bits // Set all LEDs on
 #define Set_All_LEDs_Off() LATACLR = All_LED_bits // Set all LEDs off

/* Macros to invert the output to the board LEDs */
 #define invLED0() LATAINV = LED0_bit
 #define invLED1() LATAINV = LED1_bit
 #define invLED2() LATAINV = LED2_bit
 #define invLED3() LATAINV = LED3_bit
 #define invLED4() LATAINV = LED4_bit
 #define invLED5() LATAINV = LED5_bit
 #define invLED6() LATAINV = LED6_bit
 #define invLED7() LATAINV = LED7_bit

/* Based upon setting in config_bits.h These directly influence timed
* events using the Tick module. They also are used for UART I2C, and SPI
* baud rate generation. */

 #define XTAL (8000000UL) /* 8 MHz Xtal on Basys MX3 */
 #define GetSystemClock() (80000000UL) /* Instruction frequency */
 #define SYSTEM_FREQ (GetSystemClock())
 #define GetCoreClock() (GetSystemClock()/2) /* Core clock frequency */
 #define GetPeripheralClock() (GetSystemClock()/8) /* PCLK set for 10 MHz */

/* Used in core timer software delay */
 #define CORE_MS_TICK_RATE (unsigned int) (GetCoreClock()/1000UL)

#endif /* End of _HARDWARE_H_ */

/* Declare Hardware setup for global access */
void Hardware_Setup(void);
unsigned int switch2Binary(void);

Listing C.2. Hardware Configurations for the Basys MX3 Trainer Board

/* ** */
/** Descriptive File Name
 @ Author
 Richard Wall
 @ Date
 April 30, 2016

 @ Revised
 December 10, 2016

 @Company
 Digilent

 @File Name
 PICmx370.c

 @Summary
 Definition of constants and macro routines

 @Description

Unit 1: Microprocessor I/O

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 23

 The #define statements and macro C code provide high level access to the
 "Trainer" boards switches, push buttons, and LEDs.

*/
/* ** */

/* This included file provides access to the peripheral library functions and
 must be installed after the XC32 compiler. See
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://www.microchip.com/SWLibraryWeb/product.aspx?product=PIC32%20Peripheral%20Library
*/

#include "hardware.h"
#include "switches.h"
#include <plib.h>

// ***
/**
 @Function
 void Hardware_Setup(void);

 @Summary
 Initializes PIC32 pins commonly used for IO on the Trainer processor
 board.

 @Description
 Initializes PIC32 digital IO pins to provide functionality for the
 switches, push buttons, and LEDs

 @Precondition
 "config_bits* must be included in the project

 @Parameters
 None

 @Returns
 None

 @Remarks
 * Returned error flag indicates the value of either x or y is out of
 * range 0 through 15.
 */

void Hardware_Setup(void)
{
/*~~~
* Statement configure cache, wait states and peripheral bus clock
* Configure the device for maximum performance but do not change the PBDIV
* Given the options, this function will change the flash wait states, RAM
* wait state and enable prefetch cache but will not change the PBDIV.
* The PBDIV value is already set via the pragma FPBDIV option above..
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 
// Allow RA0, RA1, RA4 and RA5 to be used as digital IO 
   SYSTEMConfig(GetSystemClock(), SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 

   ALL_DIGITAL_IO();       /* Set all IO pins to digital */ 
   SET_MIC_ANALOG();        /* Set microphone input to analog */ 
   SET_POT_ANALOG();        /* Set ANALOG INPUT CONTROL pot input to analog */ 
    
   Set_All_LEDs_Output(); /* Configure all Basys MX3 LED0 – LED7 as outputs */ 
   Set_All_LEDs_Off(); /* Set all Basys MX3 LED0 – LED7 off */ 



Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 23 

 

   Set_All_Switches_Input(); /* Configure all Basys MX3 slide switches as inputs */ 
   Set_All_PBs_Input(); /* Configure all Basys MX3 push buttons as inputs */ 
    
} /* End of hardware_setup */ 
 

/**  
 @Function 
   unsigned int Switch2Binary( void )  
 

 @Summary 
   Generates an unsigned integer value from the switch settings using binary 
   weighting. The Basys MX3 slide switches are initialized as inputs to a 
   disparate port assignments.  This function collects all the switch  
   settings into a single variable. 
*/ 
unsigned int switch2Binary(void)  
{ 
int value; 
    
   value =  ((int) SW0()) << 0; 
   value += ((int) SW1()) << 1; 
   value += ((int) SW2()) << 2; 
   value += ((int) SW3()) << 3; 
   value += ((int) SW4()) << 4; 
   value += ((int) SW5()) << 5; 
   value += ((int) SW6()) << 6; 
   value += ((int) SW7()) << 7; 
   return value; 
} 
 

  



Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 23 

 

Appendix D: Essential Elements of the PIC32 

Microprocessor I/O2 

This section is not required to complete Labs 1a and 1b; however, it contains information important to forming a 

more complete view of microprocessor I/O.  

Digital input and output is one of the most basic functions as a microprocessor can perform. A simplified block 

diagram of the control of an I/O processor pin is shown in Fig. D.1. The operation of the I/O pin is configured by bit 

values in the following four registers: the output drain control (ODC), the output latch (LAT), the output tri-state 

(TRIS), and, for pins that can be used for analog inputs, the analog-to-digital input configuration (AD1PCFG).  

TRISx

ODCx

0

0

1

1

LATx

VDD

PORTx

W
ri
te

R
e

a
d

P
e

ri
p

h
e

ra
l 
B

u
s

IO Pin

ANy

AD1PCFG

Analog IO 

Pins Only

1

0

Analog Input 

Multiplexer

ADC

 

Figure D.1. Simplified block diagram for a PIC32 I/O pin.2 

Minimally, the TRIS registers must be set to configure a processor I/O pin as an input or output by setting the bit in 

the register to 0 for output or 1 for input. By default, all pins that can serve as an analog input are configured to be 

so. Any analog input pin that is to be used for digital I/O must also be designated to be a digital I/O pin by clearing 

the appropriate analog select pin. The PIC32MX370 processor has five registers that are used to designate dual-

functioning pins as digital or analog inputs. For example, the instruction to clear the analog select pin for PORT D 

bit 1 (RD1) is “ANSELDbits.ANSD1 = 0; “. 

If the bit in the TRIS register is set low to make the I/O pin to function as an output, the voltage pin can be set high 

by writing a 1 to the appropriate bit in the LAT register. Setting the LAT register bit to a zero sets the output pin 

low (0V). The actual voltage at the output pin depends on the setting in the ODC register. The default configuration 

                                                                 

2 PIC32MX330/350/370/430/450/470 family data sheet, Chapter 12 

http://ww1.microchip.com/downloads/en/DeviceDoc/60001185E.pdf


Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 23 

 

has all bits in the ODC register set to zero, which means the output can both source (supply output current) and 

sink (pull outputs low) current. If the bit in the ODC register is set high, then the output pin functions as open 

drain, which can sink current but not source current.  

The maximum current capability of each conventional I/O pin is 15mA (sink or source), while the combined current 

of all I/O pins is 200mA subject to total power constraints. I/O pins have both open drain and active source output 

capability. The open drain capability provided by the ODC register is useful when interfacing with switch array 

keypads (see Pmod KYPD for an example keypad device). The outputs that drive the four LEDs on the Basys MX3 

board are limited to approximately 5mA.  

The PORT register allows the state of pin to be read regardless if the pin is configured in the TRIS register to be an 

input or an output. If the voltage on the pin is above the high input threshold, the PORT bit is read as a logic one. 

Various processor pins have different thresholds.  

If you are interested, refer to Table 30-8 of PIC32MX330/350/370/430/450/470 data sheet to determine the high 

and low thresholds for the pins being used. All digital input-only pins are 5V tolerant, meaning that a device that 

outputs 5V for logic high can be connected to digital input pins and will not damage the PIC32MX processor. For 

the PIC32MX7370, the maximum voltage that can be applied to I/O pins that can be used as either analog or digital 

I/O is VDD+0.3V, or 3.6V.  Exceeding this voltage limit will damage the processor. 

The following listings are two functionally equivalent examples of code that uses the input state of pin RD0 to set 

the output on RD1. 

Listing D.1. Basic I/O Program 

#include "config_bits.h"  // Configure PIC32MX370F512L 

int main() 

{ 

// Initialization 

    ANSELDbits.ANSD1 = 0;     // RD1 set to digital I/O 

    TRISDbits.TRISD1 = 0;     // RD1 set to output  

    TRISDbits.TRISD0 = 1;     // RD2 set to input  

 

// loop 

    while(1) 

    { 

        LATDbits.LATD1 = PORTDbits.RD0; //Copy state of RD0 to RD1 

    { 

} 

 

Listing D.2. Alternate Basic I/O Program 

#include "config_bits.h"  // Configure PIC32MX370F512L 

int main() 

{ 

// Initialization 

    ANSELDCLR = 0x02;      // RD1 set to digital I/O 

    TRISDCLR = 0x02;     // RD1 set to output  

    TRISDSET = 0x01;      // RD0 set to input  

 

// loop 

    while(1) 

    { 

        if(PORTD & 0x01)  // Read RD0 pin 

      LATDSET = 0x02; // Set RD1 pin high 

http://store.digilentinc.com/pmodkypd-16-button-keypad/


Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 23 

 

        else 

      LATDCLR = 0x02; // Set RD1 pin low 

    { 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 21 of 23 

 

Appendix E: PIC32MX370F512L Processor Pin Assignments for 

Basys MX3 

Table E.1. Processor I/O Assignments. 

CPU pin Port ALT Function   

21 RB4 AN4/C1INB/RB4 A_MIC Microphone  

43 RB14 AN14/RPB14/PMA1/CTED5/RB14 A_OUT Speaker  

23 RB2 PGEC3/AN2/C2INB/PRB2/CTED13/RB2 A_POT Pot  

90 RG0 RPGO/PMD8/RG0 ACL_INT2 
I2C - 

Accelerometer 
 

22 RB3 PGED3/AN3/C2INA/RPB3/RB3 AIN1 Stepper motor  

18 RE8 RPE8/RE8 AIN2 Stepper motor  

41 RB12 AN12/PMA11/RB12 AN0 
4 digit 7 segment 

LED 
 

42 RB13 AN13/RB13 AN1 "  

28 RA9 VREF-/CVREF-/PMA7/RA9 AN2 "  

29 RA10 VREF+/CVREF+/PMA6/RA10 AN3 "  

19 RE9 RPE9/RE9 BIN1 Stepper motor  

20 RB5 AN5/C1INA/RPB5/RB5 BIN2 Stepper motor  

87 RF0 RPF0/PMD11/RF0 BTNC Push Button  

67 RA15 RPA15/RA15 BTND/S1_PWM 
Push Button / 

servo mtr 
 

32 RB8 AN8/RPB8/CTED10/RB8 BTNR/SP_PWM 
Push Button / 

servo mtr 
 

96 RG12 TRD1/RG12 CA 
4 digit 7 segment 

LED 
 

66 RA14 RPA14/RA14 CB "  

83 RD6 RDD6/PMD14/RD6 CC "  

97 RG13 TRD0/RG13 CD "  

1 RG15 CNG15/RG15 CE "  

84 RD7 RPD7/PMD15/RD7 CF "  

80 RD13 RPD13/RD13 CG "  

95 RD14 TRD2/RD14 CP "  

93 RE0 PMD0/RE0 DB0 
Character LCD 
data 

 

94 RE1 PMD1/RE1 DB1 "  

98 RE2 AN20/PMD2/RE2 DB2 "  

99 RE3 RPE3/PMD3/RE3 DB3 "  

100 RE4 AN21/PMD4/RE4 DB4 "  

3 RE5 AN22/RPE5/PMD5/RE5 DB5 "  

4 RE6 AN23/PM6/RE6 DB6 "  

5 RE7 AN27/PMD7/RE7 DB7 "  

81 RD4 RPD4/PMWR/RD4 DISP_EN Character LCD ctrl  

82 RD5 RPD5/PMRD/RD5 DISP_R/W "  

44 RB15 AN15/RPB15/PMA0/CTED6/RB15 DISP_RS "  



Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 22 of 23 

 

89 RG1 RPG1/PMD9/RG1 IR_PDOWN IRDA  

26 RB6 PGEC2/AN6/RPB6/RB6 IR_RX "  

27 RB7 PGED2/AN7/RPB7/CTED3/RB7 IR_TX "  

7 RC2 RPC2/RC2 JA1 Pmod JA  

6 RC1 RPC1/RC1 JA2 "  

9 RC4 RPC4/CTED7/RC4 JA3 "  

10 RG6 AN16/C1IND/RPG6/SCK2/PMA5/RG6 JA4 "  

8 RC3 RPC3/RC3 JA7 "  

11 RG7 AN17/C1INC/RPG7/PMA4/RG7 JA8 "  

12 RG8 AN18/C2IND/RPG8/PMA3/RG8 JA9 "  

14 RG9 AN19/C2INC/RPG9/PMA2/RG9 JA10 "  

69 RD9 RPD9/RD9 JB1 Pmod JB  

71 RD11 RPD11/PMCS1/RD11 JB2 "  

70 RD10 RPD10/PMCS2/RD10 JB3 "  

68 RD8 RPD8/RTCC/RD8 JB4 "  

74 RC14 SOSCO/RPC14/T1CK/RC14 JB7 "  

72 RD0 RPD0/RD0 JB8 "  

76 RD1 AN24/RPD1/RD1 JB9 "  

73 RC13 SOSCI/RPC13/RC13 JB10 "  

17 RA0 TMS/CTED1/RA0 LED0 LED  

38 RA1 TCK/CTED2/RA1 LED1 "  

58 RA2 SCL2/RA2 LED2 "  

59 RA3 SDA2/RA3 LED3 "  

60 RA4 TDI/CTED9/RA4 LED4 "  

61 RA5 TD0/RA5 LED5 "  

91 RA6 TRCLK/RA6 LED6 "  

92 RA7 TD3/CTED8/RA7 LED7 "  

78 RD3 AN26/RPD3/RD3 LED8_B Tri-color LED  

79 RD12 RPD12/PMD12/RD12 LED8_G "  

77 RD2 AN25/RPD2/RD2 LED8_R "  

88 RF1 RPF1/PMD10/RF1 MODE Stepper motor  

25 RB0 PGED1/AN0/RPB0/RB0 P32_PGC/BTNU Push Button  

24 RB1 PGC1/AN1/RPB1/CTED12/RB1 P32_PGD/BTNL "  

57 RG2 SCL1/RG2 SCL 
I2C - 

Accelerometer 
 

56 RG3 SDA1/RG3 SDA "  

53 RF8 RPF8/RF8 SPI_CE Flash memory  

55 RF6 RPF6/SCK1/INT0/RF6 SPI_SCK "  

52 RF2 RPF2/RF2 SPI_SI "  

54 RF7 RPF7/RF7 SPI_SO "  

51 RF3 RPF3/RF3 SW0 Slide switch  

50 RF5 RPF5/PMA8/RF5 SW1 "  



Unit 1: Microprocessor I/O  
 

Copyright Digilent, Inc. All rights reserved. 
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 23 

 

49 RF4 RPF4/PMA9/RF4 SW2 "  

48 RD15 RPD15/RD15 SW3 "  

47 RD14 RPD14/RD14 SW4 "  

35 RB11 AN11/PMA12/RB11 SW5 "  

34 RB10 CVREFOUT/AN10/RPB10/PMA13/CTED11/RB10 SW6 "  

33 RB9 AN9/RPB9/CTED4/RB9 SW7 "  

39 RF13 RPF13/RF13 UART_RX FTDI receive  

40 RF12 RPF12/RF12 UART_TX FTDI transmit  

63 RC12 CLKI/RC12/OSC1    

64 RC15 CLKO/RC15/OSC2    

 

 

 

 


