PC-CARD-DAS16/12AO

Specifications

Document Revision 1.1, February, 2010 © Copyright 2010, Measurement Computing Corporation

Specifications

Typical for 25 °C unless otherwise specified. Specifications in *italic text* are guaranteed by design.

Analog input

A/D converter type	ADS7804	
Resolution	12 bits	
Number of channels	16 single-ended / 8 differential, software selectable	
Input ranges	±10 V, ±5 V, ±2.5 V, ±1.25 V, 0 to 10 V, 0 to 5 V, 0 to 2.5 V, 0 to 1.25 V, software programmable	
A/D pacing	Internal counter - 82C54.	
(software programmable)	External source - A/D External Pacer,	
	software programmable for rising or falling edge	
	Software polled	
A/D trigger sources	External edge trigger (A/D External Trigger)	
A/D triggering modes	Rising or falling edge trigger - software selectable	
A/D gate sources	A/D External Trigger, gate high or low, software selectable	
	A/D Pacer Gate, gate high	
Burst mode	Software selectable option, burst rate = 100 kHz	
Data transfer	From 4k sample FIFO via REPINSW	
	Programmed I/O	
A/D conversion time	10 µs max	
Calibrated throughput	100 kHz	
Calibration	Auto-calibration, calibration factors for each range stored on	
	board in nonvolatile RAM	

Table 1. Analog input specifications

Accuracy

Accuracies are listed for a 100 kHz sampling rate, single channel operation, a 60 minute warm-up, and operational temperatures within ± 2 °C of internal calibration temperature. The calibrator test source high side is tied to Channel 0 In and the low side tied to AGND.

Table 2.	Absolute	accuracy	specifications
----------	----------	----------	----------------

Range	Absolute Accuracy
±10.00 V	±3 LSB max
±5.000 V	±3 LSB max
±2.500 V	±3 LSB max
±1.250 V	±3 LSB max
0 to 10.00 V	±3 LSB max
0 to 5.000 V	±3 LSB max
0 to 2.500 V	±3 LSB max
0 to 1.250 V	±3 LSB max

Each PC-CARD-DAS16/12AO is tested at the factory to assure the board's overall error does not exceed accuracy limits described in Table 2.

Range	Gain Error	Offset Error	DLE ^(Note 1)	ILE ^(Note 1)
All ranges	±1.0 max	±1.0 max	±1.0 max	±1.0 max

Note 1: These are the intrinsic specifications of the ADC. Software calibration may introduce a small additional amount of linearity error.

As shown in Table 3, total board error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case errors are realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

Analog input full-scale gain drift	±0.66 LSB/°C max
Analog input zero drift	±0.61 LSB/°C max
Overall analog input drift	±1.27 LSB/°C max
Common mode range	±10 V min
CMRR @ 60 Hz	-72 dB min
Input leakage current	±20 nA max
Input impedance	10 MOhms min
Absolute maximum input voltage	+55/-40 V (Fault Protected via Input Mux)

Crosstalk

Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the maximum rate. A full scale 100 Hz triangle wave is input on channel 1; channel 0 is tied to analog ground at the connector. The table below summarizes the influence of channel 1 on channel 0 with the effects of noise removed. The residue on channel zero is described in LSB's.

Condition	Crosstalk	Per channel Rate	ADC Rate
All ranges	1LSB _{pk-pk}	50 kHz	100 kHz

Noise performance

Table 5 summarizes the noise performance for the PC-CARD-DAS16/12AO. Noise distribution is determined by gathering 50 K samples at 100 kHz with inputs tied to ground at the user connector.

Table 5. Noise performance specifications

Range	% within ±2 LSBs	% within ±1 LSB	Typical LSBrms*	Max LSBrms*
0 to 1.250 V	100%	99%	0.61	0.90
All other ranges	100%	100%	0.45	0.75

* RMS noise is defined as the peak-to-peak bin spread divided by 6.6.

Analog output section

D/A converter type	LTC1446
Resolution	12 bits
Number of channels	2
Configuration	Voltage output, single-ended
Output Range	± 10 V, ± 5 V. Software selectable. Selected range applies to both channels.
D/A pacing	Software
Data transfer	Programmed I/O
Throughput	System dependent. Using the Universal Library programmed output function (cbAout) in a loop in Visual Basic, a typical update rate of 5.5 kHz (±200 Hz) can be expected. The rate was measured on a 600MHz Pentium III based PC.

Table 6. Analog output specifications

Accuracy

Table 7. Accuracy specifications

Absolute accuracy	±5.0 LSB worst case error
Differential linearity error	±0.5 LSB max

Table 8. Calibrated accuracy components

Gain error	±1.0 LSB max
Offset error	±1.0 LSB max
Integral linearity error	±5.0 LSB max

Each PC-CARD-DAS16/12AO is tested at the factory to assure the board's overall error does not exceed ± 5.0 LSB.

Total board error is a combination of gain, offset, integral linearity and differential linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction. Although an examination of the chart and a summation of the maximum theoretical errors shows that the board could theoretically exhibit a ± 7.5 LSB error, our testing assures this error is never realized in a board that we ship.

Monotonicity	Guaranteed monotonic over temperature		
Analog output full-scale gain drift	±0.60 LSB/°C max		
Analog output zero drift	±0.07 LSB/°C max		
Overall analog output drift	±0.67 LSB/°C max		
Slew rate	$\pm 0.5 \text{ V/}\mu\text{s} \min$		
Current drive	±2 mA min		
Output short-circuit duration	Indefinite @ 12 mA		
Output coupling	DC		
Output impedance	0.1 ohms max		
Miscellaneous	Double buffered output latches		
	Coding: Inverted Offset Binary:		
	0 code = +FS, 4095 code = -FS		
	Output voltage on power up and reset: +10 V (+FS)		

Digital input/output

Table 9. DIO specifications

Digital type	FPGA		
Number of I/O	4		
Configuration	One port, programmable		
	4 input / 4 output		
Input low voltage	0.8 V max		
Input high voltage	2.0 V min		
Output low voltage (IOL = 4 mA)	0.32 V max		
Output high voltage (IOH = -4 mA)	3.86 V min		
Absolute maximum input voltage	-0.5 V, +5.5 V		
Power-up / reset state	Input mode (high impedance)		

Interrupt

Table 10. Interrupt specifications

Interrupts	Programmable: Levels 2 – 15
Interrupt enable	Programmable. Default = disabled.
Interrupt sources External (External Interrupt)	
	A/D End-of-channel-scan
	A/D FIFO-not-empty
	A/D FIFO-half-full
	A/D Pacer

Counter

Table 11. Counter specifications

Counter type	82C54		
Configuration	3 down counters, 16 bits each		
Counter 1 - User counter	Source:	Programmable external (Ctr 1 Clk) or 100kHz internal source	
	Gate:	Available at connector (Ctr 1 Gate), pulled to logic high via 10K resistor. See Note 2.	
	Output:	Available at connector (Ctr 1 Out)	
Counter 2 - ADC Pacer Lower	Source:	Programmable, 1MHz or 10 MHz internal source	
Divider	Gate:	Available at connector (A/D Pacer Gate), pulled to logic high via 10K resistor.	
	Output:	Chained to Counter 3 Clock	
Counter 3 - ADC Pacer Upper	Source:	Counter 2 Output	
Divider	Gate:	Internal	
	Output:	Programmable as ADC Pacer clock. Available at user connector (ADC Pacer out)	
Clock input frequency	10 MHz max	10 MHz max	
High pulse width (clock input)	30 ns min	30 ns min	
Low pulse width (clock input)	50 ns min		
Gate width high	50 ns min	50 ns min	
Gate width low	50 ns min	50 ns min	
Input low voltage	0.8 V max		
Input high voltage	2.0 V min		
Output low voltage	0.4 V max		
Output high voltage	3.0 V min		

Crystal oscillator frequency	10 MHz
Frequency accuracy	50 ppm

Note 2: If you are not driving the gate of User Counter 1, it is strongly recommended that it be connected to +5V (VDD).

Power consumption

Table 12.	Power	consumption	า ร	pecifications
10010 12.		concamption		poontoutiono

	F
+5V quiescent	85 mA typical, 125 mA max

Miscellaneous

Table 13. Miscellaneous specifications

+5 Volts	Available at I/O connector (+5V Power)
	Protected by resettable fuse:
	Hold current: 350 mA max @ 20 °C still air
	Trip current: 700 mA min @ 20 °C still air
	Trip and recovery time: 100 mS max
	On resistance: 1.3 Ohms max

Environmental

Table 14. Environmental specifications

Operating temperature range	0 to 70 °C	
Storage temperature range	-40 to 100 °C	
Humidity	0 to 95% non-condensing	

Mechanical

Table 15. Mechanical specifications

Card dimensions	PCMCIA type II: 85.6 mm (L) x 54.0 mm (W) x 5.0 mm (H)

Connector and pin out

Table 16. Connector specifications

Connector type	50-pin connector	
Compatible cables	CPCC-50F-39: 50-pin Micro connector to 50-pin female IDC, one-meter cable (39 inches).	
	CPCC-50M-4: 50-pin Micro connector to 50-pin male IDC, 4 inch adapter cable.	
	and	
	C50FF-x: 50-pin IDC female to female cable. $x = $ length in feet.	
Compatible accessory products	CIO-MINI50	
	SCB-50	

Pin	Signal Name	Pin	Signal Name
1	AGND	26	DGND
2	CH0 HI	27	DIO0
3	CH0 LO	28	DIO1
4	CH1 HI	29	DIO2
5	CH1 LO	30	DIO3
6	CH2 HI	31	N/C
7	CH2 LO	32	N/C
8	CH3 HI	33	N/C
9	CH3 LO	34	N/C
10	CH4 HI	35	DA GND0
11	CH4 LO	36	DA OUT0
12	CH5 HI	37	DA GND1
13	CH5 LO	38	DA OUT1
14	CH6 HI	39	CTR1 CLK
15	CH6 LO	40	CTR1 GATE *
16	CH7 HI	41	CTR1 OUT
17	CH7 LO	42	A/D EXTERNAL PACER
18	AGND	43	EXTERNAL INTERRUPT
19	N/C	44	A/D PACER GATE
20	N/C	45	A/D EXTERNAL TRIGGER
21	N/C	46	N/C
22	N/C	47	A/D PACER OUT
23	N/C	48	VDD +5V POWER OUT
24	N/C	49	N/C
25	N/C	50	DGND

* If you are not driving the gate of User Counter 1, it is strongly recommended that it be connected to +5V (VDD).

Pin	Signal Name	Pin	Signal Name
1	AGND	26	DGND
2	CH0 IN	27	DIOO
3	CH8 IN	28	DIO1
4	CH1 IN	29	DIO2
5	CH9 IN	30	DIO3
6	CH2 IN	31	N/C
7	CH10 IN	32	N/C
8	CH3 IN	33	N/C
9	CH11 IN	34	N/C
10	CH4 IN	35	DA GND0
11	CH12 IN	36	DA OUT0
12	CH5 IN	37	DA GND1
13	CH13 IN	38	DA OUT1
14	CH6 IN	39	CTR1 CLK
15	CH14 IN	40	CTR1 GATE *
16	CH7 IN	41	CTR1 OUT
17	CH15 IN	42	A/D EXTERNAL PACER
18	AGND	43	EXTERNAL INTERRUPT
19	N/C	44	A/D PACER GATE
20	N/C	45	A/D EXTERNAL TRIGGER
21	N/C	46	N/C
22	N/C	47	A/D PACER OUT
23	N/C	48	VDD +5V POWER OUT
24	N/C	49	N/C
25	N/C	50	DGND

Table 18. Single-ended analog input mode pin out

* If you are not driving the gate of User Counter 1, it is strongly recommended that it be connected to +5V (VDD).

Measurement Computing Corporation 10 Commerce Way Suite 1008 Norton, Massachusetts 02766 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@mccdaq.com www.mccdaq.com