
Measurement Computing	 (508) 946-5100 1 info@mccdaq.com	 mccdaq.com

ULx for NI LabVIEW™
NI LabVIEW Driver for MCC DAQ Products

High-Level VIs
High-level VIs merge operations into
single, easier-to-use VIs that improve
application development compared to
previous drivers.

The VIs internally manage DAQ device
variations such as data rate, input ranges,
and data packet sizes, and can easily be
migrated from one DAQ device to another.

ULx for NI LabVIEW front panel (top) and block diagram (bottom)

Features
•	 Comprehensive library of VIs

and example programs

•	 Seamless operation with most
MCC hardware products

•	 High-level VIs improve ease of
use and speed development

•	 Polymorphic VIs reduce the
number of VIs required

•	 Support for counter/timers,
quadrature encoders, digital
triggering, and synchronous
DAQ operation

•	 NI LabVIEW waveform data
type compatibility

•	 Compatible with NI LabVIEW
Version 2010 and later

Supported Operating Systems
•	 Windows 10/8/7/Vista®/XP

32/64-bit

Overview
The ULx for NI LabVIEW is a library of virtual instruments (VIs) used with Measurement
Computing Corporation (MCC) devices to develop acquisition and control applications
in National Instruments LabVIEW.

The ULx library contains high level task objects. Each task object owns a low level
DAQ object that controls data acquisition for a specific device sub function such as
analog input, analog output, digital input, digital output, etc. The ULx VIs interface
with the MCC Universal Library (UL) software via transparent function calls.

ULx for NI LabVIEW is included with the free MCC DAQ Software bundle (CD/
download).

Intelligent Error Handling
ULx for NI LabVIEW provides error descrip-
tions and recommendations on how to
resolve them, speeding development time.

Auto Detection of Supported
UL Functions
ULx for NI LabVIEW automatically detects
supported UL functions for each device,
significantly reducing programming
errors and reducing the need to refer to
UL documentation.

ULx VI Palette
Users select VIs from the ULx for NI
LabVIEW palette within LabVIEW.

The ULx palette includes polymorphic
VIs, which adapt to different data types.
A polymorphic VI is a collection of VIs
called instances. Each VI instance in the
collection has similar input and output
terminals, but accept or return different
data types, such as waveforms, arrays,
and scalar values.

ULx for NI LabVIEW VI palette

http://www.mccdaq.com

Measurement Computing	 (508) 946-5100 2 info@mccdaq.com	 mccdaq.com

ULx for NI LabVIEW™

	 April 2017. Rev 4
ULx-for-LabVIEW	 © Measurement Computing Corporation

NI LabVIEW Driver for MCC DAQ Products

Performing Data Acquisition Tasks
Users create a separate task to perform each data acquisition
operation, such as analog input, digital output, and so on. A
task can contain one or more virtual channels with timing,
triggering, and other properties. Each task is associated with
one hardware device.

All channels in a task must be of the same I/O type, such as
analog input or counter output. A task can include channels of
different measurement types, such as an analog input tempera-
ture channel and an analog input voltage channel.

Some MCC hardware devices support composite (synchronous)
tasks, which can include combinations of any supported input
operations OR any supported output operations, but cannot
include input and output operations in one task.

Synchronous DAQ Operation
The ULx for NI LabVIEW library supports synchronous input
or output on MCC hardware that can synchronously acquire
analog, digital, temperature, and counter input using the same
hardware pacer.

ULx also supports synchronous output on MCC hardware that
can synchronously generate analog and digital output using the
same hardware pacer.

ULx composite input and output VIs support synchronous DAQ
operation

Some examples of MCC hardware that support synchronous
tasks are the USB-CTR Series, USB-2500 Series, USB-1602HS
Series, USB-1604HS Series, and USB-1616HS Series.

Waveform Data Type
The ULx for NI LabVIEW library supports the use of the LabVIEW
waveform data type to represent the analog and digital waveforms
users can acquire or generate. ULx uses the dt component of
the waveform input – the time in seconds between samples – to
determine the sample clock rate.

Counter Input and Timer Output
The ULx for NI LabVIEW library supports several types of counter
input and timer output channels for different types of counter
measurements and generations. Most counters have three I/O
lines: gate, input (clock), and output.

•	 A gate input controls when counting starts or stops.

•	 An input signal is the timebase for a measurement or the
signal to count. A count register – the number of bits in
the counter – increments or decrements the number of
edges to count.

•	 An output signal can output a single pulse or a pulse train
(series of pulses).

All counter types are supported, including encoders. Some
MCC hardware devices have timer output channels which are
independent of the counter channels.

Digital Pattern Triggering
The ULx for NI LabVIEW library supports digital pattern trig-
gering. Users can configure a task to start an acquisition when a
digital pattern is matched. The pattern to detect and the trigger
sensitivity – the way in which the trigger event is detected – are
user-configurable.

Example Programs
ULx for NI LabVIEW includes example programs that demon-
strate how to perform data acquisition tasks in LabVIEW. Each
program can be modified to suit specific application needs.

Requirements
Hardware
•	 Most Measurement Computing Bluetooth, Ethernet/WEB,

USB, PCI/PCIe, and Wireless devices are supported

Software
•	 NI LabVIEW 10.0 and later

mailto:info%40mccdaq.com?subject=
http://www.mccdaq.com

	Features
	Overview
	High-Level VIs
	Intelligent Error Handling
	Auto Detection of Supported UL Functions
	ULx VI Palette
	Performing data acquisition tasks
	Synchronous DAQ Operation
	Waveform Data Type
	Counter Input and Timer Output
	Digital Pattern Triggering

	Example Programs
	Requirements

