# PCIM-DAS1602/16

**Specifications** 



Document Revision 1.1, February, 2010 © Copyright 2010, Measurement Computing Corporation

## **Specifications**

Typical for 25 °C unless otherwise specified.

Specifications in *italic text* are guaranteed by design.

## **Power consumption**

| +5V quiescent | 820mA typical, 1.4A max |
|---------------|-------------------------|

## Analog input

| A/D converter type                                                      | LTC1605CSW                                                               |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Resolution                                                              | 16 bits                                                                  |
| Number of channels                                                      | 16 single-ended / 8 differential, switch selectable                      |
| Input ranges                                                            | ±10V, ±5V, ±2.5V, ±1.25V                                                 |
| <ul> <li>Gain is software selectable</li> </ul>                         | 0 to 10V, 0 to 5V, 0 to 2.5V, 0 to 1.25V                                 |
| Unipolar/Bipolar polarity is switch selectable                          |                                                                          |
| A/D Pacing (software programmable)                                      | Internal counter - 82C54.                                                |
|                                                                         | Positive or negative edge, jumper selectable.                            |
|                                                                         | External source (pin25), positive or negative edge, software selectable. |
|                                                                         | Software polled                                                          |
| A/D Trigger (only available when internal                               | External edge trigger (pin 25),                                          |
| pacing selected, software enable/disable)                               | Positive or negative edge, software selectable.                          |
| A/D Gate                                                                | External gate (pin 25),                                                  |
| (only available when internal pacing selected, software enable/disable) | High or Low level, software selectable.                                  |
| Simultaneous Sample and Hold Trigger                                    | TTL output (pin 26), jumper enabled.                                     |
|                                                                         | Logic $0 =$ Hold, Logic $1 =$ Sample                                     |
|                                                                         | Compatible with CIO-SSH16                                                |
| Burst Mode                                                              | Software selectable option, burst interval = 10uS                        |
| Data Transfer                                                           | From 1024 sample FIFO via interrupt w/ REPINSW                           |
|                                                                         | Interrupt                                                                |
|                                                                         | Software polled                                                          |
| Interrupt                                                               | INTA# - mapped to IRQn via PCI BIOS at boot-time                         |
| Interrupt enable                                                        | Programmable through PLX9052                                             |
| Interrupt polarity                                                      | Active high level or active low level, programmable through PLX9052      |
| Interrupt Sources (software programmable)                               | End of Conversion                                                        |
|                                                                         | FIFO not Empty                                                           |
|                                                                         | End of Burst                                                             |
|                                                                         | End of Acquisition                                                       |
|                                                                         | FIFO Half Full                                                           |
| A/D conversion time                                                     | 10µs max                                                                 |
| Throughput                                                              | 100KHz                                                                   |
| Common Mode Range                                                       | ±10V min                                                                 |
| CMRR @ 60Hz                                                             | -100dB typ, -80dB min                                                    |
| Input leakage current                                                   | ±3nA max                                                                 |
| Input impedance                                                         | 10 MOhms min                                                             |
| Absolute maximum input voltage                                          | +55/-40V fault protected via input mux                                   |

#### Accuracy

| Typical Accuracy             | ±2.3 LSB                               |
|------------------------------|----------------------------------------|
| Absolute Accuracy            | ±5.0 LSB                               |
| Accuracy Components          |                                        |
| Gain Error                   | Trimmable by potentiometer to 0        |
| Offset Error                 | Trimmable by potentiometer to 0        |
| PGA Linearity Error          | $\pm 1.3 LSB typ$ , $\pm 10.0 LSB max$ |
| Integral Linearity Error     | $\pm 0.5$ LSB typ , $\pm 3.0$ LSB max  |
| Differential Linearity Error | $\pm 0.5 LSB typ, \pm 2.0 LSB max$     |

Each PCIM-DAS1602/16 is tested at the factory to assure the board's overall error does not exceed  $\pm 5$  LSB.

Total board error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical absolute accuracy of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

#### Analog input drift

| Range      | Analog Input Full-<br>Scale Gain drift | Analog Input Zero drift | Overall Analog Input drift |
|------------|----------------------------------------|-------------------------|----------------------------|
| ±10.00V    | 2.2 LSB/°C max                         | 1.8 LSB/°C max          | 4.0 LSB/°C max             |
| ±5.000V    | 2.2 LSB/°C max                         | 1.9 LSB/°C max          | 4.1 LSB/°C max             |
| ±2.500V    | 2.2 LSB/°C max                         | 2.0 LSB/°C max          | 4.2 LSB/°C max             |
| ±1.250V    | 2.2 LSB/°C max                         | 2.3 LSB/°C max          | 4.5 LSB/°C max             |
| 0 - 10.00V | 4.1 LSB/°C max                         | 1.9 LSB/°C max          | 6.0 LSB/°C max             |
| 0 - 5.000V | 4.1 LSB/°C max                         | 2.1 LSB/°C max          | 6.2 LSB/°C max             |
| 0 - 2.500V | 4.1 LSB/°C max                         | 2.4 LSB/°C max          | 6.5 LSB/°C max             |
| 0 - 1.250V | 4.1 LSB/°C max                         | 3.0 LSB/°C max          | 7.1 LSB/°C max             |

Absolute error change per °C Temperature change is a combination of the gain and offset drift of many components. The theoretical worst case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

#### Noise performance

The following table summarizes the worst case noise performance for the PCIM-DAS1602/16. Noise distribution is determined by gathering 50000 samples with inputs tied to ground at the PCIM-DAS1602/16 main connector. Data is for both Single-Ended and Differential modes of operation.

| Range      | ±2 counts | ±1 count | Max Counts | LSBrms* |
|------------|-----------|----------|------------|---------|
| ±10.00V    | 97%       | 80%      | 11         | 1.7     |
| ±5.000V    | 97%       | 80%      | 11         | 1.7     |
| ±2.500V    | 96%       | 79%      | 11         | 1.7     |
| ±1.250V    | 96%       | 79%      | 11         | 1.7     |
| 0 - 10.00V | 88%       | 65%      | 15         | 2.3     |
| 0 - 5.000V | 88%       | 65%      | 15         | 2.3     |
| 0 - 2.500V | 83%       | 61%      | 15         | 2.3     |
| 0 - 1.250V | 83%       | 61%      | 16         | 2.4     |

\* Input noise is assumed to be Gaussian. An RMS noise value from a Gaussian distribution is calculated by dividing the peak-to-peak bin spread by 6.6

#### Crosstalk

Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the specified per channel rate for a total of 50000 samples. A full scale 100Hz triangle wave is input on channel 1. channel 0 is tied to analog ground at the 100 pin user connector. The table below summarizes the influence of channel 1 on channel 0 and does not include the effects of noise.

| Range            | 1 kHz Crosstalk<br>(LSB pk-pk) | 10 kHz Crosstalk<br>(LSB pk-pk) | 50 kHz Crosstalk<br>(LSB pk-pk) |
|------------------|--------------------------------|---------------------------------|---------------------------------|
| ±10.000 V        | 4                              | 13                              | 24                              |
| ±5.000 V         | 2                              | 7                               | 18                              |
| ±2.500 V         | 2                              | 5                               | 16                              |
| ±1.250 V         | 3                              | 4                               | 14                              |
| 0 V to +10.000 V | 4                              | 8                               | 23                              |
| 0 V to +5.000 V  | 2                              | 5                               | 16                              |
| 0 V to +2.500 V  | 2                              | 4                               | 16                              |
| 0 V to +1.250 V  | 3                              | 3                               | 16                              |

#### Analog output

| D/A converter type                   | MX7548                                                                                                                                                                                             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                           | 12 bits                                                                                                                                                                                            |
| Number of channels                   | 2                                                                                                                                                                                                  |
| Channel type                         | Single-ended voltage output                                                                                                                                                                        |
| Output range                         | $\pm 10$ V, $\pm 5$ V, 0 to 10 V, or 0 to 5 V using on-board references, or user defined                                                                                                           |
| (jumper selectable per output)       | using external reference                                                                                                                                                                           |
| Reference voltage                    | On-board, -10 V and -5 V                                                                                                                                                                           |
| (jumper selectable)                  | External                                                                                                                                                                                           |
|                                      | Independent (D/A0 pin 10 and D/A1 pin 26)                                                                                                                                                          |
| External reference voltage range     | ±10 V max                                                                                                                                                                                          |
| External reference input impedance   | 10 KOhm min                                                                                                                                                                                        |
| Data transfer                        | Programmed I/O                                                                                                                                                                                     |
| Throughput                           | System dependent. Using the Universal Library programmed output function (cbAOut()) in a loop, in Visual Basic, a typical update rate of 400 Khz can be expected on a 300 MHz Pentium II based PC. |
| Monotonicity                         | Guaranteed monotonic over temperature                                                                                                                                                              |
| Slew rate                            | 2.0 V/µs min                                                                                                                                                                                       |
| Settling time                        | 30 $\mu$ S max to $\pm \frac{1}{2}$ LSB for a 20 V step                                                                                                                                            |
| Current drive                        | ±5 mA min                                                                                                                                                                                          |
| Output short-circuit duration        | Indefinite @ 25 mA                                                                                                                                                                                 |
| Output coupling                      | DC                                                                                                                                                                                                 |
| Output impedance                     | 0.1 ohms max                                                                                                                                                                                       |
| Output stability                     | Any passive load                                                                                                                                                                                   |
| Coding                               | Offset binary                                                                                                                                                                                      |
|                                      | Bipolar mode:                                                                                                                                                                                      |
|                                      | $0 \operatorname{code} = \operatorname{Vref}$                                                                                                                                                      |
|                                      | 4095  code = -Vref - 1LSB, Vref < 0V                                                                                                                                                               |
|                                      | -Vref + 1LSB, Vref >0V                                                                                                                                                                             |
|                                      | Unipolar mode:                                                                                                                                                                                     |
|                                      | 0  code = 0 V,                                                                                                                                                                                     |
|                                      | 4095  code = -Vret - ILSB, Vret < 0V                                                                                                                                                               |
|                                      | -Vref + 1LSB, Vref >0V                                                                                                                                                                             |
| Output voltage on power up and reset | $0 \text{ V} \pm 10 \text{ mV}$                                                                                                                                                                    |

#### Accuracy

| Typical accuracy             | ±1 LSB                           |
|------------------------------|----------------------------------|
| Absolute accuracy            | $\pm 2$ LSB                      |
| Accuracy Components          |                                  |
| Gain error                   | Trimmable by potentiometer to 0  |
| Offset error                 | Trimmable by potentiometer to 0  |
| Integral linearity error     | ±0.5 LSB typ, ±1 LSB max         |
| Differential linearity error | $\pm 0.5 LSB typ, \pm 1 LSB max$ |

Total board error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical absolute accuracy of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

#### Analog output drift

| Analog output full-scale gain drift | ±0.22 LSB/°C max |
|-------------------------------------|------------------|
| Analog output zero drift            | ±0.22 LSB/°C max |
| Overall analog output drift         | ±0.44 LSB/°C max |

Absolute error change per °C temperature change is a combination of the gain and offset drift of many components. The theoretical worst case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

## Digital input / output

#### **Digital I/O connector**

| Digital type                | 82C55                                                                    |
|-----------------------------|--------------------------------------------------------------------------|
| Number of I/O               | 24                                                                       |
| Configuration per 82C55     | 2 banks of 8 and 2 banks of 4 or                                         |
|                             | 3 banks of 8 or                                                          |
|                             | 2 banks of 8 with handshake                                              |
| Input high                  | 2.0 volts min, 5.5 volts absolute max                                    |
| Input low                   | 0.8 volts max, -0.5 volts absolute min                                   |
| Output high                 | 3.0 volts min @ -2.5 mA                                                  |
| Output low                  | 0.4 volts max @ 2.5 mA                                                   |
| Power-up / reset state      | Input mode (high impedance)                                              |
| Pull-up/pull-down resistors | User installed. Dual footprint allows pull-up or pull-down configuration |

#### Main connector

| Digital output type | 74LS244, power up / reset to LOW logic level     |
|---------------------|--------------------------------------------------|
| Digital input type  | 74LS373, pulled to logic high via 10 K resistors |
| Number of I/O       | 8                                                |
| Configuration       | 4 fixed input, 4 fixed output                    |
| Output high         | 2.7 volts @ -0.4 mA min                          |
| Output low          | 0.5 volts @ 8 mA max                             |
| Input high          | 2.0 volts min, 7 volts absolute max              |
| Input low           | 0.8 volts max, -0.5 volts absolute min           |

## Counter

| Counter type                   | 82C54                                                             |
|--------------------------------|-------------------------------------------------------------------|
| Configuration                  | 3 down counters, 16 bits each                                     |
| Counter 1 source               | <ul> <li>External source from main connector (pin 21*)</li> </ul> |
| (software selectable)          | <ul> <li>100 kHz internal source</li> </ul>                       |
| Counter 1 gate                 | External gate from main connector (pin 24*)                       |
| Counter 1 output               | Available at main connector (pin 2)                               |
| Counter 2 source               | <ul> <li>Internal 1 MHz</li> </ul>                                |
| (jumper selectable)            | • Internal 10 MHz                                                 |
| Counter 2 gate                 | External source from main connector (pin 25*)                     |
| (software enable/disable)      |                                                                   |
| Counter 2 output               | Internal only, chained to counter 3 source                        |
| Counter 3 source               | Counter 2 output                                                  |
| Counter 3 gate                 | External source from main connector (pin 25*)                     |
| (software enable/disable)      |                                                                   |
| Counter 3 output               | Available at main connector (pin 20)                              |
|                                | Programmable as ADC Pacer clock.                                  |
| Clock input frequency          | 10 MHz max                                                        |
| High pulse width (clock input) | 30 ns min                                                         |
| Low pulse width (clock input)  | 50 ns min                                                         |
| Gate width high                | 50 ns min                                                         |
| Gate width low                 | 50 ns min                                                         |
| Input high                     | 2.0 volts min, 5.5 volts absolute max                             |
| Input low                      | 0.8 volts max, -0.5 volts absolute min                            |
| Output high                    | 3.0 volts min @ -2.5 mA                                           |
| Output low                     | 0.4 volts max @ 2.5 mA                                            |
| Crystal oscillator frequency   | 10 MHz                                                            |
| Frequency accuracy             | 50 ppm                                                            |

\* Pins 21, 24, and 25 are pulled to logic high via 10K resistors.

## Environmental

| Operating temperature range | 0 to 70°C               |
|-----------------------------|-------------------------|
| Storage temperature range   | -40 to 100°C            |
| Humidity                    | 0 to 95% non-condensing |

## Mechanical

| Card dimensions | PCI custom type card: 107 mm (H) x 18.5 mm (W) x 216 mm (L) |
|-----------------|-------------------------------------------------------------|

## Main connector and pin out

| Connector type          | 37 pin male "D" connector             |  |
|-------------------------|---------------------------------------|--|
| Connector Compatibility | Identical to CIO-DAS1602/16 Connector |  |

#### 8-channel differential mode pin out

| Pin | Signal Name      | Pin | Signal Name                                |
|-----|------------------|-----|--------------------------------------------|
| 1   | +5V PC BUS POWER | 20  | CTR 3 OUT                                  |
| 2   | CTR 1 OUT        | 21  | CTR 1 CLOCK IN                             |
| 3   | DIG OUT 3        | 22  | DIG OUT 2                                  |
| 4   | DIG OUT 1        | 23  | DIG OUT 0                                  |
| 5   | DIG IN 3         | 24  | DIG IN 2 / CTR1 GATE                       |
| 6   | DIG IN 1         | 25  | DIG IN 0 / EXT TRIG / EXT PACER / EXT GATE |
| 7   | DIG GND          | 26  | D/A1 REF IN / SS&H OUT                     |
| 8   | -5V REF OUT      | 27  | D/A 1 OUT                                  |
| 9   | D/A 0 OUT        | 28  | AGND                                       |
| 10  | D/A0 REF IN      | 29  | AGND                                       |
| 11  | CH7 LO           | 30  | CH7 HIGH                                   |
| 12  | CH6 LO           | 31  | CH6 HIGH                                   |
| 13  | CH5 LO           | 32  | CH5 HIGH                                   |
| 14  | CH4 LO           | 33  | CH4 HIGH                                   |
| 15  | CH3 LO           | 34  | CH3 HIGH                                   |
| 16  | CH2 LO           | 35  | CH2 HIGH                                   |
| 17  | CH1 LO           | 36  | CH1 HIGH                                   |
| 18  | CH0 LO           | 37  | CH0 HIGH                                   |
| 19  | AGND             |     |                                            |

## 16-channel single-ended mode pin out

| Pin | Signal Name      | Pin | Signal Name                                |
|-----|------------------|-----|--------------------------------------------|
| 1   | +5V PC BUS POWER | 20  | CTR 3 OUT                                  |
| 2   | CTR 1 OUT        | 21  | CTR 1 CLOCK IN                             |
| 3   | DIG OUT 3        | 22  | DIG OUT 2                                  |
| 4   | DIG OUT 1        | 23  | DIG OUT 0                                  |
| 5   | DIG IN 3         | 24  | DIG IN 2 / CTR1 GATE                       |
| 6   | DIG IN 1         | 25  | DIG IN 0 / EXT TRIG / EXT PACER / EXT GATE |
| 7   | DIG GND          | 26  | D/A1 REF IN / SS&H OUT                     |
| 8   | -5V REF OUT      | 27  | D/A 1 OUT                                  |
| 9   | D/A 0 OUT        | 28  | AGND                                       |
| 10  | D/A0 REF IN      | 29  | AGND                                       |
| 11  | CH15 HIGH        | 30  | CH7 HIGH                                   |
| 12  | CH14 HIGH        | 31  | CH6 HIGH                                   |
| 13  | CH13 HIGH        | 32  | CH5 HIGH                                   |
| 14  | CH12 HIGH        | 33  | CH4 HIGH                                   |
| 15  | CH11 HIGH        | 34  | CH3 HIGH                                   |
| 16  | CH10 HIGH        | 35  | CH2 HIGH                                   |
| 17  | CH9 HIGH         | 36  | CH1 HIGH                                   |
| 18  | CH8 HIGH         | 37  | CHO HIGH                                   |
| 19  | AGND             |     |                                            |

| Connector type          | 40 pin header                         |
|-------------------------|---------------------------------------|
| Connector Compatibility | Identical to CIO-DAS1602/16 Connector |

## Digital input / output connector and pin out

| Pin | Signal Name      | Pin | Signal Name      |
|-----|------------------|-----|------------------|
| 1   | NC               | 2   | +5V PC BUS POWER |
| 3   | NC               | 4   | DIG GND          |
| 5   | PORT B 7         | 6   | PORT C 7         |
| 7   | PORT B 6         | 8   | PORT C 6         |
| 9   | PORT B 5         | 10  | PORT C 5         |
| 11  | PORT B 4         | 12  | PORT C 4         |
| 13  | PORT B 3         | 14  | PORT C 3         |
| 15  | PORT B 2         | 16  | PORT C 2         |
| 17  | PORT B 1         | 18  | PORT C 1         |
| 19  | PORT B 0         | 20  | PORT C 0         |
| 21  | DIG GND          | 22  | PORT A 7         |
| 23  | NC               | 24  | PORT A 6         |
| 25  | DIG GND          | 26  | PORT A 5         |
| 27  | NC               | 28  | PORT A 4         |
| 29  | DIG GND          | 30  | PORT A 3         |
| 31  | NC               | 32  | PORT A 2         |
| 33  | DIG GND          | 34  | PORT A 1         |
| 35  | +5V PC BUS POWER | 36  | PORT A 0         |
| 37  | DIG GND          | 38  | NC               |
| 39  | NC               | 40  | NC               |

Measurement Computing Corporation 10 Commerce Way Suite 1008 Norton, Massachusetts 02766 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@mccdaq.com www.mccdaq.com