CPCI-DAS64/Mx/16 & CPCI-DAS64/Mx/16/JR family

Ultra High-Speed CompactPCI-bus Compatible, 16-bit, 64-Channel Analog Input Board with Dual Analog Output Channels & 32 Digital I/O bits

Features

- Ultra High Speed 16-bit Sample Rates
 - CPCI-DAS64/M3/16 3 MHz CPCI-DAS64/M2/16 - 2 MHz CPCI-DAS64/M1/16 - 1 MHz
- 64 channel single-ended / 32 chan diff
- 16-bit A/D resolution
- 8192 sample gain/channel queue
- Bus-master & scatter-gather support
- Analog trigger input (not avail on /JR)
- Burst-Mode SS&H emulation
- 8192 sample A/D FIFO
- Dual 16-bit D/As (not avail on /JR)
- 100 kHz D/A update rate (16-k FIFO)
- One 16-bit counter/ 32-bits, digital I/O
- Fully Plug-and-Play & Autocalibrating

Block Diagram

Functional Description

The CPCI-DAS64/Mx/16 family of analog and digital I/O boards offer an incredible combination of high speed, channel count and resolution on a single CompactPCI-bus data acquisition board. Offering 64 single-ended or 32 differential 16-bit analog inputs with sample rates up to 3 MHz (single-channel, up to 1.5 MHz multi-channel), two 16-bit analog outputs (no outputs on /JR version), 32 bits of digital I/O and one 16-bit down counter. The board offers a variety of analog and digital trigger modes with software selectable trigger levels and direction.

At the heart of the board is ComputerBoards' powerful System Timing Controller (STC) chip. The STC chip controls all A/D sampling and D/ A update rates as well as controlling the 8K A/D FIFO, the 8K gain/ channel queue and the 16K D/A FIFO. This functionality is based on the STC chip's use of an on-board 32K x 16SRAM. The STC chip assigns functions to various parts of the SRAM (e.g. A/D FIFO) and then provides full speed control and arbitration among the various functions using the various sections of the SRAM buffer.

The STC allows simultaneous full speed A/D sampling, D/A updating and gain/channel queue sequencing (with variable intersample timing if desired). *The STC chip performs these functions up to 5 MHz, and is available as an OEM component for use in your own designs*. The board provides bus-mastering and scatter-gather functionality to assure the desired system timing is maintained.

The CPCI-DAS64/Mx/16 family is completely plug-and-play. There are no switches, jumpers or potentiometers on the board. All board addresses, interrupt channels etc. are set by your computers plug-andplay software. Even calibration is performed via software by using onboard trim D/A converters. (For more details on our digital calibration techniques, please see our calibration tutorial on page 268).

Analog Inputs

The CPCI-DAS64/Mx/16 provides 32 fully differential or 64 singleended analog inputs. The input mode is software selectable, with no switches or jumpers to set. The CPCI-DAS64/M3/16 board offers a 3 MHz maximum sample rate, while the /M2/16 and /M1/16 offer 2 MHz and 1 MHz sample rates. The boards offer full speed acquisition in single channel scans, and will perform full accuracy multichannel scans at 1.5 MHz regardless of gain setting. An 8-k sample gain/channel queue is available making long, complex sample sequencing simple. An 8-k sample FIFO combine with Bus-Master DMA and scatter-gather to assure data taken from the board is transferred into computer memory without the possibility of missed samples.

The table below details the input ranges and resolutions for the available input configurations and gains.

Bipolar		Unipolar	
Range	Resolution	Range	Resolution
±5V	153 uV	0 - 10V	153 uV
±2.5V	76.3 uV	0 - 5V	76.3 uV
±1.25V	38.1 uV	0-2.5V	38.1 uV
$\pm 0.625 V$	19.1 uV	0-1.25V	19.1 uV

Burst Mode

Channel-to-channel skew is the result of multiplexing the A/D inputs and is defined as the time between consecutive samples. Burst mode minimizes channel-to-channel skew by clocking the A/D at a high rate between successive samples within a scan, then waiting a specified time before starting an new scan. The CPCI-DAS64/Mx/16 provides burst mode with a 667 nS (1 uS on M1) minimum sample skew/delay.

Analog Outputs (there are no analog outputs on the/JR version)

The CPCI-DAS64/Mx/16 boards provide two high speed 16-bit analog outputs. The outputs are updated via on-board 16 K FIFO and provide a 100 kHz max. update rate. Repetitive D/A-based waveforms can be stored in on-board memory and generated without requiring ongoing PCI bus transfers. Software selectable ranges of 0-10V, 0-5V, $\pm 10V$ and $\pm 5V$ are provided, and channels may be set at different ranges. The outputs provide rated accuracy to ± 20 mA, are short circuit protected (35 mA limit) and are cleared to 0 volts on power up or reset. The board supports simultaneous full speed operation of both the A/D and D/A.

Parallel Digital I/O

The CPCI-DAS64/Mx/16 provides 32 bits of digital I/O. An 82C55 chip provides 24 bits of CMOS compatible I/O at the board's 40-pin auxiliary connector. Four LSTTL compatible digital inputs and four outputs are also provided on the main 100-pin connector. On power up or reset, all I/O ports default to the input state (high impedance).

Counter/Timer I/O

The CPCI-DAS64/Mx/16 provides one 16-bit down counter (1/3 of an 82C54). The counter provides clock, gate and output connections at the user I/O connector.

Installed in any CompactPCI-bus compatible personal computer the CPCI-DAS64/Mx/16 turns your personal computer into a ultra high-speed data acquisition and control station.

Software

All CPCI-DAS64/Mx/16 boards come complete with ComputerBoards' powerful *Insta*CalTM software package. *Insta*Cal is a complete installation, calibration and test program for ComputerBoards data acquisition and control boards. Complete with extensive error checking, *Insta*Cal guides you through installation and setup of your data acquisition board and creates the board configuration file for use by your program or application software package. *Insta*Cal is described in detail within the software section of this website.

The CPCI-DAS64/Mx/16 boards are fully supported by ComputerBoards' powerful Universal Library. Universal Library is a complete set of I/O libraries and drivers for all of our boards, in all Windows based languages. When using the Universal Library you can switch boards or even programming languages and the syntax remains constant. For details on Universal Library, please refer to the software section of this website.

The CPCI-DAS-64/Mx/16 boards are fully supported by a wide variety of applications software packages including SoftWIRE[™], DAS-Wizard[™], (and DAS-Wizard Pro[™]), HPVEE[®], HPVEELab and LabVIEW[™]. For further details on these, as well as a variety of other software packages, please refer to the software section provided earlier in this website.

SoftWIRE for Visual Basic combines the simplicity of graphical programming with the power and flexibility of programming in VB!

CPCI-DAS64/M#/16 Specifications

Analog	input section
Reso	lution
Num	ber of channels

16-bit 32 diff/64 SE, Software selectable

	CPCI-DAS	CPCI-DAS	CPCI-DAS
A/D Specification	64/M3/16	64/M2/16	64/M1/16
A/D conversion time	333 nS	500 nS	1 uS
Single channel, single input range Single channel, multiple input gains	3 MHz 500 kHz	2 MHz 500 kHz	1 MHz 500 kHz
Multiple channel, single input range	1.5 MHz	1.5 MHz	1 MHz
Multiple channel, multiple input gains, all samples in the same Unipolar/ Bipolar mode	500 kHz	500 kHz	500 kHz
Multiple channel, switching gains, switching Bipolar/Unipolar mode	500 kHz	500 kHz	500 kHz
Multiple channel, switching Unipolar/ Bipolar mode, single input gain	750 kHz	750 kHz	750 kHz

Data transfer modes	via 8192 sample FIFO and Bus master DMA interrupt, or software polled
Programmable ranges	±5V, ±2.5V, ±1.25V, ±0.625, 0 - 10V, 0 - 5V, 0 - 2.5V, 0 - 1.25V
A/D pacing	Programmable: internal counter or external source or software polled
Channel/gain queue	8192 samples.
Burstmode timing	Software selectable option, skew = 667 nS (1 uS on the /M1 board)

A/D Trigger sources External: analog or digital

A/D Triggering Modes

Digital: SW configurable for Edge (triggered) or level-activated (gated). Programmable polarity (rising/falling edge, high/low gate).

Analog: SW configurable for above/below reference, in/out window and hysteresis. Programmable polarity (rising/falling edge trigger, high/low gate). Trigger levels set by DAC0 and/or DAC1. (Analog triggering is not available on the /JR version)

Pre-trigger: Unlimited pre- and post-trigger sample sizes. Compatible with Digital and Analog trigger modes

±1 LSB max ±1.5 LSB

22.5 ppm typ, 45 max

 $\pm 45 ppm/^{\circ}C$ / $\pm 45 ppm/^{\circ}C$

16- bits guaranteed

2.3 nA (25°C)

10¹¹ ohms, typ

±35 V

Diff. Linearity error
Integral Linearity error
Gain Error

No missing codes Gain drift / Zero drift Input leakage current Input impedance Maximum input voltage

Counter section

Configuration User connections Clock input frequency Min clock pulse width Gate width high or low Input low / high voltage Output low / high voltage

Single 16-bit down counters1/3 82C54 Clock in, Gate and Output 10 MHz max 30 nS high, 50 nS low 50 nS min 0.8V max / 2.0V min 0.4V max / 3.0V min

Analog Output:

Resolution	16-bits
Number of channels	2 (not available on /JR version)
Voltage Ranges	$\pm 10V, \pm 5V, 0-5V, 0-10V.$ Each channel
independently program	nable
D/A update rate	100 kHz on each D/A operating in
	single channel or simultaneous update mode
Data transfer modes	via 16384 sample FIFO and Bus Master DMA
	or through programmed I/O.
Arbitrary waveform mode	Supports repetitive waveforms to 16
Ksample	
D/A pacing	Internal or external clock or software paced
D/A trigger modes	Software or external gate.
Offerst survey	100-W
Coin error	± 1000 v max, all ranges
Differential nonlinearity	±30.5ppm max
Integral poplingarity	±1LSB max
Monotonicity	± 16 bits at 25 °C
D/A Gain drift	+15 ppm/°C max
D/A Bipolar offset drift	$\pm 15 \text{ ppm/}^{\circ}\text{C}$ max
D/A Unipolar offset drift	$+3 \text{ ppm}/^{\circ}\text{C} \text{ max}$
Throughput	100 kHz, 2 channels simultaneous.
Settling time (20 V step to	.0008%) 13 μs max
Settling time (10 V step to	.0008%) 6µs typ
Slew Rate	10V Ranges 10.7 V/uS
	5V Ranges 10.7 V/uS
Current Drive	+5 mA min
Short-circuit current	± 3 mA indefinite
Output Coupling / impeda	± 33 m meenine nce DC / 0.1 ohms max
Miscellaneous	Power up/reset all DAC's set to 0 volts
Miscelluleous	
Digital Input / Output	
Digital Bits	32
Configuration	24-bit, 82C55 at Aux 40-pin connector
	4 dedicated input & 4 dedicated output bits
	on 100-pin main connector
82C55 Specifications	
Configuration	2 banks of 8, 2 banks of 4, programmable by
	bank as input or output
Default/Reset State	Input, High Impedance
Output High	2.4 volts @ -2.5 mA min
Output Low	0.5 volts @ 2.5 mA min
Input High	2.0 volts min, 7 volts absolute max
Input Low	0.8 volts max, -0.5 volts absolute min
Dedicated I/O hits (A inc.	nt 1 output)
Input / Output device:	
Default/Paset State	All A outputs to logic low
Output High	All 4 outputs to logic low 2.4 yolts @ 0.4 mA min
Output Low	2.4 volts @ -0.4 mA min
Input High	2.0 volts min 7 volts absolute max
Input Low	0.8 volts max -0.5 volts absolute min
input Dow	0.0 voits max, 0.5 voits absolute min
Interrupts	INTA# - mapped to IROn via cPCI BIOS at
	boot-time
Interrupt enable	Software programmable
Interrupt sources	External (rising TTL edge event) or a variety
L	of internal FIFO status sources
Power consumption	
+5V Operating	3.0 A typical, 3.7 A max
·	
Environmental	
Operating temperature range	ge 0 to 70 $^{\circ}$ C

Operating temperature range Storage temperature range Humidity

-40 to 100 °C 0 to 90% non-condensing

Digital Signal Conditioning (requires C40-37F-2 or BP40-37)

CIO-ERB08*	8 channel relay rack with 6 Amp, Form C relays
CIO-ERB24*	24 channel relay rack with 6 Amp, Form C relays
CIO-SERB24*	24 channel relay rack with 10 Amp, socketed and field
	replaceable Form C relays.
SSR-RACK08*	8 channel solid state I/O module rack.
SSR-RACK24*	24 channel solid state I/O module rack.

BNC Connector Interface Boxes

BNC-16SE	BNC interface box for single-ended mode. Four are
	required to connect all 64 channels.
BNC-16DI	BNC interface box for differential mode. Four are
	required to connect to all 32 channels.

Screw Terminal Accessory Boards and Boxes **SCB-Series & CIO-MINI series**

The main 100-pin connector is compatible with the C100HD-03 cable and the SCB-50 (1 required) or CIO-MINI50 (2 required). The C100HDS-03 series shielded cable provides

maximum noise immunity and is compatible with the SCB-100 screw terminal interface box. The auxilliary digital connector is compatible with the CIO-MINI40 using the C40FF-2 cable.

* Items denoted with an asterisk are available with detachable screw terminals.

Auto-Calibration / Self-Calibration

In keeping with general plug-and-play standards, the CPCI-DAS64/Mx/ 16 boards have no switches, jumpers or potentiometers. Auto-calibration is performed with digital potentiometers and/or trim D/A converters. Unlike some boards that use software lookup tables for postacquisition error correction, the CPCI-DAS64/Mx/16 board's data is accurate when written into your computer's memory. The calibration factors that control the digital trim components are stored in EEPROM on the board. You can remove the board from one computer, install it in another, and it will still provide calibrated data.

The CPCI-DAS64/Mx/16 board is also self calibrating. The CPCI-DAS64/Mx/16 provides on-board circuitry that grounds the inputs for offset calibration, and connects the inputs to an ultra-stable, on-board voltage reference for gain calibration. A complete CPCI-DAS64/Mx/16 calibration is as simple as issuing a single software command.

I/O Connector & Cables

All analog, triggering and counter/timer connections are through a 100pin high-density connector. The C100HD50-03 series cable splits the 100 pins into separate 50-pin cables. The first 50-pin cable contains the signals from pins 1-50, while the second carries pins 51-100. These 50pin connectors are compatible with the SCB-50, CIO-MINI50, and BNCseries of interconnects. To minimize noise pickup, use the C100HDS-03 series shielded cable along with the SCB-100 shileded interconnection box. The 24-bits of high current digital I/O are available on an 40 pin header. From the 40-pin header the user connect to the optional BP40-37 which brings these pins out to the standard 37-pin connector and installs in any unused slot. This 37-pin connector is then pin compatible with all DIO24 series boards (and all of our 8 and 24-bit digital signal

EXTADCCO

conditioning boards). Alternatively, the 40-pin header may be brought out directly with the C40FF-2 cable and connected directly to a CIO-MINI40 screw terminal board.

Auxiliary/Digital Connector Diagram

100 GND

Ordering Guide

CPCI-DAS64/M3/16 CPCI-DAS64/M2/16 CPCI-DAS64/M2/16/JR CPCI-DAS64/M1/16

64-channel, 3MHz, 16-bit analog & digital I/O board for PCI-bus computers. CPCI-DAS64/M3/16/JR 64-channel, 3MHz, 16-bit A/D & digital I/O board for PCI-bus computers. 64-channel, 2MHz, 16-bit analog & digital I/O board for PCI-bus computers. 64-channel, 2MHz, 16-bit A/D & digital I/O board for PCI-bus computers. 64-channel, 1MHz, 16-bit analog & digital I/O board for PCI-bus computers. CPCI-DAS64/M1/16/JR 64-channel, 1MHz, 16-bit A/D & digital I/O board for PCI-bus computers.

...

GND 50