SPECIFICATIONS

CIO-EXP-GP

Bridge Signal Conditioning

Revision 2, January, 2001
© Copyright 2001, MEASUREMENT COMPUTING CORPORATION

Power Consumption

$+5 \mathrm{~V}$

Analog Input Section

Input amplifier type
Number of channels
Gains
Gain Error
Gain $=1,2.5$
Gain $=10,25$
Gain $=100,250$
Gain $=1000,2500$
Linearity
Gain $=1,2.5$
Gain $=10,25$
Gain $=100,250$
Gain $=1000,2500$
Input Offset
Gain TC
Gain $=1$
Gain $=100$
Gain $=1000$
Input Offset TC
Gain $=1,2.5$
Gain $=10,25$
Gain $=100,250$
Gain $=1000,2500$
Common Mode Range
CMRR
Gain $=10,25,100,250,1000,2500$
Gain $=1,2.5$
Input
Channel to channel settling time
5 V step to $.01 \%$
MUX switching time
5 V step to $.01 \%$
Miscellaneous

380 mA typical, 533 mA maximum

INA102

8 differential
Each channel individually switch selectable for $\mathrm{X} 1, \mathrm{X} 10, \mathrm{X} 100$ or custom and board gain switch selectable for X1 or X2.5
0.01% FS typical, 0.15% FS maximum
0.02% FS typical, 0.35% FS maximum
0.05% FS typical, 0.40% FS maximum
0.20% FS typical, 0.90% FS maximum
0.045\% FS typical
0.045 FS typical
0.075% FS typical
0.15% FS typical
Each channel adjustable to zero
$10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
$20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical
$6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical
$5.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical
$5.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical
$\pm 10 \mathrm{~V}$

100 dB typical
94 dB typical
$\pm 50 \mathrm{~V}$ absolute maximum
$50 \mu \mathrm{~s}$
5μ s typical
Each input channel has a 79 Hz low pass filter
X 2.5 gain is adjustable for zero error
Jumper selects compatibility with DAS08 or DAS16 series
Locations provided for bridge completion resistors for each channel.
Locations provided for bridge nulling pots and resistors for each channel

Analog Output Section

Output Amplifier type
Number of channels
Maximum Output Range
Current Drive
Output short-circuit duration

OP07

1
$\pm 10 \mathrm{~V}$
$\pm 5 \mathrm{~mA}$
25 mA indefinite

Output coupling
Output impedance
Miscellaneous

DC
100 Ohms maximum
Output jumper-selectable for one of 16 channels (P1 \& P2 Output 0 to Output 15)

Digital Input / Output Section

Digital type
DIn 0 through 2
DIn 3
Configuration
Input low voltage
DIn 0 through 2
DIn 3
Input high voltage
DIn 0 through 2
DIn 3

Voltage Excitation Section

Excitation voltages
Sources for excitation voltage

Current
5 V source from $\mathrm{P} 1,4 \mathrm{~V}$ VEXC
5 V source from P19, 4V VEXC
12 V source, 10V VEXC
15 V external source, 10 VEXC
Miscellaneous

HI508A multiplexer
2N2222 transistor inverter
3 digital inputs for selecting multiplexer channel
1 digital input for controlling calibration relay
0.8 V maximum, -4 V absolute minimum
1.0 V maximum, -4 V absolute minimum
2.4 V min, 9 V absolute maximum
1.27 V min, 9 V absolute maximum
$10 \mathrm{~V}, 4 \mathrm{~V}, 2 \mathrm{~V}, 1 \mathrm{~V}, 0.5 \mathrm{~V}$
5 V from PC, 5 V from MOLEX, 12 V from PC, external (\pm PEXT screw terminal)

100 mA
275 mA
350 mA
670 mA
Output jumper selectable for one of 16 channels
(P1 \& P2 Output - to Output 15)
Voltage adjustable for zero error

1 mA
8
4.6 V typical, 2 V minimum

Adjustable for zero error

CJC Section

Conversion ratio
$24.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}\left(0 \mathrm{mV} @ 0^{\circ} \mathrm{C}\right)$

Environmental

Operating temperature range
0 to $60^{\circ} \mathrm{C}$
Storage temperature range
Humidity

0 to 90% non-condensing

Measurement Computing Corporation 16 Commerce Boulevard, Middleboro, Massachusetts 02346
(508) 946-5100

Fax: (508) 946-9500
E-mail: info@measurementcomputing.com www.measurementcomputing.com

