
CAN is an asynchronous serial data communications protocol that excels in noisy 

environments. You can think of Controller Area Networks as high-speed intelligent serial 

communications networks with everything you wished you could have in a comparable RS-

232 connection. A Controller Area Network is just as easy to physically implement as a 

legacy RS-232 network.  

The chipKIT Max32 CAN Module.. 

Although the PIC32MX795F512L includes a twin-engine CAN Module, the chipKIT Max32 

does not natively support Microchip’s MCP2551 CAN Transceivers.  Each of the chipKIT 

Max32’s CAN engines can access a Controller Area Network Bus via it associated MCP2551 

CAN Transceiver.  The MCP2551 CAN Transceivers are mounted on the chipKIT Network 

Shield. MCP2551 CAN Transceivers at the extreme ends of the Controller Area Network Bus 

must have their Controller Area Network Bus pins terminated with 120Ω resistors.  

In addition to a CAN protocol engine, the chipKIT Max32 CAN Module includes message 

acceptance filters and message assembly buffers. Incoming CAN messages are filtered by 

the message acceptance filters and masks. If the incoming CAN message meets the filter 

and mask requirements, the received CAN messages can then be routed to the receive 

message assembly buffer.  Conversely, an outgoing CAN message is assembled in the 

transmit message assembly buffer before being handed over to the CAN protocol engine for 

transmission. 

The chipKIT Max32 CAN Module contains absolutely zero buffer area. All of the buffered 

data must reside within a block of preallocated SRAM. The chipKIT Max32 CAN Module can 

transfer data to and from the SRAM buffer area without any CPU intervention. 

Bringing Up the chipKIT Max32 CAN Module.. 

As far as initialization is concerned, both CAN1 and CAN2 are coded identically. Activating 

the chipKIT Max32‘s CAN Module is a process that involves manipulating the bits within a 

number of PIC32MX795F512L 32-bit CAN registers.  

The PIC32MX CAN Module registers are organized into four functional groups: 

1. CAN Engine/CAN Module Bit Rate Configuration Registers 

2. Interrupt and Status Registers 

3. Mask and Filter Configuration Registers 

4. FIFO Control Registers 

The chipKIT Max32 CAN Module can be configured and activated by writing the correct bit 

patterns to each of the four sets of CAN Module registers.  The CAN demonstration code 

that accompanies this document is based on the Microchip PIC32MX CAN Module Peripheral 

Library and Section 34 of the PIC32MX Family Reference Manual. 

There are six chipKIT Max32 CAN Module operation modes: 

 

• Configuration Mode 

• Normal Operation Mode 

• Listen Only Mode 

• Listen All Messages Mode 

• Loopback Mode 



• Disable Mode 

 

Each operation mode is represented by a bit pattern placed in the Request Operation Mode 

(REQOP) bit block of the CAN Control register (CxCON).  The CAN Module acknowledges the 

successful entry into the requested mode by duplicating the REQOP bits in the Operation 

Mode (OPMOD) bit block, which is also located in the CAN Control register.  The polling of 

the OPMOD bits is one way of verifying the change of operational modes. You can also 

detect an operation mode change using the Mode Change Interrupt, which is enabled by the 

MODIE bit in the CAN Interrupt register. 

 

Our CAN Module initialization begins by enabling the CANx Engine and pushing it into 

Configuration Mode: 

 

 CANEnableModule(CAN1,TRUE); 

 

 CANSetOperatingMode(CAN1, CAN_CONFIGURATION); 

 while(CANGetOperatingMode(CAN1) != CAN_CONFIGURATION);    

 

 

 CANEnableModule(CAN2,TRUE); 

 

 CANSetOperatingMode(CAN2, CAN_CONFIGURATION); 

 while(CANGetOperatingMode(CAN2) != CAN_CONFIGURATION); 

 

 The CAN Module Configuration register (CiCFG) cannot be modified outside of Configuration 

mode. With the CAN Engines enabled and configurable, the next step is to setup the 

clocking, whose bits lie inside of CiCFG (CAN Baud Rate Configuration Register). 

 

Clocking the chipKIT Max32 CAN Module .. 

 

A CAN bit time consists of four segments. Each segment is made up of a number of Time 

Quanta (TQ) periods. For our purposes, the number of TQ periods per bit (N) will be set to 

10, which will be distributed as 3TQ per phase segment. The synchronization segment will 

consist of a single TQ.  

 

Our chipKIT Max32 Demo Controller Area Network will operate with a baud rate of 250Kbps. 

Using the aforementioned number of TQ periods per bit and the network baud rate, we can 

calculate the Time Quantum Frequency (FTQ): 

 

 FTQ = N * FBAUD = 10 * 250Kbps = 2.5MHz 

 

We need the Time Quantum Frequency to calculate the CAN Module baud rate prescaler 

value.  The chipKIT Max32’s PIC32MX795F512L is running at 80MHz.  So, FSYS is 80MHz: 

 

C2CFG<BRP> = (FSYS/(2 * FTQ)) – 1 

C2CFG<BRP> = (80MHz/(2 * 2.5Mhz)) – 1 = 15 

 

As a result of our calculations, we conclude: 

 

 #define SYS_FREQ   (80000000L) 

 #define CAN_BUS_SPEED  250000 

 #define CAN2_BRPVAL 0x0F 

 



Don’t get too caught up in this math as the chipKIT Max32’s CAN Module automatically 

computes the baud rate prescaler value in the CANSetSpeed function. 

 

The idea is to size the Time Segments to allow reliable operation of the Controller Area 

Network.  The phase and propagation segments insure that any drift on the Controller Area 

Network Bus due to oscillator shift or propagation time are addressed. The phase and 

propagation segments are coded in this manner: 

 

 canBitConfig.phaseSeg2Tq              = CAN_BIT_3TQ; 

 canBitConfig.phaseSeg1Tq              = CAN_BIT_3TQ; 

 canBitConfig.propagationSegTq     = CAN_BIT_3TQ; 

 canBitConfig.phaseSeg2TimeSelect  = TRUE; 

 canBitConfig.sample3Time              = TRUE; 

     canBitConfig.syncJumpWidth           = CAN_BIT_2TQ; 

 

    CANSetSpeed(CAN2,&canBitConfig,SYSTEM_FREQ,CAN_BUS_SPEED); 

 

The canBitConfig structure was spawned from the CAN_BIT_CONFIG parent structure that is 

found in the PIC32MX CAN Peripheral Library’s CAN.h file. Note that all of the parameters 

we took into consideration for our calculations are used by the CANSetSpeed function.  

 

CAN Module Message Buffer Memory Area.. 

 

We can use the PIC32MX CAN Peripheral Library functions to easily setup separate transmit 

and receive buffer areas in chipKIT Max32 SRAM with a minimum of coding. Let’s specify 

enough Message Buffer area for a transmit channel and a receive channel with each channel 

containing 8 Message Buffers of 16 bytes each: 

 

 UINT8 CAN2MessageFifoArea[2 * 8 * 16]; 

 CANAssignMemoryBuffer(CAN2,CAN2MessageFifoArea,2 * 8 * 16);  

 

The chipKIT Max32’s CAN Module automatically allocates the specified memory space for a 

transmit FIFO and a receive FIFO according to the arguments of the 

CANAssignMemoryBuffer function. Once the Message Buffer memory is allocated, we can tell 

the chipKIT Max32’s CAN Module to organize it into addressable transmit and receive buffer 

areas: 

 
  CANConfigureChannelForTx(CAN2,CAN_CHANNEL0,8,CAN_TX_RTR_DISABLED,CAN_LOW_MEDIUM_PRIORITY); 
   CANConfigureChannelForRx(CAN2,CAN_CHANNEL1,8,CAN_RX_FULL_RECEIVE); 

 

The chipKIT Max32 will transmit CAN messages on Channel 0 and receive CAN messages on 

Channel 1. Each Channel is supported by 8 16-byte Message Buffers with the receive 

Message Buffer able to capture the entire CAN message, which includes a time stamp, the 

message ID and data payload.  

ChipKIT Max32 CAN Module Filters.. 

Every CAN messages is a broadcast messages. That means every CAN node on the 

Controller Area Network Bus has the ability to receive every message that is transmitted. 

For the sake of this demo, we want a CAN node to only accept CAN messages that are 

addressed to it. We do this by setting up a message acceptance filter. Each CAN SID 

(Standard ID) message has an 11-bit ID field that we can sift through our filter: 



    CANConfigureFilter      (CAN1, CAN_FILTER0, myaddr, CAN_SID);  

 

To set up a similar filter for the CAN2 Engine, simply change CAN12 to CAN1. Since we’re 

only interested in receiving SID messages in this demo application, we will trigger our filter 

on all 11 bits of the ID and reject and EID (Extended ID) messages:  

 
       CANConfigureFilterMask  (1 CAN_FILTER_MASK0, 0xFFF, CAN_SID,   CAN_FILTER_MASK_IDE_TYPE); 
 

Our first CAN1 filter mask value of 0xFFF covers all 11 bits of the incoming SID message’s 

ID field while the other arguments make sure that nothing but SID messages are allowed to 

flow to the receive buffer.  

 

CAN_FILTER0 is the first filter we defined and CAN_FILTER_MASK0 is the first filter mask we 

defined.  We can specify up to 32 filters (CAN_FILTER0-CAN_FILTER31) and up to 4 filter 

masks (CAN_FILTER_MASK0-CAN_FILTER_MASK3). The zero in the names of the filter and 

masks we coded do not associate them with Channel 0. After all, Channel 0 is our transmit 

channel. We need to associate the filter and mask we just created to the receive Channel, 

which happens to be Channel 1: 

 

    CANLinkFilterToChannel  (CAN1, CAN_FILTER0, CAN_FILTER_MASK0, CAN_CHANNEL1);  

 

Now that CAN_FILTER0 and CAN_FILTER_MASK0 are attached to the receive Channel, we 

can activate CAN_FILTER0: 

 

    CANEnableFilter         (CAN1, CAN_FILTER0, TRUE); 

 

CAN Module Interrupts.. 

 

We will monitor the CAN 1 and CAN2 receive activity using interrupt handler routines. 

 
    CANEnableChannelEvent(CAN1, CAN_CHANNEL1, CAN_RX_CHANNEL_NOT_EMPTY, TRUE); 
    CANEnableModuleEvent(CAN1, CAN_RX_EVENT, TRUE); 

 

The PIC32MX Interrupt Peripheral Library contains the necessary functionality to complete 

the interrupt definitions: 

      

    INTSetVectorPriority(INT_CAN_1_VECTOR, INT_PRIORITY_LEVEL_4); 

    INTSetVectorSubPriority(INT_CAN_1_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 

    INTEnable(INT_CAN1, INT_ENABLED); 
 

Now we can exit Configuration Mode and transition into Normal Operation Mode: 

 CANSetOperatingMode(CAN1, CAN_NORMAL_OPERATION); 

 while(CANGetOperatingMode(CAN1) != CAN_NORMAL_OPERATION);  

 

Transmitting a CAN Message.. 

 

The chipKIT Max32 CAN Module will transmit messages that are stacked into a transmit 

FIFO. However, we can’t just throw data into the transmit FIFOs in an ad hoc fashion. To 

that end, the PIC32MX CAN Peripheral Library has done much of the transmission grunt 

work for us by setting up transmit message structures, bit fields and logic.  



The SID bit field is 11 bits long and lies in the least significant 11 bits of the CMSGID 

register. The rest of the 32 bits in the CMSGSID area are not used. The CMSGSID bits are 

be defined within the PIC32MX CAN Peripheral Library in a structure: 

 

typedef struct  

{ 

 unsigned SID:11; //standard ID field – 0x0-0x7FF 

 unsigned :21;  //unused 

}CAN_TX_MSG_SID; 

 

we won’t be sending EID messages in the demo. Howevder, we still need to twiddle some 

bits in the CMSGEID register.  The DLC (Data Length Control) bits specify the size of the 

data payload section of the CAN packet. The bit to enable or disable RTR is also part of the 

CMSGEID bit field. Another bit that is important to us is the IDE bit.  This bit needs to be 

clear to indicate SID message transmission. This is  the EID parent structure: 

 

typedef struct  

{ 

 unsigned DLC:4; //valid range 0x00-0x08 

 

 unsigned RB0:1; //reserved - clear to 0 

 unsigned :3; 

 

 unsigned RB1:1; //reserved - clear to 0 

 

 unsigned RTR:1; //0 = RTR disabled 

 

 unsigned EID:18; //extended ID field – 0x0 – 0x3FFFF 

 

 unsigned IDE:1; //clear for SID 

 

 unsigned SRR:1; //ignored for SID 

 unsigned :2;  //unused bits 

 

}CAN_MSG_EID; 

 

Now that you know how the PIC32MX CAN Peripheral Library transmit message structures 

are coded, I think you’ll have no problem in interpreting the union that represents a CAN 

transmit Message Buffer: 

 

typedef union { 

 

 struct 

 { 

        // This is SID portion of the CAN TX message. 

  CAN_TX_MSG_SID msgSID;  //32 bits = 1 word 

 

        // This is EID portion of the CAN TX message. 

  CAN_MSG_EID msgEID;  //32 bits = 1 word 

 

        // This is the data portion of the CAN TX message. 

  BYTE data[8];    //64 bits = 2 words 

 }; 



 

    // This is CAN TX message organized as a set of 32 bit  

    // words. 

 UINT32 messageWord[4];   //4 words 

 

}CANTxMessageBuffer; 

 

I counted words within the union to show you that the messageWord array can cover all of 

the words in the structure if you wish it to. The messageWord array can be used to quickly 

clear the Message Buffer.  

 

To use all of that pretty union and structure code, we’ve got to point to it. That’s easily done 

and we’ll call the pointer to the CANTxMessageBuffer structure message: 

 

 CANTxMessageBuffer * message; 

 

We’re not pointing to anything yet. We’ve only assigned a pointer to the 

CANTxMessageBuffer structure.  So, let’s make sure we’re pointing at a valid transmit 

Message Buffer: 

 

 message = CANGetTxMessageBuffer(CAN2,CAN_CHANNEL0); 

 

Now we’re pointing at a Message Buffer in Channel 0, which happens to be our transmit 

Channel. A NULL returned to message means that we don’t have a valid Message Buffer in 

our grasp. If we are truly pointing to a transmit Message Buffer in Channel 0, we can 

proceed with our transmission process.   

 

This is how the Message Buffer is cleared in the demo code: 

 

    if(message != NULL) 

    { 

        //clear the Message Buffer  

        message->messageWord[0] = 0; 

        message->messageWord[1] = 0; 

        message->messageWord[2] = 0; 

        message->messageWord[3] = 0; 

 

This code will send a 1 byte message contained the byte 0x41 to address 0x101: 

 

        message->msgSID.SID  = node1can1;   

        message->msgEID.IDE  = 0;    

        message->msgEID.DLC  = 1;    

        message->data[0]         = 0x41; 

 

We’ve posted our CAN message in a valid Message Buffer. Before we do anything else, we 

need to update the Message Buffer’s internal pointers and send the message: 

 

        CANUpdateChannel(CAN1,CAN_CHANNEL0); 

        CANFlushTxChannel(CAN1,CAN_CHANNEL0); 

    }  

 

 

 



Receiving a CAN Message.. 

 

The CAN Module interrupt handlers we mentioned earlier are the first to know that a valid 

CAN message has been received. After the CAN receive interrupt fires, the CAN receive 

interrupt handler determines what caused the interrupt and branches accordingly. In our 

case, Channel 1 will be found to be the cause of the interrupt receive event. To prevent the 

receive interrupt from triggering again before we have time to service the original receive 

event, we must disable the receive interrupt trigger. We can then inform the application 

that a CAN message has been received via a flag, clear the receive interrupt flag and return 

to the application: 

 
void __attribute__((vector(47), interrupt(ipl4), nomips16)) CAN2InterruptHandler(void) 

{ 

     

  if((CANGetModuleEvent(CAN2) & CAN_RX_EVENT) != 0) 

  { 

  

 if(CANGetPendingEventCode(CAN2) == CAN_CHANNEL1_EVENT) 

 { 

    

               CANEnableChannelEvent(CAN2, CAN_CHANNEL1, CAN_RX_CHANNEL_NOT_EMPTY, FALSE); 

  isCAN2MsgReceived = TRUE;  

  } 

 } 

 

 INTClearFlag(INT_CAN2); 

 

 

} 

 

The CAN receive message algorithm is similar to the CAN transmit message except we are taking 

instead of giving from a Message Buffer point of view.  We still have to assign a pointer to the receive 

Message Buffer: 

 

 CANRxMessageBuffer * message; 

The CAN receive interrupt handler we just examined determined that a valid message had 

been posted and set the flag isCAN2MsgReceived  to TRUE. So, we can clear the 
isCAN2MsgReceived  flag and obtain the address of the newly received CAN message: 

 

 if(isCAN2MsgReceived == FALSE) 

 { 

  return; 

 } 

  

 isCAN2MsgReceived = FALSE;  

  

 message = CANGetRxMessage(CAN2,CAN_CHANNEL1); 

 

Now that we have access to the receive Message Buffer that contains the incoming data 

payload, we can assess the data payload using a pointer to the members of the pointed-to 

structure, which is in this case CANRxMessageBuffer: 
 

   

 



if (UARTTransmitterIsReady(UART1)) 

  { 

   UARTSendDataByte(UART1, message->data[0]); 

  } 

 

After redirecting the received byte of CAN data  to the chipKIT Max32’s FT232RQ-based USB 

portal, we update the receive Message Buffer’s internal pointers and enable the receive 

interrupt trigger with this code: 

 

CANUpdateChannel(CAN1, CAN_CHANNEL1); 

CANEnableChannelEvent(CAN1, CAN_CHANNEL1, CAN_RX_CHANNEL_NOT_EMPTY, TRUE); 

 

We’re ready to receive and process the next CAN message. 

 

 

 

 

 

 

 

 

 

 

 


