
CC33 MMeemmoorryy MMoodduullee CCoonnffiigguurraattiioonn PPrroojjeecctt
UUsseerr MMaannuuaall

TM

www.digi lent inc.com

Revision: 3/20/05 246 East Main | Pullman, WA 99163
(509) 334 6306 Voice and Fax

Copyright Digilent, Inc. Page 1 of 14 Doc: 562-004

1 Usage
The Digilent C3 memory module configuration project provides erasing, reading, and writing functions for the 1
MB Flash chip on the module.

2 Related Digilent Reference Projects
• The C1MemCfg project is a similar project able to configure the Digilent C1 memory module (512 KB

RAM + 512 KB Flash) or the C0 memory module (128 KB RAM + 512 KB Flash).
• The C2MemCfg project is a similar project able to configure the Digilent C2 memory module (2 x 512 KB

RAM chips, seen as a contiguous 1 MB RAM).
• The C1MemCfgX2 project is an example of modifying the C1MemCfg project to support two C1 memory

modules connected to the same system board and configured through the same connection and
communication module. It can be used as model for custom projects able to support up to five Cx memory
modules (identical or different). The maximum number of memory modules is one less than the number of
available system board connectors.

When reference is made to any of these projects, the generic name CxMemCfg is used.

3 PC Required Software
• Digilent TransPort and/or
• MemUtil

4 The Reference Digilent Board Configuration
The ready-to-compile project is built for Spartan 3 system board with a Digilent USB 2.0 module attached to
connector A1 and a Digilent C3 memory module attached to connector A2.

5 Available Digilent Board Configurations
Compiled Bit_files and Board_Specific_Source_Files are available for:

5.1 Digilab 2FT Motherboard (Spartan XC2S300E or XC2S400E FPGA) with:
• Digilent USB 2.0 module on A1 connector
• Digilent C3 memory module on A2 connector
• Digilab Digital I/O 4 on C1, C2 connectors (optional: used by Main.bit, not used by C3MemCfg.bit – see

section 6)

5.2 Digilab 2SB Motherboard with:
• Digilent USB 2.0 module on A1 connector
• Digilent C3 memory module on A2 connector
• Digilab Digital I/O 4 on C1, C2 connector (optional: used by Main.bit, not used by C3MemCfg.bit – see

section 6)

5.3 Digilent Pegasus Motherboard (Spartan XC2S50 or XC2S200 FPGA) with:
• Digilent USB 2.0 Module on A1 motherboard connector
• Digilent C3 memory module on A2 connector

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 2 of 14 Doc: 562-004

5.4 Digilent Spartan 3 Motherboard (Spartan XC3S200 or XC3S400 FPGA) with:
• Digilent USB 2.0 module on A1 motherboard connector
• Digilent C3 memory module on A2 connector

6 Available Project and Compiling Variants
• with 7-segment display showing the lower 16 memory address bus bits (Main.bit)
• without display (C3MemCfg.bit)

Choosing Main.sch as the highest level file in the project hierarchy, the project enables the display feature. The
Digilab Digital I/O 4 board should be part of the configuration or the motherboard should have the 4-digit, 7-
segment display on it. The compiled file is Main.bit.

Choosing C3MemCfg.sch as the highest level file in the project hierarchy disables the display feature, releasing the
associated resources (pins, internal logic). This can be done even if the whole project includes the Main.sch file, and
C3MemCtrl is displayed as a lower level hierarchical file: just highlight C3MemCtrl in the “Sources in Project” and
generate the programming file C3Memcfg.bit.

7 Digilent Library Components Used
• C3MemCtrl
• EppCtrl
• Disp7sCtrl

8 Project Description
The project implements an EPP interface (EppCtrl), able to communicate with the EPP port emulated by the
Digilent USB 2.0 Module. The EPP interface controls the EPP data registers implemented in the memory module
controller (C3MemCtrl). The memory module controller generates the signal sequence needed to erase, read, or
write the Flash chip. For detailed descriptions of each component, see the Digilent Component Library.

9 Using Digilent MemUtil Software to Configure the Memory Module
Using MemUtil to configure the memory module is very simple and intuitive. You should keep in mind the features
provided by the C3 memory module (1 MB Flash). The software functions are:

• Properties . The user sets:
o Connection Properties. In the pull-down menu, the desired connection is selected. Multiple

communication modules (Ethernet, USB, Serial) can be connected at the same time to the host PC. A
MemUtil instance uses a single such connection.

o Configure. The selected connection can be configured. For more details see the Adept User Manual.
o Memory configuration. Selects the Digilent memory module type. The C3MemCfg project works with

a single C3 memory module.
o Starting Register Address. MemUtil supports multiple memory modules attached to different

motherboard connectors. For more details, see the C1memCfgX2 project. For the C3MemCfg project,
select 0x00.

• Load RAM. This tab is inactive, since the C3 memory module does not contain RAM memory.

• Load Flash. The user specifies:

o the source file
o the File Start Location
o the Flash start address
o the length of transferred data block
o the Verify option

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 3 of 14 Doc: 562-004

o the Auto erase option. The software erases only the Flash block which are affected by the Load
operation.

• Store RAM. This tab is inactive, since C3 memory module does not contain RAM memory.

• Store Flash. The user specifies:

o the Flash start address
o the length of transferred data block
o the destination file
o the file write option (Append, Replace, Overwrite)
o the File Start Location (only for Overwrite)

• Ease Flash. The user specifies:

o the blocks selected for erase operation
o type of operation (Erase All or Erase Selected)

Multiple instances of MemUtil can run at the same time, on the same PC, sharing the same connection,
communication module, system board, and memory module. Other Digilent applications (such as Digilent TransPort
and Digilent ExPort) can also share the same connection. The MemUtil instances sharing the same connection can
share the same memory module or be assigned to different memory modules. On the other hand, the C3MemCfg
project only supports a single C3 memory module.

Memory modules are identified by the starting register address. The C3MemCfg project assigns the starting register
address 0x00 to the memory module.

Successive operations can be launched through any active MemUtil instance. The user should allow a command to
be fully executed before launching another one for the same communication module.

To control multiple memory modules connected to the same system board (and through the same connection and
communication module), the CxMemCfg project needs to be modified. An example is the C1MemCfgX2 project.
For more information, see the C1 Memory Module Configuration X2 Project User Manual.

Multiple MemUtil instances can be used to control different board sets. For example, multiple different USB
channels can be connected each to its own set (USB Module + System Board + Memory Module). Each system
board needs to be configured with a CxMemCfg project. In this case, MemUtil instances are set to use different
connections.

10 Using Digilent TranSport Software to Configure the Memory
Module

The Transport software allows the user to access the memory module at lower level commands. The routines are the
same as the ones used by MemUtil, to implement the high level commands described above. TranSport is useful for
debugging purposes and for checking the command sequences before implementing them in a user generated
software application. The software functions are:

• Properties . The user sets:
o Connection Properties. In the pull-down menu, the desired connection is selected. Multiple

communication modules (Ethernet, USB, Serial), can be connected at the same time to the host PC. A
MemUtil instance uses a single such connection.

o Configure. The selected connection can be configured. For more information, see the Adept User
Manual.

• Load File. Sends a file (fragment) to a specified EPP Data Register. The user specifies:

o the source file

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 4 of 14 Doc: 562-004

o the File Start Location
o the Destination Register
o the Load Entire File option
o the length of transferred data block (only if the Load Entire File option is not checked)

• Store File. Reads a specified EPP Data Register and saves data to a file (fragment). The user specifies:

o the destination file
o the File Output Mode (Append, Replace, Overwrite)
o the File Start Location (only for Overwrite)
o the Source Register
o the length of transferred data block

• Register I/O. Reads or writes a byte from/to a specified EPP Data Register. The user specifies:

o the Epp Register Address
o the data (for write operations)
o the read Display Format

There are 8 lines, each able to define a register address and data. Their transfer can be performed line by line
(pressing the Read or Write button of the desired line) or as full sequence, pressing the Read All or Write All
buttons.

Multiple instances of TransPort can run at the same time, on the same PC, sharing the same connection,
communication module, system board, and memory module. Other Digilent applications (such as MemUtil and
ExPort) can also share the same connection. The TransPort instances sharing the same connection can share the
same memory module or be assigned to different memory modules. On the other hand, the C2MemCfg project only
supports a single C3 memory module.

Memory modules are identified by the Register Address range. The C3MemCfg project assigns the Register Address
range 0x00 ...0x07 to the memory module.

Successive operations can be launched through any active TransPort instance. The user should however allow a
command to be fully executed before launching another one for the same communication module.

To control multiple memory modules connected to the same system board (and through the same connection and
communication module), the CxMemCfg project needs to be modified. An example is the C1MemCfgX2 project.
For more details see the C1Memory Configuration X2 Project User Manual.

Multiple TransPort instances can be used to control different board sets. For example, multiple different USB
channels can be connected each to its own set (USB Module + System Board + Memory Module). Each system
board needs to be configured with a CxMemCfg project. In this case, TransPort instances are set to use different
connections.

As described above, TransPort software can be used to control any EPP interface implemented in the FPGA circuit.
The following section shows how to access the specific C3 memory module features.

10.1 Reading a Flash Location with Low-Level EPP Commands
Before attempting to read the Flash memory, make sure the Flash is in the Array Read mode. The Flash chip can be
set in Array Read mode by either of the following actions:

• Power up reset
• Activate the Reset pin (RP) (active LOW)
• Issue the READ ARRAY command.

 Once in READ ARRAY mode, the Flash chip holds that mode until a different command is sent.

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 5 of 14 Doc: 562-004

If the Flash chip is already in READ ARRAY mode, skip the steps 1 to 2.
1. Load Read Array command to the Memory Data Bus Register MemDB(7 downto 0)):

1.1. Write the Read Array command (FFh) to EPP Register regMemWrData(7 downto 0) at EPP address
MemDataWr = 4

2. Generate the write sequence on the memory control bus:
2.1. Activate FlashCS and MemWr signals - write “10101” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
2.2. Deactivate MemWr signal - write “10111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
2.3. Deactivate FlashCS signal - write “11111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
3. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

3.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
3.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
3.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
4. Generate the read sequence on the memory control bus:

4.1. Activate FlashCS and MemOE signals - write “10110” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

5. Read the Memory Data Bus Register MemDB(7 downto 0)):
5.1. Read the EPP Register regMemRdData(7 downto 0) at EPP address MemDataRd = 5

6. Finish the read sequence on the memory control bus:
6.1. Deactivate FlashCS and MemOE signals - write “11111” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)

10.2 Writing a Flash Location with Low-Level EPP Commands
The user directly controls the memory busses (Data, Address and Control), using the Register I/O function:
1. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Load Write Command to the Memory Data Bus Register MemDB(7 downto 0)):

2.1. Write the Write Command (40h) to EPP Register regMemWrData(7 downto 0) at EPP address
MemDataWr = 4

3. Generate the write sequence on the memory control bus:
3.1. Activate FlashCS and MemWr signals - write “10101” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
3.2. Deactivate MemWr signal - write “10111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
3.3. Deactivate FlashCS signal - write “11111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
4. Load data to the Memory Data Bus Register MemDB(7 downto 0)):

4.1. Write the data byte to EPP Register regMemWrData(7 downto 0) at EPP address MemDataWr = 4
5. Generate the write sequence on the memory control bus:

5.1. Activate FlashCS and MemWr signals - write “10101” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

5.2. Deactivate MemWr signal - write “10111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =
0)

5.3. Deactivate FlashCS signal - write “11111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =
0)

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 6 of 14 Doc: 562-004

When manually writing a data byte using TransPort software, the steps 6 to 13 are not necessary (in fact, it’s not
possible to perform them fast enough.) They check a status bit of the Flash chip, which pulses low, while the internal
Flash logic performs the write operation. Typical pulse length is 2µs. The steps are posted here as a reference to be
implemented in a software or HDL component, which automatically performs the write sequence.

6. Generate the read sequence on the memory control bus:

6.1. Activate FlashCS and MemOE signals - write “10110” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

7. Read the Flash Status Register (SR) on the Memory Data Bus Register MemDB(7 downto 0)):
7.1. Read the EPP Register regMemRdData(7 downto 0) at EPP address MemDataRd = 5

8. Finish the read sequence on the memory control bus:
8.1. Deactivate FlashCS and MemOE signals - write “11111” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
9. Check the SR7 bit (MSB of SR). Loop back to 6, if SR7 = 1.
10. Generate the read sequence on the memory control bus:

10.1. Activate FlashCS and MemOE signals - write “10110” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

11. Read the Flash Status Register (SR) on the Memory Data Bus Register MemDB(7 downto 0)):
11.1. Read the EPP Register regMemRdData(7 downto 0) at EPP address MemDataRd = 5

12. Finish the read sequence on the memory control bus:
12.1. Deactivate FlashCS and MemOE signals - write “11111” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
13. Check the SR7 bit (MSB of SR). Loop back to 10 , if SR7 = 0.

10.3 Erasing a Flash Block with Low-Level EPP Commands
The user directly controls the memory busses (Data, Address and Control), using the Register I/O function:
1. Load the Memory Address Bus Register (MemAdr(19 downto 0)) – any address in the block to be erased:

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Load Erase Command to the Memory Data Bus Register MemDB(7 downto 0)):

2.1. Write the Erase Command (20h) to EPP Register regMemWrData(7 downto 0) at EPP address
MemDataWr = 4

3. Generate the write sequence on the memory control bus:
3.1. Activate FlashCS and MemWr signals - write “10101” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
3.2. Deactivate MemWr signal - write “10111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
3.3. Deactivate FlashCS signal - write “11111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
4. Load Confirm Erase Command to the Memory Data Bus Register MemDB(7 downto 0)):

4.1. Write the Confirm Erase Command (D0h) to EPP Register regMemWrData(7 downto 0) at EPP address
MemDataWr = 4

5. Generate the write sequence on the memory control bus:
5.1. Activate FlashCS and MemWr signals - write “10101” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
5.2. Deactivate MemWr signal - write “10111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)
5.3. Deactivate FlashCS signal - write “11111” to the regMemCtl(4 downto 0), at EPP address MemCtrlReg =

0)

When manually writing a data byte using TransPort software, the steps 6 to 13 are not necessary (in fact, it’s not
possible to perform them fast enough.) They check a status bit of the Flash chip, which pulses low, while the internal

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 7 of 14 Doc: 562-004

Flash logic performs the write operation. Typical pulse length is 200-500ms. The steps are posted here as a reference
to be implemented in a software or HDL component, which performs automatically the erase sequence.

6. Generate the read sequence on the memory control bus:

6.1. Activate FlashCS and MemOE signals - write “10110” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

7. Read the Flash Status Register (SR) on the Memory Data Bus Register MemDB(7 downto 0)):
7.1. Read the EPP Register regMemRdData(7 downto 0) at EPP address MemDataRd = 5

8. Finish the read sequence on the memory control bus:
8.1. Deactivate FlashCS and MemOE signals - write “11111” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
9. Check the SR7 bit (MSB of SR). Loop back to 6, if SR7 = 1.
10. Generate the read sequence on the memory control bus:

10.1. Activate FlashCS and MemOE signals - write “10110” to the regMemCtl(4 downto 0), at EPP address
MemCtrlReg = 0)

11. Read the Flash Status Register (SR) on the Memory Data Bus Register MemDB(7 downto 0)):
11.1. Read the EPP Register regMemRdData(7 downto 0) at EPP address MemDataRd = 5

12. Finish the read sequence on the memory control bus:
12.1. Deactivate FlashCS and MemOE signals - write “11111” to the regMemCtl(4 downto 0), at EPP address

MemCtrlReg = 0)
13. Check the SR7 bit (MSB of SR). Loop back to 10 , if SR7 = 0.

10.4 Reading a Flash Location Using the Automatic Flash Read Register
Before attempting to read the Flash memory, make sure the Flash is in the Array Read mode. The Flash chip can be
set in Array Read mode by either of the following actions:

• Power up reset
• Activate the Reset pin (RP) (active LOW)
• Issue the READ ARRAY command.

 Once in READ ARRAY mode, the Flash chip holds that mode until a different command is sent.

If the Flash chip is not already in READ ARRAY mode, perform first the steps 1 to 2 shown in section 10.1.

1. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Read the regMemRdData(7 downto 0) register at address RamAutoRW = 7. C3MemCtrl automatically

generates the read sequence and increments the MemAdr register. Repeat step 2 to read successive Flash
locations.

10.5 Writing a Flash Location Using the Automatic Flash Write Register
1. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Write data byte to the regMemRdData(7 downto 0) register at address FlashAutoRW = 7. C3MemCtrl

automatically generates the write sequence and increments the MemAdr register. Repeat step 2 to write
successive Flash locations. The Flash chip enters the READ STATUS mode.

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 8 of 14 Doc: 562-004

10.6 Storing the Flash Content to a File Using the Store File Function
Before attempting to read the Flash memory, make sure the Flash is in the Array Read mode. The Flash chip can be
set in Array Read mode by either of the following actions:

• Power up reset
• Activate the Reset pin (RP) (active LOW)
• Issue the READ ARRAY command.

 Once in READ ARRAY mode, the Flash chip holds that mode until a different command is sent.

If the Flash chip is not already in READ ARRAY mode, perform first the steps 1 to 2 shown in section 10.1.

1. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Select the Store File tab of the TransPort software. Fill in the required fields. Select Source Register 7

(FlashAutoRW). Press the Store button.

10.7 Loading a File to the Flash Using the Load File Function
1. Load the Memory Address Bus Register (MemAdr(19 downto 0)):

1.1. Write the lowest address byte to EPP Register MemAdr(7 downto 0) at EPP address MemAdrL = 1
1.2. Write the middle address byte to EPP Register MemAdr(15 downto 8) at EPP address MemAdrM = 2
1.3. Write the highest address byte to EPP Register MemAdr(19 downto 16) at EPP address MemAdrH = 3

(for bytes keeping the previous value, the steps above can be skipped)
2. Select the Load File tab of the TransPort software. Fill in the required fields. Select Source Register 7

(FlashAutoRW). Press the Load button. The Flash chip enters the READ STATUS mode.

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 9 of 14 Doc: 562-004

11 EppCtrl State Diagram, State Transition Table, and Signals

State Transition Table
 0 1
00 Ready

↓

01 Stb

↓ →
SetProc

↓
11 RegTransf

↓
LaunchProc

↓
10 Done WaitProc

stEppReady
000

EppDstb = ‘0’ and
HandShakeReqIn =
‘1’

ctlMsmDoneIn = '1'

eppDstb = '0' or eppAstb =

else

stEppStb
010

stEppLaunchProc
111

stEppWaitPro
c

stEppDone
100

ctlMsmDoneIn = '0'

else

else

EppAstb = '0' or
EppDstb = ‘0’

stEppRegTransf
110

else

else

stEppSetProc
011

EppRst

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 10 of 14 Doc: 562-004

11.1 EppCtrl Port Signals
-- EPP-like bus signals
clk : in std_logic; -- system clock (50MHz)
EppAstb : in std_logic; -- Address strobe
EppDstb : in std_logic; -- Data strobe
EppWr : in std_logic; -- Port write signal
EppRst : in std_logic; -- Port reset signal
EppDB : inout std_logic_vector(7 downto 0); -- port data bus
EppWait : out std_logic; -- Port wait signal
-- User signals
busEppOut : out std_logic_vector(7 downto 0);-- Data Output bus
busEppIn : in std_logic_vector(7 downto 0); -- Data Input bus
ctlEppDwrOut : out std_logic; -- Data Write pulse
ctlEppRdCycleOut: inout std_logic;-- Indicates a READ Epp cycle
regEppAdrOut : inout std_logic_vector(7 downto 0) := "00000000"; -- Epp Address Register content
HandShakeReqIn : in std_logic; -- User Handshake Request
ctlEppStartOut : out std_logic; -- Automatic process Start
ctlEppDoneIn : in std_logic -- Automatic process Done

11.2 EppCtrl Internal Signals
busEppInternal: std_logic_vector(7 downto 0);
ctlEppAwr : std_logic;

11.3 EppCtrl Signal Assignments
-- Synchronized EPP outputs:
 process(clk)
 begin
 if clk'event and clk='1' then
 if stEppCur = stEppReady then
 ctlEppRdCycleOut <= '0';
 elsif stEppCur = stEppStb then
 ctlEppRdCycleOut <= EppWr; -- not equivalent to EppWr due to default
state
 end if;
 end if;
 end process;

 busEppOut <= EppDB;

 EppDB <= busEppInternal when (ctlEppRdCycleOut = '1') else "ZZZZZZZZ";

 busEppInternal <= regEppAdrOut when EppAstb = '0' else busEppIn;

 -- Epp State machine related signals

 EppWait <= '1' when stEppCur = stEppDone else '0';
 ctlEppAwr <= '1' when stEppCur = stEppRegTransf and EppAstb = '0' and EppWr = '0' else '0';
 ctlEppDwrOut <= '1' when (stEppCur = stEppRegTransf or stEppCur = stEppSetProc)
 and EppDstb = '0' and EppWr = '0' else '0';
 ctlEppStartOut <= '1' when stEppCur = stEpplaunchProc else '0';

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 11 of 14 Doc: 562-004

12 C3MemCtrl State Diagram, State Transition Table, and Signals

State Transition Table

 00 01 11 10
00 Ready

↓ →
Fwr01

↓

01 Frd01
↓

Fwr02
→

Fwr03
↓

11 AdrInc
↓

Fwr07
←

Fwr04
↓

10 Done
↓

Fwr06
↑

Fwr05
←

else
stMsmFwr01

0001

stMsmFwr02
0101

stMsmFwr03
0111

else

DelayCnt = “111”

DelayCnt = “101”

stMsmReady
0000 CtlEppStartIn = ‘1’ and

RegEppAdr = FlashAutoRW and
ComponentSelect = ‘1’ and
CtlEppRdCycleIn = ‘0’

stMsmFwr05
1011

stMsmFwr06
1001

stMsmFwr07
1101

stMsmFwr04
1111

else

else

DelayCnt = “111”

DelayCnt = “101”

DelayCnt = “101” and
busMemIn(7) = ‘0’

DelayCnt = “101” and
busMemIn(7) = ‘1’ else

else

DelayCnt = “111”

DelayCnt = “101” and
busMemIn(7) = ‘1’

DelayCnt = “101” and
busMemIn(7) = ‘0’ else

stMsmAdInc
1100

else
CtlMsmStartIn = ‘’1’

stMsmFrd01
0100

DelayCnt = “101”

stMsmDone
1000

else

Reset

else

CtlEppStartIn = ‘1’ and
RegEppAdr = FlashAutoRW and
ComponentSelect = ‘1’ and
CtlEppRdCycleIn = ‘1’

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 12 of 14 Doc: 562-004

12.1 C3MemCtrl Port Signals
ck : in std_logic; -- system clock (50MHz)

-- EPP interface signals
HandShakeReqOut: out std_logic; -- User Handshake Request
ctlMsmStartIn: in std_logic; -- Automatic process Start
ctlMsmDoneOut: out std_logic; -- Automatic process Done
ctlMsmDwrIn: in std_logic; -- Data Write pulse
ctlEppRdCycleIn: in std_logic; -- Indicates a READ Epp cycle
EppRdDataOut: out std_logic_vector(7 downto 0); -- Data Input bus
EppWrDataIn: in std_logic_vector(7 downto 0); -- Data Output bus
regEppAdrIn: in std_logic_vector(7 downto 0) ; -- Epp Address Register content (bits 7:3 ignored)
ComponentSelect : in std_logic; -- active HIGH, selects the current MemCtrl instance

-- Memory bus signals
MemDB : inout std_logic_vector(7 downto 0); -- Memory data bus
MemAdr : out std_logic_vector(19 downto 0); -- Memory Address bus
FlashCS : out std_logic; -- Flash CS
MemWR : out std_logic; -- memory write
MemOE : out std_logic -- memory read (Output Enable), also controls the MemDB direction

12.2 C3MemCtrl Internal Signals
signal DelayCnt : std_logic_vector(2 downto 0);

-- Signals dealing with memory chips
signal regMemCtl: std_logic_vector(4 downto 0) := "11111";-- Memory Control register
signal regMemAdr: std_logic_vector(19 downto 0); -- Memory Address register
signal carryoutL: std_logic := '0'; -- Carry out for memory address low byte
signal carryoutM: std_logic := '0'; -- Carry out for memory address middle byte
signal regMemWrData: std_logic_vector(7 downto 0); -- Memory Write Data register
signal regMemRdData: std_logic_vector(7 downto 0); -- Memory Read Data register
signal busMemIn: std_logic_vector(7 downto 0);
signal busMemOut: std_logic_vector(7 downto 0);

-- Signals in the memory control register
signal ctlMcrOe : std_logic; -- Output enable (read strobe)
signal ctlMcrWr : std_logic; -- Write enable (write strobe)
signal ctlMcrFlashCs : std_logic; -- Flash chip select
signal ctlMcrDir : std_logic; -- composed out of previous ones

-- Signals used by Memory control state machine
signal ctlMsmOe : std_logic;
signal ctlMsmWr : std_logic;
signal ctlMsmFlashCs : std_logic;
signal ctlMsmDir : std_logic;
signal ctlMsmAdrInc : std_logic;
signal ctlMsmWrCmd : std_logic;

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 13 of 14 Doc: 562-004

12.3 C3MemCtrl Signal Assignments
-- Memory signals
-- Memory control register
 ctlMcrOe <= regMemCtl(0); -- Output enable (read strobe)
 ctlMcrWr <= regMemCtl(1); -- Write enable (write strobe)
 ctlMcrFlashCs <= regMemCtl(3); -- Flash chip select

-- Memory control bus driven either by automatic state machine or by memory control register
 FlashCS <= ctlMsmFlashCs and ctlMcrFlashCs; -- PC generated Flash CS;
 MemWR <= ctlMsmWr and ctlMcrWr; -- PC generated MemWr;
 MemOE <= ctlMsmOe and ctlMcrOe; -- PC generated MemOe;
 busMemIn <= MemDB;
 busMemOut <= "01000000" when ctlMsmWrCmd = '1' else regMemWrData;
 MemAdr <= regMemAdr;
 ctlMcrDir <= ctlMcrOe and ((not ctlMcrFlashCs) or (not ctlMcrRAMCs));
 MemDB <= busMemOut when (ctlMsmDir = '1' or ctlMcrDir = '1') else "ZZZZZZZZ";

-- Handshake signal
HandShakeReqOut <=
'1' when (regEppAdrIn(2 downto 0) = FlashAutoRW)

and ComponentSelect = '1' else
'0';

-- Delay Counter
process (clk)
 begin
 if clk'event and clk = '1' then
 if stMsmCur = stMsmReady then DelayCnt <= "000";
 else DelayCnt <= DelayCnt + 1;
 end if;

 end if;
end process;

-- Memory Control Register
process (clk, ctlMsmDwrIn)
begin
if clk = '1' and clk'Event then
 if ctlMsmDwrIn = '1' and regEppAdrIn(2 downto 0) = MemCtrlReg and ComponentSelect = '1' then
 regMemCtl <= EppWrDataIn(4 downto 0);
 end if;
end if;
end process;

-- Memory Address Register/Counter
MsmAdrL: process (clk, ctlMsmDwrIn, ctlMsmAdrInc)
begin
if clk = '1' and clk'Event then
 if ctlMsmAdrInc = '1' then

regMemAdr(7 downto 0) <= regMemAdr(7 downto 0) + 1; --"00000001";
 elsif ctlMsmDwrIn = '1' and regEppAdrIn(2 downto 0) = MemAdrL and ComponentSelect = '1' then
 regMemAdr(7 downto 0) <= EppWrDataIn;
 end if;
end if;

Digilent, IncTM
C3MemCfg User Manual

 www.digilentinc.com

Copyright Digilent, Inc. Page 14 of 14 Doc: 562-004

end process;
carryoutL <= '1' when regMemAdr(7 downto 0) = "11111111" else '0';

MsmAdrM: process (clk, ctlMsmDwrIn, ctlMsmAdrInc)
begin
if clk = '1' and clk'Event then
 if ctlMsmAdrInc = '1' and carryoutL = '1' then
 regMemAdr(15 downto 8) <= regMemAdr(15 downto 8) + 1; --"00000001";
 elsif ctlMsmDwrIn = '1' and regEppAdrIn(2 downto 0) = MemAdrM and ComponentSelect = '1' then
 regMemAdr(15 downto 8) <= EppWrDataIn;
 end if;
end if;
end process;
carryoutM <= '1' when regMemAdr(15 downto 8) = "11111111" else '0';

MsmAdrH: process (clk, ctlMsmDwrIn, ctlMsmAdrInc)
begin
if clk = '1' and clk'Event then
 if ctlMsmAdrInc = '1' and carryoutL = '1' and carryoutM = '1' then
 regMemAdr(19 downto 16) <= regMemAdr(19 downto 16) + 1; --"001";
 elsif ctlMsmDwrIn = '1' and regEppAdrIn(2 downto 0) = MemAdrH and ComponentSelect = '1' then
 regMemAdr(19 downto 16) <= EppWrDataIn(2 downto 0);
 end if;
end if;
end process;

-- Memory write data holding register
process (clk, ctlMsmDwrIn)
begin
if clk = '1' and clk'Event then
 if ctlMsmDwrIn = '1' and

(regEppAdrIn(2 downto 0) = FlashAutoRW or
 regEppAdrIn(2 downto 0) = MemDataWr) and ComponentSelect = '1' then
 regMemWrData <= EppWrDataIn;
 end if;
end if;
end process;

-- Memory read register: - holds data after an automatic read
process (clk)
begin
if clk = '1' and clk'Event then
 if stMsmCur = stMsmFrd01 then
 regMemRdData <= busMemIn;
 end if;
end if;
end process;

