
© Copyright 2002 – 2010 Xilinx, Inc. All Rights Reserved.

Introduction
MPMC is a fully parameterizable memory controller
that supports SDRAM/DDR/DDR2/DDR3/LPDDR
memory. MPMC provides access to memory for one to
eight ports, where each port can be chosen from a set of
Personality Interface Modules (PIMs) that permit
connectivity into PowerPC® 405 processors and
MicroBlaze™ processors using IBM CoreConnect®
Tookit Processor Local Bus (PLB)v4.6 and the Xilinx®
CachLink (XCL) structures, as well as a Memory
Interface Block (MIB) PIM (PPC440MC) for the
PowerPC 440 Processor. MPMC supports the Soft
Direct Memory Access (SDMA) controller that provides
full-duplex, high-bandwidth, LocalLink interfaces into
memory. A Video Frame Buffer Controller (VFBC) PIM
is also available. For low-level direct access to the
memory controller core, a Native Port Interface (NPI)
PIM is available for soft memory controllers and the
Memory Controller Block (MCB) PIM is available for
the Spartan-6 hard memory controller. Additionally,
MPMC supports optional Error Correcting Code (ECC),
Performance Monitoring (PM), and Debug registers.

Features
• Soft Direct Memory Access (SDMA) support

• Double Data Rate (DDR/DDR2/DDR3/LPDDR)
and Single Data Rate (SDR) SDRAM memory
support.

• DIMM support (registered and unbuffered).

• Error Correcting Code (ECC) Performance
Monitoring (PM), and Debug register support.

• Parameterizable:

- number of ports (1 to 8)
- number of data bits to memory (4, 8, 16, 32, 64)
- configuration of data path FIFOs

• Memory Interface Generator (MIG)-based PHY
v3.4 support.
(Features are continued on next page)

Note: This document uses the terms “PLB v4.6” and “PLB”
to refer to PLB v4.6 with Xilinx simplifications. MPMC does not
support earlier versions of PLB (such as PLB v3.4). Also note
that MPMC does not directly connect to OPB peripherals;
such connection would require a PLB v4.6 to OPB or an OPB
to PLB v4.6 bridge. See "Reference Documents," page 229
for more information about this bus standard and about the
migration of designs to use this standard.

Multi-Port Memory Controller
(MPMC) (v6.01.a)

DS643 July 23, 2010 Product Specification

LogiCORE™ Facts

Core Specifics

Supported Devices(1)
Spartan®-(3/3A/3E/3AN/3ADSP)
Virtex®-4, Virtex-5, Virtex-6,
Spartan-6

Design Tool Requirements

Xilinx Implementation
Tools

ISE® Design Suite 12

Verification ModelSim 6.4b and above

Simulation
ModelSim 6.4b and above
NCSim UIS 8.1-s009 and above
(LINUX only)

Synthesis XST

Resources Used
See "Performance, Timing, and
Resource Utilization," page 201.

Provided with Core

Documentation
DS643 Multi-Port Memory
Controller (MPMC) (v5.04.a)
Data Sheet (this document)

Design File Formats Verilog/VHDL

Reference Designs
Application Notes

See "Reference Documents,"
page 229.

Support

Provided by www.xilinx.com

1. See "FPGA Device Support," page 3.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 1
Product Specification

XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc.
The PowerPC name and logo are registered trademarks of IBM Corp., and used under license. All other trademarks are the property of their respective owners.

Xilinx is providing this design, code, or information (collectively, the “Information”) to you “AS IS” with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any
particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. XILINX EXPRESSLY
DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIM-
ITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any
form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.

http://www.xilinx.com
www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

2

Features (continued)
• Static Physical (PHY) interface alternative to the MIG-based PHY

• User configuration of arbitration algorithms

• Customize-able Interfaces: XCL, LocalLink (using SDMA), PLB v4.6 with Xilinx simplifications,
NPI, MCB, MIB/PPC440MC, and VFBC

Note: Some features might have limitations or might not be available in some architectures. Review the MPMC
architecture-specific features in the following table for more information.

Table 1: MPMC Architecture Specific Features

Feature Architecture

Spartan-3 Virtex-4 Virtex-5 Spartan-6 Virtex-6

PLB PIM X X X X X

XCL PIM X X X X X

SDMA PIM (3) X X X X X

PPC440MC PIM Virtex-5 FX Only

VFBC PIM X X X X X

NPI PIM X X X X X

MCB PIM X

Maximum Number of Ports 8 8 8 6, 3, 2 or 1(1) 8

SDRAM memory (Width)(2) 8, 16, 32, 64 8, 16, 32, 64 8, 16, 32, 64

DDR memory (Width)(2) 8, 16, 32, 64 8,16,32,64 8,16,32,64 4,8,16

LPDDR memory (Width)(2) 16

DDR2 memory (Width)(2) 8, 16, 32, 64 8, 16, 32, 64 8, 16, 32, 64 4, 8, 16 8, 16, 32

DDR3 memory (Width)(2) 4, 8, 16 8, 16, 32

Debug Registers X X X

ECC X X X

Static PHY X X X

MIG PHY X X X X

Spartan-6 MCB (Controller
and PHY)

X

Performance Monitors X X X X X

Notes:
1. Depends on the MCB Port Configuration Mode.
2. Maximum memory width might be limited by the I/O of the device.
3. SDMA support is dependent upon architecture and external memory width.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
FPGA Device Support

MPMC supports the following device families:

Design Parameters
The following tables provide the design parameters, allowable values, and descriptions for the MPMC
system, associated memory, and Personality Interface Modules (PIMs). Parameter values that are
strings or that contain alpha-numeric characters must be uppercase.

Table 2: MPMC Supported Devices

FPGA Devices

Spartan-3, XA Spartan-3
Spartan-3E, XA Spartan-3E
Spartan-3A, XA Spartan-3A
Spartan-3AN
Spartan-3A DSP, XA Spartan-3A DSP
Spartan-6, Lower-Power Spartan-6(1), XA Spartan-6(1), XQ Spartan-6 (1), QPRO Spartan-6 Hi-Rel Lower Power (1)

Virtex-4, QPro Virtex-4 Hi-Rel, QPro Virtex-4 Rad Tolerant
Virtex-5
Virtex-6(1), Lower-Power Virtex-6(1), Virtex-6 CXT(1), XQ Virtex-6(1)

MPMC generally treats derivative device families such as Automotive (XA), QPro (Q, QR, XQ), and Low Power
(L) as the equivalent base family device. Note: MPMC and MIG designs may not have been re-tested or re-
characterized across all derivative device families in hardware.

1. Support for this device family is Pre-Production (designs might not be functional in hardware or may have a limited range of operation.
Consult MIG documentation for latest device support information).
01.a) July 23, 2010 www.xilinx.com 3
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
System Parameters

Table 3: System Parameters

Parameter Name
Default
Value

Allowable
Values

Description

C_ALL_PIMS_SHARE_ADDRESSES (1) 1 0,1

Specifies whether MPMC ports use the
C_MPMC_BASEADDR and C_MPMC_HIGHADDR for
address decoding or if ports have independent
address range decoding. Also specifies whether
SDMA control register interfaces use the
C_SDMA_CTRL_BASEADDR and
C_SDMA_CTRL_HIGHADDR for address decoding
or MPMC ports and SDMA control register ports
have independent address range decoding.
1 = MPMC ports use C_MPMC_BASEADDR and
C_MPMC_HIGHADDR for address decoding; SDMA
control registers use C_SDMA_CTRL_BASEADDR
and C_SDMA_CTRL_HIGHADDR.
0 = MPMC ports and SDMA control registers have
independent address range decoding.

C_ARB_PIPELINE (9) 1 0,1
Enables or disables the Arbiter Pipeline:
0 = Disable Arbiter Pipeline.
1 = Enable Arbiter Pipeline. (performance)

C_ARB_USE_DEFAULT 0 0
Default Arbitration Algorithm to use
(unimplemented).

C_ARB0_ALGO ROUND_ROBIN
ROUND_ROBI

N, FIXED,
CUSTOM

String that specifies the arbitration scheme to use
for Algorithm 0 (Custom will consume a block
RAM). Only valid if C_NUM_PORTS > 1. When set to
FIXED, the priority order is from Port 0 to Port 7 and
cannot be changed irrespective of C_ARB0_SLOTx
settings.

C_ARB0_NUM_SLOTS 1 1-16
Number of time slots to use for Custom Algorithm.
Only valid if C_ARBO_ALGO = CUSTOM.Can only
be set to 10 or 12 on Spartan-6.

C_ARB0_SLOT0
.
.
.
C_ARB0_SLOT15

NONE

String of
Numbers
Example:

“01234567”

Arbitration Priority for Time Slot n where n is
0-15, and the number of valid Time Slots is from 0
to (C_ARB0_NUM_SLOTS-1).
Left to right, highest to lowest priority. Every valid
port must be specified once only.
Only valid if C_ARBO_ALGO = CUSTOM.

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
4 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_DEBUG_REG_ENABLE 0 0,1
0 = Disable MIG Debug registers
1 = Enable MIG Debug registers
(Spartan-3, Virtex-4, and Virtex-5 MIG PHY only).

C_FAMILY virtex5 STRING
virtex4, qvirtex4, qrvirtex4, virtex5, virtex6
spartan3, aspartan3, spartan3a, spartan3adsp,
spartan3e, aspartan3e, aspartan3a, spartan6

C_IDELAYCTRL_LOC (5) NOT_SET STRING
IDELAYCTRL constraint locations (Hyphen
separated).

C_IODELAY_GRP (11) NOT_SET STRING
User defined name used to group IDELAYCTRL
and IODELAY elements together.

C_MAX_REQ_ALLOWED 1 1 Number of requests MPMC can queue per port.

C_MCB_LOC(10) NOT_SET

NOT SET,
MEMC1,
MEMC2,
MEMC3,
MEMC4

Location of MCB for devices with multiple MCB
sites. See section "Spartan-6 C_MCB_LOC
Parameter," page 128 for more information.

C_MCB_USE_EXTERNAL_BUFPLL (10) 0 0,1

Use an external BUFPLL_MCB to drive the MCB
clock. This option is used typically when two active
MCBs are on the same side of the FPGA and must
share a common BUFPLL_MCB. The second MCB
must then share the BUFPLL_MCB from the primary
MCB.
0 = Instantiate a BUFPLL_MCB inside MPMC
1 = Do not Instantiate a BUFPLL_MCB inside
MPMC.

C_MCB_RZQ_LOC (10) NOT_SET
NOT_SET
<Valid Pin
Locations>

Specifies the LOC constraint for the RZQ pin. This
parameter is translated to a core level LOC
constraint for the RZQ pin, and is required only if
the RZQ signal is connected. The valid values for
the parameter vary based on the MCB bank
selected with the C_MCB_LOC constraint. It must
match the pinout of the FPGA to the board.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
5 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MCB_ZIO_LOC (10) NOT_SET
NOT_SET
<Valid Pin
Locations>

Specifies the LOC constraint for the ZIO pin. This
parameter is translated into a core level LOC
constraint for the ZIO pin, and is required only if the
ZIO signal is connected. The valid values for the
parameter vary based on the MCB bank selected
with the C_MCB_LOC constraint. It must match the
pinout of the FPGA to the board.

C_MEM_ADDR_ORDER (10) BANK_ROW_
COLUMN

BANK_ROW_
COLUMN,

ROW_BANK_
COLUMN

Defines the order with which the address bus is
divided into row, bank, and column bits

C_MEM_CALIBRATION_SOFT_IP (10) FALSE TRUE, FALSE
FALSE = Disable Soft Calibration Logic
TRUE = Enable Soft Calibration Logic

C_MPMC_BASEADDR (1) 0xFFFFFFFF Valid Address MPMC PIMs shared base address.

C_MPMC_HIGHADDR (1) 0x00000000 Valid Address
MPMC PIMs shared high address. MPMC supports
a maximum of two gigabytes of memory.

C_MPMC_CLK_MEM_2X_PERIOD_PS (10) 1 1250-12500

Clock memory value is calculated automatically
based on what is connected to Port
MPMC_Clk_Mem_2x in XPS (for example a
clock_generator output or a signal/port with MHS
tag CLK_FREQ = xxxx.) The value can be
overwritten; if set by the user, it is not calculated.

C_MPMC_CTRL_BASEADDR (7) 0xFFFFFFFF Valid Address
MPMC CTRL PLB v4.6 base address. Must be 64K
aligned.

C_MPMC_CTRL_HIGHADDR (7) 0x00000000 Valid Address MPMC CTRL PLB v4.6 high address.

C_MPMC_CTRL_AWIDTH (7) 32 32 PLB v4.6 Address width.

C_MPMC_CTRL_DWIDTH (7) 64 32, 64,128 PLB v4.6 Data width.

C_MPMC_CTRL_NATIVE_DWIDTH (7) 32 32 PLB v4.6 Native data width.

C_MPMC_CTRL_PLB_NUM_MASTERS (7) 1 0-16 PLB v4.6 Number of masters on the bus.

C_MPMC_CTRL_PLB_MID_WIDTH (7) 1 0-4 PLB v4.6 Master ID width.

C_MPMC_CTRL_P2P (7) 1 0,1 PLB v4.6 Point-To-Point (P2P) support.

C_MPMC_CTRL_SUPPORT_BURSTS (7) 0 0,1 PLB v4.6 PIM burst support.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 6
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MPMC_CTRL_SMALLEST_MASTER (7) 32 32, 64,128 PLB v4.6 smallest master on bus.

C_NUM_IDELAYCTRL (5) 1 0-16 Number of IDELAYCTRL elements to instantiate.

C_MPMC_SW_BASEADDR 0xFFFFFFFF valid address

MPMC PIMs software base address used by
MPMC drivers only when
C_ALL_PIMS_SHARE_ADDRESSES=0. If not set to
valid value, the software driver uses the value from
C_PIM0_BASEADDR when
C_ALL_PIMS_SHARE_ADDRESSES=0.

C_MPMC_SW_HIGHADDR 0x00000000 valid address

MPMC PIMs software high address used by MPMC
drivers only when
C_ALL_PIMS_SHARE_ADDRESSES=0. If not set to
valid value, the software driver will use the value
from C_PIM0_HIGHADDR when
C_ALL_PIMS_SHARE_ADDRESSES=0.

C_NUM_PORTS 1 1-8

Number of Interface Ports. MPMC GUI
automatically sets the value and places the correct
parameter in the Microprocessor Hardware
Specification (MHS) file. On Spartan-6 the
maximum number of ports may be limited to 6 or
less depending on the value of C_PORT_CONFIG.

C_PM_ENABLE 0 0,1
Performance Monitor (PM) enable or disable:
0 = Disable
1 = Enable

C_PM_DC_WIDTH (2) 48 1- 64 Sets the width of the PM dead cycle counters

C_PM_GC_CNTR (2) 1 0,1
Global Clock Counter enable or disable:
0 = Disable
1 = Enable

C_PM_GC_WIDTH (2) 48 1- 64 Sets the width of the PM Global Cycle counter.

C_PM_SHIFT_CNT_BY (2) 1 0-3
Specifies the size of the histogram bins used by the
Performance Monitors.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
7 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_PORT_CONFIG(10) 1 0-4

Spartan-6 port configuration where:
• B represents bidirectional ports
• U represents unidirectional ports
followed by port bit width.
0 = 6 ports (B32 B32 U32 U32 U32 U32)
1 = 4 ports (B32 B32 B32 B32)
2 = 3 ports (B64 B32 B32)
3 = 2 ports (B64 B64)
4 = 1 port (B128)

C_RD_DATAPATH_TML_MAX_FANOUT (9) 0 0,1,2,4,8

Read Database Timing Management Logic
Maximum register Fanout.
Controls the fanout of the PHY layer to the read
FIFO data path: 0 = no register is instantiated.
1 = the read data is forwarded from the PHY to eight
sets of registers, then forwarded on to each of the
read FIFOs.
2 = the read data is forwarded from the PHY to four
sets of registers. The outputs of the registers are
the forwarded on to a maximum of two read FIFOs1.

4 = the read data is forwarded from the PHY to two
sets of registers. The outputs of the registers are
the forwarded on to a maximum of four read
FIFOs1.

8 = the read data is forwarded from the PHY to a
single register. The output of the register is
forwarded on to a maximum of eight read FIFOs.

Note:
1. Values of 3, 5, 6, 7 are invalid.

C_SPECIAL_BOARD NONE

S3E_STKIT,
S3E_1600E,
S3A_STKIT,

NONE

Xilinx special physical layer for Spartan-3x boards.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 8
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_SKIP_SIM_INIT_DELAY (6, 9) 0 0,1

For simulation only, allows a shorter initialization
sequence. On Virtex-6, when this parameter is
enabled, MIG PHY parameters are set as follows:

• MEM_CAL_WIDTH = HALF

• OCB_MONITOR = OFF

• SIM_INIT_OPTION=SKIP_PU_DLY

• SIM_CAL_OPTION = FAST_CAL

C_STATIC_PHY_RDEN_DELAY (3) 5 0-15
Sets power-on or reset value of RDENDELAY
register.

C_STATIC_PHY_RDDATA_CLK_SEL(3) 0 0,1
Sets power-on or reset value of RDDATA_CLK_SEL
register.

C_STATIC_PHY_RDDATA_SWAP_RISE (3) 0 0,1
Sets power-on or reset value of
RDDATA_SWAP_RISE register.

C_USE_MIG_FLOW 0 0,1

Enables and disables the use of the integrated MIG
GUI flow from the MPMC IP Configuration GUI.
0 = Normal MPMC flow without integrated MIG GUI
flow.
1 = Enables the use of the integrated MIG GUI Flow
for running the MIG GUI from the MPMC IP
Configuration GUI.
This setting also links the area, timing, and I/O
placement constraints automatically from the MIG
GUI with the MPMC EDK project. See"Integrated
MIG GUI Flow," page 99 for more information.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
9 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_USE_STATIC_PHY (12) 0 0,1

Enables or disables a software controlled interface
for the physical layer calibration (Static PHY):
0 = Static PHY Disabled.
1 = Static PHY Enabled.
Static PHY is automatically enabled when
C_MEM_TYPE = SDRAM.

C_WR_DATAPATH_TML_PIPELINE (9, 12) 1 0,1

Enables or disables the Write Data Path Timing
Management:
0 = Write Data Path Timing Management Logic
Pipeline Disabled.
1 = Write Data Path Timing Management Logic
Pipeline Enabled.

C_WR_TRAINING_PORT (5) 0 0-7

Specifies the port where the Write FIFO is used for
memory initialization. This value is an automatically
calculated parameter that can be over-written. If the
parameter is set by the user, it is not calculated.

Table 3: System Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description

1. When C_ALL_PIMS_SHARE_ADDRESSES is set to 1, C_MPMC_BASEADDR is used for all ports for memory access addressing and
C_SDMA_CTRL_BASEADDR is used for all SDMA PIMs (if applicable).
If set to 0, the C_PIMx_BASEADDR, and C_SDMA_CTRLx_BASEADDR parameters are used.

2. Valid if C_PM_ENABLE is set to 1.
3. Valid when using Static PHY (C_USE_STATIC_PHY = 1).
4. C_PIM<Port_Num>_BASETYPE must be set to 0 for unused ports that are outside the number active ports specified by C_NUM_PORTS.

For example, if C_NUM_PORTS = 4, then C_PIM4_BASETYPE, C_PIM5_BASETYPE, C_PIM6_BASETYPE, and C_PIM7_BASETYPE must all be 0.
5. Valid when using MIG-based Virtex-4/Virtex-5 DDR/DDR2 PHY.
6. Memory calibration simulation times vary based on C_MEM_WIDTH and C_FAMILY and assume C_SKIP_SIM_INIT_DELAY = 1:

Virtex4 DDR = 90us
Virtex4 DDR2 = 50us
Virtex5 DDR = 1400us
Virtex5 DDR2 =100us

7. Valid only if the Performance Monitors (PM), Error Correction Code (ECC), Debug registers, or Static PHY feature is enabled.
8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is al-

lowed to access.
9. Not supported on Spartan-6.
10. Spartan-6 only.
11. Virtex-6 only.
12. Spartan-3, Virtex-4, and Virtex-5 only.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 10
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Memory and Memory Part Parameters

Table 4: Memory and Memory Part Parameters

Parameter Name Default
Value Allowable Values Description

C_IDELAY_CLK_FREQ (14) DEFAULT
DEFAULT, 200.0,

300.0
IDELAY clock frequency.

C_MCB_LDQSN_TAP_DELAY_VAL (13) 16 0-255
Manual tap delay setting when
calibration is bypassed.

C_MCB_LDQSP_TAP_DELAY_VAL(13) 16 0-255
Manual tap delay setting when
calibration is bypassed.

C_MCB_UDQSP_TAP_DELAY_VAL(13) 16 0-255
Manual tap delay setting when
calibration is bypassed.

C_MCB_UDQSN_TAP_DELAY_VAL(13) 16 0-255
Manual tap delay setting when
calibration is bypassed.

C_MCB_DQ#<0-15>_TAP_DELAY_VAL(13) 0 0-255
Manual tap delay setting when
calibration is bypassed.

C_MEM_ADDR_WIDTH 13 1-20 Number of external address pins.

C_MEM_AUTO_SR (9,11) ENABLED ENABLED, MANUAL
Auto self refresh. Set if high temp should
be handled manually or automatically.

C_MEM_BANKADDR_WIDTH 2 1-4 Number of external bank address pins.

C_MEM_BITS_DATA_PER_DQS 8 8 Number of data bits per DQS bit.

C_MEM_CALIBRATION_BYPASS (13) NO YES, NO
Calibration Bypass.
YES = Bypass calibration
NO = Do not bypass calibration

C_MEM_CALIBRATION_DELAY (13) HALF
QUARTER,

FULL, HALF,
THREEQUARTER

Calibration Delay.

C_MEM_CALIBRATION_MODE (13) 1 0,1
Calibration Mode.
1= Calibration
0 = No Calibration

C_MEM_CAS_LATENCY (5) 0 0–9
Auto-calculated memory CAS latency
based on clock speed.

C_MEM_CAS_WR_LATENCY (5,11,12) 5 5-8 DDR3 CAS write latency.

C_MEM_CE_WIDTH (12) 1 1-16

Number of external chip enable pins.
This value is an automatically calculated
parameter that can be overwritten; if set
by the user, it is not calculated.

C_MEM_CLK_WIDTH (12) 1 1-16

Number of external clock pins. This
value is an automatically calculated
parameter that can be overwritten; if set
by the user, it is not calculated.
11 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_CS_N_WIDTH (12) 1 1-16

Number of external chip select pins.
This value is an automatically calculated
parameter that can be overwritten; if set
by the user, it is not calculated. This
must be set to an integer multiple of
C_NUM_RANKS * C_NUM_DIMMS.

C_MEM_DATA_WIDTH (8) 64 4(9),8,16,32,64 Number of external data pins.

C_MEM_DM_WIDTH 8 1,2,4,8 Number of external data mask pins.

C_MEM_DQS_WIDTH (2,3,11) 8 1,2,4,8 Number of external DQS pins.

C_MEM_DQS_IO_COL x any 18-bit value

Used with older MIG versions. A DRC
error occurs if this parameter is set by
the user. See "Memory Interface
Generator PHY Interface," page 96“for
more information f migrating from an
older MPMC/MIG version.

C_MEM_DQ_IO_MS
0x00000000
0000000000

any 72-bit value

Used with older MIG versions. A DRC
error occurs if this parameter is set by
the user. See"Memory Interface
Generator PHY Interface," page 96 for
more information if migrating from an
older MPMC/MIG version.

C_MEM_CHECK_MAX_INDELAY (13) 0 0,1
Enable checking of maximum input
delay.

C_MEM_CHECK_MAX_TAP_REG (13) 0 0,1 Enable checking of maximum tap delay.

C_MEM_IBUF_LPWR_MODE (14) DEFAULT DEFAULT, ON, OFF IBUF low power mode.

C_MEM_IODELAY_HP_MODE (14) DEFAULT DEFAULT, ON, OFF IODELAY high performance mode.

C_MEM_OCB_MONITOR (14) DEFAULT DEFAULT, ON, OFF OCB Monitor enable.

C_MEM_PHASE_DETECT (14) DEFAULT DEFAULT, ON, OFF Phase Detector enable.

C_MEM_SIM_INIT_OPTION (14) DEFAULT
DEFAULT, SKIP_INIT,

SKIP_PU_DELAY,
NONE

Simulation skip initialization option.

C_MEM_SIM_CAL_OPTION (14) DEFAULT

DEFAULT, SKIP_CAL,
FAST_CAL,

FAST_WIN_DETECT,
NONE

Simulation calibration option.

C_MEM_CAL_WIDTH (14) DEFAULT
DEFAULT, FULL,

HALF
Calibration width.

C_MEM_DQS_LOC_COL0 (10,15) 0
Hex number up 144

bits
DQS groups in column #1 - obtain value
from MIG tool

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 12
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_DQS_LOC_COL1 (10,15) 0
Hex number up 144

bits
DQS groups in column #2 - obtain value
from MIG tool

C_MEM_DQS_LOC_COL2 (10,15) 0
Hex number up 144

bits
DQS groups obtain value from MIG tool.

C_MEM_DQS_LOC_COL3 (10,15) 0
Hex number up 144

bits
DQS groups obtain value from MIG tool.

C_MEM_DYNAMIC_WRITE_ODT (9,12) OFF OFF, DIV2, DIV4
Setting for Dynamic Write On-Die
Termination.

C_MEM_HIGH_TEMP_SR (9) NORMAL
NORMAL,

EXTENDED

High Temperature Self Refresh. Higher
refresh rate is needed when 85 degrees
is exceeded.

C_MEM_INCDEC_THRESHOLD (13) 2 0-255 MCB Increment/decrement threshold.

C_MEM_NDQS_COL0 (10,15) 0 0-18
Number of DQS groups in I/O column
obtain value from MIG tool.

C_MEM_NDQS_COL1 (10,15) 0 0-18
Number of DQS groups in I/O column
obtain value from MIG tool.

C_MEM_NDQS_COL2 (10, 15) 0 0-18
Number of DQS groups in I/O column
obtain value from MIG tool.

C_MEM_NDQS_COL3 (10,15) 0 0-18
Number of DQS groups in I/O column
obtain value from MIG tool.

C_MEM_NUM_DIMMS 1 1
Number of DIMMs. Set to 1 if not using
a DIMM. Multiple DIMMS are not supported.

C_MEM_NUM_RANKS (7, 12) 1 1-2
Number of ranks per DIMM. A value of 2
is not recommended. Virtex-6 supports a
value of 1 only.

C_MEM_ODT_TYPE 0 0- 5

On-Die Termination Setting
(DDR2/DDR3 only):
0 = Disabled
1 = 75 Ohms, RZQ/4 (60 Ohm)
2 = 150 Ohms /RZQ/2 (120 Ohm)
3 = 50 Ohm, RZQ6 (40 Ohm)
4 = Reserved / RZQ/12 (20 Ohm)
5 = Reserved /RZQ/8 (30 Ohm)

C_MEM_ODT_WIDTH (3, 11,12) 1 1-16

Number of external ODT Pins. This
value is an automatically calculated
parameter that can be overwritten; if set
by the user, it is not calculated. This
must be set to an integer multiple of
C_NUM_RANKS * C_NUM_DIMMS.

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
13 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_PA_SR (9) 0 0,1

Partial Array Self Refresh (DDR2,
DDR3, LPDDR only.)
0 = Full
1 = Half

C_MEM_PARTNO (1) NONE

Database Part Number,
Example:
“mt4htf3264h-53e”,
CUSTOM

Specifies the memory part number from
database or CUSTOM. The CUSTOM
value is not supported for Spartan-6.

C_MEM_PART_CAS_A (1,4) x Any Integer
Lowest CAS latency for this memory
part.

C_MEM_PART_CAS_A_FMAX (1,4) x Any Integer
Maximum Frequency for the lowest CAS
latency.

C_MEM_PART_CAS_B (1,4) x Any Integer
Next Lowest CAS latency for this
memory part
(if applicable).

C_MEM_PART_CAS_B_FMAX (1,4) x Any Integer
Maximum Frequency for the next lowest
CAS latency
(if applicable).

C_MEM_PART_CAS_C (1,4) x Any Integer
Next Lowest CAS latency for this
memory part
(if applicable).

C_MEM_PART_CAS_C_FMAX (1,4) x Any Integer
Maximum Frequency for the next lowest
CAS latency
(if applicable).

C_MEM_PART_CAS_D (1,4) x Any Integer
Next Lowest CAS latency for this
memory part
(if applicable).

C_MEM_PART_CAS_D_FMAX (1,4) x Any Integer
Maximum Frequency for the next lowest
CAS latency
(if applicable).

C_MEM_PART_DATA_DEPTH (1,8) 16
1, 2, 4, 8, 16, 32, 128,

256, 512, 1024

Discrete memory part data depth in
megabits. This parameter currently not
used and is reserved for future use.

C_MEM_PART_DATA_WIDTH (1) 16 4, 8,16, 32, 64
Discrete memory part data width. Only
Spartan-6 supports a value of 4.

C_MEM_PART_NUM_BANK_BITS (1) 2 1–4 Number of bank bits on memory part.

C_MEM_PART_NUM_COL_BITS (1) 9 1–20 Number of column bits on memory part.

C_MEM_PART_NUM_ROW_BITS (1) 13 1–20 Number of row bits on memory part.

C_MEM_PART_TRAS (1) x Any Integer
tRAS - Minimum ACTIVE-to-
PRECHARGE command (ps).

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 14
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_PART_TRASMAX (1) x Any Integer
tRAS - Maximum ACTIVE-to-
PRECHARGE command (ps).

C_MEM_PART_TRC (1) x Any Integer
tRC - Minimum ACTIVE-to-ACTIVE
(same bank) command (ps).

C_MEM_PART_TRCD (1) x Any Integer
tRCD - Minimum ACTIVE-to-READ or
WRITE delay (ps).

C_MEM_PART_TDQSS (1,2) 1 1

tDQSS - Positive DQS latching edge to
associated clock edge (tCK). This value
should be (maximum value - minimum
value) rounded up to the nearest
integer.

C_MEM_PART_TRP (1) x Any Integer
tRP - Minimum PRECHARGE
command period (ps).

C_MEM_PART_TMRD (1) x Any Integer
tMRD - Minimum LOAD MODE
command cycle time (tCK).
(Deprecated)

C_MEM_PART_TRRD (1) x Any Integer
tRRD - Minimum ACTIVE bank a to
ACTIVE bank b command (ps).

C_MEM_PART_TWR (1) x Any Integer tWR - Minimum write recover time (ps).

C_MEM_PART_TRFC (1) x Any Integer
tRFC - Minimum REFRESH to ACTIVE
or REFRESH to REFRESH command
interval (ps).

C_MEM_PART_TREFI (1) x Any Integer
tREFI - Maximum average periodic
REFRESH interval (ps).

C_MEM_PART_TAL (1,3) 0 0 tAL - Additive Latency desired (tCK).

C_MEM_PART_TCCD (1,3) x Any Integer
tCCD - Minimum CAS# to CAS#
command delay (tCK).

C_MEM_PART_TWTR (1,3) x Any Integer
tWTR - Minimum internal WRITE-to-
READ command delay (ps).

C_MEM_PART_TRTP (1,3) 7500 7500
tRTP - Minimum internal READ to
PRECHARGE command delay (ps).

C_MEM_PART_TZQINIT (11) 0 Any Integer
tZQINIT - ZQCL command: Long
calibration time for power-up or reset
(tCK)

C_MEM_PART_TZQCS (11) 0 Any Integer
tZQCS - ZQCS command: Short
calibration time (tCK)

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
15 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_REDUCED_DRV 0 0-3

Reduced drive output enable.
(DDR/DDR2/DDR3/LPDDR) only.)
0 = Full, RZQ/6, Full
1 = Reduced, RZQ/7, Half
2 = Reserved, Reserved, Quarter
3 = Reserved, Reserved, Three Quarters

C_MEM_REG_DIMM (12) 0 0,1 DIMM is registered.

C_MEM_SKIP_DYNAMIC_CAL (9) 1 0,1
0 = Perform dynamic calibration,
1 = Skip dynamic calibration.

C_MEM_SKIP_IN_TERM_CAL (9) 1 0,1
0 = Perform input termination
calibration,
1 = Skip input termination calibration.

C_MEM_SKIP_DYN_IN_TERM (13) 1 0,1
0 = Perform dynamic input termination
1 = Do not perform

C_MEM_TYPE DDR2
DDR, DDR2,

DDR3, LPDDR,
SDRAM

Memory architecture type. Available
memory types are limited by device
architecture.

C_MEM_TZQINIT_MAXCNT (13) 512 Integer Maximum count value for TZQINIT.

C_MEM_WRLVL (14) 1 0,1
0 = Do not perform write leveling,
1 = Perform write leveling.

C_MMCM_EXT_LOC(10,15) NOT_SET
Valid MMCM_ADV
location constraint

This parameter is passed to clock
generator v3.02a or greater to generate
a location constraint for the external
MMCM_ADV primitive driving the MPMC
Memory clocks.

C_MPMC_CLK0_PERIOD_PS 10000 1-1000000

MPMC_CLK0 Period (ps). This value is
automatically calculated based on what
is connected to Port MPMC_Clk0 in XPS
(for example a clock_generator output
or a signal/port with MHS tag
CLK_FREQ = xxxx). The value can be
overwritten; if set by the user, it is not
calculated.

C_MPMC_CLK_MEM_PERIOD_PS 1 1250-6250

MPMC_CLK_MEM period (ps). This value
is automatically calculated based on
what is connected to Port
MPMC_Clk_Mem in XPS (for example a
clock_generator output or a signal/port
with MHS tag CLK_FREQ = xxxx). The
value can be overwritten; if set by the
user, it is not calculated.

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 16
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MPMC_CLK_MEM_2X_PERIOD_PS (9) 1 1-1000000

MPMC_CLK_MEM_2X period (ps). This
value is automatically calculated based
on what is connected to Port
MPMC_Clk_Mem_2x in XPS (for
example a clock_generator output or a
signal/port with MHS tag CLK_FREQ =
xxxx). The value can be overwritten; if
set by the user, it is not calculated.

Notes:
1. These values are auto-updated from the IP Configurator database if C_MEM_PARTNO is set to a part number from the database. If set to CUSTOM,

the values must be filled in according to the memory parameters provided by the manufacturer. Used for Spartan3, Virtex-4, and Virtex-5 families.
The database is a Comma Separated Value (CSV) file located at <MPMC pcore location>/data/mpmc_memory_database.csv. For Spartan-6,
Virtex-6, the database is obtained from MIG and contains only approved memories for each architecture. Spartan-6 does not support CUSTOM
memory parts.

2. DDR Parameter.
3. DDR2 Parameter.
4. CAS latencies/FMAX pairs should be arranged from Lowest CAS Latency and Slowest Frequency to Highest CAS Latency and Fastest frequency

for pairs A-D.
5. Non-user, auto-calculated value.
6. Valid if C_INCLUDE_ECC_SUPPORT is enabled.
7. The use of Multi-Rank designs is strongly discouraged.

See "Important Notes on MIG Board Compatibility," page 109 for more information.
8. SDMA supports the following configurations only:

• 32- and 64-bit for DDR
• 64-bit for SDRAM

9. Spartan-6 onl.y
10. Virtex-6 only.
11. DDR3 only.
12. Not used for Spartan-6.
13. Reserved. Low-level parameter for underlying Spartan-6 MCB. This setting should not be changed.
14. Reserved. Low-level parameter for underlying Virtex-6 MIG PHY. This setting should not be changed.
15. Parameter is set automatically when C_USE_MIG_FLOW = 1

Table 5: Additional Memory Part Parameters

Parameter Name
Default
Value

Allowable
Values

Description

C_DDR2_DQSN_ENABLE (3) 1 0,1

Enables differential DQS (DDR2 Only).
Must be set to 0 when C_FAMILY = “spartan3”. (Can be set
to 1 for other Spartan3x families such as spartan3a,
spartan3an, spartan3adsp, spartan3e)
Must be set to 1 when using MIG-based Virtex-5 DDR2 PHY.

C_ECC_DATA_WIDTH (5,6) 0 0, 3-8 ECC Data Width (in Bits).

C_ECC_DEC_THRESHOLD (6) 1 0-4095 Double-bit data error interrupt threshold counter value.

C_ECC_DEFAULT_ON (6) 1 0,1 Enables ECC enable register at RST:

C_ECC_DM_WIDTH (5,6) 0 0,1 ECC DM width.

C_ECC_DQS_WIDTH (5,6) 0 0,1 ECC DQS width.

C_INCLUDE_ECC_SUPPORT 0 0,1
Enables ECC logic. ECC control registers are accessible
from MPMC_CTRL interface when enabled. Not supported on
Virtex-6 or Spartan-6 families.

C_INCLUDE_ECC_TEST (6) 0 0,1
Enable or disable ECC test functionality and registers:
1 = Enable ECC test functionality/registers.
0 = No ECC test functionality (saves area).

Table 4: Memory and Memory Part Parameters (Cont’d)

Parameter Name Default
Value Allowable Values Description
17 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Per-Port Parameters

The parameters in the following table are inside the MPMC core and can be set on a per-port basis.’

C_ECC_PEC_THRESHOLD (6) 1 0-4095
Specifies the parity-bit data error interrupt threshold counter
value.

C_ECC_SEC_THRESHOLD (6) 1 0-4095 Single-bit data error interrupt threshold counter value.

Notes:
1. These values are auto-updated from the IP Configurator database if C_MEM_PARTNO is set to a part number from the database. If set to CUSTOM,

the values must be filled in according to the memory parameters provided by the manufacturer. Unlisted parts can be requested for future versions
by opening a Xilinx support WebCase and attaching the new memory datasheet.The database is a Comma Separated Value (CSV) file located at
<MPMC pcore location>/data/mpmc_memory_database.csv.

2. DDR Parameter.
3. DDR2 Parameter.
4. CAS latencies/FMAX pairs should be arranged from Lowest CAS Latency and Slowest Frequency to Highest CAS Latency and Fastest frequency

for pairs A-D.
5. Non-user, auto-calculated value.
6. Valid if C_INCLUDE_ECC_SUPPORT is enabled.

Table 6: Per-port Parameters

I/O Signal Name
Default
Value

Allowable
Values

Description

C_PIM<Port_Num>_BASETYPE (4) 2 (Port 0)
0 (Ports 1-7)

0 - 9

0 = INACTIVE
1 = XCL
2 = PLB v4.6
3 = SDMA
4 = NPI
5 = PPC440MC
6 = VFBC
7 = MCB (Bidirectional)
8 = MCB (Unidirectional, Read Only)
9 = MCB (Unidirectional, Write Only)

C_PIM<Port_Num>_SUBTYPE x

DXCL, DXCL2,
IXCL, IXCL2,
XCL, IPLB,
DPLB, PLB,
SDMA, NPI,
PPC440MC,
VFBC, MCB,
INACTIVE

Specific Port Interface Type.
MPMC GUI sets the value automatically and
places the correct parameter in the MHS file.
This value is an automatically calculated
parameter that can be overwritten; if set by user,
it is not auto-calculated.

C_PIM<Port_Num>_B_SUBTYPE (9) x
DXCL, DXCL2,
IXCL, IXCL2,

XCL

Specific Port Interface Type.
MPMC GUI sets the value automatically and
places the correct parameter in the MHS file.
This value is an automatically calculated
parameter that can be overwritten; if set by user,
it is not auto-calculated.

C_PIM<Port_Num>_BASEADDR (1,7) 0xFFFFFFFF Valid Address PIM Base Address.

C_PIM<Port_Num>_HIGHADDR (1,8) 0x00000000 Valid Address
PIM High Address. MPMC supports a maximum
of 2 gigabytes of memory.

C_PIM<Port_Num>_OFFSET (1) 0x00000000 Valid Address PIM Offset Address.

C_PI<Port_Num>_RD_FIFO_TYPE (12) BRAM
BRAM, SRL,
DISABLED

Read Data Path FIFO type.

Table 5: Additional Memory Part Parameters (Cont’d)

Parameter Name
Default
Value

Allowable
Values

Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 18
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_PI<Port_Num>_WR_FIFO_TYPE (6, 12) BRAM
BRAM, SRL,
DISABLED

Write Data Path FIFO type.

C_PI<Port_Num>_ADDRACK_PIPELINE (3, 10) 1 0,1 AddrAck Pipeline enable.

C_PI<Port_Num>_RD_FIFO_APP_PIPELINE (10) 1 0,1 Read FIFO Port Side pipeline.

C_PI<Port_Num>_RD_FIFO_MEM_PIPELINE (4,10) 1 0,1 Read FIFO Memory Side pipeline.

C_PI<Port_Num>_WR_FIFO_APP_PIPELINE (10) 1 0,1 Write FIFO Port Side pipeline.

C_PI<Port_Num>_WR_FIFO_MEM_PIPELINE (5,10) 1 0,1 Write FIFO Memory Side pipeline.

C_PI<Port_Num>_PM_USED (2,3, 10) 1 0,1 Enable Performance Monitor.

C_PI<Port_Num>_PM_DC_CNTR (2, 10) 1 0,1 Enable Dead Cycle Counter.

Notes:
1. Only valid if C_PIM_BASETYPE is not 4 (NPI) and C_ALL_PIMS_USE_SHARED_ADDRESSES is 0.
2. Only valid if C_PM_ENABLE = 1.
3. If C_PM<Port_Num>_PM_USED is set to 1, then C_PI<Port_Num>_ADDRACK_PIPELINE must be set to 1 to monitor correctly.
4. C_PI<Port_Num>_RD_FIFO_MEM_PIPELINE settings must all be the same from port 0 to port <C_NUM_PORTS-1>.

For example, on a four port design ports 0 to 3 must have the same C_PI<Port_Num>_RD_FIFO_MEM_PIPELINE settings.
5. C_PI<Port_Num>_WR_FIFO_MEM_PIPELINE settings must all be the same from port 0 to port <C_NUM_PORTS-1>.

For example, on a four port design ports 0 to 3 must have the same C_PI<Port_Num>_WR_FIFO_MEM_PIPELINE settings.
6. Write FIFOs are automatically disabled in an MPMC port that is an IXCL or IPLB subtype. There is no need to manually disable write FIFOs in an

IXCL or IPLB configured port.
7. C_PIM<Port_Num>_BASEADDR+C_PIM<Port_Num>_OFFSET represents the base physical memory address that the corresponding port is al-

lowed to access.
For example, if C_PIM<Port_Num>_OFFSET is 0x00000000, C_PIM<Port_Num>_BASEADDR will represent the physical address of memory. If your
total memory size is 0x03FFFFFF, a C_PIM_<Port_Num>_BASEADDR value of 0x00000000 will go to physical address 0x00000000.
A value of 0x01000000 will go to physical address 0x01000000. A value of 0x04000000 will go to physical address 0x00000000.
If you increase the C_PIM_<Port_Num>_OFFSET to 0x02000000, a C_PIM_<Port_Num>_BASEADDR value of 0x00000000 will go to physical ad-
dress 0x02000000. A value of 0x01000000 will go to physical address 0x03000000. A value of 0x04000000 will go to physical address 0x02000000.

8. C_PIM<Port_Num>_HIGHADDR+C_PIM<Port_Num>_OFFSET represents the high physical memory address that the corresponding port is allowed
to access.

9. Used only for XCL<Port_Num>_B port when C_XCL<Port_Num>_B_IN_USE is set to 1.
10. Not supported on Spartan-6.
11. Spartan-6 only
12. When using the VFBC PIM on Spartan-6, the allowable values of this parameter are BRAM and DISABLED. If set to DISABLED, then VFBC unidi-

rectional optimizations are performed. BRAM in this case is synonymous with ENABLED.

Table 6: Per-port Parameters (Cont’d)

I/O Signal Name
Default
Value

Allowable
Values

Description
19 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Personality Interface Module (PIM) Parameters

XCL PIM Design Parameters

PLB v4.6 PIM Design Parameters

Table 7: XCL Design Parameters

Parameter Name
Default
Value

Allowable
Values

Description

C_XCL<Port_Num>_LINESIZE (1) 4 1,4,8,16 Number of words per transaction.

C_XCL<Port_Num>_WRITEXFER (1) 1 0, 1, 2

XCL write transfer type:
0 = No write transfers.
1 = Single write transfers only.
2 = Cacheline transfer only.

C_XCL<Port_Num>_B_LINESIZE (1, 2) 4 1,4,8,16 Number of words per transaction.

C_XCL<Port_Num>_PIPE_STAGES 2 0,1, 2, 3

Include additional pipeline stages:
0 = None
1 = Read FIFO
2 = Read FIFO and Empty
3 = Read FIFO and Empty and Access FIFOs

C_XCL<Port_Num>_B_WRITEXFER (1,2) 1 0, 1, 2

XCL write transfer type:
0 = No write transfers.
1 = Single write transfers only.
2 = Cacheline transfer only.

C_XCL<Port_Num>_B_IN_USE 0 0, 1

XCL B Port Enable. This parameter enables another XCL BUS
on the same MPMC Port.
1 = Enable XCL B Port.
0 = Disable XCL B Port.

1. Valid when C_PIM<Port_Num>_BASETYPE = 1 (XCL) only
2. Valid when C_XCL<Port_Num>_B_IN_USE = 1 only

Table 8: PLB v4.6 PIM Design Parameters

Parameter Name Default
Value

Allowable
Values Description

C_SPLB<Port_Num>_AWIDTH (2,3) 32 32 PLB Least Significant Address Bus Width.

C_SPLB<Port_Num>_DWIDTH (2,3) 64 32,64,128 Width of the PLB Data Bus.

C_SPLB<Port_Num>_NATIVE_DWIDTH (2) 64 32,64
Width of the PIM Internal Data Bus. This is set
automatically for Spartan-6 designs based on the width of
the corresponding MCB port.

C_SPLB<Port_Num>_PLB_NUM_MASTERS (2,3) 1 1-16 Number of masters that can be connected the PIM.

C_SPLB<Port_Num>_PLB_MID_WIDTH (1,2,3) 1 0- 4

PLB Master ID Width. PLB Master ID Bus Width.
The value is log2
(C_SPLB<Port_Num>_PLB_NUM_MASTERS) with a
minimum value of 1.

C_SPLB<Port_Num>_P2P(2,3) 1 0,1

Selects Shared Bus or Point-to-Point (P2P) configuration
for the PLB slave port:
0 = PLB Shared Bus Connection.
1 = PLB P2P Connection.
Must be set to 1 when C_PIM<Port_Num>_SUBTYPE is
set to IPLB or DPLB.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 20
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SDMA PIM Design Parameters

C_SPLB<Port_Num>_SUPPORT_BURSTS (2,3) 0 0,1
PLB PIM Burst Support:
0 = Single Word transactions.
1 = Single, cacheline, and burst transactions.

C_SPLB<Port_Num>_SMALLEST_MASTER (2,3) 32 32,64,128 Width of the smallest Master Data Bus.

1. log2 represents a logarithm function of base 2. For example, log2(1)=0, log2(2)=1, log2(4)=2, log2(8)=3, log2(16)=4, etc.
2. Valid if C_PIM<Port_Num>_BASETYPE = 2 (SPLB)
3. These parameters are normally calculated by the XPS based on what devices are connected to the PLB bus.

Table 9: SDMA PIM Design Parameters

Parameter Name Default Value Allowable
Values Description

C_SDMA_CTRL_BASEADDR (1,2) 0xFFFFFFFF Valid Address
SDMA CTRL Shared PLB v4.6 Base
Address.

C_SDMA_CTRL_HIGHADDR (1,2) 0x00000000 Valid Address
SDMA CTRL Shared PLB v4.6 High
Address.

C_SDMA_CTRL<Port_Num>_BASEADDR (1,2) 0xFFFFFFFF Valid Address SDMA CTRL PLB Base Address.

C_SDMA_CTRL<Port_Num>_HIGHADDR (1,2) 0x00000000 Valid Address SDMA CTRL PLB High Address.

C_SDMA_CTRL<Port_Num>_AWIDTH (1,3) 32 32 PLB Address Width.

C_SDMA_CTRL<Port_Num>_DWIDTH (1,3) 64 32,64,128 PLB Data Width.

C_SDMA_CTRL<Port_Num>_NATIVE_DWIDTH (1,3) 32 32 PLB Native Data Width.

C_SDMA_CTRL<Port_Num>_PLB_NUM_MASTERS (1,3) 1 0-16 PLB Number of masters on the Bus.

C_SDMA_CTRL<Port_Num>_PLB_MID_WIDTH (1,3) 1 0-4 PLB Master ID Width.

C_SDMA_CTRL<Port_Num>_P2P(1,3) 1 0,1
PLB Point-to-Point (P2P) support:
0 = Not Supported.
1 = Supported.

C_SDMA_CTRL<Port_Num>_SUPPORT_BURSTS (1,3) 0 0
PLB PIM Burst support:
0 = Not Supported.
1 = Supported.

C_SDMA_CTRL<Port_Num>_SMALLEST_MASTER (1,3) 32 32,64,128 PLB Smallest Master on Bus.

C_SDMA<Port_Num>_PRESCALAR (1) 100 0-1023 Interrupt Delay Timer Scale Factor.

C_SDMA<Port_Num>_PI2LL_CLK_RATIO (1‘) 1 1,2 NPI to LocalLink Clock ratio.

C_SDMA<Port_Num>_COMPLETED_ERR_TX (1) 1 0,1
Transmit complete with error checking.
0 = Disable complete bit error checking.
1 = Enable complete bit error checking.

C_SDMA<Port_Num>_COMPLETED_ERR_RX (1) 1 0,1
Receive complete with error checking.
0 = Disable complete bit error checking.
1 = Enable complete bit error checking.

Notes:
1. Valid if C_PIM<Port_Num>_BASETYPE = 3 (SDMA)
2. If C_ALL_PIMS_USED_SHARED_ADDRESS is 1, there is one common BASEADDR/HIGHADDR for all SDMAs (C_SDMA_CTRL_BASEADDR); other-

wise, each SDMA Port has a unique BASE/HIGHADDR (C_SDMA_CTRL<Port_Num>_BASEADDR).
3. These parameters are normally calculated by the XPS based on what devices are connected to the PLB bus.

Table 8: PLB v4.6 PIM Design Parameters (Cont’d)

Parameter Name Default
Value

Allowable
Values Description
21 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
NPI PIM Design Parameters

MIB/PPC440MC PIM Design Parameters

VFBC PIM Design Parameters

Table 10: NPI PIM Design Parameters

Parameter Name Default
Value

Allowable
Values Description

C_PIM<Port_Num>_DATA_WIDTH 64 32,64 PIM Native Data Width.

Table 11: MIB/PPC440MC Design Parameters

Parameter Name Default
Value

Allowable
Values Description

C_PPC440MC<Port_Num>_BURST_LENGTH 4 2,4,8 Length of allowable bursts.

C_PPC440MC<Port_Num>_PIPE_STAGES 1 0-2 Number of pipeline stages to insert.

Table 12: VFBC PIM Design Parameters

Parameter Name Default
Value Allowable Values Description

C_VFBC<Port_Num>_ CMD_FIFO_DEPTH 32 1 - x (1) Depth of the command FIFO in 32-bit words.

C_VFBC<Port_Num>_CMD_AFULL_COUNT 3
0 -

C_VFBC<Port_Num>_
CMD_FIFO_DEPTH

Command FIFO almost full threshold.

C_VFBC<Port_Num>_RDWD_FIFO_DEPTH 1024 1 - x (1)
Read/Write FIFO depth in the number of data
words (word size is defined by the
RDWD_DATA_WIDTH parameter.)

C_VFBC<Port_Num>_RDWD_DATA_WIDTH 32 8,16,32,64 Data width in number of bits.

C_VFBC<Port_Num>_
RD_AEMPTY_WD_AFULL_COUNT

3
0 -

C_VFBC<Port_Num>_
RDWD_FIFO_DEPTH

Write FIFO Almost Full Threshold and Read
FIFO Almost Empty Threshold.

1. As the FIFO depth for each FIFO is increased, the FIFO consumes more block RAMs. The upper limit is constrained by the number of block RAMs
available on the FPGA device and the number of block RAMS used.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 22
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
I/O Signals
The following tables provide the I/O signals for the MPMC system, memory, and PIMs.

System I/O Signals

Table 13: System I/O Signals

Signal Name Direction Init Status Description

calib_recal (3) Input
Automatically
set to 0 if
unconnected

When asserted, starts recalibration.

MPMC_Clk0 Input x System clock input.

MPMC_Clk90 Input x
System clock input, phase shifted by 90 degrees. Not used with
SDRAM or Spartan-6.

MPMC_Clk0_DIV2 Input x
MPMC_Clk0, divided by 2, clock input.
Only valid when using MIG-based Virtex-5 DDR2 PHY.

MPMC_Clk_200MHz (1) Input x
200 MHz clock. Connects to IDELAY elements and does not have
to be phase or frequency related to MPMC_Clk0. Valid when
using MIG-based Virtex-4/Virtex-5/Virtex-6 PHY only.

MPMC_Rst Input x System reset input. Active High.

MPMC_Clk_Mem (2) Input x
Memory read data capture clock used by static PHY or Virtex-6
memory clock; otherwise should be left unconnected

MPMC_Clk_Mem_2x (3) Input x
MCB clock driven by a PLL block that is 2x the memory clock rate.
For example, 800 MHz for a 400 MHz memory interface.

MPMC_Clk_Mem_2x_180 (3) Input x
MPMC_Clk_Mem_2x shifted by 180 degrees and driven from
same PLL as MPMC_Clk_Mem_2x.

MPMC_Clk_Mem_2x_CE0 (3) Input x
I/O clock enable strobe from BUFPLL_MCB aligned to
MPMC_Clk_Mem_2x. Only valid if
C_MCB_USE_EXTERNAL_BUFPLL == 1.

MPMC_Clk_Mem_2x_CE90 (3) Input x
I/O clock enable strobe from BUFPLL_MCB aligned to
MPMC_Clk_Mem_2x_180. Only valid if
C_MCB_USE_EXTERNAL_BUFPLL == 1.

MPMC_Clk_Mem_2x_bufpll_o (3) Output x
Output of internal BUFPLL_MCB to enable sharing it with a
cascaded MPMC

MPMC_Clk_Mem_2x_180_bufpll_o (3) Output x
Output of internal BUFPLL_MCB to enable sharing it with a
cascaded MPMC

MPMC_Clk_Mem_2x_CE0_bufpll_o (3) Output x
Output of internal BUFPLL_MCB to enable sharing it with a
cascaded MPMC

MPMC_Clk_Mem_2x_CE90_bufpll_o
ports (3) Output x

Output of internal BUFPLL_MCB to enable sharing it with a
cascaded MPMC

MPMC_PLL_Lock_bufpll_0 (3) Output x
Output of internal BUFPLL_MCB to enable sharing it with a
cascaded MPMC.

MPMC_Clk_Rd_Base (4) Input x Internal Read Capture clock.

MPMC_MCB_DRP_Clk (3) Input x

MCB DRP Clock. Must be driven from the same PLL as
MPMC_Clk_Mem_2x and phase aligned with
MPMC_Clk_Mem_2x. MPMC_MCB_DRP_Clk must be between 50
and 100 MHz and be an integer-divided frequency of
MPMC_Clk_Mem_2x.

1. Signals are applicable MIG-based Virtex-4/Virtex-5/Virtex-6 PHY only.
2. Signals are applicable when using Static PHY only. This includes the SDRAM PHY. Also used by the Virtex-6 MIG PHY.
3. Spartan-6 only.
4. Virtex-6 only.
23 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Memory Signals

SDRAM PHY I /O Signals (Spartan-3, Virtex-4, and Virtex-5 Only)

MPMC_DCM_PSEN (2) Output x
Connects to PSEN pin of DCM to allow MPMC Static PHY to
change DCM phase.

MPMC_DCM_PSINCDEC (2) Output x
Connects to PSINCDEC pin of DCM to allow MPMC Static PHY
to change DCM phase.

MPMC_DCM_PSDONE (2) Input x
Connects to PSDONE pin of DCM to allow MPMC Static PHY to
change DCM phase.

MPMC_ECC_Intr Output 0

ECC Interrupt: (level sensitive) Valid if
C_INCLUDE_ECC_SUPPORT is enabled.
0 = No Interrupt.
1 = Interrupt asserted.

MPMC_Idelayctrl_Rdy_I(1) Input
Automatically
set to 1 if
unconnected

This active high input is combined with internal
IDELAYCTRL_RDY signals to indicate that the memory
initialization can begin.

MPMC_Idelayctrl_Rdy_0(1) Output 0
This active high output signals that the internal IDELAYCTRL
RDY signals and the MPMC_Ideleayctrl_Rdy_I are all high.

MPMC_InitDone Output 0
This active high signal, when asserted, indicates that the memory
initialization has completed successfully. When LOW, the memory
is currently being calibrated and configured.

MPMC_PLL_Lock (3) Input x Lock signal from PLL driving clocks to MCB.

selfrefresh_enter (3) Input
Automatically
set to 0 if
unconnected

Reserved - Not supported MCB feature.

selfrefresh_mode (3) Output 0 Reserved - Not supported MCB feature.

Table 14: SDRAM PHY I/O Signals

Signal Direction Init Status Description

SDRAM_Addr Output x Row/Column address.

SDRAM_BankAddr Output x Bank address.

SDRAM_CAS_n Output 1 Command input.

SDRAM_CE Output 0 Clock enable (memory CKE signal.)

SDRAM_Clk Output 0 Clock to memory.

SDRAM_CS_n Output 1 Chip select, active-low.

SDRAM_DM Output 0 Data masks.

SDRAM_DQ(1) In/Out z Data bits.

SDRAM_RAS_n Output 1 Command input.

SDRAM_WE_n Output 1 Command input.

1. The MHS signal connecting this port and the MHS external port must have the same name. See http://www.xilinx.com/support/answers/14264.htm.
The "Reference Documents," page 229 has a link to this topic.

Table 13: System I/O Signals (Cont’d)

Signal Name Direction Init Status Description

1. Signals are applicable MIG-based Virtex-4/Virtex-5/Virtex-6 PHY only.
2. Signals are applicable when using Static PHY only. This includes the SDRAM PHY. Also used by the Virtex-6 MIG PHY.
3. Spartan-6 only.
4. Virtex-6 only.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 24
Product Specification

http://www.xilinx.com/support/answers/14264.htm
www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Double Data Rate (DDR), Double Data Rate 2 (DDR2), and Double Data Rate 3 (DDR3) I/O Signals

DDR I/O Signals (Spartan-3, Virtex-4, and Virtex-5 Only)

DDR2 I/O Signals (Spartan-3, Virtex-4, Virtex-5, and Virtex-6 Only)

Table 15: DDR I/O Signals

Signal Name(1) Direction Init Status Description

DDR_Addr Output x Row/Column address.

DDR_BankAddr Output x Bank address.

DDR_CAS_n Output 1 Command input.

DDR_CE Output 0 1 = Clock enabled. (memory CKE signal)

DDR_CS_n Output 1 0 = Chip select enabled.

DDR_Clk Output 0 Clock to memory.

DDR_Clk_n Output 1 Inverted clock to memory.

DDR_DM Output x Data mask outputs.

DDR_DQ (3) In/Out x Data.

DDR_DQS (3) In/Out x Data strobe.

DDR_DQS_DIV_O (2) Output x Timing loop signal.

DDR_DQS_DIV_I (2) Input x Timing loop signal.

DDR_RAS_n Output 1 Command input.

DDR_WE_n Output 1 Command input.

1. For detailed signal descriptions, refer to device-specific data sheets.
2. Required when using MIG-based Spartan-3 (3/3A/3AN/3ADSP/3E) PHY.
3. The MHS signal connecting this port and the MHS external port must have the same name. See http://www.xilinx.com/support/answers/14264.htm.

"Reference Documents," page 229 has a link to this topic.

Table 16: DDR2 I/O Signals

Signal Name(1) Direction Init Status Description

DDR2_Addr Output x Row/Column address.

DDR2_BankAddr Output x Bank address.

DDR2_CAS_n Output 1 Command input.

DDR2_CE Output 0 1 = Clock enabled.

DDR2_CS_n Output 1 0 = Chip select enabled.

DDR2_Clk Output 0 Clock to memory.

DDR2_Clk_n Output 1 Inverted clock to memory.

DDR2_DM Output x Data mask outputs.

DDR2_DQ(3) In/Out x Data.

DDR2_DQS (3) In/Out x Data Strobe.

DDR2_DQS_DIV_I (2) Input x Timing loop signal.

DDR2_DQS_DIV_O (2) Output x Timing loop signal.

DDR2_DQS_n (4) In/Out x Inverted Data Strobe.
25 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
DDR3 I/O Signals (Virtex-6 Only)

DDR2_ODT Output 0
On-Die-Termination signal. Care must be taken when connecting
these pins to your memory when you have more than one rank;
there is a direct relationship to the DDR2_CS_n pins.

DDR2_RAS_n Output 1 Command input.

DDR2_WE_n Output 1 Command input.

1. For detailed signal descriptions, refer to device-specific data sheets.
2. Required when using MIG-based Spartan-3/3A/3AN/3ADSP/3E DDR/DDR2 PHY.
3. The MHS signal connecting this port and the MHS external port must have the same name. See http://www.xilinx.com/support/answers/14264.htm.

The "Reference Documents," page 229 has a link to this topic.
4. Required when differential DQS is enabled (C_DDR2_DQSN_ENABLE = 1).

Table 17: DDR3 I/O Signals

Signal Name(1) Direction Init Status Description

DDR3_Addr Output x Row/Column address.

DDR3_BankAddr Output x Bank address.

DDR3_CAS_n Output 1 Command input.

DDR3_CE Output 0 1 = Clock enabled.

DDR3_CS_n Output 1 0 = Chip select enabled.

DDR3_Clk Output 0 Clock to memory.

DDR3_Clk_n Output 1 Inverted clock to memory.

DDR3_DM Output x Data mask outputs.

DDR3_DQ(3) In/Out x Data.

DDR3_DQS (3) In/Out x Data Strobe.

DDR3_DQS_n (4) In/Out x Inverted Data Strobe.

DDR3_ODT Output 0
On-Die-Termination signal. Care must be taken when connecting
these pins to your memory when you have more than one rank;
there is a direct relationship to the DDR3_CS_n pins.

DDR3_RAS_n Output 1 Command input.

DDR3_Reset_n Output 1 Inverted reset.

DDR3_WE_n Output 1 Command input.

1. For detailed signal descriptions, refer to device-specific data sheets.
2. Required when using MIG-based Spartan-3/3A/3AN/3ADSP/3E DDR/DDR3 PHY.
3. The MHS signal connecting this port and the MHS external port must have the same name. See http://www.xilinx.com/support/answers/14264.htm.

The “"Reference Documents," page 229 has a link to this topic.
4. Required when differential DQS is enabled (C_DDR3_DQSN_ENABLE = 1).

Table 16: DDR2 I/O Signals (Cont’d)

Signal Name(1) Direction Init Status Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 26
Product Specification

http://www.xilinx.com/support/answers/14264.htm
http://www.xilinx.com/support/answers/14264.htm
www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
MCB PIM I/O Signals

Table 18: DDR, LPDDR, DDR2, and DDR3 MCB PIM I/O Signals (Spartan-6 Only)

Signal Name Direction Init Status Description

mcbx_dram_addr Output x Row/Column address.

mcbx_dram_ba Output x Bank address.

mcbx_dram_cas_n Output 1 Command input.

mcbx_dram_cke Output 0 1 = Clock enabled.

mcbx_dram_clk Output 0 Clock to memory.

mcbx_dram_clk_n Output 1 Inverted clock to memory.

mcbx_dram_ddr3_rst Output 0
Inverted DDR3 Reset. This is an active
low signal to be connected directly to
the DDR3 component.

mcbx_dram_dq In/Out x Data.

mcbx_dram_dqs In/Out x Data Strobe.

mcbx_dram_dqs_n In/Out x Inverted Data Strobe.

mcbx_dram_ldm Output x Lower Data Mask.

mcbx_dram_odt Output 0 On-Die-Termination signal.

mcbx_dram_ras_n Output 1 Command input.

mcbx_dram_udqs In/Out x Upper Data Strobe.

mcbx_dram_udqs_n In/Out x Upper Inverted Data Strobe.

mcbx_dram_udm Output x Upper Data Mask.

mcbx_dram_we_n Output 1 Command input.

rzq In/Out x

Used by soft calibration logic
(C_MEM_CALIBRATION_SOFT_IP =
TRUE) to match input impedance to
external resistor.

zio In/Out x

Used by soft calibration logic
(C_MEM_CALIBRATION_SOFT_IP =
TRUE) to match input impedance to
external resistor.
27 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PIM I/O Signals

XCL PIM I/O Signals

PLB v4.6, SDMA_CTRL, and MPMC_CTRL PIM I/O Signals

MPMC contains Slave PLB ports for the PLB PIM, SDMA Control registers (SDMA_CTRL), and MPMC Control
register (MPMC_CTRL) interfaces. Each of these slave PLB interfaces have the same set of signal names with different
prefixes on the Port Bus Names. The <Bus_Name> prefixes are as follows:

• SDMA Control registers (SDMA_CTRL) for Ports 0 to 7: SDMA_CTRL<Port_Num>_

- SDMA_CTRL is valid if C_PIM<Port_Num>_BASETYPE = 3

• MPMC Control registers (MPMC_CTRL): MPMC_CTRL

- MPMC_CTRL is valid if PM, ECC, Debug registers, or Static PHY is enabled

• MPMC Slave PLB v4.6 PIM: SPLB<Port_Num>

- SPLB<Port_Num> is valid if C_PIM<Port_Num>_BASETYPE = 2

The following table lists the available signals for SDMA_CTRL, MPMC_CTRL, and PLB v4.6 PIM (SPLB). Replace
<Bus_Name> with the appropriate bus prefix.

Table 19: XCL PIM I/O Signals(1)

Signal Name Direction Init
Status Description

FSL<Port_Num>_M_Clk Input x Clock

FSL<Port_Num>_M_Write Input x Write enable signal indicating that data is being written to the output FSL.

FSL<Port_Num>_M_Data Input x Data value written to the output FSL.

FSL<Port_Num>_M_Control Input x Control bit value written to the output FSL.

FSL<Port_Num>_M_Full Output 0 Full Bit indicating output FSL FIFO is full when set.

FSL<Port_Num>_S_Clk Input x Clock

FSL<Port_Num>_S_Read Input x
Read acknowledge signal indicating that data has been read from the
input FSL.

FSL<Port_Num>_S_Data Output x Data value currently available at the top of the input FSL.

FSL<Port_Num>_S_Control Output 0 Control Bit value currently available at the top of the input FSL.

FSL<Port_Num>_S_Exists Output 0 Flag indicating that data exists in the input FSL.

• When C_XCL<Port_Num>_B in use is enabled the B port will have the same signals names with an _B appended after the <Port_Num>.

Table 20: SDMA_CTRL, MPMC_CTRL, and PLB v4.6 (SPLB) PIM I/O Signals

Signal Name Direction Init
Status Description

<Bus_Name>_Clk Input x Bus clock.

<Bus_Name>_Rst Input x PLB reset, active high.

<Bus_Name>_PLB_ABus Input x PLB address bus.

<Bus_Name>_PLB_PAValid Input x PLB primary address valid.

<Bus_Name>_PLB_SAValid Input x PLB secondary address valid.

<Bus_Name>>_PLB_masterID Input x PLB current master identifier.

<Bus_Name>_PLB_RNW Input x PLB read not write.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 28
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
<Bus_Name>_PLB_BE Input x PLB byte enables.

<Bus_Name>_PLB_UABus Input x PLB size of requested transfer.

<Bus_Name>_PLB_rdPrim Input x PLB secondary to primary read request indicator.

<Bus_Name>_PLB_wrPrim Input x PLB secondary to primary write request indicator.

<Bus_Name>_PLB_abort Input x PLB abort bus request.

<Bus_Name>_PLB_busLock Input x PLB bus lock.

<Bus_Name>_PLB_MSize Input x PLB data bus width indicator.

<Bus_Name>_PLB_size Input x PLB size of requested transfer.

<Bus_Name>_PLB_type Input x PLB transfer type.

<Bus_Name>_PLB_lockErr Input x PLB lock error indicator.

<Bus_Name>_PLB_wrPendReq Input x PLB pending write bus request indicator.

<Bus_Name>_PLB_wrPendPri Input x PLB pending write request priority.

<Bus_Name>_PLB_rdPendReq Input x PLB read bus request indicator.

<Bus_Name>_PLB_rdPendPri Input x PLB read bus request priority.

<Bus_Name>_PLB_reqPri Input x PLB current request priority.

<Bus_Name>_PLB_TAttribute Input x PLB transfer attribute bus.

<Bus_Name>_PLB_rdBurst Input x PLB read burst transfer indicator.

<Bus_Name>_PLB_wrBurst Input x PLB burst write transfer indicator.

<Bus_Name>_PLB_wrDBus Input x PLB write data bus.

<Bus_Name>_Sl_addrAck Output 0 Slave address acknowledge.

<Bus_Name>_Sl_SSize Output 0 Slave data bus size.

<Bus_Name>_Sl_wait Output 0 Slave wait indicator.

<Bus_Name>_Sl_rearbitrate Output 0 Slave rearbiitrate bus indicator.

<Bus_Name>_Sl_wrDAck Output 0 Slave write data acknowledge.

<Bus_Name>_Sl_wrComp Output 0 Slave write transfer complete indicator.

<Bus_Name>_Sl_wrBTerm Output 0 Slave terminate write burst transfer.

<Bus_Name>_Sl_rdDBus Output 0 Slave read data bus.

<Bus_Name>_Sl_rdWdAddr Output 0 Slave read word address.

<Bus_Name>_Sl_rdDAck Output 0 Slave read data acknowledge.

<Bus_Name>_Sl_rdComp Output 0 Slave read transfer complete indicator.

<Bus_Name>_Sl_rdBTerm Output 0 Slave terminate read burst transfer.

<Bus_Name>_Sl_MBusy Output 0 Slave busy indicator.

<Bus_Name>_Sl_MRdErr Output 0 Slave read error indicator.

<Bus_Name>_Sl_MWrErr Output 0 Slave write error indicator.

<Bus_Name>_Sl_MIRQ Output 0 Slave interrupt indicator.

Table 20: SDMA_CTRL, MPMC_CTRL, and PLB v4.6 (SPLB) PIM I/O Signals (Cont’d)

Signal Name Direction Init
Status Description
29 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SDMA LocalLink I/O Signals

Table 21: SDMA LocalLink Interface Signals

Signal Name Direction
Init

Status
Description

LocalLink System Interface

SDMA<Port_Num>_Clk Input x LLink_Clk

Transmit LocalLink Interface

SDMA<Port_Num>_TX_D(0:31) Output 0 Transmit LocalLink Data Bus.

SDMA<Port_Num>_TX_Rem(0:3) Output 1 Transmit LocalLink Remainder Bus.

SDMA<Port_Num>_TX_SOF Output 1 Transmit LocalLink Start of Frame.

SDMA<Port_Num>_TX_EOF Output 1 Transmit LocalLink End of Frame.

SDMA<Port_Num>_TX_SOP Output 1 Transmit LocalLink Start of Payload.

SDMA<Port_Num>_TX_EOP Output 1 Transmit LocalLink End of Payload.

SDMA<Port_Num>_TX_Src_Rdy Output 1 Transmit LocalLink Source Ready.

SDMA<Port_Num>_TX_Dst_Rdy Input x Transmit LocalLink Destination Ready.

Receive LocalLink Interface

SDMA<Port_Num>_RX_D(0:31) Input x Receive LocalLink Data Bus.

SDMA<Port_Num>_RX_Rem(0:3) Input x Receive LocalLink Remainder Bus.

SDMA<Port_Num>_RX_SOF Input x Receive LocalLink Start of Frame.

SDMA<Port_Num>_RX_EOF Input x Receive LocalLink End of Frame.

SDMA<Port_Num>_RX_SOP Input x Receive LocalLink Start of Payload.

SDMA<Port_Num>_RX_EOP Input x Receive LocalLink End of Payload.

SDMA<Port_Num>_RX_Src_Rdy Input x Receive LocalLink Source Ready.

SDMA<Port_Num>_RX_Dst_Rdy Output 1 Receive LocalLink Destination Ready.

SDMA System Interface

SDMA<Port_Num>_Rx_IntOut Output 0 Receive interrupt output.

SDMA<Port_Num>_Tx_IntOut Output 0 Transmit interrupt output.

SDMA<Port_Num>_RstOut Output 0 Soft Reset Acknowledge.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 30
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
NPI PIM I/O Signals

The NPI PIM runs only at a 1:1 clock ratio to the MPMC memory clock (PORT MPMC_Clk0); consequently there is
no clock input for this interface.

Table 22: NPI PIM I/O Signals

Signal Name Direction Init
Status Description

Address Phase Related Input Ports

PIM<Port_Num>_Addr Input x

Indicates the starting address of a particular request.
Only valid when PIM<Port_Num>_AddrReq is valid. Must be
aligned to PIM<Port_Num>_Size burst length.
See the "Address Path," page 64 for address alignment
requirements.

PIM<Port_Num>_AddrReq Input x

This active high signal indicates that NPI is ready for MPMC to
arbitrate an address request. This request cannot be aborted.
Must be asserted until PIM<Port_Num>_AddrAck is
asserted. See “"NPI Design Restrictions and
Recommendations," page 184 for additional restrictions.

PIM<Port_Num>_RNW Input x

Read/Not Write:
0 = Request is a Write request.
1 = Request is a Read request.
Only valid when PIM<Port_Num>_AddrReq is valid.

PIM<Port_Num>_Size Input x

Indicates the transfer type of the request:

• 0x0 = Word transfers (32-bit NPI only)

• 0x0 = Double-word transfers (64-bit NPI only)

• 0x1 = 4-word cache-line transfer

• 0x2 = 8-word cache-line transfers

• 0x3 =16-word burst transfers

• 0x4 = 32-word burst transfers

• 0x5 = 64-word burst transfers (Not available in all config-
urations. Available configurations are described in
"Restrictions on 64-Word Burst Transfers," page 186.)

• Only valid when PIM<Port_Num>_AddrReq is valid.

PIM<Port_Num>_RdModWr Input x

This active high signal indicates that if the request is a write,
MPMC should do a read/ modify/write.
Only valid when PIM<Port_Num>_AddrReq is valid.
Only valid when C_INCLUDE_ECC_SUPPORT is set to 1.
This is required to be set to 1, if:

• The total transfer size specified by
PIM<Port_Num>_Size * 32(bits/word) is less than
C_MEM_DATA_WIDTH * 4 (beats/burst), to satisfy the
constant memory burst length of 4.
or

the PIM<Port_Num>_WrFIFO_BE bits for the transfer are not
guaranteed to be 1, because MPMC ECC does not use data
mask (DM) signals.
31 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Other Outputs

PIM<Port_Num>_InitDone Output 0

1 indicates that initialization is complete and that FIFOs are
available for use. Do not assert
PIM<Port_Num>_WrFIFO_Push or
PIM<Port_Num>_RdFIFO_Pop until
PIM<Port_Num>_InitDone is equal to 1.

Address Phase Related Output Ports

PIM<Port_Num>_AddrAck Output 0

This active high signal indicates that MPMC has begun
arbitration for address request. Valid for one cycle of
MPMC_Clk0.
PIM<Port_Num>_AddrReq must be deasserted on the next
cycle of MPMC_Clk0 unless NPI is requesting a new transfer.

Write Data Phase Related Input Ports

PIM<Port_Num>_WrFIFO_Data Input x
Data to be pushed into MPMC write FIFOs.
Only valid with PIM<Port_Num>_WrFIFO_Push.
Data is little-endian as shown in Figure 7, page 92.

PIM<Port_Num>_WrFIFO_BE Input x
Indicates which bytes of PIM<Port_Num>_WrFIFO_Data to
write. Only valid with PIM<Port_Num>_WrFIFO_Push.

PIM<Port_Num>_WrFIFO_Push Input x

This active high signal indicates push
PIM<Port_Num>_WrFIFO_Data into write FIFOs.
Must be asserted for one cycle of MPMC_Clk0.
Cannot be asserted while PIM<Port_Num>_InitDone is 0.
Cannot be asserted while
PIM<Port_Num>_WrFIFO_AlmostFull is asserted.
Can be asserted before, after, or during the address phase
unless MPMC is configured in one of several special cases.
See the "NPI Design Restrictions and Recommendations,"
page 184.

PIM<Port_Num>_WrFIFO_Flush Input x Reserved. Drive with 0.

Write Data Phase Related Output Ports

PIM<Port_Num>_WrFIFO_Empty Output 1
This active high signal indicates that there are less than
C_MEM_DATA_WIDTH bits of data in the write FIFO.

PIM<Port_Num>_WrFIFO_AlmostFull Output 0

This active high signal indicates that
PIM<Port_Num>_WrFIFO_Push cannot be asserted on the
next cycle of MPMC_Clk0. This signal is only asserted when
using SRL FIFOs. If BRAM FIFOs are used, the PIM cannot
allow more than 1024 bytes of data to be pushed into the
FIFOs.

Table 22: NPI PIM I/O Signals (Cont’d)

Signal Name Direction Init
Status Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 32
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Read Data Phase Related Input Ports

PIM<Port_Num>_RdFIFO_Pop Input x

This active high signal indicates that read FIFO fetch the next
value of PIM<Port_Num>_RdFIFO_Data.
Must be asserted for one cycle of MPMC_Clk0.
Cannot be asserted while PIM<Port_Num>_InitDone is 0.
Cannot be asserted while PIM<Port_Num>_RdFIFO_Empty
is asserted.
See information in
PIM<Port_Num>_RdFIFO_RdFIFO_Latency to know when
PIM<Port_Num>_RdFIFO_Data is valid.

PIM<Port_Num>_RdFIFO_Flush Input x

This active high signal indicates that the read FIFO flags
should be reset. This signal must only be used when issuing
commands of PIM<Port_Num>_Size is 0x3, 0x4 or 0x5.
Must be asserted for one cycle of MPMC_Clk0.

Caution! RdFIFO_Flush must not be asserted
unless RdFIFO_Empty is 0 and there are no outstanding
acknowledged address requests.

If Flush asserted when multiple read address requests are
acknowledged, but where the data phases corresponding to
the address phases have not completed, MPMC is in the
process of pushing read data from the second address phase
into the FIFOs.
If the FIFO flags are reset during this time, the FIFO address
counters could obtain an unexpected value, putting MPMC in
an unstable state; risking either memory errors or the PIM
going into a state of deadlock.

Read Data Phase Related Output Ports

PIM<Port_Num>_RdFIFO_Data Output 0

Data to be popped out of MPMC read FIFOs.
Only valid a certain number of cycles after
PIM<Port_Num>_RdFIFO_Push is asserted, and/or
PIM<Port_Num>_RdFIFO_Empty is deasserted, as
specified by PIM<Port_Num>_RdFIFO_Latency.
Data is little-endian as shown in Figure 7, page 92.

PIM<Port_Num>_RdFIFO_RdWdAddr Output 0

Indicates the word of a cacheline transfer to which
PIM<Port_Num>_RdFIFO_Data corresponds.
Only valid a certain number of cycles after
PIM<Port_Num>_RdFIFO_Push is asserted,
as specified by PIM<Port_Num>_RdFIFO_Latency.
Counts by 1 with a 32-bit NPI; counts by 2 with a 64-bit NPI.

PIM<Port_Num>_RdFIFO_Empty Output 1
When this active high signal, is de-asserted,(0), it indicates that
enough data is in the read FIFOs to assert
PIM<Port_Num>_RdFIFO_Pop.

Table 22: NPI PIM I/O Signals (Cont’d)

Signal Name Direction Init
Status Description
33 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PPC440MC PIM I/O Signals

PIM<Port_Num>_RdFIFO_Latency Output 0, 1, 2

Indicates the number of cycles from the time
PIM<Port_Num>_RdFIFO_Pop is asserted and/or
PIM<Port_Num>_RdFIFO_Empty is deasserted until
PIM<Port_Num>_RdFIFO_Data and
PIM<Port_Num>_RdFIFO_RdWdAddr are valid

• 0 = PIM<Port_Num>_RdFIFO_Data and
PIM<Port_Num>_RdFIFO_RdWdAddr are valid in the
same cycle as the assertion of
PIM<Port_Num>_RdFIFO_Pop.

• 1= PIM<Port_Num>_RdFIFO_Data and
PIM<Port_Num>_RdFIFO_RdWdAddr are valid in the
cycle following the assertion of
PIM<Port_Num>_RdFIFO_Pop.

• 2 = PIM<Port_Num>_RdFIFO_Data and
PIM<Port_Num>_RdFIFO_RdWdAddr are valid two cy-
cles following the assertion of
PIM<Port_Num>_RdFIFO_Pop.

This is a constant value for a particular MPMC configuration.
Because it is not possible to pass a parameter from one
processor core to another, this value is provided as a port. This
is a static signal.

Table 23: PPC440MC PIM I/O Signal Description

Signal Name Direction
Initial
Status

Description

PPC440MC<Port_Num>_MIMCReadNotWrite Input x PPC440MC read not write signal.

PPC440MC<Port_Num>_MIMCAddress[0:35] (1) Input x PPC440MC address bus.

PPC440MC<Port_Num>_MIMCAddressValid Input x PPC440MC address valid identifier.

PPC440MC<Port_Num>_MIMCWriteData[0:127] Input x PPC440MC write data bus.

PPC440MC<Port_Num>_MIMCWriteDataValid Input x PPC440MC write data valid identifier.

PPC440MC<Port_Num>_MIMCByteEnable[0:15] Input x PPC440MC byte enables.

PPC440MC<Port_Num>_MCMIReadData[0:127] Output 0 PIM read data bus.

PPC440MC<Port_Num>_MCMIReadDataValid Output 0 PIM read data valid.

PPC440MC<Port_Num>MCMIAddrReadytoAccept Output 0 PIM ready to accept address indicator.

1. MPMC supports 32 bits [4:35] of address only.

Table 22: NPI PIM I/O Signals (Cont’d)

Signal Name Direction Init
Status Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 34
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
VFBC PIM I/O Signal

Table 24: VFBC PIM I/O Signals

Port Name Direction Init
Status Description

VFBC Command Interface

VFBC<Port_Num>_Cmd_Clk Input x
Command Clock. Can be asychronous from the
MPMC_Clk0.

VFBC<Port_Num>_Cmd_Idle Output 1
VFBC Idle. Low when the VFBC is actively processing a
transfer. High when no transfer is in the VFBC Command
Queue.

VFBC<Port_Num>_Cmd_Reset (1, 2) Input x Command Reset (Active High).

VFBC<Port_Num>_Cmd_Data[31:0] Input x

Command Data (See "Required PPC440 Block
MI_CONTROL/C_PPC440MC_CONTROL Register
Settings," page 170 for more information on the
Command Packet Data Structure.)

VFBC<Port_Num>_Cmd_Write Input x
Command Write. The command words are pushed onto
the command FIFO when this signal is high.

VFBC<Port_Num>_Cmd_End Input x

Command End. When high, the command word currently
being written is the last command word in the command.
Used to terminate a command early for non-2D transfers.
Command word 1 is the only valid command word to
provide the End signal.
This signal is usually tied low.

VFBC<Port_Num>_Cmd_Full Output 1
Command Fifo Full. Active high only when the Command
FIFO is full.

VFBC<Port_Num>_Cmd_Almost_Full Output 1
Command Fifo Almost Full. High only when the
Command FIFO is almost full. Controlled by the
CMD0_AFULL_CNT parameter.

VFBC Write Data Interface

VFBC<Port_Num>_Wd_Clk Input x
Write Data FIFO Clock. Can be asychronous from the
MPMC_Clk0.

VFBC<Port_Num>_Wd_Reset (1, 2) Input x

Write Data FIFO Reset. (Active High)
When asserted, this command:

• Flushes the Write Data FIFO.

• Clears the current Write Command from the Com-
mand FIFO.

Resetting the Write Data FIFO returns the internal
read/write FIFO pointers to zero. The current write
command is also removed from the command FIFO even
if the command has not completed.

VFBC<Port_Num>_Wd_Flush (1, 2) Input x

Write Data FIFO Flush. (Active High)
When asserted this command returns the internal
read/write FIFO pointers to zero. Unlike a FIFO reset, the
current write command is kept active in the command
FIFO.

1. The VFBC Reset and Flush inputs must be held high for at least two MPMC_Clk0 cycles. Because these inputs could be controlled from a different
clock domain than the MPMC_Clk0, the relative frequency of the reset/flush clock domain must be taken into account when determining the number
of clock cycles to assert the reset or flush and to wait after reset or flush. The following equation is used to determine the number of clock cycles to
hold the reset or flush input high: 2*(VFBC_Clk_Freq/MPMC_Clk0_Freq)

2. After reset, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
3. After flush, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
35 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
VFBC<Port_Num>_Wd_Write Input x Write Data FIFO Push (Active High)

VFBC<Port_Num>_Wd_Data
[C_VFBC<Port_Num>_RDWD_DATA_WIDTH-1:0]

Input x
Write Data FIFO Data. Must be valid when
VFBC<Port_Num>_Wd_Write is High.

VFBC<Port_Num>_Wd_DataByteEn
[C_VFBC<Port_Num>_WRDWD_DATA_WIDTH/8-1:0]

Input x
Reserved for Write Data FIFO Byte Enables. This input
is currently not used but included for compatibility with
future VFBC PIM versions.

VFBC<Port_Num>_Wd_End_Burst Input x

Burst End.
Used only when the transfer is not a multiple of the burst
size. If the transfer ends on a non 32-word boundary, this
signal must be asserted high during the last word
transferred.
This signal is usually tied low for aligned transfers.

VFBC<Port_Num>_Wd_Full Output 1

Write Data Fifo Full. Active high only when the write data
FIFO is full. The depth of the FIFO is set by the
C_VFBC<Port_Num>_RDWD_FIFO_DEPTH
parameter.

VFBC<Port_Num>_Wd_Almost_Full Output 1

Write Data Fifo Almost Full. Active high only when the
write data FIFO is almost full. Controlled by the
C_VFBC<Port_Num>_RD_AEMPTY_WD_AFULL_CO
UNT parameter.

VFBC Read Data Interface

VFBC<Port_Num>_Rd_Clk Input x
Read Data FIFO Clock:
Can be asychronous from the MPMC_Clk0 Clock.

VFBC<Port_Num>_Rd_Reset (1, 2) Input x

Read Data FIFO Reset (Active High).
When asserted, this command:

• Flushes the Read Data FIFO.

• Clears the current Read command from the com-
mand FIFO.

Resetting the Read Data FIFO returns the internal
read/write FIFO pointers to zero. The current write
command is also removed from the command FIFO even
if the command has not completed.

VFBC<Port_Num>_Rd_Flush(1, 3) Input x

Read Data FIFO Flush (Active High).
Asserting this command returns the internal read/write
FIFO pointers to zero. Unlike a FIFO reset, the current
read command is kept active in the command FIFO.

VFBC<Port_Num>_Rd_Read Input x Read Data FIFO Pop (Active High).

VFBC<Port_Num>_Rd_End_Burst Input x

Burst End.
Used only when the transfer is not a multiple of the burst
size. If the transfer ends on a non 32-word boundary, this
signal must be asserted high during the last word
transferred.
This signal is usually tied low.

Table 24: VFBC PIM I/O Signals (Cont’d)

Port Name Direction Init
Status Description

1. The VFBC Reset and Flush inputs must be held high for at least two MPMC_Clk0 cycles. Because these inputs could be controlled from a different
clock domain than the MPMC_Clk0, the relative frequency of the reset/flush clock domain must be taken into account when determining the number
of clock cycles to assert the reset or flush and to wait after reset or flush. The following equation is used to determine the number of clock cycles to
hold the reset or flush input high: 2*(VFBC_Clk_Freq/MPMC_Clk0_Freq)

2. After reset, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
3. After flush, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 36
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
MCB PIM I/O Signals

VFBC<Port_Num>_Rd_Data
[C_VFBC<Port_Num>_RDWD_DATA_WIDTH-1:0]

Output x
Read Data FIFO Data. The data is valid one clock cycle
after when the VFBC<Port_Num>_Rd_Read is High.

VFBC<Port_Num>_Rd_Empty Output 1
Read Data Fifo Empty. Active high only when the read
data FIFO is empty.

VFBC<Port_Num>_Rd_Almost_Empty Output 1

Read Data Fifo Almost Empty. Active high only when the
read data FIFO is almost empty. Controlled by the
C_VFBC<Port_Num>_RD_AEMPTY_WD_AFULL_COUNT
parameter.

Table 25: MCB PIM I/O Signals (Spartan-6 Only)

Signal Name Direction Init Status Description

MCB<Port_Num>_cmd_bl[5:0] Input X Command FIFO Burst Length.

MCB<Port_Num>_cmd_byte_addr[29:0] Input X Command FIFO Address.

MCB<Port_Num>_cmd_clk Input X Command FIFO Clock.

MCB<Port_Num>_cmd_en Input X Command FIFO Enable.

MCB<Port_Num>_cmd_empty Output 1 Command FIFO Empty Flag.

MCB<Port_Num>_cmd_full Output 0 Command FIFO Full Flag.

MCB<Port_Num>_cmd_instr[2:0] Input X Command FIFO Instruction.

MCB<Port_Num>_rd_clk Input X Read FIFO Clock.

MCB<Port_Num>_rd_en Input X Read FIFO Enable.

MCB<Port_Num>_rd_data
[C_PIM<Port_Num>_DATA_WIDTH-1:0]

Output X Read FIFO Data.

MCB<Port_Num>_rd_full Output 0 Read FIFO Full Flag.

MCB<Port_Num>_rd_empty Output 1 Read FIFO Empty Flag.

MCB<Port_Num>_rd_count[6:0] Output 0 Read FIFO Count.

MCB<Port_Num>_rd_overflow Output 0 Read FIFO Overflow Flag.

MCB<Port_Num>_rd_error Output 0 Read FIFO Error Flag.

MCB<Port_Num>_wr_clk Input X Write FIFO Clock.

MCB<Port_Num>_wr_count[6:0] Output 0 Write FIFO Count.

MCB<Port_Num>_wr_data
[C_PIM<Port_Num>_DATA_WIDTH-1:0]

Input X Write FIFO Data.

MCB<Port_Num>_wr_empty Output 1 Write FIFO Empty Flag.

MCB<Port_Num>_wr_en Input X Write FIFO Enable.

MCB<Port_Num>_wr_error Output 0 Write FIFO Error Flag.

Table 24: VFBC PIM I/O Signals (Cont’d)

Port Name Direction Init
Status Description

1. The VFBC Reset and Flush inputs must be held high for at least two MPMC_Clk0 cycles. Because these inputs could be controlled from a different
clock domain than the MPMC_Clk0, the relative frequency of the reset/flush clock domain must be taken into account when determining the number
of clock cycles to assert the reset or flush and to wait after reset or flush. The following equation is used to determine the number of clock cycles to
hold the reset or flush input high: 2*(VFBC_Clk_Freq/MPMC_Clk0_Freq)

2. After reset, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
3. After flush, there should not be any accesses to the VFBC interfaces for 6 MPMC_Clk cycles.
37 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Parameter and I/O Signal Dependencies

MCB<Port_Num>_wr_full Output 0 Write FIFO Full Flag.

MCB<Port_Num>_wr_mask
[C_PIM<Port_Num>_DATA_WIDTH/8-1:0]

Input X Write FIFO Mask.

MCB<Port_Num>_wr_underrun Output 0 Write FIFO Underrun Flag.

Table 26: MPMC Dependencies

Parameter Name Affects Signal Relationship Description

C_DDR2_DQSN_ENABLE DDR2_DQS_n Controls visibility of the differential DQS_n signal.

C_FAMILY

selfrefresh_enter
selfrefresh_mode

calib_recal
MPMC_PLL_Lock

MPMC_Clk_Mem_2x
MPMC_Clk_Mem_2x_180
MPMC_Clk_Mem_2x_CE0

MPMC_Clk_Mem_2x_CE90

Spartan-6 only.

C_FAMILY MPMC_Clk_Rd_Base Virtex-6 only.

C_FAMILY
C_MEM_TYPE

SDRAM_*
DDR_*

DDR2_*
DDR3_*
mcbx_*

Only one set of these ports are available depending on
C_MEM_TYPE setting.

C_FAMILY
C_USE_STATIC_PHY
C_MEM_TYPE

MPMC_Clk_Mem
MPMC_DCM_PSEN

MPMC_DCM_PSINC_DEC
MPMC_DCM_PS_DONE

Signals are available only if C_USE_STATIC_PHY =1 or
if using Virtex-6 or SDRAM memory.

C_FAMILY
C_USE_STATIC_PHY
C_MEM_TYPE

MPMC_Clk0_DIV2
This signal is available only when C_FAMILY is virtex5,
C_USE_STATIC_PHY is 0 and C_MEM_TYPE is DDR2.

C_FAMILY
C_USE_STATIC_PHY
C_MEM_TYPE

MPMC_Clk_200MHz
MPMC_Idelayctrl_Rdy_I
MPMC_Idelayctrl_Rdy_O

These signals are available if C_FAMILY is virtex4,
C_USE_STATIC_PHY is 0, and C_MEM_TYPE is not
SDRAM.

C_MEM_ADDR_WIDTH

mcbx_dram_addr
DDR3_Addr
DDR2_Addr
DDR_Addr

SDRAM_Addr

Width of address to memory.

C_MEM_BANKADDR_WIDTH

mcbx_dram_ba
DDR3_BankAddr
DDR2_BankAddr
DDR_BankAddr

SDRAM_BankAddr

Width of bank address to memory.

Table 25: MCB PIM I/O Signals (Spartan-6 Only)

Signal Name Direction Init Status Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 38
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
C_MEM_CE_WIDTH

DDR3_CE
DDR2_CE
DDR_CE

SDRAM_CE

Number of clock enable outputs.

C_MEM_CLK_WIDTH

DDR3_Clk
DDR3_Clk_n

DDR2_Clk
DDR2_Clk_n

DDR_Clk
DDR_Clk_n
SDRAM_Clk

Number of clock/inverted/clock pair outputs.

C_MEM_CS_N_WIDTH

DDR3_CS_n
DDR2_CS_n
DDR_CS_n

SDRAM_CS_n

Number of chip select output.

C_MEM_DATA_WIDTH
C_ECC_DATA_WIDTH

mcbx_dram_dq
DDR3_DQ
DDR2_DQ
DDR_DQ

SDRAM_DQ

Width of data at memory interface.

C_MEM_DM_WIDTH
C_ECC_DM_WIDTH

DDR3_DM
DDR2_DM
DDR_DM

SDRAM_DM

Width of data mask bits at memory interface.

C_MEM_DQS_WIDTH
C_ECC_DQS_WIDTH

DDR3_DQS
DDR3_DQS_n

DDR2_DQS
DDR2_DQS_n

DDR_DQS

Width of data strobe bits at memory interface.

C_MEM_ODT_WIDTH
DDR3_ODT
DDR2_ODT

Width of ODT bits to memory.

C_NUM_PORTS PIM<Port_Num>_* Determines number of ports attached to MPMC.

C_INCLUDE_ECC_SUPPORT MPMC_ECC_Intr
Interrupt output available only if
C_INCLUDE_ECC_SUPPORT = 1.

C_FAMILY
C_MEM_CALIBRATION_SOFT_IP

rzq
zio

When C_MEM_CALIBRATION_SOFT_IP = TRUE and
device family is Spartan-6, rzq and zio I/O pins are
actively used.

Table 26: MPMC Dependencies (Cont’d)

Parameter Name Affects Signal Relationship Description
39 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PLB v4.6 Bus Parameter and I/O Signal Dependencies

The following table lists the parameter and I/O signal dependencies for the slave PLB PIM, as well as for the slave
PLB control interfaces on the SDMA and MPMC. The slave PLB bus names on the SDMA and MPMC are
SDMA_CTRL and MPMC_CTRL, respectively. See the "I/O Signals," page 23 for parameter prefix options.

Table 27: PLB v4.6 PIM Dependencies

Parameter Affects Relationship Description

C_SPLB<Port_Num>_SUPPORT_BURSTS C_PIM<Port_Num>_SUBTYPE

C_PIM<m>_SUBTYPE must be set to PLB
when
C_SPLB<Port_Num>_SUPPORT_BURSTS =1
if the desired PIM must support single,
cacheline, and burst transactions.

C_PIM<Port_Num>_SUBTYPE must be set to
PLB when
C_SPLB<Port_Num>_SUPPORT_BURSTS = 0
if the desired PIM must support single
transactions only.

C_SPLB<Port_Num>_SMALLEST_MASTER C_SPLB<Port_Num>_NATIVE_DWIDTH
See "Supported PLB Master and Bus Widths,"
page 167.

C_PIM<Port_Num>_SUBTYPE

C_SPLB<Port_Num>_SUPPORT_BURST
S

C_SPLB<Port_Num>_SUPPORT_BURSTS
must be set to1 when
C_PIM<Port_Num>_SUBTYPE = PLB for the
PIM to support single, cacheline, and burst
transactions.

C_SPLB<Port_Num>_SUPPORT_BURSTS
must be set to 0 when
C_PIM<Port_Num>_SUBTYPE = PLB for the
the PIM to support single transactions only.

C_SPLB<Port_Num>_NATIVE_DWIDTH

When C_PIM<Port_Num>_SUBTYPE = PLB,
C_SPLB<Port_Num>_NATIVE_DWIDTH can
be 32 or 64.

When C_PIM<Port_Num>_SUBTYPE =
DPLB or IPLB,
C_SPLB<Port_Num>_NATIVE_DWIDTH must
be set to 64.

C_PIM<Port_Num>_OFFSET SPLB<Bus_Name>_PLB_ABus
Access to memory will be at address the of
SPLB<Port_Num>_ABus plus
C_PIM<Port_Num>_OFFSET.

Dependencies Applying to all Slave I/O Signals

<Bus_Name>_AWIDTH <Bus_Name>_PLB_ABus Width of the PLB Address Bus.

C_<Bus_Name>_DWIDTH

<Bus_Name>_PLB_wrDBus Width of the PLB Write Data Bus.

<Bus_Name>_Sl_rdDBus Width of the PLB Read Data Bus.

<Bus_Name>_PLB_BE
<Bus_Name>_PLB_BE =
C_<Bus_Name>_DWIDTH/8.

C_<Bus_Name>_MID_WIDTH <Bus_Name>_PLB_masterID Width of the PLB Master ID Bus.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 40
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
NPI Parameter and I/O Signal Dependencies

Control and Status Registers
The MPMC pcore might contain various status and control registers depending on the configuration options.
These are all controlled through a single PLB v.46 interface designated MPMC_CTRL.
Additionally, each SDMA PIM also contains its own control and status register PLB v.46 interface to control the
operation of DMA. The MPMC_CTRL interface is composed of the following sections:

• ECC Register Summary

• Static PHY Register Summary

• MIG PHY Debug Register Summary

• Status Register Summary

• Performance Monitor Register Summary

• SDMA Register Summary

ECC Register Summary

The following registers are available only when ECC is enabled. Refer to "ECC Registers," page 76 for detailed ECC
register information.

Table 28: NPI Parameter and I/O Signal Dependencies

Parameter Name Affects Signals Relationship Description

C_PIM<Port_Num>_DATA_WIDTH
PIM<Port_Num>_WrFIFO_Data
PIM<Port_Num>_WrFIFO_BE

PIM<Port_Num>_RdFIFO_Data

Width of the data at each port and
corresponding byte enable.

Table 29: ECC Register Descriptions

MPMC_CTRL Base Address +
Offset (hex)

Register
Name

Access
Type

Default
Value (hex) Description

ECC Core

C_MPMC_CTRL_BASEADDR + 0x0 ECCC(1) R/W(6) 00000000(3) ECC Control register.

C_MPMC_CTRL_BASEADDR + 0x4 ECCS(1) R/ROW(2) 00000000 ECC Status register.

C_MPMC_CTRL_BASEADDR + 0x8 ECCSEC(1) R/ROW(2) 00000000 ECC Single Bit Error Count register.

C_MPMC_CTRL_BASEADDR + 0xC ECCDEC(1) R/ROW(2) 00000000 ECC Double Bit Error Count register.

C_MPMC_CTRL_BASEADDR + 0x10 ECCPEC(1) R/ROW(2) 00000000
ECC Parity Field Singe Bit Error Count
register.

C_MPMC_CTRL_BASEADDR + 0x14 ECCADDR(1) RO(5) N/A ECC Error Address register.

ECC ISC

C_MPMC_CTRL_BASEADDR +0x1C DGIE(1) R/W 00000000
ECC Device Global Interrupt Enable
register.
41 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Static PHY Register Summary
Note: This register is available only when the Static PHY is enabled. Please refer to "Static PHY Interface," page 112 for more
information regarding Static PHY.

MIG PHY Debug Register Summary

The MIG PHY debug registers allow for software-based access into MIG PHY calibration logic, which lets you read
or change the PHY calibration settings. This feature is useful for board bring-up, debug of a memory interface, and
margin analysis. MIG PHY Debug registers are available on Spartan-3, Virtex-4, and Virtex-5 only.

These MIG debug registers provide access points into the MIG PHY calibration logic. For more information about
the MIG calibration registers and calibration algorithm, refer to the MIG User Guide and the Application Notes
XAPP701, Virtex-4 DDR1/DDR2; XAPP768c, Spartan-3 DDR1; XAPP454, Spartan-3 DDR2; XAPP851, Virtex-5 DDR1;
or XAPP858, Virtex-5 DDR2. The "Reference Documents," page 229 contains links to these documents.

To use the MPMC debug registers and to understand the function of these registers, you need to be familiar with
these MIG documents. Also, refer to the sample software applications located at:

<EDK Install>/sw/XilinxProcessorIPLib/drivers/mpmc_<latest_version>/examples/mpmc_debug*.c.

The following tables list the debug registers that are common to all devices and debug registers that are
device-specific. The address offset listed in these tables should be added to C_MPMC_CTRL_BASEADDR to calculate
the address location of these registers.

C_MPMC_CTRL_BASEADDR + 0x20 IPIS(1) R/TOW(4) 00000000 ECC IP Interrupt Status register.

C_MPMC_CTRL_BASEADDR + 0x24 IPIE(1) R/W 00000000 ECC IP Interrupt Enable register.

1. Used when C_INCLUDE_ECC_SUPPORT = 1 only
2. ROW = Reset On Write. A write operation will reset the register
3. Reset condition of ECCCR depends on the value of parameter C_ECC_DEFAULT_ON
4. TOW = Toggle On Write. Writing 1 to a bit position within the register causes the corresponding bit position in the register to toggle
5. RO = Read Only
6. R/W = Read/Write

Table 30: Static PHY Register Summary

Summary
Grouping

MPMC_CTRL Base Address
+ Offset (hex)

Register
Name

Access
Type

Default
Value (hex) Description

Static PHY C_MPMC_CTRL_BASEADDR + 0x1000 SPIR R/W
Based on
parameter
settings

Static PHY Control Register.

Table 31: Debug Register Summary

Summary
Grouping

MPMC_CTRL Base Address
+ Offset (hex)

Register
Name

Access
Type

Default
Value (hex) Description

MIG PHY C_MPMC_CTRL_BASEADDR + 0x2000

See
"Common
MIG PHY

Debug
Registers,"

page 43

See
"Common
MIG PHY

Debug
Registers,"

page 43

Based on
parameter

settings
MIG PHY Debug Registers

Table 29: ECC Register Descriptions (Cont’d)

MPMC_CTRL Base Address +
Offset (hex)

Register
Name

Access
Type

Default
Value (hex) Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 42
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Common MIG PHY Debug Registers

Table 32: Common MIG PHY Debug Registers

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31 Field Name Access

Type
Default
Value Description

CALIB_RST_CTRL 0x2000

0:30 unused

31 REG_DEFAULT_ON_RST R/W 1

0 = MPMC reset does not change
control registers.
1 = Upon MPMC reset, set all
calibration control registers back to
default values (except this register).

The following registers are only valid if C_INCLUDE_ECC_SUPPORT = 1

ECC_DEBUG 0x2010
0 ECC_BYTE_ACCESS_EN R/W 0

0 = ECC byte data is controlled by the
normal ECC logic.
1 = Enable debug access to the ECC
byte lane to read/write the ECC byte
data directly.

1:31 unused

ECC_READ_DATA 0x2014

0:7 ECC Read Data0 R 0
Data read from ECC byte lane on the
first byte of the data in the 4 beat
memory burst.

8:15 ECC Read Data1 R 0
Data read from ECC byte lane on the
second byte of the data in the 4 beat
memory burst.

16:23 ECC Read Data2 R 0
Data read from ECC byte lane on the
third byte of the data in the four beat
memory burst.

24:31 ECC Read Data3 R 0
Data read from ECC byte lane on the
fourth byte of the data in the four beat
memory burst.

ECC_WRITE_DATA 0x2018

0:7 ECC Write Data0 R/W 0
First byte of ECC data in the four beat
memory burst to be written out.

8:15 ECC Write Data1 R/W 0
Second byte of ECC data in the four
beat memory burst to be written out.

16:23 ECC Write Data2 R/W 0
Third byte of ECC data in the four beat
memory burst to be written out.

24:31 ECC Write Data3 R/W 0
Fourth byte of ECC data in the four
beat memory burst to be written out.
43 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Spartan-3 MIG PHY Debug Registers

Table 33: Spartan-3 MIG PHY Debug Registers

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31 Field Name Access

Type
Default
Value Description

S3_CALIB_REG 0x2040

0:6 unused

7 VIO_OUT_DQS_EN R/W 0
Enable signal for strobe tap selection.
0 = not enabled
1 = enabled

8:10 unused

11:15 VIO_OUT_DQS R/W 01111
Used to change the tap values for
strobes.

16:22 unused

23 VIO_OUT_RST_DQS_DIV_EN R/W 0

Enable signal for RST_DQS_DIV tap
selection.
0 = not enabled
1 = enabled

24:26 unused

27:31 VIO_OUT_RST_DQS_DIV R/W 01111
Used to change the tap values for
RST_DQS_DIV.

S3_CALIB_
STATUS

0x2044

0:2 unused

3:7 DBG_DELAY_SEL R
Tap value from the calibration logic used
to delay the strobe and RST_DQS_DIV.

8:10 unused

11:15 DBG_PHASE_CNT R
Phase count gives the number of LUTs
in the clock phase.

16:17 unused

18:23 DBG_CNT R Counter used in the calibration logic.

24 unused

25 DBG_TRANS_ONEDTCT R
Asserted when the first transition is
detected.

26 DBG_TRANS_TWODTCT R
Asserted when the second transition is
detected.

27
DBG_ENB_TRANS_TWO_DTC
T

R

Enable signal for
DBG_TRANS_TWODTCT.
Related MIG PHY signal =
PHY_INIT_DONE.

28:31 unused
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 44
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Virtex-4 MIG PHY Debug Registers

Table 34: Virtex-4 MPMC MIG PHY Debug Registers

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31 Field Name Access

Type
Default
Value Description

V4_CALIB_REG 0x2100

0:5 unused

6 IDELAYCTRL_RDY_O R 0
Status of MPMC_Idelayctrl_Rdy_O
0 = not ready
1 = ready

7 IDELAYCTRL_RDY_I R 0
Status of MPMC_Idelayctrl_Rdy_I
0 = not ready
1 = ready

8:12 unused

13 FORCE_INITDONE R/W 0

1 = Force MPMC INIT_DONE signal to be
equal to FORCE_INITDONEVAL
0 = Allow hardware calibration engine to
drive MPMC INIT_DONE signal

14 FORCE_INITDONE_VAL R/W 0

Value to set MPMC INIT_DONE when
FORCE_INITDONE = 1.
0 = not done
1 = done

V4_CALIB_REG 0x2100

15 MIG_INIT_DONE R 0

0 = incomplete
1 = MIG_HW_CALIBRATION initialization
is complete.

Note: HW calibration could be
complete but the INIT_DONE
signal from the PIM might be
masked by the FORCE_INITDONE
signal.

Related MIG PHY signal:
PHY_INIT_DONE

16:30 unused

31 HW_CALIB_ON_RESET R/W 1

Calibrate HW upon reset.
0 = Do not run hardware calibration
engine upon MPMC reset
1 = Start memory hardware calibration
engine upon MPMC reset
45 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
V4_CALIB_STATUS 0x2104

0:5 unused

6 SEL_DONE R 0

Indicates calibration process of center-
aligning DQS with respect to clock is
complete.
0 = not done
1 = done
Related MIG PHY signal: SEL_DONE

7:15 DONE_STATUS R 0

Tap control and pattern compare
calibration completion status, 1 bit plus 1
bit per DQS bit.
0 = calibration not complete
1 = calibration complete
Related MIG PHY signals: COMP_DONE
COMP_ERROR

16:22 unused

23:31 ERR_STATUS R 0

4-bit calibration error status.
0 = error
1 = no error
Related MIG PHY signal: COMP_ERR

V4_CALIB_DQS_
GROUP0
.
.
.
V4_CALIB_DQS_
GROUP8

0x2140
...
0x2160

0:7 DQ_IN_BYTE_ALIGN<n> R/W 0

Calibration bit alignment of 8 bits within
the byte.
0 = bits aligned or align bits
1 = no bit alignment
Related MIG PHY signal:
DELAY_ENABLE

11:15 RDEN_DLY<n> R/W 0

Number of cycles after read command
until read data is valid for DQS group<n>.
Related MIG PHY signal:
CLK_COUNT

16:29 unused

30 DELAY_RD_FALL<n> R/W

Indicates relative alignment of bytes for
DQS group<n>.
Related MIG PHY signal:
DELAY_RD_FALL

31 RD_SEL<n> R/W 0

Final read capture MUX set for positive or
negative edge capture for DQS group<n>.
Related MIG PHY signal:
FIRST_RISING

Table 34: Virtex-4 MPMC MIG PHY Debug Registers (Cont’d)

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31 Field Name Access

Type
Default
Value Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 46
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Virtex-5 MIG PHY Debug Registers

V4_CALIB_DQS_
TAP_GROUP0
.
.
.
V4_CALIB_DQS_
TAP_GROUP8

0x2180
.
.
.
0x21a0

0:6 unused

7 DQS_TAP_CNT_INC<n> Wr Only N/A
DQS<n> IDELAY tap count increment, 1
tap increment per write.

8:14 unused

15 DQS_TAP_CNT_DEC<n> Wr Only N/A
DQS<n>IDELAY tap count decrement, 1
tap decrement per write.

16:25 unused

26:31 DQS_TAP_CNT<n> R 0
DQS<n>IDELAY tap count.
0 = Pass
1 = Fail

V4_CALIB_DQ_
TAP_COUNT<n>

0x2200
.
.
.
0x231c

0:22 unused

23 DQ_DELAY_EN<n> W 0 DQ<n> alignment of bits within a byte lane

24:31 unused

Table 35: Virtex-5 MIG PHY Debug Registers

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31

Field Name
Access

Type
Default
Value

Description

V5_CALIB_REG 0x2400

0:5 unused

6 IDELAYCTRL_RDY_O R 0
Status of MPMC_Idelayctrl_Rdy_O.
0 = not ready
1 = ready

7 IDELAYCTRL_RDY_I R 0
Status of MPMC_Idelayctrl_Rdy_I.
0 = not ready
1 = ready

8:12 unused

13 FORCE_INITDONE R/W 0

0 = Allow hardware calibration engine to
drive MPMC INIT_DONE signal.
1 = Force MPMC INIT_DONE signal to be
equal to FORCE_INITDONEVAL.

14 FORCE_INITDONE_VAL R/W 0
Value to set MPMC INIT_DONE when
FORCE_INITDONE = 1.

Table 34: Virtex-4 MPMC MIG PHY Debug Registers (Cont’d)

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31 Field Name Access

Type
Default
Value Description
47 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
V5_CALIB_REG 0x2400

15 MIG_INIT_DONE R 0

0 = incomplete.
1 = MIG_HW_CALIBRATION initialization is
complete;

Note: HW calibration could be
complete but the INIT_DONE signal
from the PIM might be masked by the
FORCE_INITDONE signal.

16:30 unused

31 HW_CALIB_ON_RESET R/W 1

Calibrate HW upon reset.
1 = Start memory hardware calibration
engine upon MPMC reset
0 = Do not run hardware calibration engine
upon MPMC reset

V5_CALIB_STATUS 0x2404

0 unused

1:7 BIT_ERR_INDEX R 0
When a calibration error is reported, this
field indicates which bit DQ is failing.

8:11 unused

12:15 DONE_STATUS R 0
4-bit calibration completion status:
0 =Incomplete
1 = Complete

16:27 unused

28:31 ERR_STATUS R 0
4-bit calibration error status.
0 = no error
1 = error

V5_CALIB_DQS_
GROUP0
.
.
.
V5_CALIB_DQS_
GROUP8

0:10 unused

11:15 RDEN_DLY<n> R/W 0
Number of cycles after read command until
read data is valid for DQS group<n>.

16:18 unused

0x2440
.
.
.
0x2460

19:23 GATE_DLY<n> R/W 0

Number of cycles after read command until
clock enable for DQ byte group is
deasserted to prevent postamble glitch for
DQS group <n>.

24:30 unused

31 RD_SEL<n> R/W 0

Final read capture MUX set for positive or
negative edge capture for DQS group<n>:
0 = Pass
1 = Fail

Table 35: Virtex-5 MIG PHY Debug Registers (Cont’d)

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31

Field Name
Access

Type
Default
Value

Description
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 48
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
V5_CALIB_DQS_
TAP_CNT0
.
.
.
V5_CALIB_DQS_
TAP_CNT8

0x2480
.
.
.
0x24A0

0:6 unused

7 DQS_TAP_CNT_INC<n> Wr Only N/A
DQS<n> IDELAY tap count increment, 1
tap increment per write.

8:14 unused

15 DQS_TAP_CNT_DEC<n> Wr Only N/A
DQS<n> IDELAY tap count decrement, 1
tap decrement per write.

16:25 unused

26:31 DQS_TAP_CNT<n> R 0
DQS<n> IDELAY tap count.
0 = Pass
1 = Fail

V5_CALIB_GATE_
TAP_CNT0
.
.
,
V5_CALIB_GATE_
TAP_CNT8

0x24c0
.
.
.
0x24e0

0:6 unused

7 GATE_TAP_CNT_INC<n> Wr Only N/A
GATE<n> IDELAY tap count increment, 1
tap increment per write.

8:14 unused

15 GATE_TAP_CNT_DEC<n> Wr Only N/A
GATE<n> IDELAY tap count decrement, 1
tap decrement per write.

16:25 unused

26:31 GATE_TAP_CNT<n> R 0 GATE<n> IDELAY tap count.

 V5_CALIB_DQ_
TAPCNT0
.
.
.
.V5_CALIB_DQ_
TAP_CNT71

0x2600
.
.
.
0x271c

0:6 unused

7 DQ_TAP_CNT_INC<n> Wr Only N/A
DQ[<n> IDELAY tap count increment, 1 tap
increment per write.

15 DQ_TAP_CNT_DEC<n> Wr Only N/A
DQ<n> IDELAY tap count decrement, 1 tap
decrement per write.

16:25 unused

26:31 DQ_TAP_CNT<n> R 0 DQ<n> IDELAY tap count.

Table 35: Virtex-5 MIG PHY Debug Registers (Cont’d)

Register Name
Base Address/

Offset from
C_MPMC_CTRL

BASEADDR (in hex)

Bits
0:31

Field Name
Access

Type
Default
Value

Description
49 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Status Register Summary

The MPMC Status register is available only when one of set of registers is enabled. It consists of a single Read-only
register that displays static information about MPMC that is useful for software to read to obtain hardware
configuration information. The following tables provide the MPMC status register and bit definitions.

Table 36: MPMC Status Register Description

MPMC_CTRL Base Address
+ Offset (hex) Register Name Access

Type
Default value

(hex) Description

C_MPMC_CTRL_BASEADDR + 0x3000 MCSR0 RO N/A MPMC Ctrl Status Register 0

Table 37: MCSR0 Bit Definitions

Bit(s) Field Name Core
Access

Default
Value Description

0
ECC CTRL Interface
Present

R x

1 = MPMC has been synthesized with C_INCLUDE_ECC_SUPPORT =
1 and the error correcting code registers are present.

0 = MPMC has been synthesized with C_INCLUDE_ECC_SUPPORT =
0 and the error correcting code registers are not present.

1
Static PHY CTRL Interface
Present

R x

1 = MPMC has been synthesized with C_USE_STATIC_PHY = 1 and
the Static PHY registers are present.

0 = MPMC has been synthesized with C_USE_STATIC_PHY = 0 and
the Static PHY registers are not present.

2
Debug Registers CTRL
Interface Present

R x

1 = MPMC has been synthesized with C_DEBUG_ENABLE = 1 and the
Debug registers are present.

0 = MPMC has been synthesized with C_DEBUG_ENABLE = 0 and the
Static PHY registers are not present.

3
MPMC_CTRL Status
Interface Present

R 1

1 = MPMC has been synthesized with C_INCLUDE_ECC_SUPPORT =
1 and/or C_USE_STATIC_PHY = 1 and/or C_DEBUG_ENABLE = 1
and/or C_PM_ENABLE = 1

0 = MPMC has not been synthesized with the MPMC_CTRL interface
(not possible)

4:6 Reserved R x Reserved

7
PM CTRL Interface
Present

R x

1 = MPMC has been synthesized with C_PM_ENABLE = 1 and the
Performance Monitor registers are present.

0 = MPMC has been synthesized with C_PM_ENABLE = 0 and the
Performance Monitor registers are not present.

8:15 Reserved R x Reserved

16:19 Memory Type R x

External Memory Type:
0x0 = SDRAM
0x1 = DDR
0x2 = DDR2
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 50
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Performance Monitor Register Summary
Note: These registers are available only when a Performance Monitor (PM) is enabled. Refer to "Performance Monitor Registers,"
page 83 for detailed Performance Monitor register information.

20:23
Memory Width (not
including ECC Data Bits)

R x

External Memory Interface Width:
0x3 = 8 bits
0x4 = 16 bits
0x5 = 32 bits
0x6 = 64 bits

24 Reserved R x Reserved

25:27 Number of Ports R x

Number of Ports:
0x0 = 1 port
0x1 = 2 port
0x2 = 3 ports
0x3, = 4 ports
0x4 = 5 ports
0x5 = 6 ports
0x6 = 7 Ports
0x7 = 8 ports

28:31 Device Family R x

Device Family:
0x0 = Spartan®-3
0x1 = Virtex®-4
0x2 = Virtex-5
0xF = Unknown Family

Table 38: Performance Monitor Register Summary

MPMC_CTRL
Base Address + Offset (hex) Register Name Access

Type Default value (hex) Description

PM CONTROL

C_MPMC_CTRL_BASEADDR + 0x7000 PMCTRL R/W 00000000 PM Control Register.

C_MPMC_CTRL_BASEADDR + 0x7004 PMCLR W 00000000 PM Clear Register.

C_MPMC_CTRL_BASEADDR + 0x7008 PMSTATUS R/TOW 00000000 PM Status Register.

PM DATA

C_MPMC_CTRL_BASEADDR + 0x7010 PMGCC R 0000000000000000(1) PM Global Cycle Counter.

C_MPMC_CTRL_BASEADDR + 0x7020 PM0_DCC R 0000000000000000(2) PM Dead Cycle Counter Port 0.

C_MPMC_CTRL_BASEADDR + 0x7028 PM1_DCC R 0000000000000000(2) PM Dead Cycle Counter Port 1.

C_MPMC_CTRL_BASEADDR + 0x7030
– C_MPMC_CTRL_BASEADDR +
0x7050

PM2_DCC –
PM6_DCC

R 0000000000000000(2) PM Dead Cycle Counter Port 2-6.

C_MPMC_CTRL_BASEADDR + 0x7058 PM7_DCC R 0000000000000000(2) PM Dead Cycle Counter Port 7.

C_MPMC_CTRL_BASEADDR + 0x8000 PM0_DATABIN0 R 0000000000000000(3) PM Port 0, Data Bin 0.

C_MPMC_CTRL_BASEADDR + 0x8008 PM0_DATABIN1 R 0000000000000000(3) PM Port 0, Data Bin 1,

Table 37: MCSR0 Bit Definitions (Cont’d)

Bit(s) Field Name Core
Access

Default
Value Description
51 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SDMA Register Summary

The Service Base Address varies based on the setting of parameter C_ALL_PIMS_USE_SHARED_ADDRESSES:

• If set to 0, the Service Base Address is located at C_SDMA_CTRL<Port_Num>_BASEADDR.

• If set to 1, each port will share the same base address of C_SDMA_CTRL_BASEADDR (with no <Port_Num>
specified), and the Service Base Address for each Port is defined as follows:

- Port 0: C_SDMA_CTRL_BASEADDR + 0x0
- Port 1: C_SDMA_CTRL_BASEADDR + 0x80
- Port 2: C_SDMA_CTRL_BASEADDR + 0x100
- Port 3: C_SDMA_CTRL_BASEADDR + 0x180
- Port 4: C_SDMA_CTRL_BASEADDR + 0x200
- Port 5: C_SDMA_CTRL_BASEADDR + 0x280
- Port 6: C_SDMA_CTRL_BASEADDR + 0x300
- Port 7: C_SDMA_CTRL_BASEADDR + 0x380

The following table shows the SDMA registers and the PLB address offset from the Service Base Address
assignment with the allowed access to that register. These registers are available only when an SDMA interface is
enabled. Refer to "SDMA Registers," page 158 for SDMA register information.

C_MPMC_CTRL_BASEADDR + 0x8010
- C_MPMC_CTRL_BASEADDR +
0x8FF8

PM0_DATABIN2 –
PM0_DATABIN511

R 0000000000000000(3) PM Port 0, Data Bin 2.
PM Port 0, Data Bin 511,

C_MPMC_CTRL_BASEADDR + 0x9000
- C_MPMC_CTRL_BASEADDR +
0xFFF8

PM1_DATABIN0 –
PM7_DATABIN511

R 0000000000000000(3) PM Port 1, Data Bin 0.
PM Port 7, Data Bin 511.

1. The size of this register is 64 bits and is determined by the C_PM_GC_WIDTH parameter. If this parameter is less than 64 bits, the MSB is padded
with 0s.

2. The sizes of these registers are 64 bits and are determined by the C_PM_DC_WIDTH parameter. If this parameter is less than 64 bits, the MSB is
padded with 0s.

3. The size of this register is 64 bits, the data bins only hold 36 bins, therefore the upper MSBs are padded with 0s.

Table 38: Performance Monitor Register Summary (Cont’d)

MPMC_CTRL
Base Address + Offset (hex) Register Name Access

Type Default value (hex) Description
52 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Table 39: SDMA Registers and PLB Address Offsets from Service Base Address

PLB Address Offset from
Service Base Address

Assignment
Register Name Access

Type
Default

Value (hex) Description

Transmit Registers

0x00 TX_NXTDESC_PTR R 00000000 TX Next Descriptor Pointer.

 0x04 TX_CURBUF_ADDR R 00000000 TX Current Buffer Address.

0x08 TX_CURBUF_LENGTH R 00000000 TX Current Buffer Length.

0x0C TX_CURDESC_PTR R/W 00000000 TX Current Descriptor Pointer.

0x10 TX_TAILDESC_PTR R/W 00000000 TX Tail Descriptor Pointer.

0x14 TX_CHNL_CTRL R/W 00000000 TX Channel Control.

0x18 TX_IRQ_REG R/W 00FF0000 TX Interrupt Register.

0x1C TX_CHNL_STS R 00000000 TX Status Register.

Receive Registers

 0x20 RX_NXTDESC_PTR R 00000000 RX Next Descriptor Pointer.

0x24 RX_CURBUF_ADDR R 00000000 RX Current Buffer Address.

0x28 RX_CURBUF_LENGTH R 00000000 RX Current Buffer Length.

0x2C RX_CURDESC_PTR R/W 00000000 RX Current Descriptor Pointer.

0x30 RX_TAILDESC_PTR R/W 00000000 RX Tail Descriptor Pointer.

0x34 RX_CHNL_CTRL R/W 00000000 RX Channel Control.

0x38 RX_IRQ_REG R/W 00FF0000 RX Interrupt Register.

0x3C RX_CHNL_STS R 00000000 RX Status Register.

Control Registers

0x40 DMA_CONTROL_REG R/W 0000001C DMA Control Register.
01.a) July 23, 2010 www.xilinx.com 53
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

54
Getting Started with MPMC
This section provides an overview of MPMC usage, typically consisting of the following tasks, that are
detailed in subsections:

• FPGA and Memory Device Selection

• Initial Instantiation and System Assembly

• Choosing a Physical Interface

• Board Considerations

• Choosing Personality Interface Modules

FPGA and Memory Device Selection

Prior to using the MPMC, it is advisable to understand and evaluate its capabilities for a given
application.

• For applicable FPGA and memory device support, refer to "MPMC Architecture Specific
Features," Table 1, page 2. This table lists the supported memory widths.

• For MPMC clock frequency expectations, see "MPMC Operational Frequencies," page 201. Some
general user clocking restrictions are also introduced in this section.

• For overall throughput estimates, see "Choosing Personality Interface Modules," page 55.

Initial Instantiation and System Assembly

Once you select a family and memory device you can start to create an MPMC system. The most
efficient way to create an initial system is to use the EDK XPS Base System Builder (BSB) wizard. You
can invoke BSB by creating a new XPS project. See UG683, EDK Concept Tools and Techniques for more
information on BSB and general XPS tool usage. A link is provided in "Reference Documents,"
page 229.

When you are using the BSB, consider choosing an existing demonstration board as the initial BSB
project. While it is possible to create a custom board through BSB, the resulting project lacks the
demonstration board benefit of a complete example UCF and hardware testing. Choose the
demonstration board first by FPGA family and then by similar memory type.

Choosing a Physical Interface

A Physical Interface layer (PHY) performs the calibration and signaling to the external memory device.
For a particular FPGA family and memory type, there could be more than one PHY choice
available—see "Configurable Physical Interface," page 89 for more information, specifically Table 57:
"PHY Layer by Xilinx FPGA Family and Memory Type."

Spartan-6 designs use the "Spartan-6 Hard Memory Controller Architecture," page 121 Block (MCB) as
both the memory controller and memory PHY functions of the MPMC. You perform I/O pinout
selection by choosing a MCB location using the C_MCB_LOC parameter, and then optionally choosing
RZQ and ZIO pin locations, if applicable.

Most DDR-based systems use the high-performance Memory Interface Generator PHY Interface (MIG)
by default. When using a MIG PHY, you must generate a pinout from MIG and use the resulting MIG
constraints as part of the MIG/MPMC tool flow. The EDK XPS tool manages this process, when using
the integrated MIG GUI Flow, by managing the MIG UCF constraints automatically after MIG pinout
selection.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The Standalone MIG GUI Flow allows manual generation of pinouts and constraints from outside of
the EDK framework. The standalone flow not recommended because the resulting UCF requires
additional modification before use in an EDK project, and consequently is used only for existing
designs, or if more control is required than the integrated flow provides.

The Static PHY Interface lets you use designs of Virtex-4, Virtex-5, and Spartan-3 based families with
pinouts that were not designed with a MIG-compatible DDR/DDR2 pinout. The Static PHY uses a
coarse DCM phase-shift to capture DDR/DDR2 Read data. Generally, a software calibration example is
used to perform the calibration.

Note: Use the Static PHY only when the MIG PHY cannot be used.

The SDRAM PHY Interface is the Static PHY modified to target Single Data-Rate (SDR) SDRAM
devices in the same FPGA families.

Choosing Memory Device Details

After you run BSB you can choose the details of the external memory. In XPS, open the MPMC IP
Configuration GUI, and choose the appropriate memory part and memory settings which are
described in "Memory Interface," page 226. For most FPGA families, you can enter an unlisted part
using the CUSTOM memory part.

If you choose a different memory type, the MPMC I/O ports might need to be connected. Refer to
"Memory Signals," page 24 to determine which MPMC ports must be connected to external memory.
Changing the memory type might require clocking modifications also; see "Clock Logic," page 68,
"Virtex-6 Clock Logic," page 69, or "Spartan-6 Clock Logic," page 125 for more information.

Other memory device changes might require modification of external I/O port widths, also.

Board Considerations

When you have chosen a PHY and an created an initial system, you can determine the pinout. MIG
PHY users must follow the UG086, MIG User Guide for pinout planning, pin-swapping, and board
design layout rules specific to each FPGA family and memory standard. Use the reference documents
for more information on MIG board design. A link to the MIG documentation is available in "Reference
Documents," page 229.

There are no specific board requirements for Static PHY and SDRAM PHY; but, because these PHYs
perform global delay adjustments only, you must reduce board skew across the entire memory
interface as much as possible.

Choosing Personality Interface Modules

The provided Personality Interface Modules (PIMs) offer varying connection options and sets of
services to the fabric-side of the MPMC. You can select the PIM in the Base Configuration tab of the
MPMC IP Configuration GUI. The following is a summary of each PIM:

• Xilinx CacheLink PIM (XCL)—Provides a near-direct connection to the MicroBlaze processor
cache.

• Soft Direct Memory Access Controller PIM for LocalLink Interfaces (SDMA)—A 32-bit wide Xilinx
Local Link interface provides medium-throughput performance, but offloads CPU involvement
with hardware scatter-gather handling. Useful for frequent but small data transfers, but requires
the most software expertise. Typically SDMA is used only with an XPS_LL_TEMAC core.
01.a) July 23, 2010 www.xilinx.com 55
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

56
• Processor Local Bus Version 4.6 PIM (PLB)—A general interface used on most EDK IP cores. The
PLB is suggested to be used for the most forward-compatibility.

• PowerPC 440 Memory Controller PIM (PPC440MC)—Provides lowest latency connection when
using the Virtex-5 PowerPC 440 processor.

• Video Frame Buffer Controller PIM (VFBC)—A two-dimensional DMA core which also provides
asynchronous clocking from MPMC_Clk0. High-latency, but high-throughput operation for very
long bursts, such as entire video frames.

• Native Port Interface PIM (NPI)—The highest performance general PIM. All other PIMs except for
MCB connect through an NPI interface. The NPI PIM is specific to MPMC, and is future support
on Xilinx memory controllers is unplanned, thus limiting forward-compatibility.

• MCB PIM (MCB)—Spartan-6 only PIM providing raw access to the hardened memory controller
for highest performance. Forward-compatibility is unplanned on FPGA families.

Estimates on PIM performance can be found in the "MPMC Latency and Throughput," page 208. Total
system throughput can be estimated by a weighted average of each PIMs throughput by the percentage
of transactions on each PIM.

MPMC Use Cases
You can use MPMC to build different system use cases. Because of software variables, device bus
transactions, memory latency, and speed; each system is capable of different size and data bandwidths.
MPMC allows you to build systems quickly for different use cases, and then compare the size and the
performance. There are many more use cases than can be shown; the use cases in this document can be
used as an aide to understanding what trade-off(s) can be made when configuring MPMC. Each
application is different, and no use case is ideal for all applications.

The following subsections provide examples of these available system use cases:

• Standard PowerPC 405 Processor CoreConnect Use Case

• Single MicroBlaze Processor Use Case

• Dual PowerPC 405 Processor Use Case

• Using MPMC in Standalone Systems
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Standard PowerPC 405 Processor CoreConnect Use Case

An MPMC module fits easily into existing PowerPC 405 CoreConnect-based systems as a single-port
memory controller as shown in the following figure. This is particularly useful as a starting point to
port an existing design into an MPMC use case that allows for improved performance.

Single MicroBlaze Processor Use Case

The following figure shows an example of a common MicroBlaze processor system layout. The MPMC
module provides direct memory access to the processor IXCL and DXCL interfaces.

A standard PLB port is defined for use with PLB devices. The MicroBlaze processor can be connected
directly to the PLB bus attached to the PLB PIM also.

Figure Top x-ref 1

Figure 1: Standard PowerPC CoreConnect Use Case

Figure Top x-ref 2

Figure 2: Single MicroBlaze Processor Use Case

PLB
PIM

PPC405

Device
Device

Memory

PLB
ARB

DS643_01_082107

MPMC
DPLB0

IPLB0

PLB
PIM

XCL
PIMMicroBlaze

Memory

Device

Device

PLB
ARB

x11001

MPMC

IPLB DPLB

IXCL

DXCL

(1)
01.a) July 23, 2010 www.xilinx.com 57
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

58
Note: (1)This figure shows MicroBlaze processor version 7.20 or greater using a PLB connection to MPMC for
uncached access to memory. This approach uses a second MPMC port for the uncached access over PLB. An
alternate connection scheme is to remove the second MPMC port and use MicroBlaze processor parameters
C_ICACHE_ALWAYS_USED =1 and C_DCACHE_ALWAYS_USED = 1. These parameters cause a MicroBlaze
processor to make uncached memory accesses over XCL instead of PLB to reduce system size.

Dual PowerPC 405 Processor Use Case

This figure shows an example of two PowerPC 405 processors connected directly to an MPMC module.

On the first PowerPC 405 processor:

• The IPLB1 and DPLB1 ports of the first PowerPC 405 processor are connected to the first two
MPMC PLB PIMs. These are point to point connections for improved performance. Additionally,
the PLB PIMs are designated as IPLB and DPLB PIMs to allow for performance optimizations
inside of the PIM.

• The IPLB0 and DPLB0 ports of the first PowerPC 405 are connected to the PLB Bus attached to the
third PLB PIM. Also attached to the PLB Bus are block RAM memory, which can be used to boot
code and other PLB devices necessary to a particular application.

On the second PowerPC 405 processor:

1. This diagram also shows a dual XCL PIM connection where a pair of MicroBlaze XCL interfaces connect to a single XCL PIM
that consumes 1 MPMC port. The dual XCL feature is enabled using the C_XCL<Port_Num>_B_IN_USE parameter.

Figure Top x-ref 3

Figure 3: Dual Processor PowerPC Use Case

PLB

PLB

PIM

PLB
PIM

PLB
PIM

PLB
PIM

PLB
PIM

PIM

PLB
PIM

Memory

Device

Device

PLB
ARB DS643_03_082007

BRAM

IPLB0 DPLB0

DPLB1

IPLB1

PPC405

Device

Device

PLB
ARB

BRAM

IPLB0 DPLB0

DPLB1

IPLB1

PPC405

MPMC

(IPLB)

(DPLB)

(IPLB)

(DPLB)

low bandwidth

low bandwidth
Device

high bandwidth
Config
PLB
Port

Master
PLB
Port
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
• The IPLB1 and DPLB1 ports of the second PowerPC 405 processor are connected directly to the
fourth and fifth PLB PIMs.

• The IPLB0 and DPLB0 ports of the second PowerPC 405 are connected to the PLB bus attached to
the sixth PLB PIM. Also on this PLB bus are the block RAM memory, which can be used to boot
code and other “low-bandwidth” PLB devices.

• On the seventh PLB PIM is a “high bandwidth” PLB device. This device has a direct connection to
MPMC to improve performance. The configuration PLB port of this high bandwidth device is
connected to the sixth PLB PIM to allow configuration from the second PowerPC 405 processor.

Using MPMC in Standalone Systems

You can use the MPMC core in a processor system that is not derived from the Embedded Development
Toolkit (EDK) Xilinx Platform Studio (XPS). The general flow is to run EDK to configure and generate
the MPMC core, then export MPMC out of EDK into Project Navigator to be used as a standalone core
afterwards.

Note: EDK is required to configure or generate MPMC. MPMC cannot be configured or generated without EDK.
Do not attempt to manually modify the parameters in a standalone MPMC core after it has been generated because
many parameters have dependencies that are managed by the EDK tools.

Using EDK XPS to Manage the MPMC Core

The use of MPMC in a non-EDK processor system requires the EDK XPS to manage the MPMC core.
The following steps are required:

1. Create a design using the Base System Builder (BSB) wizard, choosing a development board that
uses the same memory technology to be used in the actual design, with all other cores deselected
except for the MPMC.

2. Double-click on the MPMC instance in the System Assembly view to configure MPMC using the
MPMC GUI. Parameterize the MPMC as needed, including choosing the desired PIMs.

3. Remove all unwanted peripherals and processors. Delete any external I/O associated with these
peripherals.

4. In the XPS Port tab, connect all relevant PIM signals as external I/O.

5. Choose Filters > Default Connections port filter to show all MPMC ports that are usually part of
a bus connector. Each PIM I/O signal has a port number and PIM type in the GUI that corresponds
to the port order and PIM type shown in the MPMC GUI. For example, if PIM2 is configured as
VFBC, the port signals would begin with “VFBC2_”. NPI ports use the generic prefix “PIM”, such as
“PIM2_”.
You can save time by selecting the relevant ports then right-clicking the Make External option.

6. Run Hardware > Generate Netlist to check for any incorrect, missing, or extraneous connections;
correct as needed.

7. Add the XPS file as a source in the ISE® Project Navigator project and build. For an instantiation
template, select the XPS project in the Sources tab and then run View HDL Instantiation Template
from the Processes tab.
01.a) July 23, 2010 www.xilinx.com 59
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

60
Transaction Ordering, Coherency, and Arbitration
Transactional coherency and arbiter features apply to both the soft and hard memory controller
architectures.

Transaction Ordering and Memory Coherency

In both the hard and soft MPMC architectures, transactions are executed to memory in the order that
the transactions are acknowledged with respect to a single port; consequently, on a single port,
transactions are completed in the same order as requested.

Across multiple ports of MPMC there is no guarantee that the transactions issued by different ports
will complete in the request order. You can modify the arbitration algorithms so that a given port is
favored over another port. This can be used as a mechanism to influence transaction ordering but
might not guarantee a specific order.

MPMC allows write transactions to be buffered inside the MPMC. Because of the buffering, there is an
undefined time between when a write transaction has completed over NPI and when the write
completes to memory.

Because transaction ordering is not guaranteed across ports, a port doing a read from an address
location being written to by another port might read the new or the old memory value. In some
applications it is important to know that a write has completed to memory before issuing a read of that
location.

There are three methods that can ensure coherency:

1. The NPI interface can monitor the Write FIFO empty flag:

- The empty flag is asserted when the write has completed to memory.
- The design can wait for the empty flag to go high before signaling that a read can be performed.

2. The design can take advantage of the fact that transactions complete in order on a given port:

- After a write to a sensitive part of memory, the device can issue a dummy read and wait for the
dummy read to complete and return data.

- The completion of the dummy read ensures that the previous write has completed to memory.

3. The arbitration algorithm can be adjusted:

- If the port performing the writes can always be set to have higher priority than the ports doing
the reads, this should also ensure that the write completes before the read across the two ports.
Care should be taken with this method if there is a possibility that the PIM can have “bubble”
cycles between the write and the read request.

Note: Using any of these methods to ensure coherency could result in reduced system performance; employ
these methods when necessary only.

The DPLB and PLB PIMs follow the PLB CoreConnect technology method for handling memory
coherency (for example, between PowerPC 405 processor instruction and data PLB interface). The PLB
BUSY signal is asserted on writes until the Write_FIFO_Empty flag is asserted indicating the write
transaction has completed to memory. The processor normally ignores the BUSY flag unless an
instruction is executed such as Sync or Enforce Instruction Execution In Order (EIEIO).

When the Sync or EIEIO instruction is executed, the processor waits for PLB BUSY to be de-asserted
before issuing another transaction.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Multi-Port Arbitration Algorithms

The MPMC Arbiter supports Fixed, Round Robin, and Custom arbitration algorithms. The arbitration
algorithms are incremented one arbitration slot per transaction when there are active requests.
Otherwise during idle periods, the arbitration increments a slot for each clock cycle.

Fixed

In the Fixed arbitration algorithm, the priority is fixed so that Port 0 has highest priority, Port 1 has next
highest priority, etc. The last port in the design has the lowest priority. The ordering from Port 0 to Port
7 cannot be changed. This algorithm uses the lowest amount of FPGA resources to implement.

Round Robin (Default)

In the Round Robin arbitration algorithm (default), each MPMC port is given an equal overall priority.

This is accomplished by rotating through the relative priority of each port each time an arbitration is
performed. A given port therefore has one turn as highest priority, one turn at second highest priority,
one turn at lowest priority, and so forth.

Custom

Custom arbitration provides user-configurable arbitration. The number of arbitration time slots
(C_ARB0_NUM_SLOTS) can be configured to a number between 1 and 16 slots.

In Spartan-6, C_ARB0_NUM_SLOTS must be either 10 or 12 using this option. The arbiter rotates through
these arbitration time slots each time an arbitration is performed to initiate a memory transaction. For
each arbitration time slot, relative priority of all the ports (C_ARB0_SLOT<PortNum>) is selectable.

Arbitration Examples

An example of Custom arbitration shows that in a four port system, the following options can be set:

C_ARB0_NUM_SLOTS = 6
C_ARB0_SLOT0 = “0123”
C_ARB0_SLOT1 = “0123”
C_ARB0_SLOT2 = “1230”
C_ARB0_SLOT3 = “1230”
C_ARB0_SLOT4 = “2301”
C_ARB0_SLOT5 = “3012”

Assuming all ports are making requests, Port 0 is selected 1/3 of time, Port 1 is selected 1/3 of time,
Port 2 is selected 1/6 of time, and Port 3 is selected 1/6 of time.

The functionally equivalent setting for Round Robin arbitration is as follows:

C_ARB0_NUM_SLOTS = 4
C_ARB0_SLOT0 = “0123”
C_ARB0_SLOT1 = “1230”
C_ARB0_SLOT2 = “2301”
C_ARB0_SLOT3 = “3012”

The functionally equivalent setting for Fixed arbitration is as follows:

C_ARB0_NUM_SLOTS = 1
C_ARB0_SLOT0 = “0123”

For more information on how to configure the arbiter, see the “Arbitration” information in the "IP
Configuration Graphical User Interface," page 225.
01.a) July 23, 2010 www.xilinx.com 61
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

62
Soft Memory Controller Architecture
MPMC uses a soft (FPGA logic-based) memory controller for Spartan-3, Virtex-4, Virtex-5, and Virtex-
6 architectures. The MPMC soft FPGA logic-based architecture comprises the following components:

• Address Path

• Data Path

• Clock Logic

• Spartan-3, Virtex-4, and Virtex-5 Reset Logic

• Error Correction Code (optional)

• Performance Monitoring (optional)

• Configurable Physical Interface

• Descriptions of the "Personality Interface Module (PIM) Parameters," page 20, (PIMs) which are
available in the soft memory controller, detail how the PIMs allow MPMC to connect to various
interfaces. The available PIMs are:

• Xilinx CacheLink PIM

• Soft Direct Memory Access Controller PIM for LocalLink Interfaces

• Processor Local Bus Version 4.6 PIM

• PowerPC 440 Memory Controller PIM

• Video Frame Buffer Controller PIM

• Native Port Interface PIM

• MCB PIM

Throughout this document, the term “word” signifies a 32-bit word.

The following figure is a block diagram of the MPMC soft memory controller architecture. The
following subsections describe the MPMC soft memory controller architectural features.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Figure 4: MPMC Soft Memory Controller Architecture Block Diagram

X11195

PIM0
(configurable) Data

Path

Control
Path/

Arbiter

Address
Path

Control Registers

NPI

Performance
Monitor

PIM1
(configurable)

NPI

Performance
Monitor

PIM2
(configurable)

NPI

Performance
Monitor

PIM3
(configurable)

NPI

Performance
Monitor

PIM4
(configurable)

NPI

Performance
Monitor

PIM5
(configurable)

NPI

Performance
Monitor

PIM6
(configurable)

Connections to
PIMs and/or
Performance
Monitors

PLB
Interface

NPI

Performance
Monitor

PIM7
(configurable)

NPI

Performance
Monitor

P
or

t
R

ou
tin

g
Lo

gi
c

E
C

C
 S

up
po

rt

M
em

or
y

(S
D

R
A

M
,

D
D

R
,

D
D

R
2,

 o
r

D
D

R
3)

P
H

Y
(c

on
fig

ur
ab

le
)

Reset
Logic IDELAY

Controller

MPMC
63 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

64
Address Path

The address path allows each PIM to have independent access. Each PIM supports 32-bit addresses.
This allows at least one 32-bit address from each PIM to be acknowledged simultaneously. The control
path then determines the order in which the addresses go to memory. Refer to "MPMC Optimization,"
page 204 for more details.

The address path information includes the following topics:

• Base/High/Offset Parameters

• Address Encoding

• Address Path Pipeline

• Address Alignment

Base/High/Offset Parameters

Each PIM has PIM-specific Base/High/Offset address parameters. Refer to"Personality Interface
Modules," page 130 for information on the correct address for the PIM you are using. The MPMC
parameters are listed in "Design Parameters," page 3.

Address Encoding

MPMC does not perform address range validation, and MPMC responds to all addresses, so it is the
responsibility of the PIM to ensure that valid addresses are passed across the NPI interface. The address
path is responsible for translating the address into an encoded address that adheres to SDRAM, DDR,
or DDR2 memory specifications.

The following memory parameters are used to encode the address:

• C_MEM_DATA_WIDTH

• C_MEM_PART_NUM_COL_BITS

• C_MEM_PART_NUM_ROW_BITS

• C_MEM_PART_NUM_BANK_BITS

• C_MEM_NUM_RANKS

• C_MEM_NUM_DIMMS

The memory address offsets are as follows:

• col_addr_startbit = log2(C_MEM_DATA_WIDTH/8)

• row_addr_startbit = col_addr_startbit + C_MEM_PART_NUM_COL_BITS

• bank_addr_startbit = row_addr_startbit + C_MEM_PART_NUM_ROW_BITS

• rank_addr_startbit = bank_addr_startbit + C_MEM_PART_NUM_BANK_BITS

• dimm_addr_startbit = rank_addr_startbit + C_MEM_NUM_RANKS

• total_addr_startbit = dimm_addr_startbit + C_MEM_NUM_DIMMS
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following table shows the address column, row, bank, rank, DIMM, and total memory address.

You can set the base and high addresses of your custom PIM to cover this address space. Standard PIMs
(such as PLB and XCL PIMs) have address range and offset parameters to handle how addresses are
mapped from the bus interface to the physical memory.

Address Path Pipeline

The address path pipeline is controlled by C_PIM<Port_Num>_ADDRACK_PIPELINE, a per-port
parameter which, when set in the IP Configuration interface, allows the NPI address acknowledge
signal to be registered. Enable this parameter to achieve better timing, but expect one extra cycle of
latency on the assertion of address acknowledge. Refer to "IP Configuration Graphical User Interface,"
page 225 for more information on setting per-port parameters.

Address Alignment

When requesting a transfer at the NPI interface the PIM<Port_Num>_Addr signal has alignment
restrictions on Reads and Writes. The following subsections list the alignment restrictions by Read and
Write request.

Read Requests

Addresses corresponding to a Read request must be aligned as follows:

• Word transfers (32-bit NPI only) are 4-byte aligned

• Double-word transfers (64-bit NPI only) are 8-byte aligned

• 4-word, cacheline transfers (32-bit NPI only) are 4-byte aligned

• 4-word, cacheline transfers (64-bit NPI only) are 8-byte aligned

• 8-word, cacheline transfers (32-bit NPI only) are 4-byte aligned

• 8-word, cacheline transfers (64-bit NPI only) are 8-byte aligned

• 16-word, burst transfers are 64-byte aligned

• 32-word, burst transfers are 128-byte aligned

• 64-word, burst transfers are 256-byte aligned (Not supported in all configurations. See
"Restrictions on 64-Word Burst Transfers," page 186 for more information.)

Write Requests

Addresses corresponding to a Write request must be aligned to the size of the requested transfer as:

• Word transfers (32-bit NPI only) are 4-byte aligned

• Double-word transfers (64-bit NPI only) are 8-byte aligned

Table 40: Address Type and Corresponding Signal

Memory Address Type Corresponds to:

Column PIM<Port_Num>_Addr[row_addr_startbit: col_addr_startbit]

Row PIM<Port_Num>_Addr[bank_addr_startbit-1:row_addr_startbit]

Bank PIM<Port_Num>_Addr[rank_addr_startbit-1:bank_addr_startbit]

Rank PIM<Port_Num>_Addr[dimm_addr_startbit-1:rank_addr_startbit]

DIMM PIM<Port_Num>_Addr[total_addr_startbit-1:dimm_addr_startbit]

Total memory space PIM<Port_Num>_Addr[total_addr_startbit-1:0]
01.a) July 23, 2010 www.xilinx.com 65
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

66
• 4-word cache-line transfers are 16-byte aligned

• 8-word cache-line transfers are 32-byte aligned

• 16-word burst transfers are 64-byte aligned

• 32-word burst transfers are 128-byte aligned

• 64-word burst transfers are 256-byte aligned (Not supported in all configurations. See
"Restrictions on 64-Word Burst Transfers," page 186 for more information.)

Data Path

The MPMC data path comprises the following:

• Supported Data Widths

• FIFO Types

• Read Word Address

• Data Path Pipelines

Supported Data Widths

MPMC supports NPI data widths of 32 and 64 bits. In the discussion of data widths, “32-bit NPI” refers
to an NPI data width of 32-bits, “64-bit NPI” refers to an NPI data width of 64-bits, and “NPI” refers to
either 32- or 64-bit data widths.

The data path supports SDRAM, DDR, and DDR2 memories that have total physical data widths of 8,
16, 32, and 64 bits. For Virtex-6, the data path limits the physical data widths of DDR2 and DDR3
memories to 8, 16, or 32 bits. Virtex-6 DDR2 or DDR3 designs do not support 64 bit physical memory.

FIFO Types

In MPMC, you can select either block RAM (BRAM) or 16-bit Shift register Lookup (SRL) table FIFOs.
Generally, a block RAM FIFO gives the best performance because the timing is better and the FIFO
depth is larger and does not create stalls in the data path due to a full FIFO condition. The Write block
RAM FIFO does not assert the PIM<Port_Num>_WrFIFO_AlmostFull which can simplify the design
of PIMs also because the PIM does not need to monitor the almost full flag dynamically. The PIM is
therefore required to ensure that a block RAM FIFO never reaches a write FIFO full state. The block
RAM FIFO also provides better timing than an SRL FIFO which might allow for a higher FMAX. This
is especially true for Spartan-3 where the timing on the SRL primitive is significantly worse than the
timing on block RAM primitive timing. However, in some cases, an SRL FIFO can improve system
timing versus a block RAM FIFO when the MPMC has a large number of ports and routing to the block
RAMs results in excessive net delays.

Some configurations of MPMC might require more block RAMs than are available on a particular
device, in which case the SRL FIFOs can be used. Additionally particular applications or system
configurations can use a significant number of block RAMs, leaving few resources for MPMC.

The number of block RAM or SRL resources consumed by the FIFOs depends on the:

• Number of ports and whether a particular port has read FIFOs, write FIFOs, or both

• NPI data width and memory data width

See the "Resource Utilization," page 219 for more information about block RAM utilization in MPMC.
This section also explains how many LUTs are used when a SRL FIFO is selected.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Read Word Address

When Read data for a cacheline request is returned, it might not be returned target-word first. Read
data is returned sequentially, but it could be returned where the requested target word appears later in
the sequence than desired due to memory access optimizations and the allowance of back-to-back read
requests.

You must monitor the PIM<Port_Num>_RdFIFO_RdWdAddr output value to determine which word is
being returned first.

Data Path Pipelines

The following table outlines the pipeline stages in the MPMC data path; which is set using the MPMC
interface. See the "IP Configuration Graphical User Interface," page 225 for more information about
setting the pipeline. Adding pipeline stages improves timing but also increases latency.

Control Path / Arbiter

The MPMC control path is configured for optimal memory bandwidth given a particular memory.
It can be configured to support different physical (PHY) interfaces also.

Table 41: MPMC Data Path Pipelines

Pipeline Stage Description

Write Data Path input Registers the write FIFO inputs (push, FIFO address, data, byte enables).

Write Data Path output
Registers the write FIFO outputs (data, byte enables). All ports must have
the same setting.

Write Data Path timing
management

There is a multiplexer (MUX) that selects which write FIFO the PHY is
currently using. This pipeline stage adds a register after that MUX

Read Data Path input
Registers the read FIFO inputs (push, FIFO address, data). All ports must
have the same setting.

Read Data Path output Registers the read FIFO outputs (data, read word address).

Read Data Path fanout

The read data going from the PHY to the data path is routed to the read FIFO
for each port. If the FIFOs are spaced far apart (which is likely when using
block RAM FIFOs), the routing delays can be large
Setting the fanout has the following effect:

• 0 = No register is instantiated.

• 1 = Read data is forwarded from the PHY for up to eight sets of registers.
The outputs of the registers are then forwarded on to a maximum of one
read FIFO.

• 2 = Read data is forwarded from the PHY to up to four sets of registers.
The outputs of the registers are the forwarded on to a maximum of two
read FIFOs.1.

• 4 = Read data is forwarded from the PHY to two sets of registers. The
outputs of the registers are the forwarded on to a maximum of four read
FIFOs.1

• 8 = Read data is forwarded from the PHY to a single register, then for-
warded on to each of the read FIFOs.

Note:
1. Values of 3, 5, 6, 7 are invalid.
01.a) July 23, 2010 www.xilinx.com 67
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

68
The following subsections describe the Control Path/Arbiter:

• Transfer Types

• Arbitration Algorithms

• Arbiter Pipeline

• Control Path and Arbiter block RAM Utilization

Transfer Types

The control path supports the following transfer types:

• Word reads and writes (32-bit NPI only).

• Double-word reads and writes (64-bit NPI only).

• 4-word, cacheline reads and writes.

• 8-word, cacheline reads and writes.

• 16-word, burst reads and writes.

• 32-word, burst reads and writes.

• 64-word, burst reads and writes. (Not supported in all configurations. See "Restrictions on 64-
Word Burst Transfers," page 186 for more information.)

Arbitration Algorithms

MPMC supports configure-able arbitration algorithms. See "MPMC Optimization," page 204 for more
information.

Arbiter Pipeline

An optional pipeline is allowed in the arbitration logic. To achieve best timing, enable this pipeline
using the IP Configuration interface. Enabling the arbiter pipeline could also increase latency.
See the “Arbitration” information in the "IP Configuration Graphical User Interface," page 225 for more
information.

Control Path and Arbiter block RAM Utilization

The MPMC control logic is designed around a block RAM-based state machine; therefore, the control
logic always consumes one block RAM.

The arbiter uses one block RAM when a custom arbitration algorithm is used. With Fixed or Round
Robin arbitration, or when C_NUM_PORT is set to 1, no additional block RAM is needed.

The MPMC control logic does not support row or bank management. After each NPI transaction, the
row and bank that was accessed is closed with a precharge.

Clock Logic

Spartan-3, Virtex-4, and Virtex-5 Clock Logic

MPMC has four system clock inputs and one clock for each PIM. Depending on the MPMC
configuration, not all system clocks must be connected.

Note: For behavioral simulation, the MPMC_Clk and all <PIM>_Clks must be completely phase-aligned. This
requirement is not as strict for actual implementation as any clock skew will be correctly analyzed by static timing
analysis tools.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following table provides a summary of the available clock signals.

See the "System I/O Signals," page 23 for more information on clocks and reset signals.

Virtex-6 Clock Logic

The Virtex-6 MIG PHY requires an MMCM to be instantiated in the system separate from MPMC.
The C_MMCM_EXT_LOC parameter is used to specify the location of the external MMCM.

When using Clock Generator core v3.02a or greater, the C_MMCM_EXT_LOC constraint is passed to the
clock generator module to generate a local constraint for itself. This parameter is derived from the
MIG-generated pinout UCF file.

This external MMCM drives the MPMC_Rd_Base, MPMC_Clk_Mem, and MPMC_Clk0 clock signals.

The MPMC_DCM_PSEN, MPMC_DCM_PSINCDEC, and MPMC_DCM_PSDONE ports connect to the MMCM.
This allows the MIG PHY within MPMC to adjust the Read clock timing dynamically.

The MPMC_Clk_Rd_Base is the same frequency as MPMC_Clk_Mem, and should not be buffered to global
routing.

The MPMC_Clk_Mem port drives the memory clock. MPMC_Clk0 is half the memory clock frequency and
is synchronous to MPMC_Clk_Mem. Another port called MPMC_Clk_200MHz requires a 200 MHz clock to
drive the IDELAY elements, but this clock can be asynchronous to all other clocks.

Table 42: Clock Summary

Signal Name Description

MPMC_Clk0 Main MPMC clock; used to generate memory clock.

MPMC_Clk0_DIV2 MPMC_Clk0, divided by 2; used in MIG-based Virtex-5 DDR2 PHY only.

MPMC_Clk90 Main MPMC clock, phase shifted by 90 degrees. DDR/DDR2 only.

MPMC_Clk_200MHz
200 MHz clock; used in Virtex-4 and Virtex-5 architectures for IDELAY Control logic only.
Only valid when using MIG-based Virtex-4 or Virtex-5 DDR/DDR2 PHY.

MPMC_Clk_Mem
Main MPMC clock, phase-shifted by n degrees. Used with Static PHY Interface only. See
"Static PHY Interface," page 112 for more details.

<PIM>_Clk

See specific PIM documentation for more details. Generally, these clocks will be the same
as MPMC_Clk, or the MPMC_Clk synchronously divided by 2. The XCL, PLB, and SDMA
PIMs support only 1:1 or 1:2 synchronous clock ratios. The XCL and PLB PIMs will detect
automatically which clock ratio is being used. The SDMA requires that the clock ratio be
specified by the C_SDMA<Port_Num>_PI2LL_CLK_RATIO parameter.

MPMC_Rst Main MPMC reset.

<PIM>_Rst See specific PIM documentation for more details.
01.a) July 23, 2010 www.xilinx.com 69
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

70
The following is an Microprocessor Hardware Specification (MHS) file example of how an MMCM can
be connected to MPMC.

BEGIN mpmc
 .
 .
 .
PORT MPMC_Clk_Rd_Base = MPMC_Clk_Rd_Base
PORT MPMC_DCM_PSEN = MPMC_DCM_PSEN

 PORT MPMC_DCM_PSINCDEC = MPMC_DCM_PSINCDEC
 PORT MPMC_DCM_PSDONE = MPMC_DCM_PSDONE
 PORT MPMC_Clk_Mem = MPMC_Clk_Mem
 PORT MPMC_Clk0 = MPMC_Clk0
END

BEGIN mmcm_module
 PARAMETER C_CLKFBOUT_MULT_F = 2.000000
PARAMETER C_CLKIN1_PERIOD = 5.000000
PARAMETER C_CLKOUT0_BUF = TRUE

 PARAMETER C_CLKOUT0_DIVIDE_F = 1.000000
 PARAMETER C_CLKOUT1_BUF = TRUE
PARAMETER C_CLKOUT1_DIVIDE = 2

 PARAMETER C_CLKOUT2_DIVIDE = 1
 PARAMETER C_CLKOUT2_USE_FINE_PS = TRUE
PARAMETER C_CLKOUT3_BUF = TRUE

 PARAMETER C_CLKOUT3_DIVIDE = 4
PARAMETER C_COMPENSATION = INTERNAL

 PARAMETER C_EXT_RESET_HIGH = 1
 PARAMETER HW_VER = 1.00.a
 PARAMETER INSTANCE = mmcm_module_0
 PORT CLKFBIN = CLK_FB
 PORT CLKFBOUT = CLK_FB
 PORT CLKIN1 = sys_clk
 PORT CLKOUT0 = MPMC_Clk_Mem
 PORT CLKOUT1 = MPMC_Clk0
 PORT CLKOUT2 = MPMC_Clk_Rd_Base
PORT CLKOUT3 = clk_100_0000MHzPLL0

 PORT LOCKED = mmcm_0_lock
 PORT PSCLK = MPMC_Clk0
 PORT PSDONE = MPMC_DCM_PSDONE
 PORT PSEN = MPMC_DCM_PSEN
 PORT PSINCDEC = MPMC_DCM_PSINCDEC
 PORT RST = sys_rst
END
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Alternatively, the mmcm_module can be replaced by a clock_generator core, as shown in the following
code example:

BEGIN clock_generator
 PARAMETER INSTANCE = clock_generator_0
 PARAMETER HW_VER = 4.00.a
 PARAMETER C_EXT_RESET_HIGH = 1
 PARAMETER C_CLKIN_FREQ = 200000000
 PARAMETER C_PSDONE_GROUP = MMCM0
 PARAMETER C_CLKOUT0_FREQ = 400000000
 PARAMETER C_CLKOUT0_PHASE = 0
 PARAMETER C_CLKOUT0_GROUP = MMCM0
 PARAMETER C_CLKOUT0_BUF = TRUE
PARAMETER C_CLKOUT1_FREQ = 200000000

 PARAMETER C_CLKOUT1_PHASE = 0
 PARAMETER C_CLKOUT1_GROUP = MMCM0
 PARAMETER C_CLKOUT1_BUF = TRUE
PARAMETER C_CLKOUT2_FREQ = 400000000

 PARAMETER C_CLKOUT2_PHASE = 0
 PARAMETER C_CLKOUT2_GROUP = MMCM0
 PARAMETER C_CLKOUT2_BUF = FALSE
 PARAMETER C_CLKOUT2_VARIABLE_PHASE = TRUE
PARAMETER C_CLKOUT3_FREQ = 100000000

 PARAMETER C_CLKOUT3_PHASE = 0
 PARAMETER C_CLKOUT3_GROUP = MMCM0
 PARAMETER C_CLKOUT3_BUF = TRUE
PORT CLKIN = sys_clk

 PORT CLKOUT0 = MPMC_Clk_Mem
 PORT CLKOUT1 = MPMC_Clk0
 PORT CLKOUT2 = MPMC_Clk_Rd_Base
PORT CLKOUT3 = clk_100_0000MHzPLL0

 PORT LOCKED = mmcm_0_lock
 PORT PSCLK = MPMC_Clk0
 PORT PSDONE = MPMC_DCM_PSDONE
 PORT PSEN = MPMC_DCM_PSEN
 PORT PSINCDEC = MPMC_DCM_PSINCDEC
 PORT RST = sys_rst
END

Virtex-6 PIM Clocking

All PIMs have a base clock that is taken from the port MPMC_Clk0. MPMC_Clk0 must be shared across all
PIMs. In addition, some PIM types support an optional 1:1 or 1:2 clock ratio from their base PIM clock.

For example, it is possible to have an MPMC clocked as follows:

• MPMC_Clk_Mem = 400 MHz (400 MHz DDR2 or DDR3)

• MPMC_Clk0 = 200 MHz (synchronous to MPMC_Clk_Mem)

• Port 0 PLB PIM can connect to a PLB bus that must be 100 MHz (synchronous to MPMC_Clk0)

• Port 1 XCL PIM can connect to an XCL interface that must be 100 MHz (synchronous to
MPMC_Clk0)

• Port 2 NPI PIM must run at 200 MHz using the same clock as MPMC_Clk0
01.a) July 23, 2010 www.xilinx.com 71
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

72
Spartan-3, Virtex-4, and Virtex-5 Reset Logic

The basic MPMC core and each of the MPMC PIMs have a reset input. Internally these resets are OR’ed
together to create the master reset for the entire MPMC (including PIMs).

Note: It is not possible to reset an individual PIM or PORT of the MPMC without resetting everything.

The master reset is internally registered and synchronized before being distributed throughout MPMC;
therefore, the MPMC reset is a fully synchronous reset.

Reset should be held for a minimum of eight cycles of the slowest PIM clock. After reset, there should
not be access to any of the ports or control interfaces for 20 cycles of the MPMC_Clk. The following table
provides a summary of reset logic.

Error Correction Code

The Error Correction Code (ECC) is enabled optionally using the C_INCLUDE_ECC_SUPPORT
parameter control and is supported on Spartan-3, Virtex-4, and Virtex-5.

The following subsections describe the ECC:

• ECC Features

• ECC Implementation

• ECC Read Data Handling

• ECC Need for Read Modify Write

• ECC Memory Organization and Word Size

• ECC Registers

• ECC Testing

ECC Features

The ECC features are:

• Supports 8-, 16-, 32-, and 64-bit wide SDRAM, DDR, and DDR2 memories.

• Provides Single Error Correction (SEC) and Double Error Detect (DED).

• Can generate interrupts when the number and type of errors reach a programmed threshold
value.

• Supported on Spartan-3 MIG PHY for 8-, 16-, and 32-bit wide data.

• Supported with Static PHY.

Table 43: Reset Summary

Reset Name Description

MPMC_Rst Main MPMC reset.

<PIM>_Rst
See specific PIM documentation (which is located in "Personality Interface Modules,"
page 130) for more details.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
ECC Implementation

ECC functionality is implemented by inserting the ECC decode and encode logic between the Physical
Interface (PHY) and Data Path of the MPMC. The following figure shows the current MPMC PHY Data
Path connection for DDR/DDR2 memory.

The PHY interface converts the Double Data Rate (DDR) data from the memory into a Single Data Rate
(SDR) bus that is twice as wide as the memory width. For SDRAM, data stays the same width through
the PHY.

Because MPMC supports 8-, 16-, 32-, and 64-bit SDRAM and DDR/DDR2 memory, this results in an
SDR bus that is 8-, 16-, 32-, 64-, or 128-bit wide going to the data path module.

Figure 5: MPMC PHY-Data Path Connection

Data Path

Write

Read FIFO(s)

FIFO(s)NPI

NPI

DDR/DDR2
Data

PHY Interface

SDR Read
Data

8/16/32/64/128 Bits Wide

SDR Write
Data

SDR Mask
Data

8/16/32/64/128 Bits Wide

8/16/32/64
Bits Wide

X10918
01.a) July 23, 2010 www.xilinx.com 73
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

X10919
The data path module implements the per-port FIFOs used by MPMC. The following figure illustrates the changes
that are made when ECC is enabled with DDR/DDR2 memory.

When ECC functionality is enabled, several blocks are turned on to implement control and status registers, ECC
decode and encode, and support for Read-Modify-Write (RMW) operations (needed for handling byte enables).

Note: All writes are RMW in the MPMC core once ECC is enabled.

The blocks are inserted between the PHY and data path so only one instance of the ECC logic is needed for
multiple port configurations. The ECC decode and encode is performed in the SDR domain. The ECC Control and
Status registers module controls when interrupts are generated and provides control and status data access with
respect to ECC. Refer to "Common MIG PHY Debug Registers," page 43 for more information on ECC Control and
Status registers.

After each startup or MPMC reset the entire memory must be initialized when using ECC. Typically this is
performed by user software. The following steps should be performed to initialize external memory for ECC use:

1. Disable ECC interrupt registers.

2. Enable read/write ECC support.

3. Clear values of all external memory addresses.

4. Clear ECC error count registers.

5. Enable ECC interrupts.

Note: ECC interrupts should be disabled for the initialization process. Because the external ECC check bits are uninitialized,
read and read-modify-write transactions to external memory could cause ECC errors. These errors generate spurious ECC
interrupts to the processor, potentially causing system hangs.

Figure 6: Data Path with ECC Enabled

Data Path

Write

Read FIFO(s)

BRAM Read
Data FIFO
(for Read-Modify-Write,
same width as SDR
data from PHY)

Byte Wide Muxes
(for Read-Modify-Write,
Provides read data for

masked off bytes
during writes)FIFO(s)NPI

NPI

DDR/DDR2
Data

PHY Interface

ECC Check Bit

SDR Read
Data

16/32/64/128
Bits Wide

SDR Write
Data
SDR ECC
Write Data

8/16/32/64/128
Bits Wide

Byte Enable/
Mask Data

8/16/32/64
Bits Wide

SDR Mask
Data

ECC
Parity

8
Bits Wide

Encode

DIn DOut

ECC

DOut

ECC Error
Detection/Correction

ECC Control/Status
Registers

DOut

Status

DIn

0

74 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
ECC Read Data Handling

On Reads, data passes through the ECC Error Detection and Correction block. The data is checked for
errors. If there are no errors, data passes through as normal and goes into the Read FIFO as a normal
read. If a single error is detected, the error is corrected automatically (SEC) and sent to the Read FIFO to
complete as a normal read. If two errors are detected (DED), the data is not corrected but passed through
unchanged and the problem is reported to the Control and Status registers.

ECC Need for Read Modify Write

During writes to memory, a new set of ECC check bits must be written to memory along with write
data. The ECC encoding process is handled by the ECC Check Bit Encode block. Read-Modify-Writes
(RMW) operations are needed for write transactions where the byte enables that span the width of the
ECC word on the SDR bus are not all On or Off. Because many ECC DIMMs do not have Data Mask
(DM) pins, the RMW is required.

When byte enables do not exist or are not all On or all Off, the correct value of the ECC check bits are
not known because not all the data across the ECC word is present.

The RMW operation first fetches the data value of the masked off byte lanes so the correct ECC check
bits for the whole ECC word can be computed and written. RMW is accomplished by taking read data
(after ECC decode and correction) and storing the data in a FIFO that is the same width as the SDR data
bus. Later, as write data comes out of the Write FIFO, the masked off byte enables activate an MUX that
routes read data to fill in the corresponding “holes” in the write data. The result is a complete set of data
with which to compute the new ECC check bits. All resultant data is written to memory. Consequently,
writes with any byte enables turned Off result in writes with all byte enables turned On. This has the
side effect that masked-off write data is read, scrubbed, and written back.

The Control state machine is modified during a RMW operation to perform a full Read and then a full
Write. Because the data is on the same memory page, an optimization is to skip the precharge and
activate commands between a read and a write. To optimize the space in the control path block RAM
state machines, RMW operations will reuse the corresponding Read and Write state machines for the
given transfer size. Special block RAM state machine bits are used to implement the chained RMW
operation and to skip precharge and activate commands.

The RMW process does add latency to the design because a full Read must precede a Write. This can
double the transaction time for Writes. Writes with all byte enables On or all Off are faster than Writes
with mixed byte enables due to need for RMW. A flag bit is introduced into the NPI interface to allow
the transactions to be qualified as needing or not needing RMW.

The PIM<Port_Num>_RdModWr flag bit informs the MPMC if transactions require RMW (= 1) or do not
require RMW (= 0). The PIM<Port_Num>_RdModWr signal must be asserted with
PIM<Port_Num>_AddrReq. The PIM<Port_Num>_RdModWr signal should be asserted with respect to
the memory burst length of 4 and the ECC word size of the memory interface being used. Any NPI
transfer sizes which are less than a four beat memory burst must assert PIM<Port_Num>_RdModWr.

For NPI interfaces that do not support the RMW, or are not able to set it dynamically, the value should
default to 1 to ensure correct Write operations under all conditions. Dynamic RMW allows for write
performance to be optimized when RMW is known to not be needed.

If all the byte enables are Off but a RMW operation is performed, data is still read, scrubbed, and
written back.
01.a) July 23, 2010 www.xilinx.com 75
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

76
This would permit a custom NPI device to perform burst writes with byte enables all Off (and RdModWr
= 1) to scrub memory. MPMC does not require the memory to support DM pins with ECC. DM pins can
be connected, if needed, or left unconnected.

ECC encode functionality adds latency to Writes. RMW support adds one cycle of latency to multiplex
in Read data (in addition to latency of the full Read transaction.) The Control state machines support
the additional cycles of latency between Write FIFO pop and data appearing at the PHY interface.

For debugging and testing, the ECC encode process allows you to insert single or double bit errors into
the data being written for test purposes. The error insertion logic can be parameterized out.

ECC Memory Organization and Word Size

The following table describes the ECC word size and number of extra memory data bits needed for
different organizations of memory. The RdModWr flag must be set according to the alignment across the
ECC word size over a memory burst length of 4. The PHY requires a full ECC byte lane to be present on
the board even though fewer bits might be used by ECC algorithm due to the requirements of the data
calibration algorithms used in the PHY.

Note: The PHY data calibration algorithm requires that a full ECC byte lane be present on the board although
fewer bits might be used by the ECC algorithm.

ECC Registers

The "Static PHY Register Summary," page 42 summarizes the ECC related registers which are included
with the ECC logic for the MPMC when ECC is enabled (C_INCLUDE_ECC_SUPPORT = 1). The
following subsections describe each register in greater detail and provide the bit definitions.

ECC Control Register

The ECC Control register (ECCC) determines if ECC check bits are generated during memory write
operation and checked during a memory read operation. The ECCC also defines testing modes if
enabled by the parameter C_INCLUDE_ECC_TEST.

Table 44: ECC Word Size

Memory Type Memory Data
Width

Physical Memory ECC
Data Width

(C_NUM_ECC_BITS)
ECC Word Size

DDR/DDR2 8 8 2 Instances of 8 + 5 Check Bits

DDR/DDR2 16 8 2 Instances of 16 + 6 Check Bits

DDR/DDR2 32 8 2 Instances of 32 + 7 Check Bits

DDR/DDR2 64 8 2 Instances of 64 + 8 Check Bits

SDRAM 8 5 8 + 5 Check Bits

SDRAM 16 6 16 + 6 Check Bits

SDRAM 32 7 32 + 7 Check Bits

SDRAM 64 8 64 + 8 Check Bits
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following table describes the bit values for the ECCC register.

ECC Status Register

The ECC Status register (ECCS) in combination with the ECC Error Address register (ECCADDR)
records the first occurrence of an error and latches information about the error until the error is cleared
by writing to the ECCS.

The following table describes the bit values for the ECC Status register.

Table 45: ECCC Register Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:26 Reserved

27 FORCE_PE R/W 0

Force Parity Field Bit Error (1): Available for testing
and determines if parity field bit errors are forced in
the data stored in the memory. See ECC Testing for
more information.
0 = No parity field bit errors are created
1 = Parity field bit errors are forced in stored data

28 FORCE_DE R/W 0

Force Double-bit Error (1): Available for testing and
determines if double-bit errors are forced in the data
stored in the memory.
0 = No double-bit errors are created
1 = Double-bit errors are forced in the stored data

29 FORCE_SE R/W 0

Force Single-bit Error (1): Available for testing and
determines if single-bit errors are forced in the data
stored in the memory.
0 = No single-bit errors are created
1 = Single-bit errors are forced in the stored data

30 RE R/W 1(2)
ECC Read Enable:
0 = ECC read logic is bypassed
1 = ECC read logic is enabled

31 WE R/W 1(2)
ECC Write Enable:
0 = ECC write logic is bypassed
1 = ECC write logic is enabled

1. This bit is available only if C_INCLUDE_ECC_TEST = 1
2. Reset value is determined by parameter C_ECC_DEFAULT_ON.

If C_ECC_DEFAULT_ON = 1 then this bit is equal to 1
If C_ECC_DEFAULT_ON = 0, then this bit is equal to 0

Table 46: ECCS Register Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:15 Reserved

16:19 ECC_ERR_SIZE R/ROW(1) 0000

ECC Error Transaction Size. Records the size
of the NPI transaction where the error occurred.
For ECC_ERR_SIZE field values see Table 29,
page 41 "ECC Register Descriptions,"under the
signal name PIM<Port_Num>_Size.
01.a) July 23, 2010 www.xilinx.com 77
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

78
ECC Single-Bit Error Count Register

The ECC Single-Bit Error Count register (ECCSEC) records the number of ECC single-bit errors that
occurred during the memory transaction on the data bits only. When using the force error feature, the
number of errors detected may not be as expected because the force error feature counts the number of
memory data beats that have errors, not the number of NPI data beats that have errors. Because the
Read_Modify_Write might read more data than NPI requested, the count can be misleading. The ECC
logic will correct the detected single-bit errors. When the value in this register reaches 4095 (the max
count), the next single-bit error detected is not counted. This count consumes 12-bits.

Note: Single bit errors occurring on ECC check bits are covered by the ECCPEC register.

The following table describes the bit values for the ECC Single-Bit Error Count register.

20 ECC_ERR_RNW R/ROW(1) 0

ECC ERROR Transaction Read/Write:
Indicates if error occurred on a read transactions
or a write transaction that employed a read-
modify-write operation.
0 = Write Error
1 = Read Error

21:28 ECC_ERR_SYND R/ROW(1) 00000000

ECC Error Syndrome: Indicates the ECC
syndrome value of the most recent memory
transaction in which a single-bit error was
detected. The 8-bit syndrome value indicates the
data bit position in which an error was detected
and corrected.

29 PE R/ROW(1) 0

Parity Field Bit Error: During a memory
transaction an error was detected in a parity field
bit.
0 = No parity field bit errors detected.
1 = Parity field bit error detected and corrected.

30 DE R/ROW(1) 0

Double-Bit Error:During a memory transaction
a double-bit error was detected and is not
correctable.
0 = No double-bit errors were detected.
1 = Double-bit error was detected.

31 SE R/ROW(1) 0

Single-Bit Error: During memory transaction a
single-bit error was detected and corrected.
0 = No single-bit errors were detected.
1 = Single-bit error detected and corrected.

1. ROW = Reset On Write. Any write operation to the ECCSR will reset the register.

Table 47: ECCSEC Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:19 Reserved

20:31 SEC R/ROW(1) 0
Single-Bit Error Count. Indicates the number of single-bit
errors that occurred during the pervious memory
transactions. The maximum error count is 4095.

1. ROW = Reset On Write. Any write operation to the ECCSEC register will reset the register.

Table 46: ECCS Register Bit Definitions (Cont’d)

 Bit(s) Name Core
Access

Reset
Value Description
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
ECC Double-Bit Error Count Register

The ECC Double-Bit Error Count register (ECCDEC) records the number of ECC double-bit errors that
occurred during the memory transaction. ECC cannot correct double-bit errors detected. When the
value in this register reaches 4095 (the max count), the next double-bit error detected is not counted.
When using the force error feature, the number of errors detected may not be as expected because the
force error feature counts the number of memory data beats that have errors, not the number of NPI
data beats that have errors. Because the Read_Modify_Write might read more data than NPI
requested, the count can be misleading. The ECC logic will correct the detected single-bit errors. When
the value in this register reaches 4095 (the max count), the next single-bit error detected is not counted.

The following table describes the bit values for the ECCDEC.

ECC Parity Field Bit Error Count Register

The ECC Parity Field Bit Error Count register (ECCPEC) records the number of bit errors that occurred
in the ECC parity field during the memory transaction. ECC logic will correct detected parity field bit
errors. When the value in this register reaches 4095 (the maximum count), the next parity field bit error
detected is not counted. When using the force error feature, the number of errors detected may not be
as expected because the force error feature counts the number of memory data beats that have errors,
not the number of NPI data beats that have errors. Because the Read_Modify_Write might read more
data than NPI requested, the count can be misleading. The ECC logic will correct the detected single-bit
errors. When the value in this register reaches 4095 (the max count), the next single-bit error detected is
not counted.

The following table describes the bit values for the ECCPEC.

Table 48: ECCDEC Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:19 Reserved

20:31 DEC R/ROW(1) 0
Double-Bit Error Count: Indicates the number of double-bit
errors that occurred during the pervious memory
transactions. The maximum error count is 4095.

1. ROW = Reset On Write. Any write operation to the ECCDEC register will reset the register.

Table 49: ECCPEC Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:19 Reserved

20:31 PEC R/ROW(1) 0
Parity Field Bit Error Count: Indicates the number of
errors that occurred in the parity field bits during the last
memory transactions. The maximum error count is 4095.

1. ROW = Reset On Write. Any write operation to the ECCPEC register will reset the register.
01.a) July 23, 2010 www.xilinx.com 79
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

80
ECC Error Address Register

The following table describes the bit values for the ECC Error Address (ECCADDR) register.

Device Global Interrupt Enable Register

The Device Global Interrupt Enable register (DGIE) is used to globally enable the final interrupt output
from the ECC interrupt service. The following table describes the bit values for the DGIE.

IP Interrupt Status Register

The IP Interrupt Status register (IPIS) is the interrupt capture register for the ECC logic. The following
table describes the bit values for the IPIS.

Table 50: ECCADDR Register Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:31 ECCERRADDR RO N/A

ECC Error Address: Indicates the physical ECC
address corresponding to an ECC error reported by
the ECC Status register (ECCS). This register value is
only valid when an error is actively reported in the
ECCS.

Table 51: DGIE Register Bit Definitions

 Bit(s) Name Core Access Reset Value Description

0 GIE R/W 0
Global Interrupt Enable:
0 = Interrupts disabled.
1 = Interrupts enabled.

1-31 Reserved

Table 52: IPIS Register Bit Definitions

 Bit(s) Name
Core

Access
Reset
Value

Description

0:28 Reserved

29 PE_IS R/TOW(1) 0

Parity Field Bit Error Interrupt Status: Indicates a parity field bit error
has occurred during the memory data transaction. In the ECC module,
parity field bit errors will be corrected as data is read from memory. This
interrupt is for system monitoring only and does not indicate corrupt
data.
0 = Parity field bit error count is less than C_ECC_PEC_THRESHOLD.
1 = Parity field bit error count is more than C_ECC_PEC_THRESHOLD.

30 DE_IS R/TOW(1) 0

Double-Bit Error Interrupt Status: Indicates a double-bit data error
has occurred during the memory transaction. In the ECC module,
double-bit errors can be detected, but not corrected. When this interrupt
is asserted, the data read from memory is not valid.
0 = Double-bit error count is less than C_ECC_DEC_THRESHOLD.
1 = Double-bit error count is more than C_ECC_DEC_THRESHOLD.

31 SE_IS R/TOW(1) 0

Single-Bit Error Interrupt Status: Indicates a single-bit error has been
detected during the memory transaction. In the ECC module, single-bit
errors will be detected and corrected. This interrupt is for system
monitoring only and does not indicate corrupt data.
0 = Single-bit error count is less than C_ECC_SEC_THRESHOLD.
1 = Single-bit error count is more than C_ECC_SEC_THRESHOLD.

1. TOW is Toggle On Write.
Writing a 1 to a bit position within the register causes the corresponding bit position in the register to toggle.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
IP Interrupt Enable Register

The IP Interrupt Enable register (IPIE) has an enable bit for each defined bit of the IP Interrupt Status
register. The following table describes the bit values for the ECC IPIE.

ECC Testing

To enable testing on the ECC core logic, set C_INCLUDE_ECC_TEST = 1. The ECC Control register
(ECCCR), described in "ECC Registers," page 76, includes control bits for enabling or disabling the test
logic. The following list describes possible forcing errors combinations. If any other combination is
attempted, no errors will be forced on the data written to memory.

• No bit error forcing

• Force single-bit data errors (ECC Control register (ECCC): FORCE_SE = 1)

• Force double-bit data errors (ECC Control register (ECCC): FORCE_DE = 1)

• Force parity bit errors (ECC Control register (ECCC): FORCE_PE = 1)

• Force single-bit data and single parity field bit errors (ECC Control register (ECCC): FORCE_SE =
1 and FORCE_PE = 1)

For single-bit error testing, a mask shift register forces single-bit errors on the data written to memory.
The data mask shift register has the least significant single-bit equal to one. When testing is enabled
during a memory write, the shift register clocks the one toward the Most Significant Bit (MSB). You
must be careful when trying to predict the pattern. More memory data beats may be written than
expected because the Read_Modify_Write will read a full “memory cacheline,” merge this with the
data sent from the PIM, then write back the entire “memory cacheline.” This will result in a different
rotation than you might expect.

For double-bit error testing, a data mask shift register forces double-bit errors on the data written to
memory. The data mask shift register has two adjacent bits equal to one (starting in the two least
significant bit positions) and rotates the “11” pattern in the shift register (towards the two most
significant bits) on each memory write.

When parity field bit error testing is enabled, a mask shift register forces single-bit errors on the check
bits stored in memory. The parity mask shift register has the least significant single-bit equal to one and
rotates the one (toward the MSB) on each memory write.

Table 53: IPIE Register Bit Definitions

 Bit(s) Name Core
Access

Reset
Value Description

0:28 Reserved

29 PE_IE R/W 0

Parity Field Bit Error Interrupt Enable: Enables assertion of
the interrupt for indicating parity field bit errors have occurred.
0 = Disabled
1 = Enabled

30 DE_IE R/W 0

Double-bit Error Interrupt Enable: Enables assertion of the
interrupt for indicating double-bit data errors have occurred.
0 = Disabled
1 = Enabled

31 SE_IE R/W 0

Single-bit Error Interrupt Enable: Enables assertion of the
interrupt for indicating single-bit data errors have occurred.
0 = Disabled
1 = Enabled
01.a) July 23, 2010 www.xilinx.com 81
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

82
Performance Monitoring

The MPMC Performance Monitor (PM) is an optional per-port feature that counts transaction lengths
across each NPI interface, and is supported on Spartan-3, Spartan-6, Virtex-4, Virtex-5, and Virtex-6.
The PM provides the ability to instrument and measure the performance of the MPMC by collecting
transactional statistics at the NPI level relative to the memory clock rate. Each PM is capable of
capturing the duration, size, read or write, and dead cycle counts of each transaction. These are stored
into a block RAM and are retrievable over the MPMC_CTRL Slave PLB v.46 interface. PM cycle counts
only represent transactions across the NPI interface and do not include latency of attached PIMs or user
NPI logic.

The following subsections describe the PM:

• PM Features

• Performance Monitor Operation

• Performance Monitor Measurement Methodology

• Performance Monitoring Usage Example

• Performance Monitor Registers

PM Features

The PM provides:

• An optional configurable length global cycle counter.

• An optional configurable length arbitration dead cycle counter for each port.

• The MPMC_CTRL Slave PLB v.46 interface to control and collect data from the Performance
Monitors.

• A performance monitor state machine and data collector consuming one block RAM per port
enabled.

• PM registers.

Performance Monitor Operation

The following subsections provide an outline of the PM measurement methodology and give an
example of the steps in a PM monitoring session.

Performance Monitor Measurement Methodology

The cycle counts recorded in each data bin is recorded as following:

• Data Bin Read Transactions: Number of memory clock cycles from NPI_<PortNum>AddrReq
until last data is popped from data FIFO.

• Data Bin Write Transactions: Number of memory clock cycles from NPI_<PortNum>AddrReq
until the later of NPI_<PortNum>AddrAck or the last push into the data FIFO.

• Global Cycle Counter: Counts each memory clock cycle after at least one PM is enabled.

• Dead Cycle Counter: Counts the number of memory cycles from NPI_<PortNum>AddrReq until
granted by NPI_<PortNum>AddrAck.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Performance Monitoring Usage Example

An example PM session includes the following steps:

1. Disable any currently enabled PMs by writing zeros to the Performance Monitor Control register.

2. Clear the PM counters by writing ones to the Performance Monitor Clear register.

3. Wait for the clear operation to complete by polling the Performance Monitor Status register for all
PMs bits set as one.

4. Clear PM status by writing ones to the Performance Monitor Status register.

5. Enable PM counting by writing ones to the Performance Monitor Control register.

6. Execute user task to be monitored.

7. Stop the PM counting by writing ones to the Performance Monitor Control register.

8. Read each data bin value, typically looping through each set of 32 data bins, read/write set,
qualifier set, and finally each PM.

9. Read the Performance Monitor Global Cycle Count register for total test time.

10. Read the Performance Monitor Dead Cycle Count register of each PM for cycles lost to arbitration
grant delays.

11. Prepare for next task monitoring by either re enabling the PMs or executing the clear process.

Performance Monitor Registers

PM registers detailed in the following subsections are available that perform these actions:

• Capture performance statistics (PMCTRL)

• Monitor the status of the clear issued to the PM data bins (PMSTATUS)

• Contain the current value of the global cycle counter (PMGCC)

• Contain the current value of the dead cycle counter for each port (PMx_DCC)

• Contain the transaction information for the performance monitors (PMx_DATA_BINx)

The PM registers are:

• Performance Monitor Control Register

• Performance Monitor Clear Register

• Performance Monitor Status Register

• Performance Monitor Global Cycle Count Register

• Performance Monitor Dead Cycle Count Register

• Performance Monitor Data Bin Registers

Performance Monitor Control Register

The Performance Monitor Control register (PMCTRL) sets the enable bits for performance monitors to
capture statistics and place them in the data bins. Initially, the performance monitors are not enabled
and the data bins are initialized to 0.

The performance monitor enable bit should be set to 0 when reading back data to maintain consistent
data across all the data bins. Setting the performance monitor enable bit to 1 will immediately start
capturing data and also enable the dead cycle counters, if the parameter is enabled.
01.a) July 23, 2010 www.xilinx.com 83
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

84
If the global cycle counter is enabled, it will count when any of the enable bits are high. The following
table describes the PMCTRL register bits.

Performance Monitor Clear Register

The Performance Monitor Clear register (PMCLR) facilitates clearing the block RAMs used for the PM
data bins back to 0. It also used to clear the dead cycle counters and global cycle counter to 0.

Table 54: PMCTRL Register Bit Definitions

Bit(s) Name Core
Access

Reset
Value Description

0 PM0_ENABLE R/W 0
1 = Enable PM0
0 = Disable PM0

1 PM1_ENABLE R/W 0
1 = Enable PM1
0 = Disable PM1

2 PM2_ENABLE R/W 0
1 = Enable PM2
0 = Disable PM2

3 PM3_ENABLE R/W 0
1 = Enable PM3
0 = Disable PM3

4 PM4_ENABLE R/W 0
1 = Enable PM4
0 = Disable PM4

5 PM5_ENABLE R/W 0
1 = Enable PM5
0 = Disable PM5

6 PM6_ENABLE R/W 0
1 = Enable PM6
0 = Disable PM6

7 PM7_ENABLE R/W 0
1 = Enable PM7
0 = Disable PM7

8:14 Reserved Reserved

15 PM_GC_CLR W X
1 = Clear Global Cycle Counter
0 = No Action

16 PM0_DCC_CLR W X
1 = Clear Dead Cycle Counter PM0
0 = No Action

17 PM1_DCC_CLR W X
1 = Clear Dead Cycle Counter PM1
0 = No Action

18 PM2_DCC_CLR| W X
1 = Clear Dead Cycle Counter PM2
0 = No Action

19 PM3_DCC_CLR W X
1 = Clear Dead Cycle Counter PM3
0 = No Action

20 |PM4_DCC_CLR W X
1 = Clear Dead Cycle Counter PM4
0 = No Action

21 PM5_DCC_CLR W X
1 = Clear Dead Cycle Counter PM5
0 = No Action

22 PM6_DCC_CLR| W X
1 = Clear Dead Cycle Counter PM
0 = No Action

23 PM7_DCC_CLR W X
1 = Clear Dead Cycle Counter PM7
0 = No Action

24-31 Reserved Reserved
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
This is a write-only register. Writing a 1 to the clear bits clears the counters immediately, and starts the
clearing of the data bins. Because the data bins are stored in a block RAM, it takes approximately 512
clock cycles to clear the data bins to 0. To monitor the status of the clear, check the PMSTATUS register.

The following table describes the PMCLR register bits.

Performance Monitor Status Register

The Performance Monitor Status register (PMSTATUS) is used to monitor the status of the clear issued
to the pm data bins. When all data bins in a PM have been cleared, the PM clear status bit is 1. This is
used to ensure that the performance monitors have been successfully cleared before enabling them. The
PM clear status bit will remain 1 until it is cleared by writing a 1 to toggle the bit.

Table 55: PMCLR Register Bit Definitions

Bit(s) Name Core
Access

Reset
Value Description

0 PM0_DATABIN_CLR W X 1 = Clear all data bin storage PM0

1 PM1_DATABIN_CLR W X 1 = Clear all data bin storage PM1

2 PM2_DATABIN_CLR W X 1 = Clear all data bin storage PM2

3 PM3_DATABIN_CLR W X 1 = Clear all data bin storage PM3

4 PM4_DATABIN_CLR W X 1 = Clear all data bin storage PM4

5 PM5_DATABIN_CLR W X 1 = Clear all data bin storage PM5

6 PM6_DATABIN_CLR W X 1 = Clear all data bin storage PM6

7 PM7_DATABIN_CLR W X 1 = Clear all data bin storage PM7

8:14 Reserved NA NA Reserved

15 PM_GCC_CLR W X 1= Clear Dead Cycle Counter

16 PM0_DCC_CLR W X 1= Clear Dead Cycle Counter Port 0

17 PM1_DCC_CLR W X 1= Clear Dead Cycle Counter Port 1

18 PM2_DCC_CLR W X 1= Clear Dead Cycle Counter Port 2

19 PM3_DCC_CLR W X 1= Clear Dead Cycle Counter Port 3

20 PM4_DCC_CLR W X 1= Clear Dead Cycle Counter Port 4

21 PM5_DCC_CLR W X 1= Clear Dead Cycle Counter Port 5

22 PM6_DCC_CLR W X 1= Clear Dead Cycle Counter Port 6

23 PM7_DCC_CLR W X 1= Clear Dead Cycle Counter Port 7
01.a) July 23, 2010 www.xilinx.com 85
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

86
The following table describes the PMSTATUS register bits.

Performance Monitor Global Cycle Count Register

The Performance Monitor Global Cycle Count register (PMGCC) is a read-only 64-bit register that
contains the current value of the global cycle counter. This register is only available if the global cycle
counter is enabled. Its width can be up to 64 bits, and is padded to the left with zeros, if the counter
width is smaller than 64 bits. The PMGCC counts the total number of memory clock cycles that have
elapsed since at least one PM has been enabled. The PMGCC is a useful absolute time base of a
performance monitoring session.

Performance Monitor Dead Cycle Count Register

The Performance Monitor Dead Cycle Count registers (PMx_DCC) is a read-only 64-bit register that
contains the current value of the dead cycle counter for each port.

This register is only available if the dead cycle counter has been enabled for that the port. Its width can
be up to 64 bits, and is padded to the left with zeros, if the counter width is smaller than 64 bits.

Each dead cycle count represents a NPI clock cycle where a request was not immediately
acknowledged by the arbiter. This is useful to measure how many cycles a particular port has waited
since performance monitoring was first enabled.

Table 56: PMSTATUS Register Bit Definition

Bit(s) Name Core
Access

Reset
Value Description

0 PM0_CLR_STATUS R/TOW X
1 = Data bin for PM0 is finished clearing
0 = Data bin for PM0 is not finished clearing,
or clear has not been started

1 PM1_CLR_STATUS R/TOW X
1 = Data bin for PM1 is finished clearing
0 = Data bin for PM1 is not finished clearing,
or clear has not been started

2 PM2_CLR_STATUS R/TOW X
1 = Data bin for PM2 is finished clearing
0 = Data bin for PM2 is not finished clearing,
or clear has not been started

3 PM3_CLR_STATUS R/TOW X
1 = Data bin for PM3 is finished clearing
0 = Data bin for PM3 is not finished clearing,
or clear has not been started

4 PM4_CLR_STATUS R/TOW X
1 = Data bin for PM4 is finished clearing
0 = Data bin for PM4 is not finished clearing,
or clear has not been started

5 PM5_CLR_STATUS R/TOW X
1 = Data bin for PM5 is finished clearing
0 = Data bin for PM5 is not finished clearing,
or clear has not been started

6 PM6_CLR_STATUS R/TOW X
1 = Data bin for PM6 is finished clearing
0 = Data bin for PM6 is not finished clearing,
or clear has not been started

7 PM7_CLR_STATUS R/TOW X
1 = Data bin for PM7 is finished clearing
0 = Data bin for PM7 is not finished clearing,
or clear has not been started

8:31 Reserved Reserved
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Dead cycles typically occur due to the MPMC controller processing older or higher priority port
accesses or the memory being unavailable during external memory maintenance.

Performance Monitor Data Bin Registers

The Performance Monitor Data Bin registers (PMx_DATA_BINx) contain the transaction information
for the performance monitors. Each performance monitor contains 512 36-bit data bins. These values
are read-only 36-bit registers that are padded with zeros on the left to expand them to 64 bits. Therefore,
each performance monitor data bin will be 8 kb of data.

Each bin contains a count of transactions for a specific PM port, the NPI transaction type, the
transaction direction, and the exact number or range of clock cycles elapsed. For example, one data bin
on PIM port 2 might contain the total quantity of 32-word burst-type write transactions which lasted
between 8 and 15 clock cycles since the PM was first enabled.

Data Bin Organization

Each PM is divided into eight qualifiers, indicating the transaction size. These qualifiers are then
subdivided into Writes and Reads. This allows 32 bins per qualifier each write and read. The bins
themselves represent the transaction length of that particular qualifier. The 36-bit number the bin
contains represents how many times that transaction length has been counted.

Qualifier Definitions

The following table describes the qualifier definitions.

Data Bin Organization

The following table describes the Data Bin organization.

Qualifier Description

0 Byte – Double Words

1 Cache Line 4

2 Cache Line 8

3 Burst 16

4 Burst 32

5 Burst 64

6 Reserved

7 Reserved

Qualifier Type Access Type Bin No. Offset from
PMx_DATABINx

0

Write

0 0x000

1 0x008

… …

31 0x0F8

Read

0 0x100

1 0x108

… …

31 0x1F8
01.a) July 23, 2010 www.xilinx.com 87
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

88
The bin number represents the length of the transaction in cycles shifted by the C_PM_SHIFT_BY
parameter. This allows a trade between the maximum length of a transaction that can be recorded and
the granularity of the transaction lengths. The number the bin contains is the number of times that
particular transaction length was recorded.

The following table shows the C_PM_SHIFT_BY relationship of Bin Number to Transaction Length.

1

Write

0 0x200

1 0x208

… …

31 0x2F8

Read
…

0 0x300

1 0x308

… …

31 0x3F8

… …

7

Write

0 0xE00

1 0xE08

… …

31 0xEF8

Read

0 0xF00

1 0xF08

… …

31 0xFF8

C_PM_SHIFT_BY Bin Number Transaction Length
(cycles)

0

0 0

1 1

… …

31 31+

1

0 0-1

1 2-3

… …

31 62-63+

2

0 0-3

1 4-7

… …

31 124-127+

Qualifier Type Access Type Bin No. Offset from
PMx_DATABINx
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Configurable Physical Interface

The MPMC Physical Interface (PHY) is the interface situated between memory and the MPMC address
path, control path, and data path. The PHY interface can be configured to support SDRAM, DDR
SDRAM, and DDR2 SDRAM memories across Virtex-4, Virtex-5, and Spartan-
(3/3A/3E/3AN/3ADSP) platforms.

DDR2 SDRAM, and DDR3 SDRAM are supported on Virtex-6 only. Low Power DDR (LPDDR - also
known as Mobile DDR) is not supported by any PHY interface on these architectures.

The following subsections describe these topics:

• Available PHY Interface by FPGA Device: A table provided the by-device memory type support.

• Connecting Memory to the PHY Interface: Provides a table of the signals and parameters per PHY
layer,

• Memory Interface Generator PHY Interface: (MIG)-based PHY interface is a DDR/DDR2/DDR3
physical memory interface core/reference design technology used by MPMC. See "Reference
Documents," page 229 for links to more information about MIG. This is the recommended PHY
interface.
Using MIG-based PHY requires that you follow the MIG FPGA pinout and board layout
guidelines. You must use the MIG tool to generate pinout, placement, and timing constraints (UCF
file constraints) for MPMC designs.

• Static PHY Interface: You can use the Static PHY when MIG pinout and layout guidelines were not
followed. The Static PHY is currently available for SDRAM, DDR and DDR2 memories except on
Virtex-6.

• SDRAM PHY Interface: SDRAM PHY is the interface between the Single Data Rate Access
Memory (SDRAM) and the MPMC control path, address path, and data path. The SDRAM PHY
interface supports Virtex-4, Virtex-5, and Spartan-(3/3E/3A/3AN/3ADSP) platforms.
MPMC can read and write to Mobile SDRAM devices, but MPMC does not make use of the low
power features of Mobile SDRAM, such as deep power down or partial-array refresh. The SDRAM
PHY makes use of the Static PHY logic for data capture.

3

0 0-7

1 8-15

… …

31 248-258+

C_PM_SHIFT_BY Bin Number Transaction Length
(cycles)
01.a) July 23, 2010 www.xilinx.com 89
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

90
Available PHY Interface by FPGA Device

The following table summarizes the available PHY interfaces available for each FPGA device family
and memory combination.

Connecting Memory to the PHY Interface

The PHY interface permits connections to 8-, 16-, 32-, and 64-bit SDRAM, DDR, or DDR2 memories on
Spartan-3/Virtex-4/Virtex-5. The PHY interface permits connections to 8-,16-, and 32-bit DDR2 or
DDR3 on Virtex-6.

The following table lists the unique signals and parameters for each available PHY layer (excluding
standard memory and clock signals):

Table 57: PHY Layer by Xilinx FPGA Family and Memory Type

FPGA Family Memory Type

DDR3 DDR2 DDR SDRAM

Virtex-6
MIG-Based Virtex-6

DDR3 PHY(1)
MIG-Based Virtex-6

DDR2 PHY(1) / /

Virtex-5
MIG-Based Virtex-5

DDR2 PHY (1)

Static PHY

MIG-Based Virtex-5
DDR PHY (1)
Static PHY

SDRAM PHY (1)

Virtex-4
MIG-Based Virtex-4

DDR2 PHY (1)
Static PHY

MIG-Based Virtex-4
DDR PHY (1)
Static PHY

SDRAM PHY (1)

Spartan-3
Spartan-3E
Spartan-3A
Spartan-3AN
Spartan-3ADSP

MIG-Based Spartan-3
DDR2 PHY (1)

Static PHY

MIG-Based Spartan-3
DDR PHY(1)

Static PHY
SDRAM PHY (1)

1. Note: Default selection.

Table 58: Signals and Parameters per PHY Layer

PHY Layer Signals Parameters

MIG-Based Virtex-6 DDR2/DDR3 PHY
MPMC_Clk_Mem
MPMC_Clk_200MHz
MPMC_Clk_Rd_Base

C_MEM_NDQS_COL0
C_MEM_DQS_LOC_COL0
C_IODELAY_GRP

MIG-Based Virtex-5 DDR2 PHY

MPMC_Clk0_DIV2
MPMC_Clk_200MHz
MPMC_Idelayctrl_Rdy_I (optional)
MPMC_Idelayctrl_Rdy_O (optional)

C_NUM_IDELAYCTRL
C_IDELAYCTRL_LOC

MIG-Based Virtex-5 DDR PHY
MIG-Based Virtex-4 DDR2 PHY
MIG-Based Virtex-4 DDR PHY

MPMC_Clk_200MHz
MPMC_Idelayctrl_Rdy_I (optional)
MPMC_Idelayctrl_Rdy_O (optional)

C_NUM_IDELAYCTRL
C_IDELAYCTRL_LOC

MIG-Based Spartan-3 DDR PHY
DDR_DQS_Div_I
DDR_DQS_Div_O

N/A
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The memory data and address signals are marked with little-endian labeling. The following figures
(Figure 7, page 92 and Figure 8, page 94) show the little-endian and big-endian formats. Table 59,
page 93, "Little-Endian Bit and Byte Label Settings," describes the little-endian bit and byte labeling for
the data and control signals in the external memory.

Note: Use caution with the connections to the external memory devices to avoid incorrect data and address
connections. The bit ordering used in the MPMC memory interface is reversed from the bit ordering used in the
memory controllers named plb_ddr, plb_ddr2, opb_ddr, mch_opb_ddr, and mch_opb_ddr2. The BSB
can be used to create MPMC designs to illustrate correct memory interface connections.

MIG-Based Spartan-3 DDR2 PHY
DDR2_DQS_Div_I
DDR2_DQS_Div_O

N/A

SDRAM PHY

MPMC_Clk_Mem
MPMC_DCM_PSEN
MPMC_DCM_PSINCDEC
MPMC_DCM_PSDONE

C_STATIC_PHY_RDDATA_CLK_SEL
C_STATIC_PHY_RDENDELAY

Static PHY

MPMC_Clk_Mem
MPMC_DCM_PSEN
MPMC_DCM_PSINCDEC
MPMC_DCM_PSDONE

C_STATIC_PHY_RDDATA_CLK_SEL
C_STATIC_PHY_RDDATA_SWAP_RISE
C_STATIC_PHY_RDENDELAY

Table 58: Signals and Parameters per PHY Layer (Cont’d)

PHY Layer Signals Parameters
01.a) July 23, 2010 www.xilinx.com 91
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

92
Figure Top x-ref 4

Figure 7: Little-Endian Memory Data Types

Byte Address n+7

Byte Label 7

Byte Significance 64-bit MemoryMSB

n+6

6

n+5

5

n+4

4

n+3

3

n+2

2

n+1

1

n

0

LSB

Bit Label 63

Bit Significance MSBit

0

LSBit

DS43_56_072607

Byte Address

Byte Label

Byte Significance 32-bit MemoryMSB

n+3

3

n+2

2

n+1

1

n

0

LSB

Bit Label 31

Bit Significance MSBit

0

LSBit

Byte Address

Byte Label

Byte Significance 16-bit MemoryMSB

n+1

1

n

0

LSB

Bit Label 15

Bit Significance MSBit

0

LSBit

Byte Address

Byte Label

Byte Significance 8-bit Memory MSB

n

0

Bit Label 7

Bit Significance

M
S

B
it

0

LS
B

it
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Little-Endian Label Settings

Table 59: Little-Endian Bit and Byte Label Settings

Description Memory
Type MPMC Signal [MSB:LSB] Memory Signal [MSB:LSB]

Data Bus All
<memory_type>_DQ
[C_MEM_DATA_WIDTH-1:0] DQ[C_MEM_DATA_WIDTH-1:0]

Bank Address All
<memory_type>_BankAddr
[C_MEM_BANKADDR_WIDTH-1:0] BA[C_MEM_BANKADDR_WIDTH-1:0]

Address All
<memory_type>_Addr
[C_MEM_ADDR_WIDTH-1:0] A[C_MEM_ADDR_WIDTH-1:0]

Data All
<memory_type>_DQ
[C_MEM_DATA_WIDTH-1:0] DQ[C_MEM_DATA_WIDTH-1:0]

Data Strobe DDR / DDR2
<memory_type>_DQS
[C_MEM_DQS_WIDTH-1:0]

UDQS,LDQS (Replicate for number of
memory parts)

Differential Data
Strobe

DDR2
<memory_type>_DQS_n
[C_MEM_DQS_WIDTH-1:0]

UDQS#,LDQS# (Replicate for number
of memory parts)

Data Mask All
<memory_type>_DM
[C_MEM_DM_WIDTH-1:0]

UDM,LDM (Replicate for number of
memory parts)

ECC Check Bits All

<memory_type>_DQ
[C_MEM_DATA_WIDTH
+C_MPMC_CTRL_DATA_WIDTH
-1:C_MEM_DATA_WIDTH]

DQ_ECC[C_MPMC_CTRL_DATA_WIDTH-1:0]

ECC Data
Strobe

DDR / DDR2
<memory_type>_DQS[C_MEM_DQS_WIDTH
+C_MPMC_CTRL_DQS_WIDTH-
1:C_MEM_DQS_WIDTH]

DQS_ECC[C_MPMC_CTRL_DQS_WIDTH-1:0]

Differential ECC
Data Strobe

DDR2

<memory_type>_DQS_n
[C_MEM_DQS_WIDTH
+C_MPMC_CTRL_DQS_WIDTH
-1:C_MEM_DQS_WIDTH]

DQSn_ECC
[C_MPMC_CTRL_DQS_WIDTH-1:0]

ECC Data Mask All

<memory_type>_DM
[C_MEM_DM_WIDTH
+C_MPMC_CTRL_DM_WIDTH
-1:C_MEM_DM_WIDTH]

DM_ECC[C_MPMC_CTRL_DM_WIDTH-1:0]
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 93
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Big-Endian Memory Data Types

Figure Top x-ref 5

Figure 8: Big-Endian Memory Data Types

n n+1 n+2 n+3

0 1 2 3

MS Byte LS Byte

0 31

Byte address

Byte label

Byte significance

Bit label

Bit significance

n n+1

0 1

MS Byte LS Byte

0 15

MS Bit

MS Bit

LS Bit

Byte address

Byte label

Byte significance

Bit label

Bit significance

n

0

MS Byte

DS643_64_103007

0 7

Byte address

Byte label

Byte significance

Bit label

Bit significance

Byte

Halfword

Word

n

0 1 2

MS Byte LS Byte

0 63

Byte address

Byte label

Byte significance

Bit label

Bit significance MS Bit LS Bit

MS Bit LS Bit

LS Bit

Word

n+1 n+2 n+3 n+4 n+5 n+6 n+7

3 4 5 6 7
Double
94 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Connecting Memory to a DDR2 MPMC Design Example

The following figure illustrates an example of connecting memory to a DDR2 MPMC design.

Figure 9: Example DDR2 Memory Connections

DDR2_DQ[63:48] DQ[15:0] DDR2
Memory #1

x16

Rank 1

DDR2_CS_n[1]

DDR2_DQS[7:6] UDQS, LDQS
DDR2_DQS_n[7:6] UDQS#, LDQS#

DDR2_DM[7:6] UDM, LDM

DDR2_DQ[47:32] DQ[15:0] DDR2
Memory #2

x16
DDR2_DQS[5:4] UDQS, LDQS

DDR2_DQS_n[5:4] UDQS#, LDQS#
DDR2_DM[5:4] UDM, LDM

DDR2_DQ[31:16] DQ[15:0] DDR2
Memory #3

x16
DDR2_DQS[3:2] UDQS, LDQS

DDR2_DQS_n[3:2] UDQS#, LDQS#
DDR2_DM[3:2] UDM, LDM

DDR2_DQ[15:0] DQ[15:0] DDR2
Memory #4

x16
DDR2_DQS[1:0] UDQS, LDQS

DDR2_DQS_n[1:0] UDQS#, LDQS#
DDR2_DM[1:0] UDM, LDM

DDR2_DQ[71:64] DQ[7:0] DDR2
Memory #5

x16
DDR2_DQS[8] LDQS

DDR2_DQS_n[8] LDQS#
DDR2_DM[8]

DDR2_BankAddr[1:0]

DDR2_Addr[12:0]

DDR2_Clk[0]

DDR2_Clk_n[0]

DDR2_CE[0]

DDR2_RAS/CAS/WE

DDR2_ODT[0]

DDR2_ODT[1]

LDM
DQ[15:8]
UDQS
UDQS#
UDM

DDR2_DQ[63:48] DQ[15:0] DDR2
Memory #6

x16

Rank 2

DDR2_CS_n[0]

DDR2_DQS[7:6] UDQS, LDQS
DDR2_DQS_n[7:6] UDQS#, LDQS#

DDR2_DM[7:6] UDM, LDM

DDR2_DQ[47:32] DQ[15:0] DDR2
Memory #7

x16
DDR2_DQS[5:4] UDQS, LDQS

DDR2_DQS_n[5:4] UDQS#, LDQS#
DDR2_DM[5:4] UDM, LDM

DDR2_DQ[31:16] DQ[15:0] DDR2
Memory #8

x16
DDR2_DQS[3:2] UDQS, LDQS

DDR2_DQS_n[3:2] UDQS#, LDQS#
DDR2_DM[3:2] UDM, LDM

DDR2_DQ[15:0] DQ[15:0] DDR2
Memory #9

x16
DDR2_DQS[1:0] UDQS, LDQS

DDR2_DQS_n[1:0] UDQS#, LDQS#
DDR2_DM[1:0] UDM, LDM

DDR2_DQ[71:64] DQ[7:0] DDR2
Memory #10

x16
DDR2_DQS[8] LDQS

DDR2_DQS_n[8] LDQS#
DDR2_DM[8] LDM

DQ[15:8]
UDQS
UDQS#
UDM

X11125
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 95
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

96
The example in Figure 9, page 95 has the following specified parameters:

C_MEM_TYPE = “DDR2”
C_INCLUDE_ECC_SUPPORT = 1
C_MEM_CLK_WIDTH = 1
C_MEM_ODT_WIDTH = 2
C_MEM_CE_WIDTH = 1
C_MEM_CS_N_WIDTH = 2
C_MEM_ADDR_WIDTH = 13
C_MEM_BANKADDR_WIDTH = 2
C_MEM_DATA_WIDTH = 64
C_MEM_NUM_RANKS = 2
C_MEM_NUM_DIMMS = 1

In this example:

• The DDR2_CS_n[0] signal is connected to one rank of memory and DDR2_CS_n[1] is connected to
the other rank of memory. The DDR2_ODT[0] signal is connected to one rank of memory and
DDR2_ODT[1] is connected to the other rank of memory.

• Within a particular rank, the signals DDR2_CS_n and DDR2_ODT are connected to each memory in
the rank. Some memory manufactures have specific recommendations for how these signals
should be connected. For example, when using a dual rank DIMM, the recommendation might be
to assert DDR2_ODT on the same rank that DDR2_CS_n is asserted (as shown in Figure 9, page 95).
Other recommendations might be to assert DDR2_ODT on to opposite rank that the DDR2_CS_n is
asserted, which can be achieved by swapping DDR2_ODT[0] and DDR2_ODT[1].

• All clock, addresses, and other control signals are also connected to each memory.

• The DDR2_DQ, DDR2_DQS, DDR2_DQS_n, and DDR2_DM signals do not go to all discrete memory
components. Instead, 16 bits of DDR2_DQ go to one memory in each rank and 2 bits of DDR2_DQS,
DDR2_DQS_n, and DDR2_DM go to one memory in each rank. The only exception is the ECC memory.
When C_MEM_DATA_WIDTH is set to 64, there are 8 ECC bits. Because the memory has 16 bits; 8 of
the DQ bits, the UDQS, the UDQS numbers, and the UDM are left unconnected. All other pins are
connected on the memory.

The parameters C_MEM_CLK_WIDTH, C_MEM_CE_WIDTH, C_MEM_CS_N_WIDTH, and C_MEM_ODT_WIDTH can
be used to replicate the CLK, CKE, CSn, and ODT outputs of MPMC to match the board schematics. Care
must be taken with C_MEM_CS_N_WIDTH and C_MEM_ODT_WIDTH as these parameters must be an integer
multiple of C_NUM_RANKS*C_NUM_DIMMS.

Memory Interface Generator PHY Interface

The following subsections describe the Memory Interface Generator (MIG)-based PHY Interface:

The following subsections describe the MIG-based PHY interface:

• MIG PHY Features

• MIG-Based PHY Design Considerations

• MIG/MPMC Tool Flow

• MIG Spartan-3 Design Considerations

• Board Considerations

• MIG Virtex-4 Design Considerations

• Additional MIG Information
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
MIG PHY Features

The Memory Interface Generator (MIG)-based PHY interface contains:

• Input and output flip-flops

• Read data delay logic

• Data capture logic

• Memory initialization logic

The read data delay logic uses IDELAYs for Virtex-4, Virtex-5, and Virtex-6 families, and Look-Up Table
(LUT) delays for Spartan-3 platforms. The delay logic is used to align the middle of the valid read data
to the MPMC_Clk0 clock edge. This is necessary to accommodate for variations in trace delays on
different boards. The delay elements change the time that the read data arrives at the FPGA to align it
to the main clock.

In the Virtex-4, Virtex-5, and Virtex-6 families, this alignment is done as part of the memory
initialization logic. At the end of the initialization or configuration sequence, the PHY issues dummy
Write and Read commands.

The delay logic then determines the edges of the input data and shifts the input data to allow
MPMC_Clk0 to capture the data. To ensure a robust interface, match the trace lengths for the data signals
to the corresponding data strobe signal and ensure that the proper FPGA I/O pin selections are made
as described in the MIG User Guide. "Reference Documents," page 229 has a link to the MIG web page.

In DDR, DDR2, and DDR3 cases, the data capture logic takes the DDR read data and turns it into Single
Data Rate (SDR) data. The PHY then pushes the data into the data path FIFOs, making it available to
the NPI and then to any additional user PIMs.

For more information on the use of IDELAY in DDR, DDR2 and DDR3 applications see the Memory
Interfaces Data Capture Using Direct Clocking Technique document. The "Reference Documents," page 229
contains a link to this document.

For more information about the MIG physical interface design, register and download the MIG design.
The "Reference Documents," page 229 contains a link to the Xilinx Memory web page where the MIG
design is located.

MIG-Based PHY Design Considerations

The following are design considerations for using the MIG-based PHY interface:

• This version of MPMC is designed to be used with MIG v3.4. Other MIG versions (either older or
newer) might not produce a User Constraint File (UCF) compatible with this version of MPMC.
For migrating the UCF file from older MPMCv3 and MPMCv4 designs
(based on MIGv1.73-MIGv3.3) to MPMC5, the following options are available:

- The MIG v3.4 GUI provides an Update Design option that generate MIG v3.4 constraints using
an older project files from MIG v.173, v2.0, 2.1, 2.2, 2.3 or 3.0,3.1,3.2 or 3.3. If your design
originally used an older MIG version, it is strongly recommended that you use this option to
update the design to make sure the correct constraints are being used.

- Scripts and instructions are provided to migrate MPMC designs manually:

- For migration of MPMCv3 designs based on MIG v1.73 to MPMCv5. See "Standalone
Flow: Migrating an MPMCv3 Design to MPMCv5," page 103 for more information.
01.a) July 23, 2010 www.xilinx.com 97
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

98
- For migration of MPMCv4 Virtex-5 DDR2 designs to MPMCv5, see "Standalone Flow:
Migrating an MPMCv4 Virtex-5 DDR2 Design to MPMCv5," page 104 for more
information.

However, it is strongly recommended that the Update Design option in the MIG GUI be used
instead of the manual or scripted method. These manual or scripted methods are intended to be
used to help debug the migration of older MPMC designs only.

• When running the MIG GUI in standalone mode, ensure that the MIG memory settings match the
parts you intend to use on your custom board and also match your MPMC memory settings. In
particular, ensure that memory parameters that affect the memory interface placement like data
width, number of rows, columns, bank bits, and memory types are correct and consistent.

• Virtex-5 DDR2 boards must be designed to support differential DQS.

• It is required and extremely important to ensure that the layout and pinout of any other boards to
be used with MPMC follow the MIG design requirements.
Failure to follow MIG design rules and all applicable MIG UCF constraints could result in an
inoperable MPMC. Review all information in this section before implementing the design.

• If using ECC, ensure that the board supports a full 8-bit wide data byte lane for the ECC check
bits. In previous versions of MPMC, only 4 physical bits were used for ECC, but this version of
MPMC requires the full byte lane to be present to accommodate the PHY data calibration
algorithm.

• During memory initialization (following reset), the Virtex-4, Virtex-5, and Virtex-6 MIG-based
PHY writes to the top locations in memory to set up the write training pattern. This can affect
memory address between {C_MPMC_HIGHADDR - 0xFF} and C_MPMC_HIGHADDR; therefore, after
any reset, these locations in memory are overwritten.

• Software code should not be stored in the top 0x100 address locations of memory. If using shadow
memory, review the "Address Encoding," page 64 to determine which address locations are
overwritten.

• In multi-rank systems, the MIG PHY only calibrates its data capture timing to one of the ranks on
one of the DIMMs. Differences in timing, process variation across memory devices, or bus loading
affects across ranks reduces timing margin and can affect the frequency range of operation.

Note: Multi-rank and multi-DIMM systems are not tested or characterized by MIG. You must ensure
that the maximum skew and signal integrity is controlled across ranks. The use of multi-rank designs
is strongly discouraged. The use of multi-DIMM designs is currently unsupported.

MIG/MPMC Tool Flow

This section outlines the MPMC to MIG tool flow. MIG is a tool that is delivered within the Xilinx
CORE Generator software tool. There are two options for using MIG with MPMC:

• Integrated MIG GUI Flow

• Standalone MIG GUI Flow

The integrated flow manages the MIG project automatically and is therefore recommended. The
standalone flow provides a more manual flow for converting a MIG pinout into MPMC.The following
subsections describe the options.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Integrated MIG GUI Flow

The Integrated MIG GUI flow offers a simplified method for working with the MIG GUI to generate a
memory interface pinout and constraint file. It is available for Spartan-3, Virtex-4, Virtex-5, or Virtex-6
designs only. In this flow, the MIG GUI is invoked from within the MPMC GUI and the output of the
MIG tool is imported and managed automatically by EDK. This flow has fewer steps for running MIG
to generate MPMC pinouts and constraints within the XPS GUI. The integrated flow seeds the Core
Generator software project files and the MIG GUI project files automatically and eliminates some of the
option screens from within the MIG GUI by inferring them from the MPMC settings.

The disadvantage of this flow is that it reduces visibility into the tool interactions which can make
debugging, handling special cases, or workarounds more difficult to implement. This flow is
recommended for new designs. For designs with existing MPMC and MIG projects built under the
previous Standalone MIG GUI flow, it is recommended that the standalone flow continue to be used
although you can use the integrated flow to update an older MIG project.

Note: BSB MPMC designs use the standalone flow for handling the MPMC UCF constraints.

The following steps describe the integrated flow. Refer to the MIG User Guide for more information on
options in the MIG GUI.

1. Ensure that you have installed the Core Generator software and any available updates. Although
the Core Generator software is not invoked in GUI mode, the tool is executed at the command line
by underlying scripts.

2. Using the MPMC IP configuration GUI, configure MPMC for you application. This process is
described in "IP Configuration Graphical User Interface," page 225.

3. Configure MPMC as needed; ensure the Memory Interface tab has all the memory information.

4. Click the MIG Settings tab, and check the USE Integrated MIG GUI Flow box to enable the
integrated MIG GUI flow. This will allow the Launch MIG button to be active; click this button to
open MIG.

5. In the MIG Output Options window, select Create Design > Next.

6. In the MIG Pin Compatible FPGAs window, check any other devices that the pinout must use to
be compatible, then click Next.

7. In the MIG FPGA Options and Extended FPGA Options windows, make the appropriate
selections, then click Next.

a. The selection of Single Ended or Differential System Clock does not affect the MPMC.

b. For Spartan designs, select the top/bottom clock input location to match the location of the
Global Clock Buffer (BUFG) driving the memory clock (PORT MPMC_Clk0) in the final system
design.

8. In the MIG Reserve Pins window, select any pins that you want the MIG tool not to use in its pin
assignments.

Note: The Read UCF File option only reads in a specially formatted file listing pins to prohibit. Consult the MIG
documentation to make sure the correct file formatting is used to reserve pins.

9. For a new pinout only: Choose New Design and click Next.

a. In the MIG Bank Selection window, select the banks to which you want to allow MIG to
assign pins. You must select enough banks to meet the required pin count totals. Click Next.
Continue to step 11.

10. For existing pinout only: Choose Fixed Pin Out and click Next.

a. In the MIG Pin Selection window, choose FPGA pin locations for each MIG signal in the Pin
Number column.
01.a) July 23, 2010 www.xilinx.com 99
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

100
Note: Excess bus width signals should be assigned to dummy locations which will be later ignored.

a. Click Next when I/O location entry is complete.

11. In the MIG Summary window, review the options and click Next.

12. In the MIG Memory Model License window, mark the checkbox if memory models are desired,
then click Generate to run MIG and create the constraint files. This returns you to the MPMC GUI.

The memory simulation models created in this step are not imported by EDK and MPMC. To use
these models in an MPMC simulation, the testbench from the raw MIG project can be merged
manually into the user top-level testbench. See the "Integrated MIG GUI Flow: Additional
Information," page 100 for the raw MIG project location.

13. After returning to the MPMC GUI, click OK to return to XPS.

The EDK system.ucf file is not modified in the Integrated MIG flow.

14. Remove any MPMC/MIG-specific constraints in the EDK system.ucf file that were added from
previous flows.

See the following subsection for more detailed information about how pinout and constraint
information is handled in the Integrated MIG flow.

Integrated MIG GUI Flow: Additional Information

• The MIG project files that are generated in this flow are stored in the
<EDK_Project_File>/__xps/mig. It is very important to backup and retain these files for
future use. Make sure that these files are also kept for project archival or whenever the EDK
project needs to be copied or moved.

• The raw MIG pinout and constraints information are located in
<EDK_Project_Dir>/__xps/mig/gui/*/user_design/par/*.ucf.

• The MIG ucf file that is converted to have MPMC compatible instance names is located at
<EDK_Project_Dir>/__xps/mig/platgen/*/user_design/par/*.ucf. This
becomes the core level UCF constraints that are passed to the EDK flow.

• The core level UCF (renamed with a.ncf suffix) used by the EDK/ISE flow during ngdbuild
is in <EDK_Project_Dir>/implementation/<MPMC name>/<MPMC
name>_wrapper.ncf.

• To completely clean away an old run of the MIG GUI to start the process over, remove the
<EDK_Project_Dir>/__xps/mig directory. This directory contains all the state
information for the integrated MIG flow.

• In the integrated MIG flow, the constraints and some parameters are handled automatically. The
MIG constraints pass into a core-level constraint file that is merged into the ISE tools during
ngdbuild. The core-level constraint file contains the memory interface pin location, timing, and
area constraints needed for the design.

• The EDK system.ucf file should not contain any memory interface pinout, timing, or
placement constraints as they are handled in the integrated flow using the core-level UCF
files.

• The C_MMCM_EXT_LOC, C_MEM_NDQS_COLx and C_MEM_DQS_LOC_COLx parameters are set
automatically for Virtex-6. If you are not using the Clock Generator core v3.02.a or greater you
must ensure the external MMCM driving the MPMC clocks is set correctly.

• Consider verifying that the design correctly runs through all back end tools, is correctly placed
and routed, meets timing, and shows no errors or significant warnings before committing the
generated pinout to board layout.

• Verify in the PAR report that all memory interface pins are “LOCed”. Check the.pad file to
view or debug the final memory interface pin locations and IO standards.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
• Review the information in this document and the MIG User Guide to ensure key aspects of the
MIG PHY such as the template router (Spartan-3) or DIRT strings (Virtex-5) have been placed
and routed correctly.

• When the integrated MIG flow is enabled (C_USE_MIG_FLOW = 1), MPMC scripts are invoked
during the Platgen EDK build phase that check for changes to MPMC configurations that would
require MIG to be rerun. If the script flags an MPMC change such as a new memory width, the
script generates an error requesting that user rerun the MIG GUI.

• Perform a hardware clean in XPS before rebuilding a design where the MIG GUI settings have
been changed.

Standalone MIG GUI Flow

The Standalone MIG GUI flow offers the highest degree of flexibility because the full capability of the
MIG GUI is made available. This standalone flow also provides greater visibility into the intermediate
files and to the steps for generating an MPMC UCF file from the output of the MIG GUI.

This option is also useful if you use a standalone MIG-based memory controller on the same hardware
board platform. This Standalone MIG GUI is the flow used in previous versions of MPMC. The
following steps describe how to use the Standalone MIG GUI option:

1. Ensure that you have downloaded any available Core Generator technology IP updates.

2. Create a Core Generator project with the same FPGA device and package to match the EDK project
settings. The MIG tool is available under the View By Function tab > Memories and Storage
Elements > Memory Interface Generators.

2. Ensure that MIG is set to Verilog output mode (Project >Project Options > Generation Tab >
Design Entry > Verilog.)

3. Run the MIG tool version from Core Generator, set up memory part information, data widths, I/O
banking locations, and so forth. (If necessary, click the User Guide button and review the board
layout requirements for the memory interface.)

4. Click the Generate button to generate a MIG pinout.

Note: Clicking the Generate button also produces a MIG hardware testbench design at:
<coregen_project>/mem_interface_top_withtb. This testbench design can be run as a
standalone hardware design on the board to help test/debug the memory PHY interface.

5. After running the MIG tool, take the UCF file created by MIG located at:
<coregen_project>/mem_interface_top_withouttb/par/mem_interface_top.ucf.

6. Run the convert_ucf.pl script as outlined in "Standalone Flow: Converting a MIG UCF to an
MPMC UCF," page 102 to convert the MIG UCF file to an MPMC UCF file, then copy the UCF
information into the <EDK_Project>/data/system.ucf file.

7. Update the UCF file to include the correct port names for your design.
For example, the convert_ucf script produces port names like fpga_0_DDR_SDRAM_DDR_DQ and
fpga_0_DDR_SDRAM_DDR_Addr_pin similar the BSB port naming. Those MPMC UCF port names
should be updated to reflect the actual top-level port names in the system.mhs file.

8. Ensure that the MPMC Core is configured for the correct memory part and memory configuration
in XPS using the MPMC GUI. The MPMC core memory parameters must match the settings in the
MIG GUI for the UCF constraints to match the logic that is generated.

9. Retain the MIG project file with the MPMC project files. The original MIG project file might be
needed to modify the design, revise to a newer version of MPMC, or for debug and testing.

Note: The UCF file provided with BSB-generated designs might not match the format and values provided by the
MIG UCF conversion script when using Xilinx and third-party boards that do not have an exact MIG-generated
pinout. In many cases these UCF files are manually generated and maintained.
01.a) July 23, 2010 www.xilinx.com 101
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

102
Standalone Flow: Converting a MIG UCF to an MPMC UCF

In the Standalone MIG GUI flow, you must run a script to modify the MIG-generated UCF file to be
compatible with the MPMC design. This involves changing the instance and internal path names of the
constraints to match MPMC. Note that this manual UCF conversion step is not required when the
Integrated MIG GUI Flow is used.

A script is provided at:
<EDK_Install_Dir>/hw/XilinxProcessorIPLib/pcores/mpmc_<version>/data/convert_ucf.pl
to assist with the process of converting a MIG UCF into an MPMC UCF.

After running the MIG tool to generate a Verilog MIG design, take the UCF file from the
/mig_<version>/user_design/par directory and execute this script in a shell where ISE and EDK
tools are in the path environment:

xilperl <EDK InstallDir>
/hw/XilinxProcessorIPLib/pcores/mpmc_<version>/data/convert_ucf.pl
[-mhs <MHS File>] <MIG UCF> <OUTPUT UCF>

The optional -mhs flag with the entire system <MHS File> provided as an argument uses the MHS net
names for the memory signals in <OUTPUT_UCF>. You must add the contents of the <OUTPUT UCF> file
into the user EDK project UCF manually, such as <EDK_Project_Dir>/data/system.ucf.

This script is provided to assist with the process of translating the UCF but it does not necessarily
generate a complete working UCF to use with MPMC. You must still verify the output of the script and
you might need to adjust it to fit a particular design. Unless the --mhs option is used, the script does
not completely translate the names of clock, reset, or memory I/O signals to match the top level port
names in the EDK design. You must translate these signal names to match your design.

In Virtex-6 designs, you must:

• Open the generated MIG files and obtain the values needed to set MPMC parameters
C_MEM_NDQS_COL0, C_MEM_NDQS_COL1, C_MEM_DQS_LOC_COL0, and C_MEM_DQS_LOC_COL1.
These parameters are located in the <MIG_project>/user_design/rtl/ip_top directory in
the top-level file of your design name. The MIG parameter names do not have the C_MEM_ prefix.

• In the UCF file, use LOC on the MMCM used with MPMC in the same location as specified by MIG.

The MIG tool specifies the location of the MMCM external to MPMC that drives the MPMC signals
MPMC_Clk_Rd_Base, and MPMC_Clk_Mem.

The MMCM location constraints must be transferred to the UCF file of the MPMC design.

See "Virtex-6 Clock Logic," page 69 for more information about clocking requirements.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Standalone Flow: Migrating an MPMCv3 Design to MPMCv5

If using the Virtex-4 DDR or DDR2 MIG PHY or the Virtex-5 DDR PHY, no revision (revup) is required.
A revup is required for Spartan-3 DDR/DDR2 and Virtex-5 DDR2 MIG PHY designs. You can run MIG
and use the MIG > Update Design option to open the MIG v1.73 project file and generate a new
constraint file. Using MIG to update the constraint file is the strongly recommended flow.

For cases where the MIG > Update Design flow is not possible, the following script is provided to
revup an MPMC v3.00.a or v3.00.b design that uses a MIG v1.73 PHY to an MPMC v5 design that uses
a MIG PHY.

• To revise a Spartan-(3/3A/3AN/3E/3ADSP) DDR or DDR2 design where the
MIG > Update Design flow is not practical, execute the following commands in a shell where ISE
tools are in the path:

cd <EDK_Install_Dir>/hw/XilinxProcessorIPLib/pcores/mpmc_<version>/data

xilperl revup_s3_ucf.pl <MPMC v3 UCF> <USER UCF>

where:

- <EDK_Install_Dir> is the directory in which the EDK is installed.
- <MPMC v3 UCF> is the name of your UCF file from your mpmc_v3_00_a or mpmc_v3_00_b

project.
- <USER UCF> is the UCF file to be used in your MPMC project. Delete any constraints containing

“RLOC_ORIGIN” statements because these are no longer applicable.

To revise a Virtex-5 DDR2 design from MPMCv3 to MPMCv5, a MIG > Update Design flow must be
followed. The steps are:

1. A MIG project must be generated, if not already existing, using either the integrated or standalone
MIG flow.

Note: Because a pinout is already available, all banks can be selected in the bank selection screen.

2. If the default MIG pinout generated is not the desired pinout, run the MIG > Update Design flow
using the MIG project, and a UCF with the desired pinout in a MIG-formatted UCF.

Note: The input UCF parsing to the MIG > Update Design flow currently requires strict adherence to the
formatting similar to MIG UCF output for complete Update Design UCF parsing.

Warnings in this step relating to missing pins in the UCF can be ignored if similar pins are not used
by MPMC. For example the clk200_p, clk200_n, sys_rst_n, phy_init_done, and extra
ddr2_cs_n, ddr2_odt, ddr2_ck, and ddr_ck_n ports can be ignored during this step.

3. If using the standalone MIG flow, convert the MIG UCF to MPMC and include into the system UCF
by completing the steps in "Standalone Flow: Converting a MIG UCF to an MPMC UCF," page 102.
This step can be skipped when using the integrated MIG flow because MPMC converts and
manages the final UCF.

More information on the MIG Update Design flow can be found in the MIG documentation. "Reference
Documents," page 229 contains a link to that documentation.
01.a) July 23, 2010 www.xilinx.com 103
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

104
Standalone Flow: Migrating an MPMCv4 Virtex-5 DDR2 Design to MPMCv5

To migrate an existing Virtex-5 DDR2 design from MPMCv4 to MPMCv5, the following actions are
necessary. All other MIG PHY types do not need special consideration to be revised.

Note: Tool errors are reported if these steps are not performed.

• In the MHS file, the C_MEM_DQS_IO_COL and C_MEM_DQ_IO_MS parameters are no longer used
and must be removed.

• In the UCF file, MPMC specific constraints containing AREA_GROUP and RLOC_ORIGIN must be
removed.

Standalone Flow: Migrating an MPMCv5 Virtex-6 Design to MPMCv6

To migrate an existing Virtex-6 design from MPMCv5 to MPMCv6, the following actions are necessary.
All other MIG PHY types do not need special consideration to be revised.

In the UCF File:

• Remove/comment the TIG constraint of the net connected to DDR3_Clk, DDR3_Clk_n,
DDR2_Clk, and DDR2_Clk_n MPMC ports:

• # NET fpga_0_DDR3_SDRAM_DDR3_Clk_pin* TIG;

• # NET fpga_0_DDR3_SDRAM_DDR3_Clk_n_pin* TIG;

• Remove _T_DCI suffix from the IOSTANDARD of the net connected to any DDR3_Clk,
DDR3_Clk_n, DDR2_Clk, and DDR2_Clk_n MPMC ports:

• NET fpga_0_DDR3_SDRAM_DDR3_Clk_pin IOSTANDARD = DIFF_SSTL15;

• NET fpga_0_DDR3_SDRAM_DDR3_Clk_n_pin IOSTANDARD = DIFF_SSTL15;

• Remove/comment the base MMCM location constraint:

• # INST */u_mmcm_clk_base LOC = MMCM_ADV_X0Y8;

• Remove/comment the OCB Monitor OLOGIC location constraint:

• # INST */gen_enable_ocb_mon.u_phy_ocb_mon_top/u_oserdes_ocb_mon LOC =
OLOGIC_X2Y130;

In the MHS File:

• On the MPMC instance, remove/comment any MPMC_Clk_Wr_I0, MPMC_Clk_Wr_O0,
MPMC_Clk_Wr_I1, MPMC_Clk_Wr_I1 ports, and connect the former driving net to a new port
MPMC_Clk_Rd_Base:

• # PORT MPMC_Clk_Wr_I0 = clk_400_0000MHzMMCM0_nobuf_varphase

• PORT MPMC_Clk_Rd_Base = clk_400_0000MHzMMCM0_nobuf_varphase

• On the Clock Generator instance, remove any unused output ports/parameters due to the
removal of the MPMC write clocks of the previous step. See "Virtex-6 Clock Logic," page 69 for an
example.

• On the Clock Generator instance, change the C_PSDONE_GROUP parameter to MMCM0 from
MMCM0_FB:

• PARAMETER C_PSDONE_GROUP = MMCM0

• On the Clock generator instance, change all C_*_VARIABLE_PHASE values to FALSE or removed,
except for the port driving the MPMC_Clk_Rd_Base signal, which must be set to TRUE.

• PARAMETER C_CLKOUT3_VARIABLE_PHASE = TRUE #MPMC_Clk_Rd_Base
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
MIG Spartan-3 Design Considerations

MPMC uses the Spartan-3 PHY from MIG to implement the physical level interface for
Spartan- (3/3A/3AN/3E/3ADSP) platforms with DDR1 or DDR2 memory. The MIG Spartan-3 PHYs
use very specific UCF constraints to constrain the pinout and placement of internal elements in the
fabric. These constraints are specific to an individual Spartan-3 device and are not necessarily portable
across devices (even if the different devices are in the same package).

Spartan- (3/3A/3AN/3E/3ADSP) devices can have data width limitations depending on part and
package size. Verify data width compatibility through the MIG GUI or through the “Supported
Devices” section of UG086, MIG User Guide, in the “Spartan-(3/3A/3AN/3E/3ADSP) FPGA to
Memory Interfaces” section. The "Reference Documents," page 229 contains a link to this resource.

MIG also has guidelines for the board layout of the memory interface so that the PHY functions
properly. It is extremely important that any user boards be designed in compliance with the MIG
pinout constraints and layout guidelines for Spartan-3 and other MIG PHY families.

MIG provides a GUI in the Core Generator tool that guides you through the process of generating the
pinout and UCF constraints for their design.

MIG Spartan-3 PHY Use of Top/Bottom I/O Banks for Data Signals

MPMC does not support the use of top/bottom memory interface banks for the
Spartan-(3/3A/3AN/3E/3ADSP) FPGA families. Do not choose top or bottom banks for the DQ or
DQS pins of the memory interface in the MIG tool. You must choose the left or right side banks for the
DQ or DQS pins of the memory interface pinout.

MIG Spartan-3 Placement of Calibration Control Area Group and BUFG Driving Memory Clock Port
MPMC_Clk0

For Spartan-(3/3A/3AN/3E/3ADSP) designs, ensure that the system clock input pin is correctly
specified to the MIG tool. This will cause the MIG tool to place the tap delay circuit and calibration
control (“cal_ctl” area group near the BUFG corresponding to the top or bottom location of the
system clock input pin). MIG does not allow the use of side BUFGs or DCMs to be directly driving the
memory clock. Ensure that in the final design the “cal_ctl” area group corresponds to the location
near the BUFG that drives MPMC_Clk0.

For the correct placement of the calibration control circuit near the BUFG, the UCF file uses a device
dependent AREA_GROUP directive with SLICE location calculated by the MIG tool. Verify in FPGA
Editor that the “cal_ctl” area group contains slice locations near the BUFG driving the memory
clocks.

In addition to the area group, the UCF contains an RLOC_ORIGIN directive to align a critical section of
the tap delay circuit into a single column inside the “cal_ctl” AREA_GROUP. In MIGv2.3 or later, the
AREA_GROUP and RLOC_ORIGIN values should be calculated automatically.

If an older version of MIG was originally used or if clock circuits have changed, it might be necessary
to re-run the original MIG project files on the current version of MIG. With the standalone mode,
constraints missing from older versions of MIG might need to be corrected. It is also recommended that
users verify the correct placement of BUFG, calibration control, and tap delay circuits as described in the
following examples.
01.a) July 23, 2010 www.xilinx.com 105
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

106
Spartan-3 Top Bank Clock Selection

The MIG output UCF includes an AREA_GROUP constraint on “cal_ctl”. The first value in the
RANGE of this constraint is the value in the RLOC_ORIGIN constraint. Here is an example AREA_GROUP
from a MIG output UCF:

AREA_GROUP “cal_ctl” RANGE = SLICE_X74Y190:SLICE_X85Y203;

The first value in the range is X74Y190. This is the RLOC_ORIGIN value and could be missing from MIG
v2.2 or older UCF files. The syntax for the constraint that should be present in the UCF file is:

INST “infrastructure_top0/cal_top0/tap_dly0/l0” RLOC_ORIGIN = X74Y190;

Spartan-3 Bottom Bank Clock Selection

The MIG output UCF includes an AREA_GROUP constraint on “cal_ctl”. To calculate the
RLOC_ORIGIN constraint, take the first value in the AREA_GROUP RANGE and add 10 to the X coordinate.
Here is an example AREA_GROUP from a MIG output UCF:

AREA_GROUP “cal_ctl” RANGE = SLICE_X74Y4:SLICE_X85Y17;

The first value in the range is X74Y4. The new RLOC_ORIGIN value is X84Y4 (because 10 is added to the
X coordinate and could be missing from MIG v2.2 or older UCF files.) The syntax for the constraint that
should be present in the UCF file is:

INST “infrastructure_top0/cal_top0/tap_dly0/l0” RLOC_ORIGIN = X84Y4;

Ensure that the “cal_ctl” AREA_GROUP is not located on the left or right sides of the chip and that the
BUFG driving the MPMC_Clk0 port is located in the same side of the chip near the AREA_GROUP.

To verify that the tap delay circuit, “cal_ctl” AREA_GROUP, and BUFG driving the memory clock are all
placed correctly, follow these steps:

1. Open the Post-PAR design.ncd and design.pcf files in the FPGA Editor.

2. Select Routed Nets from the List window located at the top left-hand side. This shows all the
routed net names of the design.

3. Enter *tap_dly*/tap* in the Name Filter window to select the tap_dly chain.

4. Select all the displayed nets, and click the Apply button on the right-hand side of the Name Filter
window.

5. Zoom into the area in the Array window where the selected routes are highlighted.

6. If the tap delay circuit is properly constrained, the logic is located in a single column in four
sequential Configurable Logic Block (CLBs). This will indicate the RLOC_ORIGIN is correct.
Figure 10, page 107 is a screen capture showing an example of the correct placement of the
tap_dly circuits.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
7. Repeat steps 3, 4, and 5 using cal_ctl in the Name Filter window. If the cal_ctl circuit is
properly constrained, the logic will be placed in the area near the tap delay circuit on the same side
of the chip.

8. Find the global clock buffer (BUFG) driving the clock to the MPMC_Clk0 port.

9. Go back to the List window, select All Components and sort the List window by Type. Find the
BUFGMUX components in the Type column. Select the named BUFG that is driving the MPMC_Clk0
port and verify it is located close to the tap delay circuit (on the same side of the chip).

MIG Spartan-3 PHY Template Router and DQ/DQS Data Capture Logic

The proper implementation of the DQ/DQS data capture logic requires specific pinout, timing, and
placement constraints which include PIN, LUT, BEL, SLICE and MAXDELAY elements. This also
includes the usage of template routes during Place and Route. The correct placement and routing of
these components should be verified using FPGA Editor.

Refer to the MIG User Guide, under the “DDR2 Debug Guide” >“Debugging the Spartan-3 FPGA
Design”> Verify Placement and Routing.” The steps needed to check the placement and routing of the
Spartan-3 MIG PHY are described in that section.

Figure 10: Correct Placement of tap_dly Circuits
01.a) July 23, 2010 www.xilinx.com 107
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

108
MIG Spartan-3 PHY MAXDELAY Timing Constraints

When running the place and route tools, Spartan-3 MPMC designs might generate timing errors on the
maxdelay constraints in the MPMC UCF. If this occurs, check the
<EDK_project>/implementation/system.twr file for the errors. If the worst case path is within
the range of allowable delays mentioned in the comments of the MIG UCF, the constraint can be
relaxed to allow timing to pass. MAXDELAY constraints should not be relaxed beyond the range of values
described in the UCF comments. It might take several iterations of the tools to resolve the MAXDELAY
timing constraints so the design meets timing. Alternatively, you can proceed with the design and
allow for false timing errors in the MPMC Spartan-3 PHY logic.

MIG Spartan-3 PHY Debug Tips and Hints

For Spartan-3 MIG designs that do not work, the following debugging steps could help in the debug
process:

1. Perform the placement and routing checks using FPGA Editor.

2. Check that the MicroBlaze processor can connect to XMD and that simple XMD reads and writes to
LMB block RAM are working. This establishes that the basic processor subsystem is working.

3. Check the PAR report and ensure that all I/O signals are located.

4. If reads from memory space return the same data value across all memory locations, this is a
symptom of a hang in the PHY. This could be caused by any of the following:

• Incorrect connections on the DQS_DIV_I/DQS_DIV_O loopback trace

• Problems with the DQS nets

• Incorrect template router nets (see #1)

• Problems with the generation or conversion of the MIG UCF

5. For data corruption errors or hangs, additional debug might be required by using the ChipScope™
debugging tool to probe the signals inside the Spartan-3 PHY block. Signals that can be checked
are:

a. PHY read FIFO data out signals. (Two FIFOs per byte lane, one for posedge data and one for
negedge data.) Monitor these signals to check the read data strobed in by the DQS signal.

Read FIFO Data Out = *mpmc_phy_if_0/data_path/data_read/fifo_0_data_out_r<*>

and

mpmc_phy_if_0/data_path/data_read/fifo_1_data_out_r<>

b. PHY read FIFO control signals. The signal read_valid_data is used to qualify read data
being returned to the MPMC data path logic.
The wr_addr and rd_addr_out signals are gray code counters that implement the FIFO Read
and Write pointers driving a dual-port LUT-based RAM for each data bit. A different set of
FIFO pointers is implemented on each byte lane of data for posedge and negedge data.

*mpmc_phy_if_0/data_path/data_read/read_valid_data
mpmc_phy_if_0/data_path/data_read/fifo_0_wr_addr_out<><*>
mpmc_phy_if_0/data_path/data_read/fifo_1_wr_addr_out<><*>
mpmc_phy_if_0/data_path/data_read/fifo_0_rd_addr_out<><*>
mpmc_phy_if_0/data_path/data_read/fifo_1_rd_addr_out<><*>

c. PHY calibration tap values. These calibration values determine what delay is being applied to
the DQS signals to align the edges of the DQS strobe signal to the data.

mpmc_phy_if_0/infrastructure/cal_top/cal_ctl/tapForDqs_rl<>

Note: Regarding ChipScope tool usage: Attaching ChipScope probes onto signals that are used by the
template router could disrupt critical timing/routing nets.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The ChipScope analyzer probes should be attached only to signals operating in the MPMC_Clk0 and
MPMC_Clk90 clock domain. The use of ChipScope on a Spartan-3 device could cause a conflict with the
BSCAN element used for XMD access. This might require the use of XMD stub-based debug or might
require that a test program be initialized into LMB block RAM to generate the memory transactions.

6. Isolate which byte lanes are causing hangs or data errors and investigate those byte lanes further in
greater detail.

7. Implement the MPMC design using the Static PHY, get the static PHY to work, then compare
results between static PHY and MIG PHY. For example, write with one PHY and read with the
other PHY to help isolate the problem to reads or writes.

8. Run the standalone MIG hardware testbench design. This design consists of MIG PHY, controller,
and hardware testbench that loops write/read data to memory. The MIG hardware testbench
design includes preconfigured ChipScope probes and an error status LED output. If the standalone
MIG testbench is not working, resolve it first. The standalone MIG testbench is a smaller and
simpler design that might be easier to debug.

9. Verify that clock, control, data, power, and ground signals and board traces have the proper signal
integrity and implementation on the board.

Note: If you are not familiar with creating hardware and software designs as outlined in these steps, or you are
unfamiliar with the debug tool flows, practice building these designs using BSB and a supported Spartan-3
evaluation board such as the Spartan-3A Starter Kit or the Spartan-3A DSP 1800 Starter Kit.

Board Considerations

The following sections describe the board considerations for Xilinx or third-party boards.

• Important Notes on MIG Board Compatibility

• Tips and Hints for Board Bring Up

Important Notes on MIG Board Compatibility

Many existing evaluation boards were developed before the MIG tool was finalized, so it is often the
case that Xilinx or third-party evaluation boards do not have exactly the same pinout that would be
generated by supported MIG versions. However, these boards usually come with a predefined MPMC
UCF file that is suitable for that board to function correctly.

Some Xilinx boards, including the Spartan-3E Starter Kit (XC3S500E), Spartan-3E 1600E MicroBlaze
Development Kit, and the Spartan-3A/-3AN Starter Kit boards, have a pinout that significantly
deviates from normal MIG pin-out assignment rules.

For these boards, a parameter to MPMC called C_SPECIAL_BOARD is used to modify the internal PHY
logic to compensate for the memory pinout on these boards. A predefined MPMC UCF file is needed
for these boards. Systems created using the BSB have the necessary C_SPECIAL_BOARD and UCF
settings. Having more severe MIG pinout violations means the Xilinx Spartan-3E Starter Kit
(XC3S500E) and Spartan-3E 1600 MicroBlaze Development Kit should not have their memory clocks
run above 100 MHz. Other boards, including the Virtex-5 FXT FPGA ML507 Evaluation Platform,
might also have a sub-optimal pinout that limits the maximum operating frequency of the memory
interface.

Do not copy the pinout of evaluation boards that do not match a supported MIG-generated pinout.
User boards must be designed exactly to the pinout provided by the prescribed version of MIG. Non-
MIG pinouts might not be supported and might not be robust. User boards must also follow all layout
recommendations specified in the MIG User Guide, including special trace delays for the DQS_DIV_O to
DQS_DIV_I loopback signal (Spartan-3 PHY).
01.a) July 23, 2010 www.xilinx.com 109
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

110
It is highly recommended that if you are developing a new custom board, run the MIG design with
hardware testbench logic or an MPMC test design through the full ISE tool flow to verify that proposed
pinouts will implement properly through the ISE tools.

Tips and Hints for Board Bring Up

The following are tips and hints that can be useful during board bring up:

• During initial bring-up of MPMC on a new board, Xilinx recommends that you start with a single-
port MPMC with PLB PIM. This design should be modeled off a simple BSB-based MicroBlaze
processor design with caches disabled.

• During initial bring-up, start running the memory controller at the minimum clock speed that the
memory device supports to establish as a working baseline. Then increase the memory clock
speed up to the desired frequency.

• Use the MicroBlaze with a Single-Port MPMC design and connect with the XMD. Then perform
simple reads and writes to establish whether basic memory transactions work.

• Incrementally add complexity to the design by building it up to be closer to your desired MPMC
system configurations. For example, after getting the single-port design to work, enable
MicroBlaze caches and connect the MicroBlaze IXCL/DXCL ports to a three Port XXP MPMC
design (2 XCL + 1 PLB). Establish that memory transactions continue to work with caches off and
try the test with caches on to test burst read transactions from memory.

• Run the MPMC extended memory test application located at
<EDK_Directory>/sw/XilinxProcessorIPLib/drivers/mpmc_<latestversion>
/examples/mpmc_mem_test_example.c.

• Make use of the MPMC Debug register functionality described on "MIG PHY Debug Register
Summary," page 42 These debug registers allow you to read or set the MIG PHY calibration
settings manually via a processor accessible interface.

• Use default MPMC settings wherever possible. Customize or optimize the design parameters after
you have a working baseline system.

• Check the PAR report to ensure all memory IOs are “LOCed”. Ensure that map is run with the -pr
b option to ensure IOB flip-flop packing.

• Try running a standalone MIG controller design. The MIG tool can produce an example
standalone loopback design that may be useful for debugging physical level MIG PHY problems.

• Check that the maximum clock frequency limitations of the underlying MIG PHY are not
exceeded. See "MIG PHY Supported FMAX," page 202 for more information.

• Also, be careful not to use a clock frequency below the minimum operating frequency of the
memory device. For example some DDR2 devices have a minimum clock frequency specification
of 125 MHz.

• For Dual Rank or Dual DIMM designs, note the warnings that such designs are strongly
discouraged. If a Dual Rank or Dual DIMM design is still used, try to establish a working baseline
system accessing only one of the ranks of memory.

MIG Virtex-4 Design Considerations

For Virtex-4 systems using the MIG PHY, instantiation of IDELAY controllers (IDELAYCTRL) is required
to ensure that the IDELAY elements in the MPMC physical interface behave properly.

The MPMC core parameter, C_NUM_IDELAYCTRL, determines the number of IDELAYCTRL elements to
instantiate. By default, the MPMC instantiates one IDELAYCTRL without a location constraint (LOC),
which causes the ISE implementation tools to replicate the IDELAYCTRL blocks across the entire FPGA.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
For Virtex-5 and Virtex-6, the parameter, C_IODELAY_GRP identifies the IDELAYCTRL groupings for the
MAP tool to correctly place these elements so the parameters C_NUM_IDELAYCTRL and
C_IDELAYCTRL_LOC do not have to be set.

The C_IODELAY_GRP default value is sufficient in most cases, except when two IP blocks have I/O that
share a common clock region and IDELAYCTRL element. In that case, use the solution described below.

For the Integrated MIG GUI flow, these parameters are passed into the MPMC design from the MIG
GUI automatically, but can be set manually to override these automatic values. Refer to "Multiple
MPMC IDELAYCTRL IP Designs," page 111 for an explanation of a special case when this mechanism
alone will not work.

Single MPMC IDELAYCTRL Designs

For Virtex-5 designs and Virtex-4 designs with the MAP-timing option enabled, MAP will trim
unnecessary IDELAYCTRLs. The default setting is sufficient for systems where there is one MPMC
instance only, and no other IP in the system requires the use of IDELAY elements.

Multiple MPMC IDELAYCTRL IP Designs

For systems where there are multiple IP cores each using their own IDELAYCTRL element
independently, such as two instances of MPMC or MPMC and PCI in the same system, special
consideration must be given to the number of IDELAYCTRLs.

• Instantiate the correct number of IDELAYCTRL blocks for each IP as determined by the clock
regions where the associated IDELAY elements are used. For these systems, it is necessary to set
the correct value for C_NUM_IDELAYCTRL.

• Ensure the IDELAYCTRL element is associated with the correct clock region positions in the FPGA
and is located using the C_IDELAYCTRL_LOC parameter.

For example, a design requiring two IDELAYCTRLs might have a core configuration of:

PARAMETER C_NUM_IDELAYCTRL = 2
PARAMETER C_IDELAYCTRL_LOC = IDELAYCTRL_X0Y4-IDELAYCTRL_X1Y3

Consult the ISE documentation for more information about IDELAYCTRL. The link to ISE
documentation is available in "Reference Documents," page 229.

MPMC contains the following I/O signals (see Table 5, page 17) that can be used to chain the IDELAY
elements between IP blocks:

• MPMC_Idelayctrl_Rdy_I is AND’d with internal IDELAYCTRL RDY signals inside MPMC and
signifies that memory initialization can begin.

• MPMC_Idelayctrl_Rdy_O port signals that the internal IDELAYCTRL RDY signals and the
MPMC_Idelayctrl_Rdy_I are all high.

This is useful in situations where two IP blocks have I/O that share a common clock region and
IDELAYCTRL element.

You can connect the MPMC_Idelayctrl_Rdy_O to the MPMC_Idelayctrl_Rdy_I of downstream
MPMC IP or other IP blocks. In this situation, explicitly set the C_NUM_IDELAYCTRL and
C_IDELAYCTRL_LOC parameters and follow these instructions even if you are using the integrated MIG
GUI flow. If these parameters are explicitly set, they will override the values passed in from the
integrated MIG GUI.

The MPMC_Idelayctrl_RDY_0 outputs of upstream IP blocks with IDELAYCTRL can be tied to the
MPMC_Idelayctrl_Rdy_I input.
01.a) July 23, 2010 www.xilinx.com 111
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

112
• Ensure that the MPMC_Idelayctrl_Rdy_I and MPMC_Idelayctrl_Rdy_O ports are not
connected in a circular manner over one or more IP blocks.

• MPMC_Idelayctrl_Rdy_I and MPMC_Idelayctrl_Rdy_O can be left unconnected when not
needed. The EDK XPS tool ties MPMC_Idelayctrl_Rdy_I to high automatically when it is
unconnected.

Additional MIG Information

Answer Records, Application Notes, and the MIG User Guide provide important information about the
Spartan-3, Virtex-4, Virtex-5, and Virtex-6 MIG PHY, the MIG UCF constraints, and board layout
guidelines. These resources will help to debug and bring up MPMC designs using the MIG PHY:

• The Xilinx memory page contains the MIG User Guide and other relevant content.

• Answer Records contain useful design, debug, and implementation content.

• Application notes describe the operational theory and implementation of the underlying MIG
PHYs.

The "Reference Documents," page 229 contains links to these resources.

Static PHY Interface

Static PHY contains the following topics:

• Static PHY Features

• Static PHY Implementation

• Static PHY Implementation Considerations

• Static PHY Interface Register

• Example Static PHY Calibration Algorithm

Static PHY Features

The Static PHY interface available in Spartan-3, Virtex-4, and Virtex-5 designs and MPMC is based on
DCM phase adjustment. This PHY is used for SDRAM. For DDR/DDR2, it can also be used in cases
when a MIG-based PHY is not available or cannot be used.

The MPMC Static PHY interface is an alternative to the Memory Interface Generator (MIG)-based PHY
interface.

The Static PHY uses DCM-based fine phase adjustments to generate a read data capture clock instead
of using IDELAYs or LUT-based delays to shift the input read data.

Note: Xilinx recommends that you design for, and use, a MIG-based PHY whenever possible for best results.
MIG-based PHY interfaces offer greater timing margin, are more robust, and use fewer global clock buffer
resources; the Static PHY is available when MIG-based PHY is not an option.
As an example, the Static PHY might be used when a legacy board that was designed for a different memory
controller and does not use a MIG-compatible pinout. All new designs should target the use of the MIG-based PHY.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Static PHY Implementation

The following figure shows the Static PHY interface read logic. Note that the RDDATA_SWAP_RISE stage
is not present for SDRAM designs.

The Static PHY processes the read data as follows:

1. First, the Static PHY registers the read data on a clock (MPMC_Clk_Mem), which is typically
provided by an additional Digital Clock Manager (DCM). This clock is, typically, a phase-shifted
version of MPMC_Clk0. The phase is set to maximize timing margin on the captured read data.
The read data goes through input flip-flops and is converted to Single Data Rate (SDR) data that is
aligned on the rising edge of MPMC_Clk_Mem.

2. The data is then re-registered into the main MPMC clock domain (MPMC_Clk0).

Depending on the phase relationship between MPMC_Clk_Mem and MPMC_Clk0, you might need to
first re-register the data on the negedge of MPMC_Clk0 before being registered on the positive edge.
The selection using positive or negative edges of MPMC_Clk0 depends on the relative phase of
MPMC_Clk_Mem:

- If MPMC_Clk_Mem is 0 to +180 degrees ahead of MPMC_Clk0, register the data on the positive edge
of MPMC_0_Clk0.

- If MPMC_Clk_Mem is 0 to -180 degrees behind MPMC_Clk0, register the data on the negative edge
of MPMC_Clk0.

The C_STATIC_PHY_RDDATA_CLK_SEL parameter sets the default value for this selection. You can
change this value using the software interface at a later time, if necessary.

3. Next, data from the Static PHY passes through a selector to determine how the DDR data from
memory is aligned with respect to positive and negative edges of MPMC_Clk_Mem.

Depending on board layout and clock frequency, it is possible that the data that is registered on the
posedge of MPMC_Clk_Mem should be registered on the negedge of MPMC_Clk_Mem.

Figure Top x-ref 6

Figure 11: Static PHY Interface Read Logic

MPMC_Clk_Mem MPMC_Clk0

RDDATA_CLK_SEL

MPMC_Clk0

RDDATA_SWAP_RISE

data to
read FIFOs

read enable from control path

read enable to data path

DS643_05_071307

DDR to SDR
data conversion

Select positive or
negative clock edge

for re-alignment

Compensate if DDR
data shifted by 1/2

clock cycle

MPMC_Clk0

RDEN_DELAY

SRL
Delay

Element
01.a) July 23, 2010 www.xilinx.com 113
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

114
This clock phase relationship makes the SDR data appear misaligned with respect to the pairs of
DDR data from memory. In this case, half of the data appears on the first posedge of MPMC_0_Clk0,
and half of the data appears on the second posedge of MPMC_Clk0. This stage is not present for
SDRAM designs.

A multiplexor (MUX) lets you correct for the misalignment by selecting how the DDR data should
be arranged into SDR data. The default value of the MUX is controlled by the
C_STATIC_PHY_RDDATA_SWAP_RISE parameter. You can change this value using the software
interface at a later time, if required.

4. The last part of the Static PHY consists of a shift register that can adjust the delay of the read enable
signal to the data path (which causes read data to be pushed into the read FIFO).

Depending on the parameter settings, clock frequency, and board layout, the read data to the data
path might appear on a different clock cycle relative to the read enable signal from the control path.

The control path sends a read enable to the PHY at the same time that it sends the read command
to the PHY. The PHY then must delay this signal for a certain number of cycles to make the read
FIFO push signal valid at the same time as the data coming out of the Static PHY.

The C_STATIC_PHY_RDEN_DELAY parameter sets the default value for this delay. You can change
this value using the software interface at a later time, if required.

If this parameter is set incorrectly, and a read is performed, it is possible that the read data will be
pushed into a different FIFO than where the data was intended. This typically will occur only if the
read was not issued on port 0. If the data is pushed into the wrong FIFO, the result can be identified
by a processor hang that can be recovered from by resetting the system only. The correct setting for
this parameter depends on MPMC pipeline configurations, clock frequency, and board layout, but
typically this parameter is set to 5, 6, or 7 for DDR and DDR2; and 4, 5, or 6 for SDRAM.

Additionally, if you are generating the MPMC_Clk_Mem with a DCM that is enabled to use variable
phase shift, the Static PHY Control register interface provides an easy way to control the PSEN and
PSINCDEC ports of the DCM.
MPMC provides a control port that can be connected to a DCM control port. This allows you to
control the DCM phase adjust via the MPMC control registers. See the "Static PHY Interface
Register," page 116 for more details.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Static PHY Implementation Considerations

The important implementation considerations when using the Static PHY are:

• Control Register Values

• Timing Constraints

• DCM Phase Adjust Port

• Matching Delay Traces

The following subsections detail the implementation considerations.

Control Register Values

If you already know the control register values needed for the Static PHY to work with your board and
this value is stable, you can choose to fix these values so that the PHY operates correctly upon power-
on. You can do this by setting the DCM phase adjust and parameters values for
C_STATIC_PHY_RDDATA_CLK_SEL, C_STATIC_PHY_RDDATA_SWAP_RISE, and
C_STATIC_PHY_RDEN_DELAY as necessary.

Timing Constraints

When using the Static PHY, timing constraints are needed; you must set the UCF constraints to ensure
that the maximum delay for data signals passing from MPMC_Clk_Mem to MPMC_Clk0 clock domains is
1/2 the period of MPMC_Clk0. The following is an example of such a timing constraint where no
dynamic DCM phase adjustment is used:

NET <MPMC_instance_name>/*rd_data_rise_in* MAXDELAY = <half_clock_period>;
#DDR/DDR2
NET <MPMC_instance_name>/*rd_data_fall_in* MAXDELAY = <half_clock_period>;
#DDR/DDR2
NET <MPMC_instance_name>/*rd_data_rise_rdclk* MAXDELAY =
<half_clock_period>; # SDRAM

If you plan to adjust the DCM phase settings dynamically to locate an optimal DCM clock phase shift,
it is recommended to tighten the timing constraint so there is more margin to account for the potential
MPMC_Clk_Mem phase shift range:

NET <MPMC_instance_name>/*rd_data_rise_in* MAXDELAY = 1000 ps; #DDR/DDR2
NET <MPMC_instance_name>/*rd_data_fall_in* MAXDELAY = 1000 ps; #DDR/DDR2
NET <MPMC_instance_name>/*rd_data_rise_rdclk* MAXDELAY = 1000 ps; # SDRAM

Note: Ensure that the map is run with the option -pr b set to ensure that the tools pack internal flip-flops into the
IOBs. You might also need to relax the maxdelay value from the examples above to meet timing depending on the
speed of the FPGA.

DCM Phase Adjust Port

The MPMC DCM phase adjust control port lets you increment and decrement the phase adjustment
value of the DCM. The phase adjustment that the MPMC performs is relative to the initial phase value
set in the DCM. You must instantiate the DCM itself outside of the MPMC.

You must configure the DCM in the proper operating mode with the necessary parameters set for your
system.

The MPMC provides the control signals to generate commands to change the phase of the DCM only.
It does not check that the DCM is configured properly, and does not check if the DCM phase
adjustment range is exceeded.
01.a) July 23, 2010 www.xilinx.com 115
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

116
The following is an Microprocessor Hardware Specification (MHS) file example of how a DCM can be
connected to MPMC to allow the MPMC Static PHY control registers to control DCM phase.

BEGIN mpmc
 .
 .
 .
 PORT MPMC_DCM_PSINCDEC = Static_Phy_DCM_PSINCDEC
 PORT MPMC_DCM_PSEN = Static_Phy_DCM_PSEN
 PORT MPMC_DCM_PSDONE = Static_Phy_DCM_PSDONE
END

BEGIN dcm_module
 PARAMETER INSTANCE = dcm_2
 PARAMETER HW_VER = 1.00.d
 PARAMETER C_CLK0_BUF = TRUE
 PARAMETER C_CLKIN_PERIOD = 10.000000
 PARAMETER C_CLK_FEEDBACK = 1X
 PARAMETER C_DLL_FREQUENCY_MODE = LOW
 PARAMETER C_PHASE_SHIFT = 0
 PARAMETER C_CLKOUT_PHASE_SHIFT = VARIABLE
PARAMETER C_EXT_RESET_HIGH = 0
PORT CLKIN = MPMC_Clk0
PORT CLK0 = MPMC_Clk_Mem
PORT CLKFB = MPMC_Clk_Mem
PORT RST = DCM_1_lock

 PORT LOCKED = DCM_all_locked
 PORT PSCLK = MPMC_Clk0
 PORT PSINCDEC = Static_Phy_DCM_PSINCDEC
 PORT PSEN = Static_Phy_DCM_PSEN
 PORT PSDONE = Static_Phy_DCM_PSDONE
END

Matching Delay Traces

Because the Static PHY uses a DCM to capture the Read data, ensure that boards designed to use the
Static PHY have matched delay traces across all data lanes. This reduces the skew across the data bits
and improves timing margin. Place data pins in the same bank or in adjacent banks to further reduce
skew across data bits (clock tree skew in the FPGA is smaller if pins are placed together).

Static PHY Interface Register

You can configure the Static PHY interface statically by using the following parameters to set the
startup values for the signals that control the Static PHY:

• C_STATIC_PHY_RDDATA_CLK_SEL

• C_STATIC_PHY_RDDATA_SWAP_RISE

• C_STATIC_PHY_RDEN_DELAY
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
You can then change these values dynamically by using the PLB Control register. Additionally, you can change the
phase delay of a DCM that generates MPMC_Clk_Mem using the PLB Control register. The following table describes
the Static PHY Interface register (SPI).

Table 60: Static PHY Interface Register (SPI)

Bit(s) Name
Core

Access
Reset Value Description

0:3 RDEN_DELAY R/W
C_STATIC_PHY_RDEN_
DELAY

Sets the number of cycles to delay the read enable push)
to the read FIFOs. See "Static PHY Implementation,"
page 113 for more information. This value is typically 5,
6, or 7 for DDR/DDR2 and 4, 5, or 6 for SDRAM.

4 RDDATA_CLK_SEL R/W
C_STATIC_PHY_RDDATA_
CLK_SEL

Sets the read data to be re-registered on the positive or
negative edge of MPMC_Clk0:
1 = Positive Edge
0 = Negative Edge

5 RDDATA_SWAP_RISE R/W
C_STATIC_PHY_RDDATA_
SWAP_RISE

Sets the DDR read data to be shifted by 1/2 clock cycle
relative to the SDR clock: 0 = no shift 1 = ½ clock cycle
shift. This register is present for DDR/DDR2 designs
only.

6 UNUSED N/A N/A

7 FIRST_RST_DONE R 0
Set to 0 during first reset to static PHY; set to 1
afterwards. This prevents the control register from being
reset to default values after initial reset.

8 DCM_PSEN R/W 0

Set to 1 to perform one DCM phase shift increment or
decrement. Self Clearing.
Direction of phase shift is determined by
DCM_PSINCDEC.

9 DCM_PSINCDEC R/W 0

1 = perform DCM phase shift increments.
0 = perform DCM phase shift decrements.
Only valid with DCM_PSEN
1 = enable phase shift by +1 tap
0 = enable phase shift by -1 tap

10 DCM_DONE R/W 0

Set to 1 when DCM phase shift increment or decrement
is complete. This bit must be cleared by MPMC.
DCM_PSEN is not set to 1 again until DCM_DONE is set
and cleared.

11 INIT_DONE R 0
Set to 1 when initialization is complete; otherwise set to
0.

12:15 UNUSED N/A N/A N/A

16:31 DCM TAP VALUE R 0

A 10-bit number (sine-extended to form a 16-bit value)
which represents the status of the software-derived DCM
tap value.
The tap value is relative to the initial phase tap value set
in the DCM. The value of this register assumes that the
DCM PHASE_SHIFT parameter was initially set to 0;
otherwise it reports the relative phase offset only.
This value can be incorrect if the DCM phase is shifted
beyond the DCM allowable adjustment range.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 117
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

118
Example Static PHY Calibration Algorithm

The following steps provide a flow chart on how to use the Static PHY Interface PLB control register to
calibrate the PHY interface automatically. The software must be run before any other writes or reads are
sent to MPMC. Additionally, the software instructions must be stored in block RAM until the MPMC
memory is calibrated.

1. Wait for INIT_DONE bit to be set.

2. Ensure DCM_TAP_VALUE equals the initial DCM phase shift setting. If it is not equal, stop here,
report error, and rebuild hardware with DCM phase shift set to 0.

3. Set RDDATA_CLK_SEL to 0.

4. Set RDDATA_SWAP_RISE to 0 (DDR and DDR2 only.)

5. Set RDEN_DELAY to the minimum value, typically 0. (This can cause a processor hang if you are not
using port 0 for calibration reads. If this is the case, you might need to increment the minimum start
value and maximum end value for this parameter. See "Static PHY Implementation," page 113 for
more details.)

6. Set DCM phase shift to the minimum value using DCM_PSEN, DCM_PSINCDEC, and DCM_DONE.

7. Write and verify pattern in memory without data cache. If there is a mismatch, clear the valid
count, and skip to step 11.

Note: Using a large pattern that introduces a lot of data bus toggling might improve calibration results, but will
also increase calibration time. Also note that the data written to memory for the calibration pattern should
ensure a high amount of data bit toggling for the memory width being used.
For example, writing 0x00000000 followed by 0xFFFFFFFF will successively toggle all bits for a 32-bit
memory but will not cause as many data bit transitions on an 8- or 16-bit memory.

8. Enable data cache.

9. Read pattern back and verify. Flush and invalidate the data cache.

10. Increment the DCM phase shift, keeping track of how many patterns were read back correctly.

11. Repeat 8 through 11 until maximum phase shift value is reached.

12. If the number of correctly read patterns in a row is greater than an acceptable threshold, set DCM
phase to midpoint of largest found acceptable range.

13. Increment RDEN_DELAY by 1. 17. Repeat steps 3 through 13 until maximum RDEN_DELAY.

14. Set RDDATA_SWAP_RISE to 1. Repeat steps 5 through 14 (DDR and DDR2 only.).

15. Set RDDATA_CLK_SEL to 1. Repeat steps 4 through 15.

16. If this step is reached, calibration was not possible. Stop and report error. Your settings are saved
until you power down your board, even with an MPMC system reset. Ensure that a system reset
will not force your DCM phase shift setting to revert back to the initial value. If this is the case, you
need to modify your reset structure, rebuild your hardware, and re-run the calibration.

Note: You might want to build a simple single port MPMC system with a Static PHY, use a software program to
characterize the ideal set of static PHY settings for that board, then initialize those settings into the design or
reduce the search range of your calibration program.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
SDRAM PHY Interface

The SDRAM PHY is the interface between the Single Data Rate Access Memory (SDRAM) and the
MPMC control path, address path, and data path. The interface supports Virtex-4, Virtex-5 and
Spartan-(3/3A/3E/3AN/3ADSP) platforms. The SDRAM PHY uses the DCM phase adjustment based
read data capture scheme used for the Static PHY. Refer to the "Static PHY Interface," page 112 for
required details of the SDRAM PHY, including timing constraints, board design, and software
calibration considerations.

The following subsections describe the SDRAM PHY interface:

• SDRAM PHY Features

• Low Frequency SDRAM Clock and DCM Phase Adjustment Limits

• Connecting Memory to the PHY Interface

• Connecting Memory to a DDR2 MPMC Design Example

SDRAM PHY Features

The SDRAM PHY includes the following supported features:

• Column Access Strobe (CAS) latencies of 2, 2.5, and 3

• SDRAM data widths of 8, 16, 32, and 64

• DIMMs (both registered and unregistered)

• Multiple Memory Ranks

• ECC support

The PHY interface works from MPMC_Clk0, which issues the control, data, and address signals to
memory. To clock SDRAM memory, the PHY uses an inverted version of MPMC_Clk0. This gives a 1/2
clock period setup and hold time for memory control and address signals.

To drive the data bus with valid Read data, the memory requirement is CAS_LATENCY – 1 + Tac time
(Access Time) after registering the read command. The following figure illustrates the SDRAM Read
data timing.

• The Tac is typically between 5 and 6ns.

Figure Top x-ref 7

Figure 12: SDRAM Read Data Timing

DS643_06_071307

T0

READ NOP

CL = 2

NOP

T1 T2 T3

CLK

COMMAND

DQ DOUT

tOHtLZ

tAC
01.a) July 23, 2010 www.xilinx.com 119
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

120
• The data capturing logic works on the positive edge of MPMC_Clk_Mem, which can be phase-
adjusted using the Static PHY interface or connected to a fixed clock source with the correct
relative phase.

• This capture clock can be adjusted to maximize the size of the timing window for capturing data.

• The captured data is then re-synchronized to positive or negative edge of MPMC_Clk0 (set by
C_STATIC_PHY_RDDATA_CLK_SEL) before finally being pushed into the Read data path FIFOs on
MPMC_Clk0.

• The data capture clock cycle latency relative to the control signals can be set using parameter
C_STATIC_PHY_RDEN_DELAY and is affected by CAS latency, the use of registers on the board, and
physical delays relative to the clock period.

• The SDRAM PHY performs the power up initialization sequence and configuration of SDRAM
memory with user-specified values from the MHS file.

• When MPMC is configured for SDRAM, the Static PHY is instantiated automatically. It is not
necessary to set C_USE_STATIC_PHY = 1 also.

Low Frequency SDRAM Clock and DCM Phase Adjustment Limits

In lower frequency SDRAM designs, generally under 100 MHz, the fine phase adjustment range of the
DCM might limit the available search range of the capture clock. This can limit the amount of margin
in the Read data capture window depending on board delays and part delays.

If the Read data capture window is too small because the DCM fine adjustment range is limited,
consider using DCM outputs of CLK90, CLK180, or CLK270 to best center the DCM phase search
window around the Read data. This might require board delay or oscilloscope-based analysis.

For very low frequency SDRAM designs such as below 50 MHz, a fixed DCM output of CLK0, CLk90,
CLK180, or CLK270 usually can be connected directly to MPMC_Clk_Mem because this results in a
sufficient Read data capture window. In this case you might need to use experimentation or
oscilloscope-based analysis to find the best fixed clock phase (0, 90, 180, or 270). A modified static PHY
calibration program or experimentation can then be used to find the optimal settings for
C_STATIC_PHY_RDDATA_CLK_SEL and C_STATIC_PHY_RDEN_DELAY for the given MPMC_Clk_Mem
clock. The CLK90 setting is a recommended starting point for very low frequency designs.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Spartan-6 Hard Memory Controller Architecture
MPMC for Spartan-6 uses the hard Memory Controller Block (MCB) to implement core memory
controller functionality. The MCB is a dedicated embedded block that implements a multi-port
memory controller that greatly simplifies the task of interfacing Spartan-6 devices to the most popular
memory standards. MPMC simplifies the task of connecting the MCB to a variety of different protocol
standards using Personality Interface Modules (PIMs).

Descriptions of the PIMs, which are located in "Personality Interface Modules," page 130, detail how
the following PIMs allow MPMC to connect various interfaces to the MCB:

• Xilinx CacheLink PIM

• Soft Direct Memory Access Controller PIM for LocalLink Interfaces

• Processor Local Bus Version 4.6 PIM

• PowerPC 440 Memory Controller PIM

• Video Frame Buffer Controller PIM

• Native Port Interface PIM

• MCB PIM for direct connection to the MCB user interface with no protocol translation.

Before using MPMC, become familiar with the Spartan-6 Data Sheet and UG388, Spartan-6 FPGA
Memory Controller User Guide. These documents describe the detailed capabilities of the device and
explain the board design requirements. They can be found by following the links in"Reference
Documents," page 229.
01.a) July 23, 2010 www.xilinx.com 121
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
The following diagram describes the MPMC architecture for Spartan-6.

The MPMC is built around the Spartan-6 MCB so that MPMC encapsulates the MCB, making it easier to
incorporate into an EDK-based system and providing connectivity and protocol translation using the PIMs.

The MCB supports five basic port configurations that determine the maximum number of ports available, the
width of each port, and if the port has read-only, write-only, or bidirectional data flow.

Figure 13: Spartan-6 MPMC Architecture

PIM0

PIM1

PIM2

PIM3

PIM4

PIM5

Spartan-6
MCB

MPMC

Memory
(DDR, LPDDR,
DDR2, DDR3)

(Configurable)

(Configurable)

(Configurable)

(Configurable)

(Configurable)

(Configurable)

MCB

MCB

MCB

MCB

MCB

MCB

X11196
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 122
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
The following table describes the possible MCB port configuration and Table 61 describes what PIM types are
available for a given port configuration.

Arbitration Algorithms

The MCB inside MPMC can be programmed to support various arbitration algorithms. See the "Multi-Port
Arbitration Algorithms," page 61 for more information.

Table 61: MCB Port Configuration Description

C_PORT_CONFIG
parameter value

(Mnemonic)

of
Ports Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

0 (B32 B32 U32 U32 U32
U32)

6

32 bit
bidirectional
data,
read and
write

32 bit
bidirectional
data,
read and write

32 bit
unidirectional
data,
read-only or
write-only

32 bit
unidirectional
data,
read-only or
write-only

32 bit
unidirectional
data,
read-only or
write-only

32 bit
unidirectional
data,
read-only or write-
only

1 (B32 B32 B32 B32) 4

32 bit
bidirectional
data, read
and write

32 bit
bidirectional
data, read and
write

32 bit
bidirectional
data, read
and write

32 bit
bidirectional
data, read
and write

N/A N/A

2 (B64 B32 B32) 3

64 bit
bidirectional
data, read
and write

32 bit
bidirectional
data, read and
write

32 bit
bidirectional
data, read
and writ

N/A N/A N/A

3 (B64 B64) 2

64 bit
bidirectional
data, read
and write

64 bit
bidirectional
data, read and
write

N/A N/A N/A N/A

4 (B128)1 1

128 bit
bidirectional
data, read
and write

N/A N/A N/A N/A N/A

Table 62: PIM Types Per Port Configuration

C_PORT_CONFIG
Value Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

0
XCL, PLB(1),

SDMA, VFBC, NPI,
MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB
MCB MCB MCB MCB

1
XCL, PLB(1),

SDMA, VFBC, NPI,
MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB

2
PLB, VFBC, NPI,

MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB

XCL, PLB(1),
SDMA, VFBC,

NPI, MCB

3
PLB, VFBC, NPI,

MCB
PLB, VFBC, NPI,

MCB

4 MCB

1. PLB PIMs associated with 32 bit MCB ports can only be used with 32 bit PLB systems. These PIMs cannot communicate to PLB systems with 64 or
128 bit masters present.
123 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

124
Data Path and Physical Memory Interface

The MCB implements control path FIFOs, read data FIFOs, and write data FIFOs to buffer transactions
at the ports while the memory controller core arbitrates transactions and executes them over fast paths
to memory.

The MCB supports DDR, LPDDR, DDR2, and DDR3 physical memories of 4, 8, or 16 bits. These
memories are generally limited to a single component and a fixed set of support memory device
manufacturers and parts.

Consult the Spartan-6 FPGA Packaging and Pinout Specification and the Spartan-6 Memory Controller User
Guide for important information about the supported memory devices, board design, limitations,
operating ranges, and other design considerations. Those documents might list additional limitations
not described here.

Memory Interface Generator (MIG)

For designs with custom or standalone use of the MCB, Xilinx provides a Memory Interface Generator
(MIG) tool, available in the CORE Generator tool that helps a user to configure the MCB and use it in a
custom design.

When using MPMC with a Spartan-6 FPGA device, it is not necessary to use the MIG tool separately to
configure the MCB. The configuration of the MCB is handled completely within the XPS tool
framework and the MPMC core. Using MPMC parameters and the MPMC IP Configuration GUI, the
necessary information for configuring the MCB is generated. See "MCB PIM," page 200 for more
information.

However, it can be useful to become familiar with the MIG tool as a guide for exploring the features,
board design considerations, and capabilities of the MCB. It is not necessary to set the IOSTANDARD or
pin LOC constraints in the system UCF for the FPGA pins connected to the memory device. This
information is obtained automatically from the value of C_MCB_LOC and the underlying MIG tool when
Platgen is run to set the values in a core level UCF file located at: <EDK Project
Directory>/implementation/<core_instance_name>_wrapper.ncf.

Any of these core level constraints can be overridden by the system level system.ucf file, but this is
Not recommended. When RZQ and ZIO pins are used (C_MEM_CALIBRATION_SOFT_IP = TRUE), the
selected pinout for the RZQ and ZIO pins must be specified with the C_MCB_RZQ_LOC and the
C_MCB_ZIO_LOC parameters, respectively. There are more than one usable I/O location for the RZQ and
ZIO pins. The list of available pins can be selected in the MPMC IP Configurator and vary based on the
chosen bank for the memory controller. Choose the pin that matches the board layout of the FPGA. If a
pin layout has not yet been chosen, the recommended value is identified in the GUI. Verify all MCB
pinouts with the Spartan-6 FPGA Packaging and Pinout Specification and the Spartan-6 Memory Controller
User Guide before beginning a board design. A link to these documents is provided in "Reference
Documents," page 229.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Spartan-6 Clock Logic

MCB Memory Clocking

The MCB require some special clock circuits to properly drive the memory clock. The main clocks used
by the MCB arrive on the MPMC_Clk_Mem_2x and MPMC_Clk_Mem_2x_180 (180 degrees phased shifted
clock) ports. Normally, these clocks must be driven from the same PLL block at a frequency that is 2
times the memory clock; for example, MPMC_Clk_Mem_2x running at 800 MHz for a 400 MHz memory
clock.

Note: The MPMC_Clk_Mem_2x and MPMC_Clk_Mem_2x_180 signals must be driven from the PLL primitives
using the CLKOUT0 and CLKOUT1 ports of the PLL as described in UG388, Spartan-6 FPGA Memory Controller
User Guide.

The lock signal from the corresponding PLL must also be connected to the MPMC MPMC_PLL_Lock
port.

Also, the MPMC_MCB_DRP_Clk clock input is required. The MPMC_MCB_DRP_Clk must be driven from
the same PLL block as the MPMC_Clk_Mem_2x to ensure it is phase-aligned with MPMC_Clk_Mem_2x.
The MPMC_MCB_DRP_Clk must be between 50 and 100 MHz and be an integer-divided frequency of
MPMC_Clk_Mem_2x.

Note: If the port MPMC_MCB_DRP_Clk is not connected in the MHS file, the clock is taken from MPMC_Clk0, in
which case MPMC_Clk0 must follow the same requirements of MPMC_MCB_DRP_Clk as described above.

The following is an Microprocessor Hardware Specification (MHS) file example of how a PLL can be
connected to MPMC.

BEGIN mpmc
.
.
.
PORT MPMC_PLL_Lock = pll_module_0_LOCKED
PORT MPMC_Clk_Mem_2x = pll_module_0_CLKOUT0
PORT MPMC_Clk_Mem_2x_180 = pll_module_0_CLKOUT1
PORT MPMC_MCB_DRP_Clk = pll_module_0_CLKOUT2
END

BEGIN pll_module
PARAMETER INSTANCE = pll_module_0
PARAMETER HW_VER = 2.00.a
PARAMETER C_CLKOUT0_DIVIDE = 1
PARAMETER C_CLKOUT1_DIVIDE = 1
PARAMETER C_CLKOUT2_DIVIDE = 8
PARAMETER C_CLKOUT1_PHASE = 180.000000
PARAMETER C_CLKFBOUT_MULT = 8
PARAMETER C_CLKFBOUT_BUF = true
PARAMETER C_CLKOUT0_BUF = false
PARAMETER C_CLKOUT1_BUF = false
PARAMETER C_CLKOUT2_BUF = true
PARAMETER C_COMPENSATION = INTERNAL
PORT CLKOUT0 = pll_module_0_CLKOUT0
PORT CLKOUT1 = pll_module_0_CLKOUT1
PORT CLKOUT2 = pll_module_0_CLKOUT2
PORT LOCKED = pll_module_0_LOCKED
PORT CLKIN1 = dcm_clk_s
PORT RST = sys_rst
PORT CLKFBOUT = pll_module_0_CLKFBOUT
PORT CLKFBIN = pll_module_0_CLKFBOUT

END
01.a) July 23, 2010 www.xilinx.com 125
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

126
Alternatively, a Clock Generator IP core can be used to drive the MCB clocks. Instead of using
pll_module, it can be replaced by the clock_generator core as shown in the following code example:

BEGIN clock_generator
 PARAMETER INSTANCE = clock_generator_0
 PARAMETER HW_VER = 4.00.a
 PARAMETER C_CLKIN_FREQ = 200000000
 PARAMETER C_CLKOUT0_FREQ = 800000000
 PARAMETER C_CLKOUT0_PHASE = 180
 PARAMETER C_CLKOUT0_GROUP = PLL0
 PARAMETER C_CLKOUT0_BUF = FALSE
 PARAMETER C_CLKOUT1_FREQ = 800000000
 PARAMETER C_CLKOUT1_PHASE = 0
 PARAMETER C_CLKOUT1_GROUP = PLL0
PARAMETER C_CLKOUT1_BUF = FALSE
PARAMETER C_CLKOUT2_FREQ = 100000000
PARAMETER C_CLKOUT2_PHASE = 0
PARAMETER C_CLKOUT2_GROUP = PLL0
PARAMETER C_CLKOUT2_BUF = TRUE
 PORT CLKIN = dcm_clk_s
 PORT CLKOUT0 = pll_module_0_CLKOUT0
 PORT CLKOUT1 = pll_module_0_CLKOUT1
PORT CLKOUT2 = pll_module_0_CLKOUT2
 PORT RST = sys_rst
 PORT LOCKED = pll_module_0_LOCKED
END

PIM Clocking

All PIM types except the MCB PIM type have a base clock that is taken from the port MPMC_Clk0.
MPMC_Clk0 must be shared across all PIMs except MCB PIMs. MCB PIMs are the only PIMs that can be
asynchronously clocked from other PIMs.

The MPMC_Clk0 clock that the PIMs run on can be separate and asynchronous from the
MPMC_Clk_Mem_2x memory clock. Additionally, some PIM types support an optional 1:1 or 1:2 clock
ratio from their base PIM clock. It is recommended that MPMC_Clk0 is generated so the PIMs run at a 1:1
clock ratio.

For example, it is possible to have an MPMC clocked as follows:

• MPMC_Clk_Mem_2x = 800 MHz

• MPMC_MCB_DRP_Clk = 100 MHz

• MPMC_Clk0 = 90 MHz (asynchronous to MPMC_Clk_Mem_2x)

• Port 0 PLB PIM can connect to a PLB bus that must be 45 or 90 MHz (synchronous to
MPMC_Clk0)

• Port 1 XCL PIM can connect to an XCL interface that must be 45 or 90 MHz (synchronous to
MPMC_Clk0)

• Port 2 MCB PIM can run at 87 MHz (asynchronous to all other clocks)

• Port 3 NPI PIM must run at 90 MHz using the same clock as MPMC_Clk0

Special Clocking Requirements: When 2 MCBs Are On The Same Side of The Device

In a system where two instances of MPMC are on the same side of the device (both on the left or both
on the right), it is necessary for both of them to share a single BUFPLL_MCB instance instead of one for
each MPMC instance. This situation is only possible on devices with four MCB sites.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
When two instances of MPMC are on the same side of the device, the second MPMC must be set with
parameter C_MCB_USE_EXTERNAL_BUFPLL == 1. In this case, the first MPMC will instantiate the
BUFPLL_MCB. These signals would then be connected to the second MPMC in the MHS file and the
outputs of the internal BUFPLL_MCB in the first MPMC drive the MPMC_Clk_Mem_2x_bufpll_o,
MPMC_Clk_Mem_2x_180_bufpll_o, MPMC_Clk_Mem_2x_CE0_bufpll_o,
MPMC_Clk_Mem_2x_CE90_bufpll_o, and MPMC_PLL_Lock_bufpll_0 ports and would then drive
the MPMC_Clk_Mem_2x, MPMC_Clk_Mem_2x_180, MPMC_Clk_Mem_2x_CE0, MPMC_Clk_Mem_2x_CE90
and MPMC_PLL_Lock ports of the second MPMC.

When two MPMCs are located on the same side of the device, they must both operate on the same
memory clock.

The following is an Microprocessor Hardware Specification (MHS) file example of how the two
MPMCs use cascaded clock connections when they are both located on the same side of the device:

BEGIN mpmc
 PARAMETER INSTANCE = MPMC_0
 ...
PORT MPMC_Clk_Mem_2x_bufpll_o = MPMC_Clk_Mem_2x_bufpll_o
PORT MPMC_Clk_Mem_2x_180_bufpll_o = MPMC_Clk_Mem_2x_180_bufpll_o
PORT MPMC_Clk_Mem_2x_CE0_bufpll_o = MPMC_Clk_Mem_2x_CE0_bufpll_o
PORT MPMC_Clk_Mem_2x_CE90_bufpll_o = MPMC_Clk_Mem_2x_CE90_bufpll_o
PORT MPMC_PLL_Lock_bufpll_o = MPMC_PLL_Lock_bufpll_o

END

BEGIN mpmc
 PARAMETER INSTANCE = MPMC_1
 PARAMETER C_MCB_USE_EXTERNAL_BUFPLL = 1
 ...
 PORT MPMC_Clk_Mem_2x = MPMC_Clk_Mem_2x_bufpll_o
 PORT MPMC_Clk_Mem_2x_180 = MPMC_Clk_Mem_2x_180_bufpll_o
 PORT MPMC_Clk_Mem_2x_CE0 = MPMC_Clk_Mem_2x_CE0_bufpll_o
 PORT MPMC_Clk_Mem_2x_CE90 = MPMC_Clk_Mem_2x_CE90_bufpll_o
PORT MPMC_PLL_Lock_bufpll_o = MPMC_PLL_Lock_bufpll_o

END

MCB Performance Mode

Depending on the voltage regulation on the board, the MCB operates in one of two performance
modes.

• By default, the MCB operates in STANDARD performance mode which limits the maximum
frequency of MPMC_Clk_Mem_2x (these limits are specified in the Spartan-6 data sheet). The setting
is inferred by the ISE tools to be CONFIG MCB_PERFORMANCE = STANDARD.

• Alternatively, with better voltage regulation on the board, the MCB can be operated in EXTENDED
performance mode which supports higher maximum frequencies for MPMC_Clk_Mem_2x. When
using EXTENDED mode, you must manually set “CONFIG MCB_PERFORMANCE = EXTENDED” in the
system.mhs file as described in UG416, Spartan-6 FPGA Memory Interface Solution User Guide.

Note: MPMC does not implement a DRC to check the frequency of MPMC_Clk_Mem_2x against the CONFIG
MCB_PERFORMANCE setting in the system.ucf file.
01.a) July 23, 2010 www.xilinx.com 127
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

128
Spartan-6 C_MCB_LOC Parameter

The C_MCB_LOC parameter has the possible value of MEMC1, MEMC2, MEMC3, and MEMC4 and is used to
specify which MCB bank to which to locate the MPMC. The following tables list the mapping from
FPGA bank number to C_MCB_LOC parameter value for two MCB devices and four MCB devices
.

.

Table 63: Two MCB Devices

FPGA Bank Number where MCB is located C_MCB_LOC Parameter Value

Bank 1 MEMC1

Bank 3 MEMC3

Table 64: Four MCB Devices

FPGA Bank Number where MCB is located C_MCB_LOC Parameter Value

Bank 1 MEMC2

Bank 3 MEMC3

Bank 4 MEMC4

Bank 5 MEMC1
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Spartan-6 Reset Logic

The basic MPMC core and each of the MPMC PIMs have a reset input. Internally these resets are OR’ed
together to create the master reset for the entire MPMC (including PIMs).

Note: It is not possible to reset an individual PIM or PORT of the MPMC without resetting everything.

The master reset, MPMC_Rst, is internally registered and synchronized before being distributed
throughout MPMC; therefore, the MPMC reset is a fully synchronous reset. Reset should be held for a
minimum of eight cycles of the slowest PIM clock. After reset, there should not be access to any of the
ports or control interfaces for 20 cycles of the MPMC_Clk0.

Soft Calibration Module

The MPMC code contains the same Soft Calibration Module functionality described in UG388, Spartan-
6 Memory Controller User Guide (a link to this document is in "Reference Documents," page 229). The soft
calibration module is used to tune internal termination resistors and to continuously tune the DQS tap
delays to align the DQS and DQ signals together. Both of these functions can be enabled or disabled
using parameter settings. It is recommended that DQS tuning be enabled. For input termination, there
are three options: external discrete termination resistors, internal tuned termination (not supported by
LPDDR), and internal untuned termination. When the Soft Calibration Module is enabled, the RZQ
and ZIO I/O pins become active.

To enable DQS tuning, which is recommended, the following MPMC parameters must be set in the
MHS file:

 PARAMETER C_MEM_CALIBRATION_SOFT_IP = TRUE
 PARAMETER C_MEM_SKIP_DYNAMIC_CAL = 0

When the internal tuned input termination feature is used, the following MPMC parameters must be
set in the MHS file:

 PARAMETER C_MEM_CALIBRATION_SOFT_IP = TRUE
 PARAMETER C_MEM_SKIP_IN_TERM_CAL = 0

The use of internal untuned termination can be accomplished by setting
IN_TERM=UNTUNED_SPLIT_<impedance> in the system level system.ucf file for the DQ and DQS
pins. For example:

NET MPMC_0_mcbx_dram_dq[*]IN_TERM=UNTUNED_SPLIT_50;
NET MPMC_0_mcbx_dram_dqsIN_TERM=UNTUNED_SPLIT_50;
NET MPMC_0_mcbx_dram_dqs_nIN_TERM=UNTUNED_SPLIT_50;
NET MPMC_0_mcbx_dram_udqsIN_TERM=UNTUNED_SPLIT_50;
NET MPMC_0_mcbx_dram_udqs_nIN_TERM=UNTUNED_SPLIT_50;

Consult the Spartan-6 Memory Controller User Guide for more information about input termination on
the MCB pins.

MCB Bring-Up

For initial MCB bring-up on a new board, it is recommended to use the MIG tool initially to generate a
standalone synthesize-able testbench for the MCB. The standalone MIG generated designs contains a
traffic generator to send transactions to the MCB as well as providing some facilities for debugging the
physical interface. The standalone MIG design can be used to validate the physical memory interface
before using MPMC. Refer to the “Debugging MCB Designs” section of UG388, Spartan-6 FPGA
Memory Interface Solutions User Guide for additional information. "Reference Documents," page 229
contains a link to the document.
01.a) July 23, 2010 www.xilinx.com 129
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

130
Personality Interface Modules
The Personality Interface Module (PIM) architecture comprises the following interfaces:

• Xilinx CacheLink PIM

• Soft Direct Memory Access Controller PIM for LocalLink Interfaces

• Processor Local Bus Version 4.6 PIM

• PowerPC 440 Memory Controller PIM

• Video Frame Buffer Controller PIM

• Native Port Interface PIM

• MCB PIM

PIM Base/High/Offset Parameters

Each PIM supports PIM-specific Base/High/Offset address parameters. The Base/High/Offset
parameters are defined as a 32-bit value of C_<PIM_Type>_[BASEADDR|HIGHADDR|OFFSET]. The
value set in the C_ALL_PIMS_SHARE_ADDRESSES parameter determines if all ports have a common
base and high address or if each port has independently-configured memory address ranges. If you
want to implement a shadow or aliased memory you need to double the amount of addressable
memory. This can be done by increasing the C_<PIM_Type>_HIGHADDR by an amount that doubles the
address range. MPMC supports a maximum of 2 gigabytes total memory.

The following subsections describe the PIMs. The PIM design parameters, I/O signals, and control and
status register summaries are in "Design Parameters," page 3, "I/O Signals," page 23, and "Control and
Status Registers," page 41, respectively.

Note: Throughout the document, the size of a word is 32-bits.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Xilinx CacheLink PIM

The Xilinx CacheLink (XCL) PIM allows connection from an XCL bus interface to MPMC. The XCL PIM
is described in the following subsections:

• XCL Features

• XCL Overview

• Connecting XCL to a MicroBlaze Soft Processor

• XCL Configuration Options

• XCL Line Size and Write Transfers

• XCL Pipeline Stages

• XCL Clock Requirements

• XCL Additional Information

XCL Features

The XCL PIM supports the following features:

• 1-, 4-, 8- and 16-word reads and writes.

• Auto-detection (at reset) for clock ratios of 2:1 and 1:1 of NPI (the MPMC Memory Clock) to XCL.

• Read-only optimizations.

• 32-bit XCL data width and 32-bit NPI data width.

• 32-bit address offset (the optional address offset is added to the XCL transaction address to
compute the physical memory address to be accessed.)

• Auto-detection of MicroBlaze parameters.

• Optimized state machine and data paths when connected to MicroBlaze processor.

• Configurable pipeline stages for latency vs. frequency optimizations.

• Support for two XCL buses connected to one NPI port. The design allows for connecting
MicroBlaze processor D-side and I-side XCL to a single NPI port for reduced resources with
minimal performance hit.

• Target word first reads (except in the case of the DXCL2 and IXCL2 SUBTYPES.)

XCL Overview

The Xilinx CacheLink (XCL) PIM is highly optimized and configurable that allows you to connect a
MicroBlaze soft processor XCL bus interface to SDRAM, DDR, and DDR2 memories with MPMC.

The XCL PIM translates XCL commands to NPI transactions to perform reads and writes to memory.
Each XCL PIM instantiation connects to MPMC NPI using a 32-bit data path. The XCL bus interface
supports fixed burst size reads and either fixed burst writes, or word, half-word, byte transaction sizes.
The XCL signaling is a simple FIFO-style interface based on the FSL bus interface protocol.

Transactions are initiated by the master by pushing commands into the XCL PIM. If the operation is a
write, then the master also pushes the correct number of data beats into the FIFO immediately
following the write command. If the operation is a read, then the data will be returned by another FSL
channel where the data is popped out of the FIFO-style interface.
01.a) July 23, 2010 www.xilinx.com 131
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

132
The following figure is a block diagram of the NPI to XCL translation using a MicroBlaze processor.

Connecting XCL to a MicroBlaze Soft Processor

When connecting the MicroBlaze IXCL and DXCL buses to the MPMC XCL PIM, the tools
automatically optimize the configuration and set many of the parameters. The following table lists the
automatically configured parameters and their values when connected to a MicroBlaze.

Typical MicroBlaze transfers over the XCL PIM consists 4- or 8-word reads (determined at synthesis)
and single word, half-word, or byte writes (if using a data-side channel.) When connected to a
MicroBlaze version 7.20.a or greater and the MicroBlaze parameter C_DCACHE_INTERFACE = 1, the
XCL PIM also supports cache-line writes of either 4- or 8-word. The memory to XCL and by extension
MicroBlaze clock frequency can either be 1:1 or 2:1 and is auto-detecting. The XCL PIM contains
minimal buffering and pipeline stages that can be configured for low resource utilization, and provides
support for high frequencies. The XCL PIM with the addition of the B port (see "Dual XCL Buses on
One XCL PIM," page 133) supports connecting two XCL buses to one MPMC Port. This provides
lower utilization of resources with minimal impact on performance when connecting instruction-side
XCL and that- side XCL MicroBlaze buses to MPMC.

Figure Top x-ref 8

Figure 14: MicroBlaze Processor XCL Block Diagram

Table 65: Auto-Computed Parameter Values Inherited from MicroBlaze Bus Connections

MPMC Parameter Name
Auto-computed

MPMC Parameter
Value

MicroBlaze
Bus Interface

Name
MicroBlaze Parameter Settings

C_PIM<Port_Num>_SUBTYPE

IXCL IXCL C_ICACHE_INTERFACE = 0

IXCL2 IXCL C_ICACHE_INTERFACE = 1(1)

DXCL DXCL C_DCACHE_INTERFACE = 0

DXCL2 DXCL C_DCACHE_INTERFACE = 1(1)

C_XCL<Port_Num>_LINESIZE

4 IXCL C_ICACHE_LINESIZE = 4

8 IXCL C_ICACHE_LINESIZE = 8

4 DXCL C_DCACHE_LINESIZE = 4

8 DXCL C_DCACHE_LINESIZE = 8

C_XCL<Port_Num>_WRITEXFER
0 IXCL None

1 DXCL None

1. Not available in MicroBlaze versions earlier than v7.20a

Access FSL Signals

Read Data FSL Signals
NPI Signals

Combinatorial
Logic

FIFO

FIFO

DS643_52_071307

NPI XCL
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
XCL Configuration Options

Dual XCL Buses on One XCL PIM

For resource optimization when connecting two XCL buses to MPMC it is recommended that the
MPMC parameter, C_XCL<Port_Num>_B_IN_USE, is set to 1. This enables a second XCL bus to connect
to MPMC by the bus that is designated as XCL<Port_Num>_B, while only consuming one of the
available ports on MPMC. For example, if Port 0 of MPMC is configured as XCL and
C_XCL0_B_IN_USE = 1, then connect the MicroBlaze IXCL bus to MPMC XCL0 bus. Similarly, connect
the MicroBlaze DXCL bus to the MPMC XCL0_B bus. The XCL PIM will internally arbitrate between
the two buses with
priority given to the XCL0_B bus if they are both idle and receive XCL requests at the same time. If both
ports are requesting continuously, round-robin arbitration goes between the two ports to avoid
starvation, which allows you to connect up to 16 XCL buses to MPMC. The relationship between the
IXCL and DXCL transactions on MicroBlaze results in a minimal performance impact. If you are using
custom XCL masters that have high bandwidth requirements, it might be more suitable to use two
separate XCL PIMs.

When C_XCL<Port_Num>_B_IN_USE is set to 1, three additional parameters are available to be set:

• C_PIM<Port_Num>_B_SUBTYPE
• C_XCL<Port_Num>_B_LINESIZE

• C_XCL<Port_Num>_B_WRITEXFER

These parameters function identically to the parameters of the same name with a suffix of _B,
consequently they are not explicitly discussed. The bus interface XCL<Port_Num>_B becomes visible as
a valid XCL bus interface target when dual XCL mode is enabled.

XCL PIM Subtypes

The C_PIM<Port_Num>_SUBTYPE parameter is automatically detected when connected to a
MicroBlaze processor. The subtype settings of IXCL, IXCL2, DXCL, and DXCL2 change the operation of
XCL slightly to improve maximum frequency and reduce latency when connected to MicroBlaze.

The following table provides a summary of the differences between the subtypes:

Table 66: XCL Supported Features by Subtype

XCL
SUBTYPE

Supports
Target Word
First Read

Transactions

Supports
Word Write
Operations

Supports
Cacheline Write

Operations

Supports
Linesize
1 & 16

Supports
Linesize

4 & 8

Supports
Standard FSL
Handshaking

XCL Yes Yes(1) Yes(2) Yes Yes Yes

IXCL Yes No No No Yes Yes

DXCL Yes Yes No No Yes Yes

IXCL2 No No No No Yes No

DXCL2 No Yes Yes No Yes No

1. Valid if C_XCL<Port_Num>WRITEXFER = 1
2. if C_XCL<Port_Num>_WRITEXFER = 2
01.a) July 23, 2010 www.xilinx.com 133
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

134
XCL Line Size and Write Transfers

The C_XCL<Port_Num>_LINESIZE parameter specifies whether the XCL line size is 1-, 4-, 8-, or 16-
words. This line size is set for all XCL reads. The 4-, 8-, or 16-word transfers are target word first
cacheline transfers. For Writes, the C_XCL<Port_Num>_WRITEXFER parameter specifies whether XCL
Write transactions are:

• 0 - Disabled

• 1 - One word only

• 2 - The same size as the Reads specified in C_XCL<Port_Num>_LINESIZE

If the XCL PIM is used, the NPI data width is fixed automatically at 32 bits. XCL data and address are
labeled with big-endian bit and byte ordering as described in Figure 8, page 94.

XCL Pipeline Stages

The C_XCL<Port_Num>_PIPE_STAGES parameter can be used to adjust the number of pipeline stages
in the XCL PIM. There are three different pipelines with four possible settings for
C_XCL<Port_Num>_PIPE_STAGES:

• 0 - No pipelines are enabled.

• 1 - One pipeline is enabled: This setting enables a pipeline register on the output of the XCL Read
data FIFO. This pipeline helps cross clock boundaries on the read channel. Adds one cycle of Read
latency.

• 2 - Two pipelines are enabled: This setting enables an additional pipeline on the NPI Read FIFO
Empty signal. This helps alleviate timing path on the NPI read FIFO control signals, and adds one
cycle of Read latency.

• 3 - Three pipelines are enabled: This setting enables an additional pipeline on the output of the
XCL Access FIFO.

Note: Pipelines added in with values 1 and 2 each add a cycle of latency to each XCL Read. The pipeline added
with value 3 might add one cycle of latency to both XCL Reads and XCL Writes.

XCL Clock Requirements

The XCL PIM runs at an integer ratio of the MPMC memory clock rate. This clock ratio is automatically
detected during reset and can be a ratio of either 1:1 or 2:1. The XCL PIM clock must be synchronous
and rising edge-aligned to the MPMC memory clock.

XCL Additional Information

For additional details on XCL, including signaling protocol and waveforms, see the MicroBlaze
Processor Reference Guide. The "Reference Documents," page 229 contains a link to the document.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Soft Direct Memory Access Controller PIM for LocalLink Interfaces

The Soft Direct Memory Access (SDMA) Controller PIM, which is integrated into MPMC, provides
high-performance Direct Memory Access (DMA) for streaming data. The SDMA provides two
channels, one for receiving data and one for transmitting data. Transmit and Receive are accomplished
through two LocalLink interfaces.

This section contains the following subsections:

• SDMA Features

• SDMA Overview

• SDMA Operation

• DMA Operation Descriptors

• SDMA Error Conditions

• Managing SDMA Descriptors

• SDMA LocalLink Interface

• SDMA Interrupts and Errors

• SDMA Transaction Timing

• SDMA Registers

SDMA Features

The SDMA Controller for LocalLink interfaces contains the following features:

• Direct plug-in to MPMC

• Simultaneous, independent Transmit and Receive DMA operations

• Per-channel Interrupt Event reporting

• Interrupt Coalescing

• Xilinx PLBv4.6 interface for control as a register access

• User-defined LocalLink headers and footers(1)

• Dynamic Scatter Gather Buffer Descriptor modification

• SDMA supports the following configurations only:

• 16-, 32-, and 64-bit for DDR

• 32- and 64-bit for SDRAM

• All widths in Spartan-6

SDMA Overview

The SDMA uses a Native Port Interface (NPI), two LocalLink interfaces, and a PLB interface. The NPI
connects the SDMA controller into the MPMC PIM. The two LocalLink interfaces, a Transfer (TX) and
a Receive (RX), provide full duplex LocalLink device access to the SDMA. The PLB interface allows the
CPU to interact with the SDMA for initiating DMA processes or status gathering. The PLB and
LocalLink data and address signals are labelled with big-endian bit/byte ordering as illustrated in
"Big-Endian Memory Data Types," page 94.

1. For use with functions such as checksum off loading
01.a) July 23, 2010 www.xilinx.com 135
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

136
The following figure provides a high-level block diagram of SDMA.

SDMA Operation

Scatter Gather Operation

Scatter Gather operation has the concept of descriptor chaining which allows a packet to be described
by more than one descriptor. Typical use for this feature is to allow storing or fetching of ethernet
headers from one location in memory and payload data from another location. Software applications
that can take advantage of this can improve throughput.

SDMA uses Start of Packet bit (SOP) and End of Packet bit (EOP) to delineate packets in a buffer
descriptor chain. When the DMA fetches a descriptor with the STS_CTRL_APP0.SOP bit set this
triggers the start of a packet. The packet continues fetching subsequent descriptors until a descriptor
with the STS_CTRL_APP0.EOP bit is set.

For the receive channel, when a packet has been completely received the SDMA acquires the footer
fields of the LocalLink stream and writes these values to APP0 through APP4 fields of the last
descriptor. SDMA also sets STS_CTRL_APP0.EOP=1 indicating to the software that the current receive
buffer as described by the descriptor contains the last of the packet data.

For the transmit channel, SDMA uses the STS_CTRL_APP0.EOP bit. When SDMA determines that the
STS_CTRL_APP0.EOP bit is set in STS_CTRL_APP0, the SDMA completes the currently requested
transfer and then terminates the LocalLink transfer with a LocalLink End of Frame (EOF).

Starting and Stopping DMA Operations

DMA operations can be started by writing an address to the respective TAILDESC_PTR register. When
the start condition is met, CHNL_STS.EngBusy of the respective channel is set and the SDMA fetches
the first descriptor that is pointed to by the address in the CURDESC_PTR register.

DMA descriptor processing will continue until a descriptor that has the TAILDESC_PTR =
CURDESC_PTR for the respective channel has finished being processed.

Figure Top x-ref 9

Figure 15: High Level SDMA Block Diagram

DS643_08_082207

DMA Engine and
Control Logic

TX LocalLink
Interface

RX LocalLink
Interface

RX LocalLink

NPI Signals
NPI

PLB

SDMAplbv46_slave_single

TX LocalLink
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
DMA Operation Descriptors

SDMA operation requires a common memory-resident data structure that holds the list of DMA
operations to be performed. This list of instructions is organized into what is referred to as a Descriptor
Chain. The descriptor shown in the following table is the basis for organizing the DMA operations as a
Linked List. descriptors are fetched through the NPI. A similar mechanism is used for performing
descriptor updates. The following table lists the SDMA descriptors:

The following table shows the STS_CTRL_APP0 register bits.

Each field of the descriptor is 4 bytes in length and corresponds to either one of the DMA channel
registers or user application fields.

Table 67: SDMA Descriptors

Name Description Purpose

NXTDESC_PTR Next Descriptor Pointer Specifies where in memory the next descriptor is to be fetched.

CURBUF_ADDR Buffer Address
Specifies where in memory the buffer is for receiving or
transmitting data.

CURBUF_LENGTH Buffer Length

For Transmit, specifies the amount of data in bytes that are to be
transmitted.
For Receive, indicates the amount of space in bytes that is
available to receive data.

STS_CTRL_APP0
Status/Control and

App Data 0
Status/Control for controlling and providing status to the DMA
transfer of application specific data.

APP1 Application Data 1 Application specific data.

APP2 Application Data 2 Application specific data.

APP3 Application Data 3 Application specific data.

APP4 Application Data 4 Application specific data.

Table 68: STS_CTRL_APP0

Bit(s) Name Type Description

0 Error Status Set by the DMA when a error is encountered.

1 IrqOnEnd Control
When set, causes the DMA to generate an interrupt event when the
current descriptor has been completed.

2 Reserved N/A Undefined

3 Completed Status When set, indicates that the current descriptor has been completed.

4 SOP Status/Control

Transmit Channel (Control): Set by software in the descriptor indicating
this buffer descriptor is the first descriptor of a packet.
Receive Channel: (Status) Set by DMA in the descriptor indicating that
a start of packet was received on LocalLink.

5 EOP Status/Control

Transmit Channel (Control): Set by software in the descriptor indicating
this buffer descriptor is the last descriptor of a packet.
Receive Channel (Status): Set by DMA in the descriptor indicating that
an end of packet was received on LocalLink.

6 Reserved N/A Undefined.

7 Reserved N/A Undefined.

8:31 Application Data 0 N/A Application specific data.
01.a) July 23, 2010 www.xilinx.com 137
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

138
• For transmit channels, the application data fields (App0 to App4) of the first descriptor are
transmitted as part of the Header of the LocalLink Transmit Data stream.

• For receive channels, the Application Data Fields of the last buffer descriptor will be updated with
a portion of the Footer of the LocalLink Receive Data stream.

See "SDMA LocalLink Headers and Footers," page 146 for more information on LocalLink headers and
footers.

The following figures shows descriptors organized into a linked list. SDMA will successively perform
the DMA operations specified in the descriptors up to and including the descriptor with the
CURDESC_PTR = TAILDESC_PTR.

Figure Top x-ref 10

Figure 16: Linked List of Descriptors

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4
DS643_18_071307

CURDESC_PTR
Register Value

Address of this
Descriptor = TAILDESC_PTR
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following figure shows descriptors organized into a buffer ring for dynamic descriptor update. The
buffer ring is for a Transmit channel as evidenced by STS_CTRL_APP0.SOP=1 and
STS_CTRL_APP0.EOP=1 tags. Note that packet 4 is specified by a single descriptor and others by more
than one consecutive descriptor. The address of the last ready packet is equal to the TAILDESC_PTR,
giving a sentinel position in the ring.

Note: Even when descriptors are contiguously allocated, they are required to be linked through the
NXTDESC_PTR field.

Note: For receive channels, STS_CTRL_APP0.SOP and STS_CTRL_APP0.EOP are set by SDMA and updated
to memory for use by the software application.

Figure Top x-ref 11

Figure 17: Descriptors Organized Into a Buffer Ring

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

DS643_19_071307

CURDESC_PTR
Register Value

SOP =1 and EOP = 1
Descriptor Address =
TAILDESC_PTR

SOP =1

EOP =1

SOP =1

SOP =1

EOP =1

EOP =1

Packet 4

Packet 2

Packet 3Packet 1
01.a) July 23, 2010 www.xilinx.com 139
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

140
Transmit Channel Operation

The following steps are required to execute a packet transmit operation:

1. The software creates a chain of descriptors:

a. Specify in the descriptor the packet boundaries using the STS_CTRL_APP0.SOP and
STS_CTRL_APP0.EOP bits.

b. Specify the address to the data buffer to transmit in the CURBUF_ADDR field.

c. Specify the amount of data to transfer for each descriptor in the CURBUF_LENGTH field.

d. Specify a pointer to the next descriptor in NXTDESC_PNT.

2. Software prepares the DMA Channel registers (Order of steps a and b are not critical):

a. Set up interrupts if so desired by writing to the TX_CHNL_CTRL register, specifying interrupt
coalescing information (if enabled).

b. Set a pointer to the first descriptor in the TX_CURDESC_PTR register.

3. The software starts SG automation by writing the pointer to the last descriptor to fetch into the
TAILDESC_PTR register.

4. SDMA requests the first descriptor pointed to by the TX_CURDESC_PTR register.

5. Upon completion of the descriptor fetch, the DMA cycle begins.

6. If the currently fetched descriptor has STS_CTRL_APP0.EOP set, the data of that descriptor is
transmitted and the Master completes the packet on the LocalLink with and End of Payload, (EOP)
and End of Frame (EOF). If the currently fetched descriptor does NOT have STS_CTRL_APP0.EOP
set the packet continues.

7. At the completion of each descriptor the channel register information is updated to the
corresponding descriptor memory location.

8. This process continues until the descriptor TX_CURDESC_PTR = TX_TAILDESC_PTR is completed
processing.

Receive Channel Operation

The following steps are required to execute a receive operation:

1. The software creates a chain of descriptors.

Note: SDMA supports multiple descriptors being used to describe a single packet. The
STS_CTRL_APP0.EOP bit is set by SDMA in the descriptor associated to the buffer containing the last byte
of the received packet.

a. Specify in the CURBUF_ADDR field of each descriptor the address to the start of the associated
buffer for receiving data.

b. Specify in the CURBUF_LENGTH field of each descriptor the available size of the associated
buffer for receiving data. The sum total of the Length field/s in the descriptors must specify a
byte count that is large enough to hold an entire packet.

c. Specify a pointer to the next descriptor in NXTDESC_PNT field.

2. The software prepares the DMA Channel registers (Order of steps a and b are not critical):

a. Set the pointer to the first descriptor in RX_CURDESC_PTR register.

b. Set up Interrupts if required by writing to the RX_CHNL_CTRL register, specifying interrupt
coalescing information (if enabled).

3. The software starts SG Automation by writing the pointer to the last descriptor to fetch into the
RX_TAILDESC_PTR register.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
4. SDMA requests the first descriptor pointed to by the RX_NXTDESC_PTR register. For receive
channels, the User Application fields are updated in the descriptor during the descriptor update
phase of processing.

5. Upon completion of the descriptor fetch, the DMA cycle begins.

This process continues until the descriptor RX_CURDESC_PTR = RX_TAILDESC_PTR has completed
processing.

SDMA Error Conditions

SDMA performs several error checking functions to ensure proper operation of the DMA engine. If an
error occurs then the channel on which the error is detected is halted, and the channel status register
Error bit for the channel is set to 1. If possible, the Error bit for the current descriptor is set to 1 also;
although, depending on the error condition, this might not get updated to remote memory.

To recover from an error condition the SDMA must be reset either by a hard reset or by issuing a soft
reset (such as setting SwReset = 1 in the DMA Control register. The following table lists the possible
errors that can be flagged and their causes.

Table 69: Descriptor Errors

Error Description

TX_CHNL_STS.CurPErr
RX_CHNL_STS.CurPErr

Current Descriptor Pointer Error
This error occurs if the Current Descriptor Pointer does not fall within the
<prefix>_BASEADDR to <prefix>_HIGHADDR range(1). Descriptors must reside within
memory as mapped by the base address and high address of the NPI. Addresses outside this
range are detected and flagged as errors.

TX_CHNL_STS.TailPErr
RX_CHNL_STS.TailPErr

Tail Descriptor Pointer Error
This error occurs if the Tail Descriptor Pointer does not fall within the <prefix>_BASEADDR
to <prefix>_HIGHADDR range. Descriptors must reside within memory as mapped by the
base address and high address of the NPI. Addresses outside this range are detected and
flagged as errors.

TX_CHNL_STS.NxtPErr
RX_CHNL_STS.NxtPErr

Next Descriptor Pointer Error
This error occurs if the Next Descriptor Pointer does not fall within the <prefix>_BASEADDR
to <prefix>_HIGHADDR range(1). Descriptors must reside within memory as mapped by the
base address and high address of the NPI Addresses outside this range are detected and
flagged as errors.

TX_CHNL_STS.AddrErr
RX_CHNL_STS.AddrErr

Buffer Address Error
This error occurs if the Buffer Address does not fall within the <prefix>_BASEADDR to
<prefix>_HIGHADDR range(1).
All transmit and receive data buffers must reside within memory as mapped by the base
address and high address of the NPI.
Addresses outside this range are detected and flagged as errors.
01.a) July 23, 2010 www.xilinx.com 141
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

142
Managing SDMA Descriptors

Prior to starting DMA operations, the software application must set up a descriptor or chain of
descriptors. After the descriptors are set, SDMA begins processing the descriptors, fetches, processes,
and then updates the descriptors. By analyzing the descriptors, the software application can read status
on the associated DMA transfer, fetch user information on receive channels, and determine completion
of the transfer. With this information the software application can manage the descriptors and data
buffers.

When a descriptor has been processed by the SDMA, the transfer status is updated into the
STS_CTRL_APP0 field. When the software application sets up the descriptor chain, the status bits in the
Control/Status field of each descriptor must be set to zero. The status bits are: Error, Completed, and
EngBusy.

For receive channels SOP and EOP are status bits and must be set to zero. For transmit channels SOP
and EOP are control bits set by the software application. This allows the software application to
determine when a descriptor has been processed and if there were errors during processing.

As each descriptor is updated into remote memory, STS_CTRL_APP0.Completed bit is set to 1. By
checking the STS_CTRL_APP0.Completed bit and walking through the descriptor chain, the software
application can determine which descriptors have been completed.

Figure 18, page 143 shows remote memory where software has constructed a descriptor chain. The
SDMA, shown on the right, fetches descriptors, processes them, and then updates the descriptor in
remote memory providing status. As shown the STS_CTRL_APP0.Completed=1 for the descriptors
that have been processed.

TX_CHNL_STS.CmpErr
RX_CHNL_STS.CmpErr

Complete Bit Error
This error occurs if a descriptor is fetched with the Complete bit set to 1 (as in
STS_CTRL_APP0.Completed=1).
This error indicates that a descriptor, which had been already used by SDMA, is being
processed again, before the software application has had a chance to process the descriptor
and associated data buffer.
This error checking can be disabled or enabled by setting/clearing C_COMPLETED_ERR_TX
and C_COMPLETED_ERR_RX for the associated channel.
Setting the parameters to 1 enables checking and setting the parameters to 0 disables
checking.

TX_CHNL_STS.BsyWr
RX_CHNL_STS.BsyWr

Busy Write Error
This error occurs if the Current Descriptor Pointer register is written to via the PLB v4.6 slave
port while the SDMA engine is busy.
Examining TX_CHNL_STS.EngBusy and RX_CHNL_STS.EngBusy for the respective
channel will indicate to the software application whether or not the channel is busy.
If EBsy = 1 then the channel is busy and The Current Descriptor Pointer should not be written
to by the software application.

1. where: C_ALL_PIMS_SHARE_ADDRESSES =
0:<prefix> = C_MPMC
1:<prefix> = C_PIM<Port_Num>

Table 69: Descriptor Errors (Cont’d)

Error Description
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp

For further clarity on Receive channels, by monitoring the STS_CTRL_APP0.Completed bit in the
descriptor, the software application can determine which data buffers, as described by the descriptor,
have received data and need to be processed. By looking for STS_CTRL_APP0.SOP and
STS_CTRL_APP0.EOP the software application can determine the start and end buffers containing a
packet.

For Transmit channels, STS_CTRL_APP0.Completed=1 indicates to the software application that the
data in the associated buffer has been transmitted and is free to be modified.

If an error occurs during the DMA transfer, either during the descriptor fetch and update or during the
actual requested DMA transfer, the STS_CTRL_APP0.Error bit is set.

If an error occurs during a transfer, an IRQ_REG.ErrIrq interrupt is generated, the respective
CHNL_STATUS.EngBusy is cleared to 0, and DMA operations are halted. At this point the Software
application must issue a reset to the SDMA to reset and resume DMA operations by writing a 1 to the
DMA_CONTROL.SwReset bit.

Dynamic Descriptors

At times it might be necessary to update a descriptor chain while the SDMA is actively processing the
buffer descriptors. This can be achieved when a channel is configured to operate in TailPointer mode.

Appending a Descriptor Chain

The SDMA is designed so software applications can append new buffer descriptor chains into an
already active chain with minimal effort on the part of the software application.

Figure Top x-ref 12

Figure 18: Software - Hardware Descriptor Processing

Descriptor 1

STS_CTRL_APP0.Completed = 1

DS643_20_080307

Descriptor 1

Channel Registers

SDMARemote Memory
(MPMC)

Done

Done

Currently
Processing

Descriptor 2

STS_CTRL_APP0.Completed = 1

Descriptor 3

STS_CTRL_APP0.Completed = 0

Descriptor 4

STS_CTRL_APP0.Completed = 0

Descriptor 2

STS_CTRL_APP0.Completed = 0

Descriptor 1

Updated to
Remote Memory

Updated to
Remote Memory

Descriptor 1
Transferred to

Channel Registers
01.a) July 23, 2010 www.xilinx.com 143
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

144
This can be accomplished by updating the TAILDESC_PTR if the descriptors are arranged in a ring. This
method is as follows:

If no updates were made to the descriptor chain, the DMA controller would process Descriptor 0
through Descriptor 9 and stop after Descriptor 9 because the original TAILDESC_PTR would equal the
CURDESC_PTR of Descriptor 9.

For this example, assume that the software application has started DMA operation by setting the
TAILDESC_PTR address to Descriptor 9. The SDMA fetches and begins processing Descriptor 0. At this
point the software determines that it is necessary to append Descriptors 10, 11, and 12 to the already
active chain.

To append the new descriptors:

1. Set up Descriptors 10, 11, and 12 in remote memory.

2. Update the NXTDESC_PTR of the descriptor in memory space to point to descriptor.

3. Update the TAILDESC_PTR register with the address of Descriptor 12.

If SDMA is in the middle of processing Descriptor 9, a race condition occurs. The NXTDESC_PTR that
SDMA picks up is pointing to a potentially invalid location.

If the software application updates NXTDESC_PTR in memory space and then updates the
TAILDESC_PTR in the SDMA, the SDMA does not update its NXTDESC_PTR register from memory
space and, consequently fetches the next descriptor from an invalid place.

Modifying a Descriptor Using A Descriptor Ring

When using a descriptor ring to modify a descriptor, no new descriptors are added. Consider a
situation where 14 descriptors are arranged in a loop and the stop point from Descriptor 13 must be
moved to Descriptor 5 without stopping the chain. It is assumed that the new descriptor chain was
created in remote memory and that the SDMA is actively processing the original descriptor chain. To
perform that operation:

1. Modify the already processed descriptors, such as the descriptor with the field setting
STS_CTRL_APP0.Completed = 1.

2. Move TAILDESC_PTR to point at Descriptor 5.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following figure illustrates an append to a descriptor chain.

Figure Top x-ref 13

Figure 19: Descriptor Chain - Loop Configuration

TAILDESC_PTR

New TAILDESC_PTR

Move Stop point from
Descriptor 13 to Descriptor 5

DS607_28_041707

0
Complete

= 0

5
Complete

= 1

4
Complete

= 1

3
Complete

= 1

2
Complete

= 1

1
Complete

= 1

13

12

11

9

8

7

6

Direction
of

Processing

10
01.a) July 23, 2010 www.xilinx.com 145
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

146
SDMA LocalLink Interface

The LocalLink Interface comprises:

• SDMA LocalLink Headers and Footers

• Transmit LocalLink Interface

• Receive LocalLink Interface

SDMA LocalLink Headers and Footers

SDMA uses LocalLink headers and footers to pass data in and out of the Buffer Descriptor User
Application (APP#) fields. This allows the software application to pass user-defined data to and from
the user IP using the LocalLink data stream.

For the transmit channel, the first descriptor describing a packet which includes APP0 to APP4, is
transferred in the header of the LocalLink data stream as shown in the following figure. For Transmit
channel the Header is always 8 words long and the footer is always one word long. The footer data
should be ignored. The following figure illustrates the headers and footers.

Figure Top x-ref 14

Figure 20: LocalLink Transmit Data Stream Header Assignment

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

CURDESC_PTR

Ignored
for

transmit

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

DS643_21_071307

SOP =1

APP1 PAYLOAD
FTR
Word

APP2 APP3 APP4

EOP =1

NXDESC
_PTR

CURBUF
_ADDR

CURBUF_
LENGHT

STS_CTRL
_APP0

Inserted into header
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
For the Receive channel as shown in Figure 21:

• The header must be only one word long and the data is discarded by the SDMA.

• The footer must be exactly eight words long.

• The last descriptor is populated with the LocalLink footer user App Fields, App0 and App1 to
App4.

Figure Top x-ref 15

Figure 21: LocalLink Receive Data Stream Footer Assignment

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

STS_CTRL_APP0

APP1

APP2

APP3

APP4

CURDESC_PTR
BD 1

BD 3

BD 4

NXTDESC_PTR

CURBUF_ADDR

CURBUF_LENGTH

S_CTRL_AP

BD 5

BD 2

Ignored for receive Ignored for receive

X11036

APP1 PAYLOAD Header APP2 APP3 APP4
NXDESC

_PTR
CURBUF
_ADDR

CURBUF_
LENGTH

STS_CTRL
_APP0

The EOP bit in STS_CTRL_APP0
will be set indicating that the buffer

 associated with this descriptor contains
 the last byte of the packet.

The SOP bit in STS_CTRL_APP0
will be set indicating that the buffer

 associated with this descriptor contains
 the first byte of the packet.
01.a) July 23, 2010 www.xilinx.com 147
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

148
Transmit LocalLink Interface

The Transmit LocalLink and Byteshifter logic take data from the appropriate place in memory and
move the data across the LocalLink interface. This concept is shown in Figure 22, page 149.

In this example:

• The SDMA reads the descriptor in the address range p to p+1C and sends it to the LocalLink as the
header. The payload is 136 bytes and starts at address m+79.

• The Transmit Byteshifter sends data acknowledges to the memory controller while keeping the
Src_Rdy signal to the LocalLink de-asserted, because address m+79 is not 32-word aligned.

• Data from the address range m to m+78 is discarded.

• Data is offset by 78 bytes, so the first byte of data occurs on the second byte location on the
posedge of the DDR SDRAM.

• The Transmit Byteshifter takes the posedge (x 0 1 2) and negedge (3 4 5 6) data from DDR SDRAM,
which are both present at the time, recombines them to form a new, correctly shifted word (0 1 2 3),
and sends it over the LocalLink as the payload.

• At the end of the first 32-word burst read (B32R), three bytes are left over and kept in the
Byteshifter.

• When the second burst occurs, the three bytes from the Byteshifter are combined with the first
byte of the second burst and sent over LocalLink. This happens again between the second and
third burst.

• The fourth burst is generated due to a second descriptor. Also, it describes a buffer that begins at
an odd boundary; for example, offset 0x7E. Bytes r0 and r1 are combined with the leftover bytes
from the previous burst, n and n+1.

• On the last word of the payload, the Rem signal is set to indicate which bytes of the word are valid.
Rem is 0x3 in this example to indicate that only the first two bytes are valid.

• After byte n+1 is sent the FIFOs in MPMC, which hold all 32 words of the burst, are reset to avoid
extra data acknowledge.

• For Tx transfer, the footer is not used. The status bits are written back to the status field of the
descriptor.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Figure Top x-ref 16

Figure 22: Transmit Byte Shift Example

Memory Space

Footer (ignored)

8-word
cacheline

P
ay

lo
ad

34
 w

or
ds

 +
 3

3
w

or
ds

 +
 2

 b
yt

es
 =

 2
70

 b
yt

es

32
-w

or
d

bu
rs

t
32

-w
or

d
bu

rs
t

32
-w

or
d

bu
rs

t

Descriptor 1

Buffer 1

Stuff data

into FIFOs

Stuff data

into FIFOs

p

p+c

s

s

s+2

n n+1

n n+1

r0 r1

r2 r3 r4 r5

DS607_16_073007

H
ea

de
r

 8
 w

or
ds

m0 m1 m2

m0 m1 m2

m3

m3

m+79

m+80

m+78

m+104

m+7C

32
-w

or
d

bu
rs

t
32

-w
or

d
bu

rs
t

32
-w

or
d

bu
rs

t

Buffer 2

Stuff data

into FIFOs

Stuff data

into FIFOs

r0 r1

s+1 s+2

r3 r4 r5

r+7E
r+7C

r+100

r+104

r+80
01.a) July 23, 2010 www.xilinx.com 149
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

150
Receive LocalLink Interface

The LocalLink and Byteshifter Rx logic receives data from the LocalLink interface and moves the data
to the appropriate place in memory. This concept is shown in Figure 23, page 151.

In this example:

• The SDMA always ignores the Rx LocalLink Header, which must be only 1 word long.

• The Payload is processed by the Rx Byteshifter and pushed into the MPMC Write FIFOs. The
Payload is 270 bytes.

• The data is pushed into the FIFOs in bursts of 32 words (B32W).

• Data is stuffed into the FIFOs from address m through address m+0x7C because the Payload is
written to address m+0x79, which is a not a 32-word aligned address.

• When these bytes are written to memory, the byte enables are turned Off.

• In the second B32W, all of the data is valid.

• In the third B32W, only three bytes must be written to memory. This means that the remaining 125
bytes must be stuffed into the FIFOs at the end of the burst.

• The length of buffer 1 was specified to be 138 bytes long in the Receive descriptor. After the first
three bytes, B32Ws buffer 1 is full.

• The remainder of the payload is transferred to buffer 2.

• The fourth, fifth, and sixth transfers are similar to the first three transfers in that the first valid byte
is not at an even boundary.

• SDMA begins the fourth B32W at r+00, setting the byte enables to Off for all the bytes up to the
first valid byte at r+7E.

• The fifth B32W has all bytes valid, and, in the final B32W, only two bytes are valid.

• The remaining 126 bytes are pushed to the FIFO with the byte enables set to Off.

• After the Payload is processed, the footer is processed and written to memory at address p.

• The SDMA changes the byte enables of the first three words to prevent the Next Descriptor
Pointer, Buffer Address, and Buffer Length values from being overwritten. Thus, only the values
of STS_CTRL_APP0, APP1, APP2, APP3, and APP4 are updated in the memory space.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Figure Top x-ref 17

Figure 23: Receive Byte Shift Example

Memory Space

8-word
cachelineLast Descriptor

Buffer 1

Stuff data

into FIFOs

Stuff data

into FIFOs

p

p+c

s

n n+1

DS643_24_071307

m0 m1 m2

m3

m+79

m+80

m+78

m+104

m+7C

32
-w

or
d

 b
ur

st

Buffer 2

Stuff data

into FIFOs

Stuff data

into FIFOs

r0 r1

s+1 s+2

r3 r4 r5

r+7E
r+7C

r+100

r+104

r+80

Header (ignored)

P
ay

lo
ad

34
 w

or
ds

 +
 3

3w
or

ds
 +

 2
 b

yt
es

 =
 2

70
 b

yt
es

F
oo

te
r

 8
 w

or
ds

n n+1 r0 r1

r2 r3 r4 r5

s s+2

m0 m1 m2 m3

32
-w

or
d

 b
ur

st
32

-w
or

d
 b

ur
st

32
-w

or
d

 b
ur

st
32

-w
or

d
 b

ur
st

32
-w

or
d

 b
ur

st

32
-w

or
d

 b
ur

st
01.a) July 23, 2010 www.xilinx.com 151
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

152
SDMA Interrupts and Errors

The following subsections describe DMA interrupts and errors:

• SDMA Controller Interrupt Description

• SDMA Error Events

• SDMA Interrupt On End Event

• SDMA Interrupt Coalescing and Delay Timer

• SDMA Engine Reset

SDMA Controller Interrupt Description

Each channel can generate one or more events. The interrupt registers (IRQ_REG) report events for the
individual channels; see the following figure.

The IRQ_REG generates a system interrupt when ERRIrq, DlyIrq, or ClscIrq is set and the
corresponding enable bit is set in the CHANNEL_CTRL register.

Reading the individual IRQs allows the software to determine which event occurred and for which
channel the event was logged. Writing a 1 to the bit position of the event that was logged either clears
that event, in the case of the IRQ_REG.ErrIrq interrupt, or decrements the ClscCnt or DlyCnt,
depending upon to which bit the data is written. When the IRQ_REG.ClscCnt is zero, the
IRQ_REG.ClscIrq is cleared to zero. Likewise, when the IRQ_REG.DlyCnt is zero, the
IRQ_REG.DlyIrq is cleared to zero.

SDMA Error Events

An error event occurs when an error is detected during SDMA operations. If an error is detected,
IRQ_REG.ErrIrq is set, and if CHANNEL_CTRL.IrqEn = 1 and CHANNEL_CTRL.IrqErrEn = 1, the
DMA Controller also generates an interrupt, or increments the Coalescing Event counter. This event
can be cleared by writing a 1 to IRQ_REG.ErrIrq.

When a DMA transfer error occurs for a particular channel, that channel is shut down and no more
DMA processing occurs for that channel.

SDMA Interrupt On End Event

An Interrupt On-End Event (IOE) occurs when SDMA has completed processing of a buffer descriptor
with the IOE bit set in the STS_CTRL_APP0 field or an end of packet (EOP) is received or transmitted.
If the DMA has completed operations, the IRQ_REG.CoalIrq is set and, if enabled, an interrupt is also
generated. Otherwise, the Coalescing Event counter increments.

Figure Top x-ref 18

Figure 24: Interrupt Status Register

IRQ_REG
Bus

Channel
Events

Channel
Interrupt

Event

DS643_25_071307
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
SDMA Interrupt Coalescing and Delay Timer

The delay timer is required because of interrupt coalescing in the DMA. For example, if the Rx
coalescing counter is set to 10, an interrupt event is generated for every 10 packets received. If five
packets are received on the ethernet and the channel then goes idle (no traffic), the CPU never processes
the five packets because no interrupt was generated and this interrupt happens only when (or if) five
more packets arrive.

To avoid this latency, a timer must fire when a packet has been received, some configurable time has
elapsed, and there are no more packets received during this time.

The purpose of this timer is to avoid large latencies in the received packet (which is sitting in main
memory) from being processed by the CPU when there is non-continuous traffic.

As shown in the following figure, the Clock Divider module uses a 10-bit value, C_PRESCALAR, to
determine how many LocalLink clock cycles to count before generating a single Timer_ce pulse. For a
typical LocalLink clock speed of 200MHz and C_PRESCALAR=1023, this translates to a 5.12 usec
Timer_ce period. Therefore, the 8-bit timer is able to count up to a maximum of 256*5.12 = 1.3 msecs,
before generating an interrupt.

When the Coalescing Counter fires, the delay timer clears automatically.

The Interrupt Coalescing counter is an additional mechanism for interrupt handing. It can relieve the
need for the CPU to service an interrupt at the end of every packet. Instead, a pre-loadable number of
interrupt events (up to 256) generate a single interrupt to the CPU. Figure 26, page 154 shows the
mechanism used for the Tx coalescing counter interrupt generation.

Figure 25: Delay Timer Interrupt Scheme

Clock
Divider

Timer_ce

Timer_int=

Timer_ce_maskTimer_rst: set to 0
Link_EOF: sets to 1

Timer_int
OR

(IRQ_REG.CoalIrq AND CHNL_CTRLIrqCoalEn)
OR

LinkSOF
OR

Channel_Reset
OR

CHNL_CTRL.IRQTimout=0 C
H

N
L_

C
T

R
L.

IR
Q

T
im

eo
ut

IR
Q

_R
E

G
.D

ly
T

m
rV

al
ue

LLink_Clk

DS643_26_071307

RST

CE

IR
Q

_R
E

G
.D

ly
T

m
rV

al
uelncr

Decr

IRQ_REQ_WE AND IRQ_REG.DlyIRQ
01.a) July 23, 2010 www.xilinx.com 153
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
In this example:

• Upon reset, the CHNL_CTRL.IRQC count value is used to load the coalescing counter. Subsequently, the
register field, TxIrqCountReg[0:7], can be programmed with any 8-bit value.

• On every EOP or irq-on-end (selected by CHNL_CTRL_UseIntOnEnd), the counter will decrement. When
the coalescing counter reaches 0, the DMA increments the 4-bit interrupt counter.

• When the 4-bit interrupt counter is non-zero, it generates an interrupt to the CPU (if the irq_enable bit of
the respective channel is set).

• When the interrupt is acknowledged (with a control register write value of 1), the 4-bit interrupt counter is
decremented.

• The contents of the TxIrqCountReg[0:7] register is reloaded when the 4-bit interrupt counter increments.

There is also a means provided for the CPU to force the counter to load the contents of the
TxIrqCountReg[0:7] register. This is achieved when the CPU writes the ldIrqCnt field.

Note: When the delay timer fires, the Coalescing Counter automatically reloads automatically.

SDMA Engine Reset

It is possible to reset a particular SDMA engine (both Rx and Tx channels simultaneously) whenever a “lockup”
situation arises or an error is detected.

The software reset bit, DMA_CONTROL_REG.SwReset allows the software application to reset SDMA. When you
write a 1 to DMA_CONTROL_REG.SwReset, it initiates the reset sequence for that SDMA. At the same time, the
SDMA_RstOut output is asserted, synchronous to the LocalLink clock. This output can be used as an external logic
reset.

After a soft reset is initiated, software must poll the DMA_CONTROL_REG.SwReset bit until it is sampled as de-
asserted, which indicates that the reset sequence is complete and the pipeline is flushed. Simultaneously with the
DMA_CONTROL_REG.SwReset bit being cleared, the SDMA_RstOut is de-asserted automatically.

Note: When the DMA engine reset function is used, there is no guarantee that the current descriptor completed correctly. The
assumption should be that the descriptor did not complete and it should be restarted again using the normal CPU technique for
starting a new DMA operation.

SDMA Transaction Timing

The following subsections describe transaction timing for SDMA.

Figure 26: Coalescing Counter Interrupt Scheme

Coal_int
= 0

[(Link_EOF And not (CHNL_CTRLUseIntOnEnd)
OR

(STS_CTRL_APP0.IntOnEnd AND CHNL_CTRL.UseIntOnEnd)]
AND

Descriptor_Updated
AND

PI_WrFIFO_Empty

CHNL_CTRL.IRQCount

IR
Q

_R
E

G
.C

ls
cC

nt
rV

al
ue

DS643_27_071307

Load

D

IR
Q

_R
E

G
.C

oa
lC

nt

Decr

Incr
Decr

Coal_int
0

IRQ_REQ_WE AND IRQ_REG.CoaIRQ

CHNL_CTRLLdrIRQCnt
OR

(Timer_Int AND CHNL_CTRIrqDlyEn)
OR

Coal_Int
154 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
• SDMA Descriptor Fetch

• SDMA Descriptor Update

• SDMA Transmit Data Read

• SDMA Receive Data Write

• SDMA Transmit LocalLink

• SDMA Receive LocalLink

SDMA Descriptor Fetch

The following figure shows NPI port interface timing for a descriptor fetch. The SDMA uses 8-word,
cacheline reads to perform a descriptor fetch. The timing from when the SDMA makes a request of the
NPI will depend on arbitration in MPMC. The SDMA monitors PI_RdFIFO_Empty to determine when
to begin to pop data out of the MPMC read FIFO.

Figure Top x-ref 19

Figure 27: Descriptor Fetch Timing

PI_Clk
PI_Addr[31:0]

PI_AddrReq
PI_RNW

PI_AddrAck
PI_Size[3:0]

PI_RdFIFO_Data[63:0]
PI_RdFIFO_Pop

PI_RdFIFO_RdWdAddr[3:0]
PI_RdFIFO_Empty
PI_RdFIFO_Flush

PI_WrFIFO_Data[63:0]
PI_WrFIFO_BE[7:0]

PI_WrFIFO_Push
PI_WrFIFO_AlmostFull

PI_WrFIFO_Flush

2

A0

D0 D1 D2 D3

0 2 4 6

Time from PI_Addr Req to Read Data Available will vary

X11044

0ns 20ns 40ns 60ns 80ns 100ns 120ns 140ns
01.a) July 23, 2010 www.xilinx.com 155
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

156
SDMA Descriptor Update

The following figure shows the MPMC port interface timing for a descriptor fetch. The SDMA uses 8-
word cacheline writes to perform a descriptor update. The SDMA will push the data into the MPMC
write FIFO if there is space available. After the data has been pushed to the FIFO, the SDMA makes a
write request to the MPMC.

SDMA Transmit Data Read

The following figure shows a transmit data read (fetch) from the MPMC. The SDMA uses 32-word (or
16-double word) Reads to fetch data for transmitting across LocalLink. Reads always begin at 32-word
boundaries. The SDMA uses the data starting with the current buffer address only and ignores
additional invalid data fetched due to the 32-word boundary restriction.

Figure Top x-ref 20

Figure 28: Descriptor Update Timing

Figure Top x-ref 21

Figure 29: Transmit Data Read

0ns 20ns 40ns 60ns 80ns 100ns
PI_Clk

PI_Addr[31:0]
PI_AddrReq

PI_RNW
PI_AddrAck
PI_Size[3:0]

PI_RdFIFO_Data[63:0]
PI_RdFIFO_Pop

PI_RdFIFO_RdWdAddr[3:0]
PI_RdFIFO_DataAvailable

PI_RdFIFO_Empty
PI_RdFIFO_Flush

PI_WrFIFO_Data[63:0]
PI_WrFIFO_BE[7:0]

PI_WrFIFO_Push
PI_WrFIFO_AlmostFull

PI_WrFIFO_Flush

2 4 6 8

2

D0 D1 D2 D3

FF FF FF FF

A0

DS643_29_071307

0ns 50ns 100ns 150ns 200ns 300ns250ns 350ns

Time from PI_Addr Req to Read Data Available will vary

PI_Clk
PI_Addr[31:0]

PI_AddrReq
PI_RNW

PI_AddrAck
PI_Size[3:0]

PI_RdFIFO_Data[63:0]
PI_RdFIFO_Pop

PI_RdFIFO_RdWdAddr[3:0]
PI_RdFIFO_Empty
PI_RdFIFO_Flush

PI_WrFIFO_Data[63:0]
PI_WrFIFO_BE[7:0]

PI_WrFIFO_Push
PI_WrFIFO_AlmostFull

PI_WrFIFO_Flush

4

0

D0 D1 D2 D3 D4 D5 D6 D7 D12 D13 D14 D15D8 D9 D10 D11

A0

DS643_30_071307
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
SDMA Receive Data Write

The following figure shows received data being written to the MPMC. The SDMA uses 32-word burst
writes to write data to MPMC. The transfers are always 32-word aligned. The PI_WrFIFO_BE bus is
used to indicate which bytes of the 32 words are valid. The first two bytes are shown as being invalid
and the last byte is also invalid.

SDMA Transmit LocalLink

The following figure shows an example transmit LocalLink transfer of 8 words.

Note: During a transmit the first buffer descriptor is transferred in the header of the LocalLink data stream.

Figure Top x-ref 22

Figure 30: Receive Data Write

Figure Top x-ref 23

Figure 31: Transmit LocalLink Timing

PI_CIk

0ns 50ns 100ns 150ns 250ns200ns 300ns

PI_Addr[31:0]

PI_Size[3:0]

PI_AddrReq

PI_AddrAck

PI_RdFIFO_Data[63:0]

PI_WrFIFO_Data[63:0]

PI_WrFIFO_BE[7:0]

PI_WrFIFO_Push

PI_WrFIFO_AlmostFull

PI_WrFIFO_Flush

PI_RdFIFO_DataAvailable

PI_RdFIFO_Empty

PI_RdFIFO_Flush

PI_RdFIFO_RdWdAdd[3:0]

PI_RdFIFO_Pop

PI_RNW

A0

4

FFFFFFFFFFFFFFFFFFFF3F FFFFFFFF FE

D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0

DS607_24_030408

0ns 50ns 100ns 150ns 200ns

LLink_Clk
TX_D[31:0]
TX_REM[3:0]

TX_SOF
TX_SOP
TX_EOP
TX_EOF

TX_Src_Rdy
TX_Dst_Rdy

RX_D[31:0]
RX_REM[3:0]

RX_SOF
RX_SOP
RX_EOP
RX_EOF

RX_Src_Rdy
RX_Dst_Rdy

'b0000

Hdr7Hdr1Hdr0 Hdr2 Hdr3 Hdr4 Hdr5 Hdr6 D0 D1 D2 D3 D4 D5 D6 D7

DS643_32_071307
01.a) July 23, 2010 www.xilinx.com 157
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

158
SDMA Receive LocalLink

An example receive LocalLink transfer of 8 words is shown in the following figure.

Note: During a receive request the last buffer descriptor of a packet is populated with the APP fields of the
LocalLink footer.

SDMA Registers

The SDMA registers are detailed in the following subsections:

• Next Descriptor Pointer (TX_NXTDESC_PTR and RX_NXT_DESC_PTR) Offsets: 0x00 and 0x20

• Current Buffer Address (TX_CURBUF_ADDR and RX_CURBUF_ADDR) Offsets: 0x04 and 0x24

• Current Buffer Length (TX_CURBUF_LENGTH, RX_CURBUF_LENGTH) Offsets:0x08 and 0x28

• Current Descriptor Pointer (TX_CURDESC_PTR, RX_CURDESC_PTR) Offsets: 0x0C and 0x2C

• Tail Descriptor Pointer (TX_TAILDESC_PTR and RX_TAILDESC_PTR) Offsets: 0x10 and 0x30

• Channel Control Register (TX_CHNL_CTRL and RX_CHNL_CTRL) Offsets: 0x14 and 0x34

• Interrupt Status Register (TX_IRQ_REG and RX_IRQ_REG) Offsets: 0x18 and 0x38

• Channel Status Register (TX_CHNL_STS and RX_CHNL_STS) Offsets: 0x1C and 0x3C

• DMA Control Register Offset: 0x40

Next Descriptor Pointer (TX_NXTDESC_PTR and RX_NXT_DESC_PTR)
Offsets: 0x00 and 0x20

The Next Descriptor Pointers TX_NXTDESC_PTR (Transmit) and RX_NXT_DESC_PTR (Receive), are
loaded from the Next Descriptor Pointer field in the current descriptor for the respective channel. This
value is kept in the respective SDMA register until the SDMA has completed all DMA transactions
within the DMA transfer. After DMA transactions are complete, the current descriptor is complete and
the SDMA_COMPLETED bit is set in the respective status register. The current descriptor is written to
update the status of the STS_CTRL_APP0 field within the descriptor.

Then the SDMA evaluates if there is a halt condition that occurs when the Current Descriptor Pointer
equals the Tail Descriptor Pointer.

Figure Top x-ref 24

Figure 32: Receive LocalLink Timing

0ns 50ns 100ns 150ns 200ns

LLink_Clk
TX_D[31:0]

TX_REM[3:0]
TX_SOF
TX_SOP
TX_EOP
TX_EOF

TX_Src_Rdy
TX_Dst_Rdy

RX_D[31:0]
RX_REM[3:0]

RX_SOF
RX_SOP
RX_EOP
RX_EOF

RX_Src_Rdy
RX_Dst_Rdy

2 4 6 8

Ftr7Ftr1Ftr0 Ftr2 Ftr3 Ftr4 Ftr5 Ftr6D0 D1 D2 D3 D4 D5 D6

0

D7

DS607_26_041707
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
If there is no halt condition, the address contained in the Next Descriptor Pointer register is evaluated
as follows:

• If a NULL (0x00000000) is contained in the Next Descriptor Pointer register, the SDMA engine
stops processing buffer descriptors.

• If the address contained in the Next Descriptor Pointer register is not 8-word aligned or reaches
beyond the range of available memory, the SDMA halts processing and sets the SDMA_ERROR bit in
the respective status register (TX_CHNL_STATUS or RX_CHNL_STATUS).

• If the Next Descriptor Pointer register contains a valid address, the contents are moved to the
respective Current Descriptor register (TX_CURDESC_PTR or RX_CUR_DESC_PTR).

Then the SDMA begins another DMA transaction. The following table describes the Next Description
Pointer (TX_ and RX_) register bits.

Current Buffer Address (TX_CURBUF_ADDR and RX_CURBUF_ADDR)
Offsets: 0x04 and 0x24

The Current Buffer Address register, one for transmit and one for receive, maintains the contents of the
address in memory where the DMA operation is conducted next. This value is originally loaded into
the SDMA when the descriptor is read by the SDMA.

When set by the current buffer descriptor, the SDMA periodically transfers this value to an internal
Address Counter that then updates the value for each DMA transaction completed.

Upon termination of the transaction, the SDMA overwrites the value of the Current Buffer Address
register with the last value of the Address Counter.

This process continues repeatedly until the SDMA has completed the current descriptor. The reason for
this mechanism is so the SDMA can maintain multiple temporal channels of DMA at a substantially
reduced hardware cost. It is not recommended that software use the Current Buffer Address register to
determine SDMA progress because it changes dynamically. The following table describes the Current
Buffer Address register bits.

Table 70: Next Descriptor Pointer Register Description

Bit(s) Name Core
Access Reset Value Description

0:31
TX_NXTDESC_PTR
and RX_NXT_DESC_PTR

Read 0x00000000

8 word aligned pointer to the next buffer descriptor in
the chain.
If NULL (0x00000000), DMA engine stops
processing buffer descriptors.

Table 71: Current Buffer Address Register Description

Bit(s) Name Core
Access

Reset
Value Description

0:31
TX_CURBUF_ADDR
and
RX_CUR_BUF_ADDR

Read 0x00000000
Address to the current buffer being processed by
SDMA.
01.a) July 23, 2010 www.xilinx.com 159
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

160
Current Buffer Length (TX_CURBUF_LENGTH, RX_CURBUF_LENGTH)
Offsets:0x08 and 0x28

The Current Buffer Length register, one for transmit and one for receive, maintains the contents of the
remaining length of the data to be transferred by the SDMA. The value is originally loaded into the
SDMA when the descriptor is read by the SDMA. When set by the current descriptor, the SDMA
periodically transfers this value to an Internal Length Counter, which then updates the value for each
DMA transaction completed. Upon termination of the transaction, the SDMA overwrites the value of
the Current Buffer Length register with the last value of the internal length counter. This process
continues repeatedly until the SDMA has completed the current descriptor. The following table
describes the Current Buffer Length register bits.

Current Descriptor Pointer (TX_CURDESC_PTR, RX_CURDESC_PTR)
Offsets: 0x0C and 0x2C

The Current Descriptor Pointer register, one for transmit and one for receive, maintains the pointer to
the buffer descriptor that is currently being processed. The value was set either by the CPU when it first
initiated a DMA operation, or is copied from the Next Descriptor Pointer register upon completion of
the prior descriptor. This value is maintained by the SDMA as a pointer so that the SDMA can update
the status and application dependent fields of the descriptor after the buffer descriptor has been fully
processed. The following table describes the Current Descriptor Pointer register bits.

Tail Descriptor Pointer (TX_TAILDESC_PTR and RX_TAILDESC_PTR)
Offsets: 0x10 and 0x30

The Tail Descriptor Pointer register, one for transmit and one for receive, maintains the pointer to the
buffer descriptor chain tail. Tail Pointer Mode is always enabled; consequently, DMA operations will
halt when processing of the buffer descriptor pointed to by TAILDESC_PTR is completed. Writing to
this register starts DMA operations. The following table describes the Tail Descriptor Pointer register
bits.

Table 72: Current Buffer Length Register Description

Bit(s) Name Core
Access

Reset
Value Description

0:31
TX_CURBUF_LENGTH
and
RX_CURBUF_LENGTH

Read
0x0000
0000

Length in bytes of the current buffer being processed by SDMA.

Table 73: Current Descriptor Pointer Register Description

Bit(s) Name Core
Access

Reset
Value Description

0:31
TX_CURDESC_PTR
and
RX_CURDESC_PTR

Read/Write 0x00000000
An 8-word aligned pointer to the current buffer
descriptor being processed by the SDMA.

Table 74: Tail Descriptor Pointer Register Description

Bit(s) Name
Core

Access
Reset
Value

Description

0:31
TX_TAILDESC_PTR
and
RX_TAILDESC_PTR

Read/Write 0x00000000
An 8-word aligned pointer to the tail descriptor. The
software application writes to this field to initiate a DMA
transfer.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Channel Control Register (TX_CHNL_CTRL and RX_CHNL_CTRL)
Offsets: 0x14 and 0x34

The Channel Control register, one for transmit and one for receive, controls interrupt processing for the
particular channel. The following figure illustrates the Channel Control register, and the following
table describes the Channel Control register bits.

Figure Top x-ref 25

Figure 33: Channel Control Register

Table 75: Channel Control Register

Bit(s) Name
Core

Access
Reset
Value

Description

0:7 IRQTimeout Read/Write 0

Interrupt Delay Time-out Value
The maximum amount of time that an unreported packet is required to
wait until generating a Delay Interrupt (DlyIRQ) event. (Must remain
unchanged for the duration of an DMA operation.)

8:15 IRQCount Read/Write 00

Interrupt Coalescing Threshold Count Value
The number of packets that must be received to generate a Coalescing
Interrupt (ClscIrq) event. This value is loaded into the packet threshold
counter when LdIrqCnt = 1 and subsequently re-loaded whenever the
threshold count is reached.

16:20 Reserved Reserved - Read as zero.

21 Use1BitCnt Read/Write 0 Use 1 Bit Wide Counters. Currently Not Used.

22 UseIntOnEnd Read/Write 0

Use Interrupt On End: Selects between using the interrupt-on-end
mechanism or using the EOP mechanism for interrupt coalescing.
1 - Selects the interrupt-on-end mechanism
0 - Selects the EOP mechanism

23 LdIRQCnt Write 0

Load IRQ Count:
Writing a 1 to this field forces the loading of the Interrupt Coalescing
counters from the CHANNEL_CTRL.IrqCount[0:7] field. This is a self-
clearing field. Read as zero

24 IrqEn Read/Write 0
Master Interrupt Enable: When set, indicates that the DMA channel is
enabled to generate interrupts. This is the master enable for the
channel. Individual sources can be enabled and disabled separately.

25:28 Reserved Reserved - Read as zero

29 IrqErrEn Read/Write 0
Interrupt on Error Enable: When set, indicates that an interrupt will be
generated if an error occurs

30 IrqDlyEn Read/Write 0
Interrupt on Delay Enable: When set, indicates that an interrupt will be
generated when the time-out value is reached.

31 IrqCoalEn Read/Write 0
Interrupt on Count Enable: When set, indicates that an interrupt will be
generated when the interrupt coalescing threshold value is reached.

0

DS643_14_071307

ReservedReserved IrqCoalEn
IrqErrEn

LdlRQCnt
IrqErrEn

IrqDlyEnIRQCountIRQTimeout IrqEn
UseIntOnEnd

7 8 15 16 20 21 22 23 24 25 28 29 30 31
01.a) July 23, 2010 www.xilinx.com 161
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

162
Interrupt Status Register (TX_IRQ_REG and RX_IRQ_REG)
Offsets: 0x18 and 0x38

The Interrupt Status register, one for transmit and one for receive, indicates interrupt pending and
interrupt coalescing count values. This register is used by the software application also to acknowledge
pending interrupts by writing a 1 to clear the pending interrupts. The following figure illustrates the
Interrupt Status register, and the table that follows describes the Interrupt Status register bits.

Figure Top x-ref 26

Figure 34: Interrupt Status Register

Table 76: Interrupt Status Register

Bit(s) Name
Core

Access
Reset
Value

Description

0:7 DlyTmrValue Read 0
Delay Timer Value
This field contains the real time delay timer value.

8:15 ClscCntrValue Read FF
Coalesce Counter Value
This field contains the real time coalesce counter value.

16:17 Reserved Reserved - read as zero.

18:21 ClscCnt Read 0
Coalesce Interrupt Count
Indicates the number of events due to reaching the
interrupt coalesce threshold.

22:23 DlyCnt Read 0
Delay Interrupt Count
Indicates the number of events due to reaching the wait
bound delay time.

24:28 Reserved Reserved - read as zero

29 ErrIrq Read/Write 0
Error Interrupt Event
Indicates that an error has occurred. Writing a 1 to this bit
clears the interrupt.

30 DlyIrq Read/Write 0
Delay Interrupt Event
Indicates that delay time-out event has occurred. Writing a
1 to this bit clears the interrupt.

31 Coallrq Read/Write 0
Coalesce Interrupt Event.
Indicates that an interrupt event threshold count has been
reached. Writing a 1 to this bit clears the interrupt.

0

DS643_15_071307

ReservedReserved CoalIrq

DlyIrq

DlyCnt ErrIrq

ClscCntValueDlyTmrValue ClscCnt

7 8 15 16 20 21 22 23 24 28 29 30 3117 18 19
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Channel Status Register (TX_CHNL_STS and RX_CHNL_STS)
Offsets: 0x1C and 0x3C

The Channel Status register, one for transmit and one for receive, contains status for a particular
channel. The following figure illustrates the Channel Status register, and the table that follows
describes the Channel Status register bits.

Figure Top x-ref 27

Figure 35: Channel Status Register

Table 77: Channel Status Register

Bit(s) Name Core
Access

Reset
Value Description

0:9 Reserved Reserved - Read as zero

10 TailPErr Read 0
Tail Pointer Error: This bit indicates that Tail Pointer is NOT a valid
address. Valid addresses are between C_PI_BASEADDR and
C_PI_HIGHADDR.

11 CmpErr Read 0

Complete Error: This bit indicates a descriptor was fetched with the Cmplt
= 1 in the STS_CNTRL_APP0 field of the descriptor.
This error check is enabled by setting C_COMPLETED_ERR_RX and/or
C_COMPLETED_ERR_TX to 1 for the respective channel.

12 AddrErr Read 0
Address Error: This bit indicates the Current Buffer Address is NOT a valid
address. Valid addresses are between C_PI_BASEADDR and
C_PI_HIGHADDR.

13 NxtPErr Read 0
Next Descriptor Pointer Error: This bit indicates the Next Descriptor
Pointer is NOT a valid address. Valid addresses are between
C_PI_BASEADDR and C_PI_HIGHADDR.

14 CurPErr Read 0
Current Descriptor Pointer Error: This bit indicates the Current
Descriptor Pointer is NOT a valid address.Valid addresses are between
C_PI_BASEADDR and C_PI_HIGHADDR.

15 BsyWr Read 0
Busy Write Error: This bit indicates the Current Descriptor Pointer register
was written to while the DMA Engine was busy.

16:23 Reserved Reserved - Read as zero

24 Error Read 0
DMA Error: This bit indicates that an error occurred during DMA
operations. This bit is an OR’ing of error bits 10 to 15.

25 IOE Read 0
Interrupt On End: This bit is a copy of the corresponding bit in the
STS_CTRL_APP0 field of the descriptor.

26 SOE Read 0
Stop On End: This bit is a copy of the corresponding bit in the
STS_CTRL_APP0 field of the descriptor.

27 Cmplt Read 0
Complete: When set indicates that the DMA has transferred all data
defined by the current descriptor.

28 SOP Read 0

Start of Packet (SOP): Start of Packet (SOP): For transmit, the CPU sets
this bit in the descriptor to indicate that this is the first descriptor of a packet
to be transmitted. For Receive, this bit being set indicates that a valid SOP
was received on the LocalLink side.

0

DS643_16_080307

ReservedReserved Rsvd

EngBusySOPSOEErrorAddrErr
TailErr CurPErr

EOPIOE CmpltBsyWr
NxtPErr

CmpErr

15 16 23 24 28 29 30 319 10 11 12 13 14 25 26 27
01.a) July 23, 2010 www.xilinx.com 163
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

164
DMA Control Register
Offset: 0x40

The DMA Control register controls the DMA operation. The following figure illustrates the DMA
Control register, and the table that follows describes the DMA Control register bits.

29 EOP Read 0

End of Packet (EOP): For Transmit, the CPU sets this bit in the descriptor
to indicate that this is the last descriptor of a packet to be transmitted.
For Receive, this bit being set indicates that a valid EOP was received on
the LocalLink side.

30 EngBusy Read 0

Engine Busy: When set, indicates that the respective channel is busy with
a DMA operation.
Generally, software should not write any DMA registers while this bit is set.
Reading of registers is allowed.

31 Reserved Read Reserved - Read as zero.

Figure Top x-ref 28

Figure 36: DMA Control Register

Table 78: DMA Control Register

Bit(s) Name Core
Access

Reset
Value Description

0:26 Reserved 0 Reserved - read as zero

27 Reserved 1 Reserved - read as one

28 Reserved 1 Reserved - read as one

29 Reserved 1 Reserved - read as one

30 Reserved 0 Reserved - read as zero

31 SwReset Read/Write 0

Software Reset
Writing a 1 to this field forces the DMA engine to shutdown
and reset itself. After setting this bit, software must poll it
until the bit is cleared by the DMA. This indicates that the
reset process is done and the pipeline has been flushed
1= Reset DMA - Resets both Rx and Tx Channels
0= Normal Operation (default)

Table 77: Channel Status Register (Cont’d)

Bit(s) Name Core
Access

Reset
Value Description

0

DS643_17_071307

Reserved SwReset

Rsvd

‘1’

‘1’

‘1’

28 29 30 3126 27
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Processor Local Bus Version 4.6 PIM

The Processor Local Bus version 4.6 (PLB v4.6) PIM provides the interconnect from the PLB v4.6 bus to
the MPMC.

This sections has the following topics:

• PLB v4.6 PIM Features

• PLB v4.6 PIM Overview

• Supported NPI Transfer Types

• Supported PLB Master and Bus Widths

• Configuring PLB v4.6 for Point-To-Point or Shared Bus

• Configuring PLB v4.6 PIM SUBTYPES

• Supported Transactions by SUBTYPE

PLB v4.6 PIM Features

The PLB v4.6 PIM supports the following features:

• IBM CoreConnect 32-, 64-, and 128-bit PLB compatibility conforming to PLB v4.6 with Xilinx
simplifications. See "Reference Documents," page 229 for links to more information.

• Access by 32-, 64-, and 128-bit masters. The PLB data and address signals are labelled with big-
endian bit and byte ordering as illustrated in"Big-Endian Memory Data Types," page 94.

• Single, data-beat read and write data transfers

• Fixed-burst read and write data transfers

• 4- and 8-word, cacheline read and write transfers

• PLB Point-to-Point (P2P) configuration

• Supports 1:1 and 2:1 (MPMC:PIM) synchronous clock ratios (automatically detected during reset)

• PIM<Port_Num>_PLB_SAValid on PLB read transfers to minimize bubbles between reads

• 32-bit address offset (the optional address offset is added to the PLB transaction address to
compute the physical memory address to be accessed)

PLB v4.6 PIM Overview

PLB v4.6 PIM provides the interconnect from the PLB v4.6 bus to the MPMC.

Over NPI, PLB v4.6 PIM translates a PLB transaction into one or more NPI transactions. These NPI
transactions can be byte, half-word, word, 4- and 8-word, cacheline transactions. The NPI transactions
type can be 16 word bursts or 32 word bursts also, depending on the value of
C_SPLB<Port_Num>_NATIVE_DWIDTH.

If the generic C_SPLB<Port_Num>_NATIVE_DWIDTH is set to 64, the PIM requests 32 word NPI bursts
from MPMC; however, if C_SPLB<Port_Num>_NATIVE_DWIDTH is set to 32, the PIM will request 16
word NPI bursts from MPMC. The PLB v4.6 PIM translates PLB transactions into these discrete NPI
transactions. Because PLB bursts can have a fixed length ranging from 1 to 16 data beats and can start
at different addresses, the PIM must arrange PLB data to fit the available set of NPI transaction types.

The PLB v4.6 PIM is configured by EDK to various subtypes based on the port to which the PIM is
connected. The SUBTYPEs are DPLB, IPLB, Single, and PLB:

• The DPLB SUBTYPE is chosen when the PIM is connected to a PowerPC 405 processor DPLB1
port using a point-to-point connection.
01.a) July 23, 2010 www.xilinx.com 165
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
• The IPLB SUBTYPE is chosen when the PIM is connected to a PowerPC 405 processor IPLB1 port using a
point-to-point connection. When this sub type is chosen, the write FIFO logic in the MPMC data path is also
disabled (C_PI<Port_Num>_WR_FIFO_TYPE = DISABLED).

• The Single SUBTYPE is chosen when the PIM is connected to a PLB bus where all masters are not burst
capable. This is primarily selected in MicroBlaze systems where the PIM is connected to a bus with
MicroBlaze IPLB and DPLB ports.

• The PLB SUBTYPE is chosen in all other cases. This PLB PIM supports the full set of PLB transactions.

You can find information regarding the PIM SUBTYPES in "Configuring PLB v4.6 PIM SUBTYPES," page 168.

Supported NPI Transfer Types

Based on the setting of C_SPLB<Port_Num>_NATIVE_DWIDTH, the PLB v4.6 PIM can generate only certain types
of NPI transfers, as shown in the following table.

Table 79: Supported Transactions based on PIM Subtype and Native Width

C_SPLB<Port_Num>_NATIVE_DWIDTH=32 C_SPLB<Port_Num>_NATIVE_DWIDTH=64

Transaction Type

C_PIM<Port_Num>_SUBTYPE

Transaction Type

 C_PIM<Port_Num>_SUBTYPE

PLB DPLB IPLB Single PLB DPLB (1) IPLB(1) Single

Supported Supported

Single
Read Y N N Y

Single
Read Y Y N Y

Write Y N N Y Write Y Y N Y

4-wd Cacheline
Read Y N N N

4-wd Cacheline
Read Y N Y N

Write Y N N N Write Y N N N

8-wd Cacheline
Read Y N N N

8-wd Cacheline
Read Y Y Y N

Write Y N N N Write Y Y N N

16-wd Burst
Read Y N N N

16-wd Burst
Read N N N N

Write Y N N N Write N N N N

32-wd Burst
Read N N N N

32-wd Burst
Read Y N N N

Write N N N N Write Y N N N

1. Point-to-point configuration is required for the DPLB and IPLB subtypes where the C_SPLB<Port_Num>_NATIVE_DWIDTH=64.
166 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Supported PLB Master and Bus Widths

The following table shows the supported PLB master and bus widths. A 32-bit NATIVE_DWIDTH PIM can only
be used with a PLB bus where all masters and slaves on the bus are 32 bits. The 32-bit NATIVE_DWIDTH PIM is
intended for Spartan-3 based systems.

To reduce the number of cycles between read transactions, the PLB v4.6 PIM can accept PLB read transactions
when SPLB<Port_Num>_PLB_SAValid is asserted. This allows a subsequent MPMC request to be asserted after
the current request has been acknowledged.

Configuring PLB v4.6 for Point-To-Point or Shared Bus

The PLB v4.6 PIM can be configured as either a Point-To-Point (P2P) configuration in which there is only one PLB
master communication with the PLB v4.6 PIM or a Shared Bus configuration:

• In P2P configuration, the PLB v4.6 PIM responds to all addresses regardless of the
C_PIM<Port_Num>_HIGHADDR and C_PIM<Port_Num>_BASEADDR parameter values. The PLB address is
decoded when the PLB v4.6 PIM is operating in a shared bus configuration only.

• In the Shared Bus configuration, the PLB v4.6 PIM can transfer data from up to 16 masters to MPMC. An extra
cycle of latency is incurred when the PLB v4.6 PIM operates on a shared bus because PLB signals to the PLB
v4.6 PIM are registered to improve timing.

During memory initialization and calibration, the PIM will assert SPLB<Port_Num>_Sl_Wait or
SPLB<Port_Num>_Sl_Rearbitrate to hold off any PLB transactions until the memory is ready to process
transactions.

Table 80: Supported PLB Master and Bus Widths

C_SPLB<Port_Num>_NATIVE_DWIDTH=64 C_SPLB<Port_Num>_NATIVE_DWIDTH=32

C_SPLB<Port_Num>_DWIDTH C_SPLB<Port_Num>_
SMALLEST_MASTER Supported C_SPLB<Port_Num>

_DWIDTH
C_SPLB<Port_Num>
_SMALLEST_MASTE Supported

128 128 Y 128 128 N

128 64 Y 128 64 N

128 32 Y 128 32 N

64 64 Y 64 64 N

64 32 Y 64 32 N

32 32 N 32 32 Y
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 167
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Configuring PLB v4.6 PIM SUBTYPES

You can configure the PLB v4.6 PIM with various SUBTYPEs to optimize it for a set of supported transactions. In
most cases the tools will choose the appropriate PLB v4.6 PIM SUBTYPE automatically, based on the connectivity
of the system. The PLB v4.6 PIM SUBTYPEs are:

• 64-Bit Burst PIM

• Single word Read and Write transactions

• 4-word and 8-word, cacheline Read and Write transactions

• Fixed length burst transactions

• 32-Bit Burst PIM

• Single word Read and Write transactions

• 4-word and 8-word, cacheline Read and Write transactions

• Fixed length burst transactions

• 64-Bit Single PIM

• Single word Read and Write transactions (reduced size when burst support is not needed)

• 32-Bit Single PIM

• Single word Read and Write transactions (reduced size when burst support is not needed)

• DPLB

• Single word Read and Write transactions; and 8-word, cacheline Read and Write transactions

• IPLB

• 4-word and 8-word, cacheline Read transactions

Caution! When choosing a SUBTYPE, be sure the SUBTYPE supports all the PLB transaction types that will be issued
to the PLBv4.6 PIM. When an unsupported transaction is issued on the PLB bus, it is possible to cause the logic in the
PLBv4.6 PIM to hang, which would require a system reset to recover.

Supported Transactions by SUBTYPE

The supported transactions for each of the SUBTYPES are listed in the following table.

Table 81: Supported Transactions

SPLB_PLB_SIZE (0:3)

SPLB_PLB_SIZE
(0:3)

Description Read/Write
C_PIM<Port_Num>_SUBTYPE

PLB DPLB IPLB Single

0x0 Single Transactions
Read Y Y N Y

Write Y Y N Y

0x1 4-wd Cacheline
Read Y N Y N

Write Y N Y N

0x2 8-wd Cacheline
Read Y Y Y N

Write Y Y Y N

0x3 16-wd Cacheline
Read N N N N

Write N N N N

0x4 Reserved
Read N N N N

Write N N N N
168 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SPLB_PLB_SIZE (0:3)

SPLB_PLB_SIZE
(0:3) Description Read/Write

C_PIM<Port_Num>_SUBTYPE

PLB DPLB IPLB Single

0x6 Reserved
Read N N N N

Write N N N N

0x7 Reserved
Read N N N N

Write N N N N

0x8 Byte Bursts
Read N N N N

Write N N N N

0x9 Half Word Bursts
Read N N N N

Write N N N N

0xA Word Bursts
Read Y N N N

Write Y N N N

0xB Double Word Bursts
Read Y N N N

Write Y N N N

0xC Quad Word Bursts
Read Y N N N

Write Y N N N

0xD Octal Word Bursts
Read N N N N

Write N N N N

0xE Reserved
Read N N N N

Write N N N N

0xF Reserved
Read N N N N

Write N N N N

SPLB_PLB_TYPE (0:2 000b Memory Transfer
Read Y Y Y Y

Write Y Y Y Y

001b-111b N/A Read N N N N

Indeterminate Burst
Read N N N N

Write N N N N

Burst request of 2-16 databeats
Read Y N N N

Write Y N N N

Burst request of > 16 databeats
Read N N N N

Write N N N N

Table 81: Supported Transactions (Cont’d)
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 169
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PowerPC 440 Memory Controller PIM

The PowerPC 440 Memory Controller (PPC440MC) PIM connects MPMC directly to the memory interface port of
the PowerPC 440 block in Virtex-5 FXT devices.

Note: The ppc440mc_ddr2 IP core should be used instead of MPMC whenever possible. The ppc440mc_ddr2 IP core is
optimized as a single port DDR2 memory for the PowerPC 440 processor memory interface. The ppc440mc_ddr2 IP core
offers lower latency and higher FMAX than MPMC. MPMC should only be used when SDRAM/DDR memory support or multiple
memory ports are needed.

This topic contains the following subsections:

• PPC440MC Features

• Supported PPC440MC Interface Configuration

• PPC440MC Overview

• PPC440MC Design Implementation

• PPC440MC Parameter and Port Dependencies

• PPC440MC Burstwidth and Burstlength by Memory Type/Width Dependencies

PPC440MC Features
• Supports The Virtex-5, V5FXT, memory interface.

• Supports 32-bit and 64-bit NPI interfaces using 32-bit and 64-bit PPC440MC data widths.

• Runs with 1:1 clocking with NPI and MIB.

• Provides parameterized burst sizes of 2, 4, and 8.

• Supports read data latency of 0, 1, and 2 clocks.

• Can operate at a 1:1, 1:2, 1:3, or 1:4 clock ratio with respect to the PowerPC processor crossbar interconnect
clock (CPMINTERCONNECTCLK)

Supported PPC440MC Interface Configuration

The PPC440MC PIM requires the following configuration settings in the MI_CONTROL register of the PowerPC 440
Block. It is recommended to set the initial value using the C_PPC440MC_CONTROL MHS parameter of the PPC440
instance.

Table 82: Required PPC440 Block MI_CONTROL/C_PPC440MC_CONTROL Register Settings

Bit(s) Name
Required

Value
Setting

 Description

0 enable 1 Turn on the PPC440MC interface.

1 Rowconflictholdenable 0 PPC440MC PIM does not support row/bank management.

2 Bankconflictholdenable 0 PPC440MC PIM does not support row/bank management.

3 Directionconflictholdenable 0 PPC440MC PIM does not support row/bank management.

4:5 Autoholdduration 00 PPC440MC PIM only supports this autohold mode.

6 2:3 Clock Ratio mode 0
PPC440MC PIM only supports integer clock ratios. It does not support a
clock ratio of 2:3 with respect to CPMINTERCONNECTCLK.

7 overlaprddwr 0 Overlapped transfers and QDR mode are not supported.

8:9 Burstwidth
Depends on
memory type

and width

See "PPC440MC Burstwidth and Burstlength by Memory Type/Width
Dependencies," page 173 for supported values. The range of allowable
values depend on memory type and width.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 170
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
All bits not shown in "Supported PLB Master and Bus Widths," page 167 can normally be set by the users as
described in the “Embedded Processor Block” of the Virtex-5 FPGA Reference Guide (a link to this document is
provided in"Reference Documents," page 229.)

10:11 Burstlength
Depends on
memory type

and width

See "PPC440MC Burstwidth and Burstlength by Memory Type/Width
Dependencies," page 173 for supported values. The range of allowable
values depend on memory type and width.

12:15 Write Data Delay (WDD) 0000 PPC440MC PIM supports this WDD mode only.

16 RMW 0 PPC440MC PIM supports this setting only.

17:23 Reserved 0000000 Reserved

24 PLB Priority Enable 0, 1
1 = Default BSB selection.
If 0, SPLB ports PLB Mn_Priority is not used for arbitration.

25:27 Reserved 000 Reserved

28 Pipelined Read Enable 0, 1
1 = default BSB selection which allows multiple read commands to be
accepted.
0 = multiple read commands are not accepted.

29 Pipelined Write Enable 0, 1
1 = default BSB selection which allows multiple write commands to be
accepted.
0 = multiple write commands are not accepted.

30:31 Reserved 11 Reserved

Table 82: Required PPC440 Block MI_CONTROL/C_PPC440MC_CONTROL Register Settings (Cont’d)

Bit(s) Name
Required

Value
Setting

 Description
171 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

172
PPC440MC Overview

The PPC440MC PIM is the interface between the NPI and the PowerPC 440 processor memory interface
block, as shown in the following figure.

The functional units within the PPC440MC PIM are:

• Addr Path - generates address, address request (MPMC_PIM_AddrReq), readnotwrite, and size
(MPMC_PIM_Size) signals. The Addr Path also generates addressreadytoaccept information
for PPC440MC.

• Write Data Path - generates writedata, writedatvalid (push) and byteenable.

• Read Data Path - generates readdata and readdatavalid for PPC440MC. The Read Data Path
also generates the RdFIFO_POP and RdModWr.

PPC440MC Design Implementation

The PPC440MC PIM is available in the Virtex-5 FXT family FPGAs only.

PPC440MC Parameter and Port Dependencies

Dependencies exist between the PPC440MC PIM core design parameters and the I/O signals. In
addition, when certain features are parameterized out of the design, the related logic will no longer be
a part of the design. The unused input signals and related output signals are set to a specified value.

Figure Top x-ref 29

Figure 37: PPC440MC Block Diagram

PPC440MC<Port_Num>_MIMCAddress[0:35] (1)

PPC440MC<Port_Num>_MIMCAddressValid

PPC440MC<Port_Num>_MIMCByteEnable[0:15]

PPC440MC<Port_Num>_MIMCWriteData[0:127]

PPC440MC<Port_Num>_MIMCWriteDataValid

PPC440MC<Port_Num>_MCMIAddrReadytoAccept

PPC440MC<Port_Num>_MCMIReadData[0:127]

PPC440MC<Port_Num>_MCMIReadDataValid

PPC440MC<Port_Num>_MIMCReadNotWrite
M
I
B

PPC440MC PIM
N
P
I

X10929
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
PPC440MC Burstwidth and Burstlength by Memory Type/Width Dependencies

The following table shows the required setting for Burstwidth and the allowable settings for
Burstlength in relation to memory type and width.

Table 83: Burstwidth and Burstlength by Memory Type and Width

Memory Type Memory Width

Required Setting for
Burstwidth Field of
PPC440 MI_Control

Register (1)

Allowable Settings for Burstlength
Field of PPC440 MI_Control

Register

SDRAM 8 32 4, 8

SDRAM 16 32 4, 8

SDRAM 32 32 4, 8

SDRAM 64 64 2, 4, 8

DDR/DDR2 8 32 4, 8

DDR/DDR2 16 32 4, 8

DDR/DDR2 32 64 2, 4, 8

DDR/DDR2 64 64 4, 8

1. The MPMC data path architecture does not support a native 128 bit NPI interface for the PPC440MC PIM; therefore, the maximum
data path width between MPMC and the PowerPC 440 block MC interface is limited to 64 bits. This might limit the performance gain
seen between 32-bit and 64-bit DDR/DDR2. The ppc440mc_ddr2 IP core does not have this limitation and supports a full 128-bit
data path with a 64-bit DDR2 memory.
01.a) July 23, 2010 www.xilinx.com 173
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

174
Video Frame Buffer Controller PIM

The Video Frame Buffer Controller (VFBC) allows a user IP to read and write data in two dimensional
(2D) sets regardless of the size or the organization of external memory transactions. The VFBC can be
used in video applications where hardware control of 2D data is needed to achieve real time operation.

Typical video applications are: motion estimation, video scaling, on-screen displays, and video capture
used in video surveillance, video conferencing and video broadcast.

The following subsections describe:

• VFBC Features

• VFBC Overview

• VFBC Command Interface

• VFBC Write Data Interface

• VFBC Read Data Interface

• VFBC Transfer Examples

• VFBC Synthesis Considerations

• VFBC Timing Constraints

VFBC Features
• 2D data transfers (32,640 bytes x 16,777,216 lines maximum and two 32-bit words minimum.)

• Asynchronous FIFO command interface.

• Separate asynchronous FIFO write and read data interfaces.

• Configurable 32- or 64-bit NPI data width.

• Independently configurable write and read data widths of 8-, 16-, 32-, or 64-bit.

• Configurable FIFO depths.

• Configurable almost full and almost empty flags.

• Independent write, read, and command FIFO resets.

• Flushable data FIFOs.

VFBC Overview

The VFBC is a connection layer between video clients and the MPMC. Because video systems are
inherently heterogeneous (given the wide variety of video formats and transmission), the VFBC
provides key features to address the typical video system.

The VFBC also includes separate Asynchronous FIFO interfaces for command input, write data input,
and read data output. This is useful to decouple the video IP from the memory clock domain.

The following diagram shows the VFBC interfaces. The interfaces are discussed in more detail below.
Refer to "VFBC PIM I/O Signal," page 35 for more information on the individual signals for each VFBC
interface.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following figure shows a block diagram of the VFBC interface.

Data transfers to and from the VFBC data FIFOs are controlled by the command interface. Commands
are written into the command interface FIFO in 4-word packets. This four word packet controls the
direction (read or write) and the 2D size of the transfer, and also includes the following information:
start address of the 2D transfer, X-size in bytes, Y-size in lines, and the width (Stride) of the video frame.

The VFBC data and address signals are labeled with little-endian bit/byte ordering as illustrated in
"Little-Endian Memory Data Types," page 92. The Least Significant Bit (LSB) of a 32-bit word is bit zero.

VFBC Command Interface

The command interface is implemented as an asynchronous FIFO. Commands are written into the
command interface FIFO in 4-word packets. Each command packet word is pushed onto the command
FIFO during the clock cycle the VFBC<Port_Num>_Cmd_Write signal is active. It is not necessary to
write the command words during consecutive clock cycles; VFBC acts on the commands after the last
command word is written. The command packets can be written at the same time as data transfers to
the data interface FIFOs. "Required PPC440 Block MI_CONTROL/C_PPC440MC_CONTROL Register
Settings," page 170 shows the command packet data structure.

Figure Top x-ref 30

Figure 38: VFBC High-Level Block Diagram

Command
FIFO

Interface

Write Data
FIFO

Interface

Read Data
FIFO

Interface

NPI
Formatter

Burst Controller

Command
Fetch

NPI

NPI
Signals

VFBC

Command
Signals

Read Data
Signals

Write Data
Signals

X10910
01.a) July 23, 2010 www.xilinx.com 175
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

176
The VFBC divides each 2D transfer into 32-word transfers for the MPMC. The following diagram
shows a video frame stored linearly in external memory. The frame contains a rectangular region of
interest to be transferred by the VFBC.

The first word (Command Word 0, bits 14:0) includes the X Size of the transfer, which is the number of
consecutive linear bytes of the transaction per line. The second word (Command Word 1, bits 31:0)
includes the direction of the transfer and the start address. Bit 31 is, or Write_NotRead, denotes a write
transaction if high and a read transaction if low. Bits 30:0 are the physical memory byte start address,
which is the start address of the transfer.

The third word (Command Word 2, bits 23:0) includes the Y Size of the transfer, which is the number of
lines of the transfer minus one. Figure 39 shows the Y Size as 12 lines. The value set in bits 23:0 of the
third word must be 0x0000000b for this transfer.

The fourth word (Command Word 3, bits 23:0) includes the Stride of the transfer, which is the number
of bytes to skip between the start of each line of the transfer. This is the line length (in bytes) of the 2D
storage in external memory.

Table 84: Command Packet Data Structure

Command Packet

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size(1)

31
Write_NotRead

30:0
Start

Address(1)

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride(1)

1. The X Size, Start Address and Stride must be aligned to a 32-word boundary. These values must be a multiple of 128 bytes and
require that bits [6:0] be '0'.

Figure Top x-ref 312D T

Figure 39: 2D Transfers

2

Full Video Frame Stored Linearly In External MemoryStart
Address

D Transfer Region

X Size

Y Size

Stride

X10911
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
VFBC Write Data Interface

The write data interface is an asynchronous FIFO. The FIFO depth, data width, and the almost full flag
are configurable. The data width can be configured as 8-, 16-, 32-, or 64-bits. Data is pushed onto the
FIFO during the same clock cycle as when the VFBC<Port_Num>_Wd_Write signal is active.

• The VFBC<Port_Num>_Wd_Flush signal flushes all data currently in the FIFO but keeps the
current write command active in the command FIFO. Asserting the FIFO Flush will return the
internal read/write FIFO pointers to zero.

• The VFBC<Port_Num>_Wd_Reset signal flushes data in the FIFO and also flushes the write
command from the command FIFO.

• The VFBC<Port_Num>_Wd_End_Burst signal is used only when the transfer is not a multiple of
the burst size. If the transfer ends on a boundary that is not 32-word aligned, this signal must be
asserted high during the last word transferred. The following figure shows a typical VFBC write
operation and provides an example of VFBC Write Timing. The actions of the Write data interface
are enumerated below the figure.

1. Bit 31 in command word C1 must be set to 1 for a write operation.

2. As shown in Figure 40, the command words C0, C1, C2, and C3 are being written during a data
write. The command words can be written before, during, or after the data is written.

3. The figure also shows one cycle between VFBC<Port_Num>_Wd_End_Burst and the next burst,
although zero to any number of cycles can exist between burst end and the next burst. The number
of cycles between bursts is controlled by the VFBC<Port_Num>_Wd_Write signal. This is the FIFO
data push signal asserted by the VFBC client.

4. If the VFBC<Port_Num>_Wd_End_Burst signal is used, it must be asserted during the same cycle
as the last valid data write and can be on D0-D7 cycles.

5. The VFBC<Port_Num>_Wd_End_Burst signal is optional in this diagram and could be set low
always. This signal needs to be used only if the transfer does not end on a 32-word boundary.

6. The VFBC can accept a data transfer on every clock cycle where the VFBC Write FIFO is not Full
and that the MPMC memory interface throughput can accommodate the data rate of the VFBC
client.

Figure Top x-ref 32

Figure 40: VFBC Write Timing

C0

VFBC<Port_Num >_Cmd_Clk/Wd_Clk

VFBC<Port_Num>_Cmd_Full (Out)

VFBC<Port_Num >_Cmd_Write

VFBC<Port_Num>_Cmd_Data[31:0] C1 C2 C3

VFBC<Port_Num>_Cmd_Reset/Wd_Reset

VFBC<Port_Num>_Wd_Flush

VFBC<Port_Num>_Wd_Data

VFBC<Port_Num>_Wd_Write

D0 D1 D3D2 D5 D6 D7D4
VFBC<Port_Num>_Wd_End_Burst

D0 D1 D3D2 D5 D6 D7D4

VFBC<Port_Num>_Wd_Full (Out)

C0 C1 C2 C3

VFBC<Port_Num>_Wd_Almost_Full (Out)

X10912
01.a) July 23, 2010 www.xilinx.com 177
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

178
VFBC Read Data Interface

The read data interface is an asynchronous FIFO with a configurable depth, data width, and almost
empty flag. The data width can be configured as 8-, 16-, 32-, or 64-bits.

Data is popped off of the FIFO during the same clock cycle as when the VFBC<Port_Num>_Rd_Read
signal is active. The VFBC<Port_Num>_Rd_Flush signal flushes the data that is in the FIFO but keeps
the current read command active in the command FIFO. Asserting the FIFO Flush will return the
internal read/write FIFO pointers to zero. The VFBC<Port_Num>_Rd_Reset signal is used to flush the
data in the FIFO and also flush the read command from the command FIFO. The
VFBC<Port_Num>_Rd_End_Burst signal is used only when the transfer is not a multiple of the burst
size. If the transfer ends on a boundary that is not 32-word aligned, this signal must be asserted high
during the last word transferred.

The following figure shows a typical Read operation. Notes on the operation are listed after the figure.

Note:

1. Bit 31 in Command Word C1 must be set to zero for this to be a Read operation.

2. The Command Words C0, C1, C2, and C3 must be written before the data has can be read from the
data FIFO.

3. The Command Words can be written during a read operation for the next Read operation.

4. Figure 41 shows one cycle between VFBC<Port_Num>_Rd_End_Burst and the next burst;
although, zero to any number of cycles can exist between read transactions.

5. If the VFBC<Port_Num>_Rd_End_Burst signal is used, it must be asserted during the same cycle
as the last valid data read and can be on D0-D7 cycles.

6. The VFBC<Port_Num>_Rd_End_Burst signal is optional in this diagram and could be always set
low. VFBC<Port_Num>_Rd_End_Burst needs to be used only if the transfer does not end on a 32-
word boundary.

7. The VFBC can accept a data transfer on every clock cycle given that VFBC Read FIFO is not Empty
and that the MPMC memory interface throughput can accommodate the data rate of the VFBC
client.

Figure Top x-ref 33

Figure 41: VFBC Read Timing

 VFBC<Port_NUM>_Cmd_Clk/Rd_Clk

VFBC<Port_NUM>_Cmd_Reset/Rd_Reset

VFBC<Port_NUM>_Rd_Data (Out)

VFBC<Port_NUM>_Rd_Read

D0 D1 D3D2 D5 D6 D7D4

VFBC<Port_NUM>_Rd_End_Burst

D0 D1 D3D2 D5 D6 D7D4

VFBC<Port_NUM>_Rd_Empty (Out)

C0

VFBC<Port_NUM>_Cmd_Full (Out)

VFBC<Port_NUM>_Cmd_Write

VFBC<Port_NUM>_Cmd_Data[31:0] C1 C2 C3 C0 C1 C2 C3

VFBC<Port_NUM>_Rd_Almost_Empty (Out)

X10913
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
VFBC Transfer Examples

This section provides examples of typical video applications, the VFBC setup used to accomplish these
applications, and the resultant transfers.

Frame Mode 1080p to VGA Window

The following figure is an example of a 1080p @ 60fps video source being written to a frame store in
external memory. A VGA@ 60fps display is reading a 640x480 window of the 1920x1080 source video
from the frame store.

This application would require two VFBC PIMs, one for writing the 1080p source and one for the VGA
display. The following figure shows the video frame stored in external memory.

In this example, the 1080p source video frame is stored at address 0x10000000. Assuming that each
pixel is stored at 32-bits-per-pixel resolution, each pixel is then 4 bytes. Because the X Size is stored in
number of bytes, the X Size is 1920*4 (7680 bytes). This corresponds to the hexadecimal number of
0x1E00.

In this case the X Size and the Stride (also stored in number of bytes) are the same value, 0x1E00. The Y
Size is stored as the number of lines minus 1, 1080 – 1 (1079) or the hexadecimal number 0x437.

Figure 42: 1080p Frame to VGA Window

VGA Read Transfer Region

640

480

1920

1080p Video Frame Stored in External Memory
Origin Byte
Address

0x1000_0000

1080

120

360

X10924
01.a) July 23, 2010 www.xilinx.com 179
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

180
The following table shows the command packet for the 1080p source video. This packet could be
written to the VFBC during each source video blank interval, for example:

The VGA display in this example expects to read a 640x480 portion of the 1080p source from the
external frame store starting from the 360th pixel on the 120th line. The X Size for the display is 640*4
(2560 bytes). This corresponds to the hexadecimal number 1400. The Stride remains the same as the
1080p source command, 0x1E00 (or 1920*4) because the video is stored as a 1080p frame in external
memory. The Y Size is 480 – 1 (479) or the hexadecimal number 0x1DF.

The Start Address for the VGA video display includes the line and pixel offset information and is
calculated by adding (120*1920 + 360)*4 to the origin or base address of the 1080p frame store. This is
corresponds to a final start address of 0x100E_15A0.

The following table shows the command packet for the VGA video display hardware.

Note: The Write_NotRead bit in Command Word 1 is now zero to denote a read transfer.

Several video functions can be performed by changing the Start Address within Command Word 1
during each video blank interval. For example, to:

• Cycle through multiple frame stores in external memory

• Perform a pan-scan on a VGA display of a rescaled 16:9 source when combined with video scaler

Line Mode 720p

The following example is of a 720p frame being read from external memory as individual lines. This
example shows one transfer which is repeated for each line in the video. Each 720p video frame
includes 720 line transfers. Each transfer has a different Start Address.

At the beginning of each line during the horizontal blank interval, the VFBC command interface and
read interface must be reset for at least two clock cycles. Following the reset, the read command is
written to the VFBC command interface. The VFBC read interface becomes non-empty several cycles
following the command and data can be popped off of the read interface FIFO.

Table 85: 1080p Source Video Command Packet Data Structure

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size

31
Write_NotRea

d

30:0
Start

Address

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride

0x0000_1E00 0x9000_0000 0x0000_0437 0x0000_1E00

Table 86: VGA Video Display Command Packet Data Structure

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size

31
Write_NotRead

30:0
Start

Address

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride

0x0000_A00 0x100E_15A0 0x0000_01DF 0x0000_1E00
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
The following figure shows a transfer for a single 720p line.

Note: The VFBC<Port_Num>_Rd_End_Burst signal is optional but can be asserted high during the last cycle
that the VFBC<Port_Num>_Rd_Rd_Read is asserted high per line transfer. In this example n=1280.

The following table shows the command words written to the command interface during the
horizontal blank interval for the transfer of the first 720 line. The X Size is 1280*4 bytes. The Y Size must
be zero (denoting a single line transfer) and the Stride is ignored and can be any value. This example
shows the Stride set to zero. The next line transfer has a Start Address of 0x1000_1400. Each subsequent
line transfer Start Address increments by 0x1400 during each horizontal blank interval.

Simple Interlacing and De-interlacing (Field-Jam) Example

You can use the VFBC PIM for simple video processing such as interlacing or de-interlacing.

The following table shows the VFBC commands to write a 1080i source into a 10080p frame store.
In this example, the X Size is set to 1920*4 (1E00). The Y size is set to 540-1 (0x21B) because a 1080i field
contains 540 lines.

There is a different VFBC command for each top and bottom field. The data is interleaved into the
frame store by configuring the Stride to be two line lengths (7680*2, or 0x3C00) and offsetting the
bottom field Start Address by 1920*4 (1E00).

The 1080p command is similar to the 1080i command packets, except the Stride is now a single 1080p
line, 1920*4 (1E00), the same as the X Size. The Y Size is set to 1080-1 (0x437).

Figure Top x-ref 34

Figure 43: Line Mode 720p Transfer

Table 87: 720p Line Command Packet

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size

31
Write_NotRead

30:0
Start Address

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride

0x0000_1400 0x1000_000 0x0000_000 0x0000_0000

Table 88: 1080i Top Field Command Packet

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size

31
Write_NotRead

30:0
Start Address

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride

0x0000_1E00 0x9000_000 0x0000_21B 0x000_3C00

VFBC<Port_NUM>_Cmd_Clk/Rd_Clk

VFBC<Port_NUM>_Cmd_Reset/Rd_Reset

VFBC<Port_NUM>_Rd_Data (Out)

VFBC<Port_NUM>_Rd_Read

D0 D1 D3D2 D5 D6 D7D4

VFBC<Port_NUM>_Rd_End_Burst

Dn-1D8 D10D9 Dn-4 Dn-3 Dn-2D4

VFBC<Port_NUM>_Rd_Empty (Out)

C0

VFBC<Port_NUM>_Cmd_Write

VFBC<Port_NUM>_Cmd_Data[31:0] C1 C2 C3

H_Blank

X10925
01.a) July 23, 2010 www.xilinx.com 181
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

182
The Start Address is the same start address as the first line of the 1080i top field (0x1000_0000). The
following table shows the 1080p command packet.

For more information on VFBC transfers, HDL to interface to a VFBC, and example systems using a
VFBC and multiple VFBC PIMs, refer to the Video Starter Kit on the Xilinx web site.
The "Reference Documents," page 229 contains a link to that site.

VFBC Synthesis Considerations

The following table shows the maximum frequency for the VFBC interface clocks,
VFBC<Port_Num>_Cmd_Clk, VFBC<Port_Num>_Wd_Clk and VFBC<Port_Num>_Rd_Clk.

The VFBC interface clocks can have a higher or lower frequency than the MPMC_Clk0. Each VFBC
interface is asynchronous from the MPMC_Clk0 to support typical video clocks such as 27MHz or
74.25MHz. Higher frequencies than those listed in Table 87 might be achievable but results are
dependent on device, utilization, and VFBC configuration.

VFBC Timing Constraints

MPMC provides a Tcl script that generates the timing constraints within a UCF file automatically for
the VFBC PIM. For the timing constraints to be set correctly, the clock frequency of MPMC_Clk0 must be
specified in the MHS file. The MHS file must have the CLK_FREQ value set for all input clock ports. The
following code snippet is an example of an MHS file PORT declaration showing the direction as Input
(I) and the CLK_FREQ set:

PORT display_clk_pin = display_clk, DIR = I, SIGIS = CLK, CLK_FREQ = 27000000,
BUFFER_TYPE = IBUFG

If the clock frequency is not set, the automatically generated VFBC timing constraints will assume the
frequencies listed in Table 87, page 181 for the given device family.

Table 89: 1080p Bottom Field Command Packet

Command Word 0 Command Word 1 Command Word 2 Command Word 3

31:15
Reserved

14:0
X Size

31
Write_NotRead

30:0
Start Address

31:24
Reserved

23:0
Y Size

31:24
Reserved

23:0
Stride

0x0000_1E00 0x1000_000 0x0000_437 0x0000_1E00

Table 90: Maximum VFBC Clock Frequencies by FPGA Family

FPGA Family Clock FMAX Notes

Spartan-3A DSP 133 MHz With FIFO depths of 1024 32-bit words or fewer.

Virtex-4 167 MHz

Virtex-5 200 Mhz
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Native Port Interface PIM

This NPI section covers the following topics:

• NPI PIM Features

• Connecting a Custom PIM to an NPI PIM

• NPI Design Restrictions and Recommendations

• NPI Clock Requirements

• Configuring the NPI PIM

• NPI Timing Diagrams

NPI PIM Features

The Native Port Interface (NPI) PIM:

• Allows you to extend the capabilities of MPMC to meet your own design needs.

• Offers a simple interface to memory that can easily be adapted to nearly any protocol.

• Provides address, data, and control signals to enable read and write requests for memory.

• Allows simultaneous push and pull of data from the port FIFOs.

• Has a configurable data width of 32 or 64 bits.

• When using 32-bit NPI, MPMC supports the following transfer sizes: byte, half-word, word, 4-
word cacheline, 8-word cacheline, 16-word bursts, 32-word bursts, and 64-word bursts when
using block RAM FIFOs. See "Restrictions on 64-Word Burst Transfers," page 186 for more
information.

• When using 64-bit NPI, MPMC supports the following transfer sizes: byte, half-word, word,
double-word, 4-word cacheline, 8-word cacheline, 16-word bursts, 32-word bursts, and 64-word
bursts.

• Runs only at a 1:1 clock ratio to the MPMC memory clock (PORT MPMC_Clk0); a 1:2 clock ratio is
not supported.

System design parameters are specified in the "Design Parameters," page 3 and NPI Port signals are
listed in "PIM I/O Signals," page 28, respectively.

It is recommended that you review the"Using MPMC in Standalone Systems," page 59 before designing
a custom PIM. For more information about using the NPI PIM, refer to Answer Record #24912. A link
to the Answer Record is located in the "Reference Documents," page 229.

Connecting a Custom PIM to an NPI PIM

The parameters that will help you connect your custom PIM to the NPI PIM are:

• C_PIM<Port_Num>_DATA_WIDTH is set to either 32 or 64. This parameter specifies the width of
PIM<Port_Num>_WrFIFO_Data and PIM<Port_Num>_RdFIFO_Data ports. The NPI data and
address signals are labeled with little-endian bit/byte ordering as illustrated in "Little-Endian
Memory Data Types," page 92.

• C_PIM<Port_Num>_BASETYPE must be set to NPI (4).
01.a) July 23, 2010 www.xilinx.com 183
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

184
NPI Design Restrictions and Recommendations

The following design restrictions in the NPI PIM are described the subsequent sections:

• Restrictions on Byte, Half-Word, Word, and Double-Word Write Transfers

• Restrictions between PIM<Port_Num>_AddrReq and PIM<Port_Num>_WrFIFO_Push

• Restrictions on Pipelining of Address Requests

• Restrictions on Address Alignment

• Restrictions on SRL FIFOs

• Restrictions on block RAM (BRAM) FIFOs

• Restrictions on 64-Word Burst Transfers

• Recommendation for Improving Write Latency

Restrictions on Byte, Half-Word, Word, and Double-Word Write Transfers

The address phase, write data phase, and read data phase are independent unless MPMC is configured
with the following settings:

• C_PIM<Port_Num>_DATA_WIDTH is set to 32 and C_MEM_DATA_WIDTH is set to 32 or 64, and
using DDR or DDR2 memory.

• C_PIM<Port_Num>_DATA_WIDTH is set to 32 and C_MEM_DATA_WIDTH is set to 64 and using
SDRAM memory.

• C_PIM<Port_Num>_DATA_WIDTH is set to 64 and C_MEM_DATA_WIDTH is set to 64, and using DDR
or DDR2 memory.

• C_PIM<Port_Num>_DATA_WIDTH is set to 32 and C_MEM_DATA_WIDTH is set to 16 or 32, and using
Virtex-6 DDR2 or DDR3 memory.

• C_PIM<Port_Num>_DATA_WIDTH is set to 64 and C_MEM_DATA_WIDTH is set to 32 and using
Virtex-6 DDR2 or DDR3 memory.

If one of these cases exists, the following restrictions must be adhered to:

• The PIM<Port_Num>_WrFIFO_Push must occur a minimum of one cycle after the
PIM<Port_Num>_AddrAck when requesting either a byte, half-word, word or double-word write
transfer.

• Any PIM<Port_Num>_WrFIFO_Push corresponding to previous requests must be asserted before
requesting a new byte, half-word, word or double-word write transfer.

Restrictions between PIM<Port_Num>_AddrReq and PIM<Port_Num>_WrFIFO_Push

Due to the definition of PIM<Port_Num>_AddrReq, write data must be pushed into the write FIFOs
before it is required by the memory. For safest operation, assert the address request after all data has
been pushed into the write FIFOs, as shown in "64-bit NPI Timing Diagrams," page 187. See the
"Restrictions on Byte, Half-Word, Word, and Double-Word Write Transfers," page 184 for exceptions.

Restrictions on Pipelining of Address Requests

A FIFO that is controlling the PIM<Port_Num>_RdFIFO_RdWdAddr signal will store up to 4 read
address requests only, regardless of transfer size; consequently, an NPI master is not allowed to queue
more than 4 read requests without popping the corresponding data out of the Read FIFO.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Restrictions on Address Alignment

NPI transactions must have the PIM<Port_Num>_Addr address aligned to the size of the transactions,
as specified by PIM<Port_Num>_Size. For example, a 32-word burst must have
PIM<Port_Num>_Addr[6:0] set to 0.

Burst writes to unaligned addresses can be performed by writing pad data to
PIM<Port_Num>_WrFIFO_Data and preventing the corresponding data from being committed by de-
asserting PIM<Port_Num>_WrFIFO_BE. See "Address Path," page 64 for address alignment
requirements.

Restrictions on SRL FIFOs

The user logic must prevent write FIFO overflows for NPI writes, facilitated by the use of the
PIM<Port_Num>_WrFIFO_AlmostFull signal. MPMC does not prevent Read FIFO overflows when
using the SRL FIFOs. The SRL FIFO can hold up to 64 words (64-bit NPI) or 32 words (32-bit NPI).
Depending on the burst sizes being used, ensure that the total size of outstanding Read quests does not
exceed the capacity of the SRL FIFO. For example, if 32-word bursts and 64-bit NPI are used, do not
request more that two transactions with PIM<Port_Num>_AddrReq before reading out all 32 words of
data from the first transaction.

Restrictions on block RAM (BRAM) FIFOs

The implementation of BRAM FIFOs does not contain a valid PIM<Port_Num>_WrFIFO_AlmostFull
signal, nor automatic throttling of PIM<Port_Num>_AddrAck during Reads. These optimizations were
performed to improve the maximum MPMC clock frequency and result in restrictions for both NPI
Reads and Writes as follows:

• For Reads, MPMC with BRAM FIFOs does not check how much data is in the Read FIFO before
asserting the address acknowledge; consequently, an NPI master is not allowed to queue Read
requests that total more than 1024 bytes of data without popping the corresponding data out of the
FIFOs. The Read FIFOs will hold up to 1024 bytes of data, corresponding to four 64-word
transfers. A further 64-word read request without popping earlier requests will overflow the read
FIFO past 1024 bytes of data.

• For Writes, the NPI master is not allowed to queue up more than 1024 bytes of data in the Write
FIFOs and the PIM<Port_Num>_WrFIFO_AlmostFull signal cannot be used.
Consequently, there are options for ensuring the FIFOs will not overflow:

• The first option is to push 1024 or less bytes of data into the Write FIFO, perform all address
requests associated with this data, and then wait for the PIM<Port_Num>_WrFIFO_Empty to
be asserted before pushing more data.

• The second option is to push one transaction of data into the FIFOs, assert the address request
on the last data beat of the transfer, and then wait for the address acknowledge before pushing
more data into the FIFO. Waiting for the previous address acknowledge before pushing more
data into the FIFO prevents overflows. This is due to the maximum size of MPMC requests,
the BRAM Write FIFO size, and the address acknowledge behavior which is described in the
next option.

• A third, more aggressive operation of the Write FIFO occupancy can be safely performed also.
By relying on the current MPMC architecture maximum of two pending transactions for a
particular port, a higher Write FIFO occupancy can be obtained. Because only two current
transactions can be stored in the address controller, the 3rd assertion of
PIM<Port_Num>_AddrAck indicates that the data associated with first Write transaction has
been completely popped from the Write FIFO. This provides space for new data in the write
FIFO that is the size of the first transaction.
01.a) July 23, 2010 www.xilinx.com 185
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

186
Using this method, you can safely estimate the maximum current occupancy of the Write
FIFO, and throttle additional Write FIFO pushes safely below the 1024-byte limit.

Restrictions on 64-Word Burst Transfers

When using 32-bit NPI and SRL FIFOs, 64-word burst transfers are not supported because the data
path FIFOs might not be deep enough. If 64-word burst transfers are required with 32-bit NPI, then
BRAM FIFOs must be used. All custom 32-bit NPI PIMs should be carefully documented if they require
64-word burst transfers. The following table summarizes the 64-word burst support:

Recommendation for Improving Write Latency

In NPI write burst transactions, the general recommendation is to perform the address request after
pushing in all the write data. The Write Data FIFO is not protected against underrun so this is the safest
method of operation since it ensures all the data is present in the Write Data FIFO before it is moved out
to memory.

If reduced write latency is desired, the user can take advantage of the behavior of the MPMC control
logic to know when it is safe to make an earlier address request even though the write data for the
transaction has not all been pushed in. The user can analyze the throughput by which data is written
into the FIFO and the throughput by which the FIFO is drained out to memory to find a safe time to
generate the early address request.

For example:

1. Assume the NPI width is 64 and the memory is a 32-bit DDR device. If the user design pushes in
the Write data on every NPI clock cycle, the address request can be generated immediately after the
first Write data beat is pushed in. This works because the memory data path cannot drain the FIFO
faster than it is filled.

2. Assume the NPI width is 64 and the memory is a 64-bit DDR device. In this case, the memory data
path can drain the Write Data FIFO at twice the maximum rate at which it can be filled. If the user
design pushes in the Write data on every NPI clock cycle, the address request can be generated
after half of the write data is pushed in. This ensures the Write Data FIFO does not underrun.

NPI Clock Requirements

The NPI PIM must run at the same frequency as MPMC. Support for any other frequency must be
implemented in the custom PIM.

Configuring the NPI PIM

The NPI PIM is configured through the MPMC interface. Review the "IP Configuration Graphical User
Interface," page 225 for details on how to configure a PIM.

Table 91: 64-word NPI Burst Support

NPI Width FIFO Support Support Status

64 BRAM Yes

64 SRL Yes

32 BRAM Yes

32 SRL No
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
NPI Timing Diagrams

The following timing diagrams illustrate the functionality of the port interfaces. In the actual design
signal names are prefixed with PIM<Port_Num>_, but in this section this prefix has been omitted for
readability. Only a small sampling of possible timing diagrams are shown here. For example:

• 64-word burst transfers are not shown. These are very similar to the 32-word burst transfers, with
the exception that there are more data beats.

• 32-bit NPI and 64-bit NPI are very similar. Differences are in the permitted address alignment and
the number of data beats required to complete a particular transfer.

64-bit NPI Timing Diagrams

The following 64-bit NPI Timing Diagrams are illustrated subsequently:

• Double-Word Write

• Double-Word Read

• 8-Word, Cacheline Write

• 8-Word, Cacheline Read

• 32-Word, Burst Write

• 32-Word, Burst Read

• 8-Word, Cacheline Write with Almost Full Flag Asserted

• 8-Word, Cacheline Read with Back-to-Back Transfers

• 32-Word, Burst Read with Read FIFO Flush Asserted
01.a) July 23, 2010 www.xilinx.com 187
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Double-Word Write

This figure shows the following:

• A 64-bit NPI.

• A double-word write transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a double-word boundary.

• The RdModWr must be asserted because the value of C_MEM_DATA_WIDTH is unknown.

• There is a Write Transfer Special Case (WrFIFO_Push asserted after AddrAck).

Figure Top x-ref 35

Figure 44: 64-bit NPI Double-word Write

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

WrFIFO_BE[7:0]

0x0

0x8

RNW

RdModWr

InitDone

WrFIFO_Flush

WrFIFO_AlmostFull

Addr[31:0]

D0

AddrAck

WrFIFO_Data[63:0]
0xFF

WrFIFO_Push

DS643_38_072407
188 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Double-Word Read

This figure shows the following:

• A 64-bit NPI.

• A double-word read transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a double-word boundary.

• There are three cases of possible RdFIFO_Latency values.

Figure Top x-ref 36

Figure 45: 64-bit NPI Double-word Read

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

RdFIFO_RdWdAddr[3:0]

0x0

0x8

RNW

RdModWr

InitDone

RdFIFO_Latency[1:0]

RdFIFO_Pop

Addr[31:0]

D0

0x2

AddrAck

RdFIFO_Data[63:0]

0x0

RdFIFO_Flush

DS643_39_072407

Case 3

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

D0

0x1

RdFIFO_Data[63:0]

0x0

Case 2

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

D0

0x0

RdFIFO_Data[63:0]

0x0

Case 1
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 189
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Write

This figure shows the following:

• A 64-bit NPI.

• An 8-word, cacheline write transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on an 8-word boundary.

• The RdModWr does not need to be asserted because WrFIFO_BE is 0xFF during WrFIFO_Push, and because the
8-word transfer is larger than maximum value of 4*C_MEM_DATA_WIDTH. RdModWr is discussed in "Error
Correction Code," page 72.

• Write Transfer Safe Mode (AddrReq asserted on same cycle as last WrFIFO_push.)

Figure Top x-ref 37

Figure 46: 64-bit NPI 8-word Cacheline Write

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

0x2

0x20

RNW

RdModWr

InitDone

WrFIFO_AlmostFull

Addr[31:0]
AddrAck

WrFIFO_Push

DS643_40_072407

WrFIFO_BE[7:0]

WrFIFO_Flush

D0 D1 D2 D3WrFIFO_Data[63:0]

0xFF
190 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Read

This figure shows the following:

• A 64-bit NPI.

• An 8-word cacheline read transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a double-word boundary.

• The RdFIFO_RdWdAddr indicates that data is returned target-word first.

• There are three cases of possible RdFIFO_Latency values.

Figure 47: 64-bit NPI 8-word Cacheline Read

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

FIFO_RdWdAddr[3:0]

0x2

0x8

RNW

RdModWr

InitDone

RdFIFO_Latency[1:0]

RdFIFO_Pop

Addr[31:0]

D0

0x2

AddrAck

RdFIFO_Data[63:0]

0x2

RdFIFO_Flush

X11045

Case 3

FIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

D0

0x1

RdFIFO_Data[63:0]

0x2

Case 2

FIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

D0

0x0

RdFIFO_Data[63:0]

0x2

D1

0x4

D1

0x4

D1

0x4

D2

0x6

D2

0x6

D2

0x6

D3

0x0

D3

0x0

D3

0x0

Case 1
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 191
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
32-Word, Burst Write

This figure shows the following:

• A 64-bit NPI.

• A 32-word, burst write transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a 32-word boundary.

• The RdModWr does not need to be asserted because WrFIFO_BE is 0xFF during WrFIFO_Push, and because a
32-word transfer is larger than maximum value of 4*C_MEM_DATA_WIDTH.

• The Write Transfer Safe Mode is used (AddrReq is asserted on same cycle as the last WrFIFO_push.

Figure 48: 64-bit NPI 32-word Burst Write

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

0x4

0x80

RNW

RdModWr

InitDone

WrFIFO_AlmostFull

Addr[31:0]
AddrAck

WrFIFO_Push

DS643_41_072407

WrFIFO_BE[7:0]

WrFIFO_Flush

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15WrFIFO_Data[63:0]

0xFF
192 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
32-Word, Burst Read

This figure shows the following:

• A 64-bit NPI.

• A 32-word, burst read transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a double-word boundary.

• There are three cases of possible RdFIFO_Latency values.

Figure 49: 64-bit NPI 32-word Burst Read

DS643_42_072407

Case 3

Case 2

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[63:0] Case 1

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

0x4

0x80

RNW

RdModWr

InitDone

Addr[31:0]
AddrAck

RdFIFO_Pop

RdFIFO_Flush

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

0x0

0x0

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[63:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

0x0

0x1

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[63:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

0x0

0x2
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 193
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Write with Almost Full Flag Asserted

This figure shows the following:

• A 64-bit NPI.

• An 8-word, cacheline write transfer.

• The WrFIFO_AlmostFull is asserted on same cycle as the third WrFIFO_Push. The fourth WrFIFO_Push and
AddrReq are delayed until after WrFIFO_AlmostFull is deasserted.

• The address is acknowledged in the same cycle as it is requested.

• The address is on an 8-word boundary.

• The RdModWr does not need to be asserted because WrFIFO_BE is 0xFF during WrFIFO_Push, and because an
8-word transfer is larger than maximum value of 4*C_MEM_DATA_WIDTH.

• The Write Transfer Safe Mode is used (AddrReq is asserted on same cycle as the last WrFIFO_push.)

Figure Top x-ref 38

Figure 50: 64-bit NPI 8-Word Cache-line Write with Almost Full Flag Asserted

DS643_43_072

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

0x2

0x20

RNW

RdModWr

InitDone

WrFIFO_AlmostFull

Addr[31:0]
AddrAck

WrFIFO_Push

WrFIFO_BE[7:0]

WrFIFO_Flush

D0 D1 D2 D3WrFIFO_Data[63:0]

0xFF
194 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Read with Back-to-Back Transfers

This figure shows the following:

• A 64-bit NPI.

• There are two back-to-back, 8-word burst, read transfers.

• First address acknowledged same cycle as requested.

• Second address is acknowledged cycle after request.

• There is no gap between address requests.

• The addresses are on double-word boundaries.

• The RdFIFO_RdWdAddr indicates that data is returned target-word first.

• There is a one cycle gap between read data for first request and second request. This could be more or less
cycles depending on arbitration and pipeline settings.

• There are three cases of possible RdFIFO_Latency values.

Figure Top x-ref 39

Figure 51: 64-Bit, NPI 8-Word Cacheline Read with Back-to-Back Transfers

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

0x2

0x10

R0 R1

R0 R1

RNW

RdModWr

InitDone

Addr[31:0]

0x2

0x28

AddrAck

RdFIFO_Pop

RdFIFO_Flush

C

C

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0] CD00 D10 D20 D30 D01 D11 D21 D31

0x4 0x6 0x0 0x2 0x2 0x4 0x6 0x0

0x4 0x6 0x0 0x2 0x2 0x4 0x6 0x0

0x4 0x6 0x0 0x2 0x2 0x4 0x6 0x0

D00 D10 D20 D30 D01 D11 D21 D31

D00 D10 D20 D30 D01 D11 D21 D31

0x0

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0]
0x1

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0]
0x2
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 195
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
32-Word, Burst Read with Read FIFO Flush Asserted

This figure shows the following:

• A 64-bit NPI.

• An 18-word, burst read transfer (a 32-word burst read transfer that is terminated by RdFIFO_Flush.)

• The address is acknowledged in the same cycle as it is requested.

• The address is on a 32-word boundary.

• There are three cases of possible RdFIFO_Latency values
.

Figure Top x-ref 40

Figure 52: 64-Bit NPI 32-word Burst Read with Read FIFO Flush Asserted

DS643_45_072407

Case 3

Case 2

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0] Case 1

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

0x4

0x80

RNW

RdModWr

InitDone

Addr[31:0]
AddrAck

RdFIFO_Pop

RdFIFO_Flush

D0 D1 D2 D3 D4 D5 D6 D7 D8

0x0

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0] D0 D1 D2 D3 D4 D5 D6 D7 D8

0x1

O_RdWdAddr[3:0]

IFO_Latency[1:0]

dFIFO_Data[63:0] D0 D1 D2 D3 D4 D5 D6 D7 D8

0x2
196 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
32-Bit NPI Timing Diagrams

The following 32-bit NPI timing diagrams are illustrated:

• Word Write

• Word Read

• 8-Word, Cacheline Write

• 8-Word, Cacheline Read

Word Write

This figure shows the following:

• A 32-bit NPI.

• A word write transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a word boundary.

• The RdModWr must be asserted because the value of C_MEM_DATA_WIDTH is unknown.

• The Write Transfer Special Case is used (WrFIFO_Push is asserted after AddrAck.)

Figure Top x-ref 41

Figure 53: 32-Bit NPI Word Write

DS643_46_072407

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

WrFIFO_BE[3:0]

0x0

0x4

RNW

RdModWr

InitDone

WrFIFO_Flush

WrFIFO_AlmostFull

Addr[31:0]

D0

AddrAck

WrFIFO_Data[31:0]
0xF

WrFIFO_Push
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 197
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Word Read

This figure shows the following:

• A 32-bit NPI.

• A word read transfer.

• The address acknowledged same cycle as requested.

• The address is on a word boundary.

• There are three cases of possible RdFIFO_Latency values.

Figure Top x-ref 42

Figure 54: 32-Bit NPI Word Read

DS643_47_072407

Case 3

Case 2

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0] Case 1

MPMC_CLK0
AddrReq

Size[3:0]

RdFIFO_Empty

0x0

0x4

RNW

RdModWr

InitDone

Addr[31:0]
AddrAck

RdFIFO_Pop

RdFIFO_Flush

0x0

0x0

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0]

0x0

0x1

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0]

0x0

0x2

D0

D0

D0
198 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Write

This figure shows the following:

• A 32-bit NPI.

• An 8-word, cacheline write transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on an 8-word boundary.

• The RdModWr does not need to be asserted because WrFIFO_BE is 0xF during WrFIFO_Push, and because the
8-word transfer is larger than the maximum value of 4*C_MEM_DATA_WIDTH.

• The Write Transfer Safe Mode is use (AddrReq is asserted on the same cycle as the last WrFIFO_push.

Figure 55: 32-Bit NPI 8-word Cacheline Write

MPMC_CLK0
AddrReq

Size[3:0]

WrFIFO_Empty

0x2

0x20

RNW

RdModWr

InitDone

WrFIFO_AlmostFull

Addr[31:0]
AddrAck

WrFIFO_Push

DS643_48_072407

WrFIFO_BE[3:0]

WrFIFO_Flush

D0 D1 D2 D3 D4 D5 D6 D7WrFIFO_Data[31:0]

0xF
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 199
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
8-Word, Cacheline Read

This figure shows the following:

• A 32-bit NPI.

• An 8-word cacheline read transfer.

• The address is acknowledged in the same cycle as it is requested.

• The address is on a word boundary.

• The RdFIFO_RdWdAddr indicates that data is returned target-word first.

• RdFIFO_Latency values.

MCB PIM

The MCB PIM permits direct connection to the MCB user ports. The MCB configuration (data width and direction)
is defined by the C_PORT_CONFIG parameter.

For information about the MCB port protocol and configuration, see the "Spartan-6 Hard Memory Controller
Architecture," page 121 and UG388, Spartan-6 Memory Controller User Guide. "Reference Documents," page 229
contains a link to this document.

Figure 56: 32-Bit NPI 8-word Cacheline Read

AddrReq

Size[3:0] 0x2

0x4

RNW

RdModWr

Addr[31:0]
AddrAck

MPMC_CLK0

RdFIFO_Empty
InitDone

RdFIFO_Pop

RdFIFO_Flush

Case 3

Case 2

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0] Case 1D0 D1 D2 D3 D4 D5 D6 D7

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x0

D0 D1 D2 D3 D4 D5 D6 D7

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x0

D0 D1 D2 D3 D4 D5 D6 D7

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x0

0x0

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0]
0x1

RdFIFO_RdWdAddr[3:0]

RdFIFO_Latency[1:0]

RdFIFO_Data[31:0]
0x2

X11007
200 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Performance, Timing, and Resource Utilization
The following subsections describe:

• MPMC Operational Frequencies

• MPMC Optimization

• MPMC Latency and Throughput

• Resource Utilization

MPMC Operational Frequencies

This subsection contains:

• Operating Frequency Range by Device

• MIG PHY Supported FMAX

Operating Frequency Range by Device
Note: The following table lists the target operating frequency range for MPMC for a variety of FPGA device families and speed
grades. These values provide guideline MPMC_Clk0 frequencies for MPMC. Generally:

• The XCL, PLB, and SDMA PIMs can run 1:1 or 1:2 clock ratio to MPMC_Clk0.

• A 1:1 clock ratio is most common for SDRAM and Spartan-6 designs.

• A 1:2 clock ratio is most common with DDR/DDR2/DDR3 designs on Spartan-3, Virtex-4, Virtex-5, and
Virtex-6.

The values shown in Table 89 are based on the following condition assumptions (unless noted:)

• Default parameters settings for MPMC

• 1:2 PIM to MPMC_Clk0 clock ratios

• No use of floorplanning

• Default implementation tool options

Note: The target FMAX is influenced by the exact system and is provided for guidance. It is not a guaranteed value across all
systems. The FMAX timing for the MPMC Performance Monitors has not been characterized and could be significantly lower.
The FMAX timing for SDRAM has not been characterized and is likely to be limited by the physical system.

Table 92: Target Operating Frequency Ranges by FPGA Family

FPGA Family Target FMAX Range (MHz)

Spartan-3 Generation, -4 Speed Grade 125-133

Spartan-3 Generation, -5 Speed Grade 133-166

Virtex-4, -10 Speed Grade 165-185

Virtex-4, -11 Speed Grade 185-205

Virtex-4, -12 Speed Grade 200-225

Virtex-5, -1 Speed Grade 175-200

Virtex-5, -2 Speed Grade 185-220

Virtex-5, -3 Speed Grade 210-250

Virtex-6 -1 Speed Grade 175-200

Spartan-6 -2 Speed Grade 80-90
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 201
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
MIG PHY Supported FMAX

The Spartan-3, and Virtex-4, and Virtex-5 MIG PHYs also have maximum supported frequencies that should not be
exceeded even if the MPMC is capable of meeting timing at higher clock frequencies.

Spartan-(3/3A/3AN/3E/3ADSP) devices can have data width limitations depending on part and package size.
Verify data width compatibility through the MIG GUI or through the “Supported Devices” section of UG086, MIG
User Guide, in Section Three “Spartan- (3/3A/3AN/3E/3ADSP) FPGA to Memory Interfaces.” The "Reference
Documents," page 229 contains a link to this resource.

The following table summarizes the maximum supported frequencies of the MIG PHYs used in MPMC and also
provides the name of the Application Note that describes the MIG algorithm used in the specified FPGA device
family.

Table 93: MIG PHY Maximum Supported Frequencies by FPGA Family

FPGA
Family

Speed
Grade

Memory
Type

Maximum Supported
PHY Memory Clock

Frequency

Doc with
MIG

Algorith
m

Notes

Spartan-3 -4 DDR/DDR2 133 MHz
XAPP454/7

68c

Spartan-3 -5
DDR/DDR2

(Component)
166 MHz

XAPP454/7
68c

166 MHz limited to 8/16/32 bit designs
on left or right sides of the parts.

Spartan-3 -5
DDR/DDR2

(DIMM)
133 MHz

XAPP454/7
68c

Virtex-4 -10 DDR 175 MHz
XAPP701/7

02
MPMC uses Direct Clocking algorithm
for both DDR and DDR2 on Virtex-4.

Virtex-4 -11 DDR 180 MHz
XAPP701/7

02

Virtex-4 -12 DDR 185 MHz
XAPP701/7

02

Virtex-4 -10 DDR2 220 MHz
XAPP701/7

02

Virtex-4 -11 DDR2 230 MHz
XAPP701/7

02

Virtex-4 -12 DDR2 240 MHz
XAPP701/7

02

Virtex-5 -1 DDR2 266 MHz XAPP858

Virtex-5 -2 DDR2 300 MHz XAPP858

Virtex-5 -3 DDR2 333 MHz XAPP858

Virtex-5 -1 DDR 200 MHz XAPP851

Virtex-5 -2 DDR 200 MHz XAPP851

Virtex-5 -3 DDR 200 MHz XAPP851

Virtex-6 LXT -1L DDR2 300 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.
202 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Virtex-6 LXT -1, -2, -3 DDR2 400 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.

Virtex-6 LXT -1L DDR3 303 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.

Virtex-6 LXT -1 DDR3 400 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.

Virtex-6 LXT -2 DDR3 533 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.

Virtex-6 LXT -3 DDR3 533 MHz UG406

Virtex-6 maximum supported memory
clock frequency is subject to change
and can depend on additional factors.
Consult MIG or MCB documentation
for the latest information.

Spartan-6 -1L, -2, -3, -4 DDR 200 MHz UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Spartan-6 -1L, -2, -3, -4 LPDDR 200 MHz UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Spartan-6 -1L DDR2 200 MHz UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Table 93: MIG PHY Maximum Supported Frequencies by FPGA Family (Cont’d)

FPGA
Family

Speed
Grade

Memory
Type

Maximum Supported
PHY Memory Clock

Frequency

Doc with
MIG

Algorith
m

Notes
203 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
MPMC Optimization

This section provides information about optimizing and tuning MPMC timing, performance, and size. It is
recommended that you begin with creating a stable working MPMC system using default parameters settings and
system configurations when possible. For example, start with an MPMC system created by the BSB tool in XPS.
After establishing a working system, the following information can be used to fine tune the MPMC and
experiment with different settings.

MPMC Performance Optimization

The following list identifies possible ways to improve MPMC performance:

• Increase clock frequency as much as possible. Higher clock frequency increases throughput and can lower
latency. It is useful to have the flexibility in the board to set the clock frequency to match the FMAX of the
MPMC. For example, if a system has a fixed 100 MHz oscillator, the memory might have to run at 100 or 200
MHz. If the FMAX of the MPMC is 145 MHz, having the ability to install a 145 MHz oscillator is ideal for
maximizing MPMC performance.

• Latency can be reduced by disabling pipeline stages. Disabling pipeline stages has the trade-off that it might
degrade timing. In some cases you could be running at a memory clock frequency well below the FMAX of
the MPMC in which case disabling pipelines would not cause timing failures. It is recommended that you first
get your system working in the default case where all pipeline stages are on and then experiment with
disabling as many pipeline stages as possible while timing is still met. For example, the following parameters
can be used to reduce latency in the MPMC core:

PARAMETER C_WR_DATAPATH_TML_PIPELINE = 0
PARAMETER C_ARB_PIPELINE = 0
PARAMETER C_PI<Port_Num>_ADDRACK_PIPELINE = 0
PARAMETER C_PI<Port_Num>_RD_FIFO_MEM_PIPELINE = 0
PARAMETER C_PI<Port_Num>_RD_FIFO_APP_PIPELINE = 0
PARAMETER C_PI<Port_Num>_WR_FIFO_MEM_PIPELINE = 0
PARAMETER C_PI<Port_Num>_WR_FIFO_APP_PIPELINE = 0

Spartan-6 -2 DDR2
312.5 MHz (STANDARD)
333 MHz (EXTENDED)

UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Spartan-6 -2 DDR3
312.5 MHz (STANDARD)
333 MHz (EXTENDED)

UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Spartan-6 -3, -4 DDR2/DDR3
333 MHz (STANDARD)
400 MHz (EXTENDED) UG388

Spartan-6 maximum supported
memory clock frequency is subject to
change and can depend on additional
factors. Consult MIG or MCB
documentation for the latest
information.

Table 93: MIG PHY Maximum Supported Frequencies by FPGA Family (Cont’d)

FPGA
Family

Speed
Grade

Memory
Type

Maximum Supported
PHY Memory Clock

Frequency

Doc with
MIG

Algorith
m

Notes
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 204
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Note: Some FIFO pipeline parameters must be the same value across all ports. See "Memory and Memory
Part Parameters," page 11 for more information

Additionally, some PIMs have optional pipeline stages that can be disabled:

XCL

PARAMETER C_XCL<Port_Num>_PIPE_STAGES = 0
PARAMETER C_XCL<Port_Num>_B_PIPE_STAGES = 0

MIB/PPC440MC

PARAMETER C_PPC440MC<Port_Num>_PIPE_STAGES = 0

• Choosing memory with a lower CAS latency at the target operating clock frequency will reduce
latency.

• Experiment with CUSTOM arbitration. By changing the arbitration priorities to favor critical
ports, higher throughput and potentially lower latency can be achieved for the critical ports. This
is especially the case in a heavily loaded system with many active ports.

• Use custom logic connected to an NPI interface rather than the using the PLB interface. The raw
NPI interface offers better direct performance to the memory controller. However, attaching
custom logic to the NPI interface may require more design and verification effort. When using
NPI, larger bursts sizes offer higher throughput and memory utilization than smaller burst sizes.

• In designs where the PowerPC 405 IPLB1 and DPLB1 ports are connected point-to-point to two
separate MPMC ports, these two PLB ports could be run 1:1 clock ratio to the memory clock.
By running 1:1 instead of 1:2 clock ratio, the throughput and latency can be improved by the
higher interface clock rate.
The MPMC PLB PIM instantiates specially optimized logic automatically when it is directly
connected point-to-point to a PowerPC 405 processor IPLB1 or DPLB1 port. This optimized logic
can operate at a higher clock frequency than a normal PLB bus-based connection.

• In Virtex-5 FXT designs using the PPC440MC interface, the ppc440mc_ddr2 IP core should be
used instead of MPMC whenever possible. The ppc440mc_ddr2 IP core is optimized as a single
port DDR2 memory for the PowerPC 440 memory interface. The ppc440mc_ddr2 IP core offers
row/bank management, lower latency, and higher FMAX than MPMC. MPMC should only be
used when SDRAM/DDR memory support or multiple memory ports are needed. The
performance advantage of ppc440mc_ddr2 is especially high with 64-bit DDR2 memories. In this
case ppc440mc_ddr2 offers a native 128 bit data path connection to the PowerPC440 block
whereas the MPMC with PPC440MC PIM offers a maximum 64-bit data path to the PowerPC440
block.

• In Virtex-5 FX designs using the PPC440MC interface with MPMC, the performance of DMA or
burst based transactions is better with a larger burst length setting (Parameter
C_PPC440MC<Port_Num>_BURST_LENGTH).

• The MPMC PLB v4.6 PIM translates non-cache burst transfers into NPI transactions of 16 word
bursts (C_SPLB<Port_Num>_NATIVE_DWIDTH = 32) or 32 word bursts
(C_SPLB<Port_Num>_NATIVE_DWIDTH = 64). Non-cache PLB burst performance is maximized
when the start address and burst length are aligned to the corresponding NPI transactions. Shorter
length PLB burst transfers or transfers that cross NPI transaction boundaries may result in extra
memory cycles where data is masked off or discarded. For example if a DMA engine is connected
to the PLB port of MPMC, allocating the DMA engine’s memory space in the software application
to align to NPI transaction boundaries will enable more efficient data transfers and improve
system performance.
01.a) July 23, 2010 www.xilinx.com 205
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

206
MPMC Size Optimization

The following list identifies possible ways to reduce MPMC size:

• Reducing the number of ports has the biggest effect on reducing core size. For example instead of
two separate PLB ports to connect two PLB masters to MPMC, the two PLB masters can be
connected to a PLB bus arbiter and attached to a single MPMC port. This will likely reduce system
size, but might affect performance.

• Reducing down to a single port MPMC further decreases size because data path switching logic
can be removed and the arbitration logic can be fully removed for added logic savings. Therefore
the MPMC size reduction is greater from two ports to one port than from three ports to two ports.

• Match PHY SDR data path width to NPI data width. The SDR data path width of the PHY is 1x the
memory width for SDRAM and 2x the memory width for DDR/DDR2. The NPI width of some
PIMs can be selected between 32 and 64 bits. Designing the system so that the PIM NPI width and
the PHY SDR data path widths match will optimize the flow of data and reduce logic utilization.

For example, if a system has a 16-bit DDR and uses PLB PIMs, the PLB PIM should be configured
to have an NPI width of 32 bits to minimize MPMC size (Parameter
C_SPLB<Port_Num>_NATIVE_DWIDTH = 32). If the default NPI width of 64 bits is used instead,
wider data path FIFOs and data path switches will be generated causing more logic to be used.

VFBC, NPI, and PLB v4.6 PIMs all have user configurable NPI data widths. The SDMA PIM is fixed
to a 64-bit NPI data width and the XCL PIM is fixed to a 32-bit NPI width. Refer to the "Personality
Interface Module (PIM) Parameters," page 20 for more information.
In PowerPC 405 processor systems, the IPLB0 and DPLB0 ports can be combined using a PLB
arbiter to connect to a single MPMC port (see “"Standard PowerPC 405 Processor CoreConnect Use
Case," page 57 for an example.)
This will reduce MPMC size compared to a two port MPMC with separate PLB PIMs connected to
IPLB1 and DPLB1 with system performance as the trade-off.

• In MicroBlaze systems, cached memory access travels over IXCL and DXCL ports to two separate
MPMC XCL ports. By default, uncached access to memory travels over the PLB port to a third
MPMC PLB port. This approach uses three MPMC ports per MicroBlaze. To save logic resources,
the MicroBlaze could be configured with parameter C_ICACHE_ALWAYS_USED = 1 and
C_DCACHE_ALWAYS_USED = 1 so that uncached memory access flows over the XCL ports. This
allows the third MPMC port to be removed to reduce system size.

• The MicroBlaze IXCL and DXCL ports can be connected to a dual XCL PIM which uses only one
MPMC port for two XCL connections. Using the dual XCL PIM significantly reduces MPMC size.

• Using a fixed priority arbiter (Parameter C_ARB0_ALGO = FIXED) will save some logic over a
round robin arbiter and is a significant savings over a custom arbitration setting.

• Using STATIC PHY over MIG PHY also reduces logic utilization because the static PHY is more
simple in structure; however, the static PHY is also less robust than the MIG PHY and is therefore
not recommended. See "Configurable Physical Interface," page 89 for more information.

• Disabling optional pipeline stages in MPMC reduces flip-flop utilization but also degrades timing.

• Minimize the number of ports or set ports to be read-only or write-only when possible.

Note: Ports with C_PIM<Port_Num>_SUBTYPE set to “IXCL” and “IPLB” are automatically configured to be
read-only.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Timing Optimization

The following list identifies possible ways to improve timing of MPMC systems:

• Generally, the size optimizations detailed in "MPMC Size Optimization," page 206 reduce MPMC
complexity and will improve timing (except removal of pipeline stages.)

• Better matching of data path widths between PHY and PIMs also improves timing because it
minimizes MUXes used for width matching logic. For example, a 16-bit DDR memory has an
internal 32-bit PHY data path. This would better match with a 32-bit NPI interface than a 64-bit
NPI interface.

• Experiment with different values for C_RD_DATAPATH_TML_MAX_FANOUT. All other pipeline
stages are turned on by default. Keeping the pipeline stages enabled improves timing and FMAX.

• Minimize the use of DCMs to synthesize the MPMC memory and PIM clocks. If possible the board
should provide a clock source that directly inputs the desired MPMC memory clock frequency.
Using on-chip clock synthesis and cascading of DCMs can increase clock jitter which degrades the
timing budget of the overall system.

• MPMC timing can be greatly affected by block RAM placement. The use of block RAM
floorplanning can greatly improve MPMC timing results. If the number of available block RAMs
in a design is low, freeing up block RAM can improve timing. This is especially important on
Virtex-5 designs. Choosing the memory interface DQ pinout so they are placed near columns of
block RAMs might also improve timing.

• If possible, use fixed arbitration which simplifies the arbitration logic.

• Move C_WR_TRAINING_PORT to a different port that is less timing critical (for example, using a
DXCL port instead of an SDMA port for the write training pattern).

• Run EDK in xplorer mode. This might significantly increases the tool run times but might also
improve place and route results.
01.a) July 23, 2010 www.xilinx.com 207
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
MPMC Latency and Throughput

This section provides MPMC latency and throughput estimations under a variety of MPMC configurations and
memory speeds. The values are based on using default MPMC configurations (unless otherwise noted). Actual
system performance can be affected by the timing of the memory part, PHY calibration settings, clock speeds, clock
ratios, and the exact behavior of PIMs and devices connected to the MPMC.

Latency values are provided for the initial latency of the first transaction as measured from the transaction request
at the PIM to the first data beat transferred.

Throughput values describe the theoretical maximum continuous rate of sustained data transfer using pipelined
back-to-back burst transactions from an ideal device connected to MPMC. Throughput values might not take into
account the fraction of total available memory bandwidth taken up by refresh operations. Refresh will slightly
reduce the available bandwidth of the system.

The latency and throughput values were measured under the following conditions:

1. Spartan-3 generation measurements were taken with a Spartan-3A device using MT46V32M8-75 DDR
memory or MT47H32M8-3 DDR2 memory.

2. Virtex-4 and Virtex-5 measurements were taken with a Virtex-5 device using MT46V32M8-75 DDR memory or
MT47H32M8-3 DDR2 memory. Virtex-4 performance is assumed to be similar to Virtex-5 performance.

3. Nonregistered memory was used.

4. Virtex-6 measurements are taken using an MT41J128M8XX-15E device for DDR3 and an MT47H128M8XX-25
for DDR2. The measurements are calculated by transferring 100KB to and from memory and takes into
account memory refresh dead time.

5. Spartan-6 measurements are taken using an MT41J128M8XX device for DDR3 and an MT47H128M8XX-25 for
DDR2. The measurements are calculated by transferring 100KB to and from memory and takes into account
memory refresh dead time.

Note: These values are provided for guidance and are not a guarantee of performance under all conditions. Simulation and/or
hardware instrumentation (such as using Chipscope™ Pro) should be used to verify performance targets in the full system.

NPI PIM Latency and Throughput

The latency and throughput at the NPI level reflects the performance of the MPMC core because NPI is the native
interface of MPMC. The following table provides the NPI estimations by port, pipeline setting, memory interface,
NPI width (in bits), and NPI burst type as well as the initial transaction latency, and maximum data throughput.

Table 94: NPI Latency and Throughput

Number of
Ports

Pipeline
settings

Memory Interface
NPI

Width
(Bits)

MPMC NPI
Burst Type

Initial
Transaction

Latency
(MPMC_Clk0)

Maximum Total
Data

Throughput
(MBytes/sec)

Spartan-3 Generation Reads

1-8 Default DDR1@100 MHz 32 bits 64 16 Word Burst 24 533

1-8 Default DDR1@100 MHz 32 bits 64 32 Word Burst 24 640

1-8 Default DDR1@100 MHz 32 bits 64 64 Word Burst 24 711

1-8 Default DDR2@133 MHz 16 bits 32 16 Word Burst 25 406

1-8 Default DDR2@133 MHz 32 bits 64 16 Word Burst 25 656

1-8 Default DDR2@133 MHz 32 bits 64 32 Word Burst 25 813

* Latency on writes is not characterized because MPMC allows write data to pushed in before or after the address request.
208 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
1-8 Default DDR2@133 MHz 32 bits 64 64 Word Burst 25 923

1-8 Default DDR1@83 MHz 16 bits 32 16 Word Burst 24 267

1-8 All Pipelines Off DDR1@83 MHz 16 bits 32 16 Word Burst 20 267

Virtex-4/Virtex-5 Reads

1-8 Default DDR2@200 MHz 32 bits 64 16 Word Burst 23 853

1-8 Default DDR2@200 MHz 32 bits 64 32 Word Burst 23 1113

1-8 Default DDR2@200 MHz 32 bits 64 64 Word Burst 23 1313

1 Default DDR2@200 MHz 64 bits 64 16 Word Burst 23 800

2-8 Default DDR2@200 MHz 64 bits 64 16 Word Burst 23 1067

1-8 Default DDR2@200 MHz 64 bits 64 32 Word Burst 23 1113

2 Default DDR2@200 MHz 64 bits 64 32 Word Burst 23 1600

3-8 Default DDR2@200 MHz 64 bits 64 32 Word Burst 23 1707

1 Default DDR2@200 MHz 64 bits 64 64 Word Burst 23 1313

2 Default DDR2@200 MHz 64 bits 64 64 Word Burst 23 1600

3-8 Default DDR2@200 MHz 64 bits 64 64 Word Burst 23 2226

1-8 Default DDR1@100 MHz 32 bits 64 16 Word Burst 20 533

1-8 Default DDR1@100 MHz 32 bits 64 32 Word Burst 20 640

1-8 Default DDR1@100 MHz 32 bits 64 64 Word Burst 20 711

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 16 Word Burst 16 533

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 32 Word Burst 16 640

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 64 Word Burst 16
711

Virtex-6 Reads

1-8 Default DDR3 @ 400MHz 32 bits 64 16 Word Burst 30 968

1 Default DDR3 @ 400MHz 32 bits 64 32 Word Burst 30 1408

8 Default DDR3 @ 400MHz 32 bits 64 32 Word Burst 30 1477

1 Default DDR3 @ 400MHz 32 bits 64 64 Word Burst 30 1502

2 Default DDR3 @ 400MHz 32 bits 64 64 Word Burst 30 1802

4 Default DDR3 @ 400MHz 32 bits 64 64 Word Burst 30 1927

8 Default DDR3 @ 400MHz 32 bits 64 64 Word Burst 30 2003

1 Default DDR3 @ 400MHz 32 bits 32 64 Word Burst 30 775

2 Default DDR3 @ 400MHz 32 bits 32 64 Word Burst 30 1538

1 All Pipelines Off DDR3 @ 400MHz 32 bits 64 64 Word Burst 27 1502

Table 94: NPI Latency and Throughput (Cont’d)

Number of
Ports

Pipeline
settings

Memory Interface
NPI

Width
(Bits)

MPMC NPI
Burst Type

Initial
Transaction

Latency
(MPMC_Clk0)

Maximum Total
Data

Throughput
(MBytes/sec)

* Latency on writes is not characterized because MPMC allows write data to pushed in before or after the address request.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 209
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
1-8 Default DDR3 @ 400MHz 16 bits 64 32 Word Burst 30 1006

1-8 Default DDR3 @ 400MHz 16 bits 64 64 Word Burst 30 1226

1-8 Default DDR3 @ 400MHz 32 bits 64 16 Word Burst 30 968

1-8 Default DDR2 @ 333MHz 32 bits 64 16 Word Burst 29 803

1 Default DDR2 @ 333MHz 32 bits 64 32 Word Burst 29 1227

8 Default DDR2 @ 333MHz 32 bits 64 64 Word Burst 29 1672

Spartan-6 Reads

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 16 Word Burst 11 237

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 16 Word Burst 11 809

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 32 Word Burst 11 295

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 32 Word Burst 11 1062

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 64 Word Burst 11 342

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 64 Word Burst 11 1261

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 16 Word Burst 10 441

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 16 Word Burst 10 813

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 32 Word Burst 10 565

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 32 Word Burst 10 1068

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 64 Word Burst 10 661

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 64 Word Burst 10 1265

Spartan-3 Generation Writes

1-8 Default DDR1@100 MHz 32 bits 64 16 Word Burst N/A* 400

1-8 Default DDR1@100 MHz 32 bits 64 32 Word Burst N/A* 533

1-8 Default DDR1@100 MHz 32 bits 64 64 Word Burst N/A* 640

1-8 Default DDR2@133 MHz 16 bits 32 16 Word Burst N/A* 328

1-8 Default DDR2@133 MHz 32 bits 64 16 Word Burst N/A* 474

1-8 Default DDR2@133 MHz 32 bits 64 32 Word Burst N/A* 656

Table 94: NPI Latency and Throughput (Cont’d)

Number of
Ports

Pipeline
settings

Memory Interface
NPI

Width
(Bits)

MPMC NPI
Burst Type

Initial
Transaction

Latency
(MPMC_Clk0)

Maximum Total
Data

Throughput
(MBytes/sec)

* Latency on writes is not characterized because MPMC allows write data to pushed in before or after the address request.
210 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
1-8 Default DDR2@133 MHz 32 bits 64 64 Word Burst N/A* 813

1-8 Default DDR1@83 MHz 16 bits 32 16 Word Burst N/A* 222

1-8 All Pipelines Off DDR1@83 MHz 16 bits 32 16 Word Burst N/A* 222

Virtex-4/Virtex-5 Writes

1-8 Default DDR2@200 MHz 32 bits 64 16 Word Burst N/A* 610

1-8 Default DDR2@200 MHz 32 bits 64 32 Word Burst N/A* 883

1-8 Default DDR2@200 MHz 32 bits 64 64 Word Burst N/A* 1138

1-8 Default DDR2@200 MHz 64 bits 64 16 Word Burst N/A* 753

1-8 Default DDR2@200 MHz 64 bits 64 32 Word Burst N/A* 1219

1 Default DDR2@200 MHz 64 bits 64 64 Word Burst N/A* 1600

2-8 Default DDR2@200 MHz 64 bits 64 64 Word Burst N/A* 1766

1-8 Default DDR1@100 MHz 32 bits 64 16 Word Burst N/A* 400

1-8 Default DDR1@100 MHz 32 bits 64 32 Word Burst N/A* 533

1-8 Default DDR1@100 MHz 32 bits 64 64 Word Burst N/A* 640

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 16 Word Burst N/A* 400

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 32 Word Burst N/A* 533

1-8 All Pipelines Off DDR1@100 MHz 32 bits 64 64 Word Burst N/A* 640

Virtex-6 Writes

1-8 Default DDR3 @ 400MHz 32 bits 32/64 16 Word Burst N/A* 700

1-8 Default DDR3 @ 400MHz 32 bits 64 32 Word Burst N/A* 1143

1-8 Default DDR3 @ 400MHz 32 bits 64 64 Word Burst N/A* 1676

1 Default DDR3 @ 400MHz 32 bits 32 32 Word Burst N/A* 800

8 Default DDR3 @ 400MHz 32 bits 32 32 Word Burst N/A* 1145

1 Default DDR3 @ 400MHz 32 bits 32 64 Word Burst N/A* 801

8 Default DDR3 @ 400MHz 32 bits 32 64 Word Burst N/A* 1677

8 All Pipelines Off DDR3 @ 400MHz 32 bits 32 64 Word Burst N/A* 1677

1-8 Default DDR3 @ 400MHz 16 bits 64 32 Word Burst N/A* 839

1-8 Default DDR3 @ 400MHz 16 bits 64 64 Word Burst N/A* 1094

1-8 Default DDR2 @ 333MHz 32 bits 64 16 Word Burst N/A* 615

1-8 Default DDR2 @ 333MHz 32 bits 64 32 Word Burst N/A* 996

1-8 Default DDR2 @ 333MHz 32 bits 64 64 Word Burst N/A*

1442

Table 94: NPI Latency and Throughput (Cont’d)

Number of
Ports

Pipeline
settings

Memory Interface
NPI

Width
(Bits)

MPMC NPI
Burst Type

Initial
Transaction

Latency
(MPMC_Clk0)

Maximum Total
Data

Throughput
(MBytes/sec)

* Latency on writes is not characterized because MPMC allows write data to pushed in before or after the address request.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 211
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Notes on NPI Throughput

1. NPI throughput increases with burst size so the 64 word bursts offer the highest maximum bandwidth, but
might increase the delay on other ports.

2. The throughput of the NPI interface is limited to a 64-bit wide data path running at the memory clock speed.
Because the memory can have up to a 64-bit DDR interface (128 bit wide SDR data path), it is possible that a
single NPI port might not be able to access the full available bandwidth of the memory. In such situations,
multiple NPI ports could be needed to fully utilize the memory in systems requiring highest throughput.

3. The MPMC control logic does not support row or bank management. After each NPI transaction, the row and
bank that was accessed is closed with a precharge.

Spartan-6 Writes

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 16 Word Burst N/A* 400

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 16 Word Burst N/A* 639

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 32 Word Burst N/A* 400

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 32 Word Burst N/A* 908

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 64 Word Burst N/A* 356

4 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

32 64 Word Burst N/A* 1143

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 16 Word Burst N/A* 655

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 16 Word Burst N/A* 642

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 32 Word Burst N/A* 800

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 32 Word Burst N/A* 910

1 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 64 Word Burst N/A* 801

2 N/A
DDR2/DDR3 @ 400MHz
16 bits / NPI @ 100MHz

64 64 Word Burst N/A* 1150

Table 94: NPI Latency and Throughput (Cont’d)

Number of
Ports

Pipeline
settings

Memory Interface
NPI

Width
(Bits)

MPMC NPI
Burst Type

Initial
Transaction

Latency
(MPMC_Clk0)

Maximum Total
Data

Throughput
(MBytes/sec)

* Latency on writes is not characterized because MPMC allows write data to pushed in before or after the address request.
212 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PLB PIM Latency and Throughput

The following table provides latency and throughput of each PLB PIM port with performance information for
various MPMC and PLB PIM configurations.

Table 95: PLB PIM Latency and Throughput

Pipeline
Settings Memory Interface NPI

Width
PLB Burst

Type

Memory to
PLB Clock

Ratio

Initial
Transaction

Latency (PLB
Clocks)

Maximum
Total Data

Throughput of
a PLB Port

(MBytes/sec)

Spartan-3 Generation Reads

Default DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 29 507

Default DDR2@133 MHz 16 bits 32 16 Words 2:1 17 185

Default DDR2@133 MHz 32 bits 64 16 Doublewords 2:1 17 371

Default DDR1@83 MHz 16 bits 32 16 Words 1:1 29 211

All Pipelines Off DDR1@83 MHz 16 bits 32 16 Words 1:1 25 221

Spartan-3 Generation Writes

Default DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 4 266

Default DDR2@133 MHz 16 bits 32 16 Words 2:1 4 118

Default DDR2@133 MHz 32 bits 64 16 Doublewords 2:1 4 237

Default DDR1@83 MHz 16 bits 32 16 Words 1:1 4 111

All Pipelines Off DDR1@83 MHz 16 bits 32 16 Words 1:1 4 111

Virtex-4/Virtex-5 Reads

Default DDR2@200 MHz 32 bits 64 16 Doublewords 2:1 16 556

Default DDR2@200 MHz 64 bits 64 16 Doublewords 2:1 16 556

Default DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 25 508

All Pipelines Off DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 21 532

Virtex-4/Virtex-5 Writes

Default DDR2@200 MHz 32 bits 64 16 Doublewords 2:1 4 355

Default DDR2@200 MHz 64 bits 64 16 Doublewords 2:1 4 399

Default DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 4 320

All Pipelines Off DDR1@100 MHz 32 bits 64 16 Doublewords 1:1 4 320

Virtex-6 Reads

Default DDR3 @ 400MHz 32 bits 64 16 Doublewords 4:1 18 555

Default DDR3 @ 400MHz 32 bits 64 16 Doublewords 2:1 34 917

Default DDR3 @ 400MHz 32 bits 32 16 Words 4:1 18 278

Default DDR3 @ 400MHz 16 bits 64 16 Doublewords 4:1 18 555

None DDR3 @ 400MHz 32 bits 64 16 Doublewords 4:1 16

556
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 213
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Notes on PLB PIM Throughput

The PLB PIM latency is measured from PAValid of the first PLB transaction to when the first PLB_wrDAck or
PLB_rdDAck is asserted. The throughput of the PLB PIM is measured by using a PLB master to generate a
continuous stream of 16-word or 16-double word bursts over a Point-to-Point PLB connection. These bursts are
address-aligned to the size of the burst and include the generation of secondary address requests.

Table 92 describes the maximum throughput of a PLB PIM. The maximum throughput of each PLB PIM is usually
less than the available throughput of the MPMC core. Though each PIM is usually not capable of fully utilizing the
available bandwidth, the remaining MPMC Core/NPI bandwidth is available for other ports to use.

For example, a six port MPMC with 64-bit DDR2 memory at 200 MHz is capable of 2226 MBytes/sec of theoretical
read throughput. In that configuration a single PLB PIM is capable of 427 MBytes/sec of throughput. Therefore:

• Four PLB ports, each running at maximum throughput, could achieve a combined system throughput of up
to 1708 MBytes/sec (limited by the PLB PIMs).

• Five PLB ports, each running at maximum throughput, could achieve a combined system throughput of up to
2135 MBytes/sec (limited by the PLB PIMs).

• Six PLB ports, each running at maximum throughput, could achieve a combined system throughput of up to
2226 MBytes/sec (limited by the MPMC Core).

The PLB PIM throughput is most efficient when the PLB burst address range fits within MPMC
16-word (32 bit NPI) and 32-word (64 bit NPI) burst boundaries. "MIG PHY Maximum Supported Frequencies by
FPGA Family," page 202 assumes the bursts are aligned to the burst size.

Virtex-6 Writes

Default DDR3 @ 400MHz 32 bits 64 16 Doublewords 4:1 N/A 398

Default DDR3 @ 400MHz 32 bits 64 16 Doublewords 2:1 N/A 630

Default DDR3 @ 400MHz 32 bits 32 16 words 4:1 N/A 210

Default DDR3 @ 400MHz 16 bits 64 16 Doublewords 4:1 N/A 354

None DDR3 @ 400MHz 32 bits 64 16 Doublewords 4:1 N/A 399

Spartan-6 Reads

Default DDR3 @ 400MHz 16 bits 64 16 Doublewords 8:1 10 278

Default DDR3 @ 400MHz 16 bits 32 16 Words 8:1 10 139

Default DDR2 @ 400MHz 16 bits 64 16 Doublewords 5:1 16 376

Default DDR2 @ 400MHz 16 bits 32 16 Words 5:1 16 188

Spartan-6 Writes

Default DDR3 @ 400MHz 16 bits 64 16 Doublewords 8:1 N/A 198

Default DDR3 @ 400MHz 16 bits 32 16 Words 8:1 N/A 106

Default DDR2 @ 400MHz 16 bits 64 16 Doublewords 5:1 N/A 267

Default DDR2 @ 400MHz 16 bits 32 16 Words 5:1 N/A 143

Table 95: PLB PIM Latency and Throughput (Cont’d)

Pipeline
Settings Memory Interface NPI

Width
PLB Burst

Type

Memory to
PLB Clock

Ratio

Initial
Transaction

Latency (PLB
Clocks)

Maximum
Total Data

Throughput of
a PLB Port

(MBytes/sec)
214 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SDMA Latency and Throughput

Device Throughput Estimation for 32-bit NPI Operation

The SDMA is one of several modules in the system; consequently, the throughput numbers reported in this section
are estimates based on the listed assumptions. The overall latency calculations must take into account latency and
throttling because of the individual modules in the system, such as memory, device on LocalLink, and MPMC.
Table 93 lists the latency results for various operation types.

Table 96: SDMA Latency Expectations

Operation Latency Between LocalLink
Clock Cycles Notes

Rx/Tx

Write to Current Description Pointer by PLB
(PAVALID.)
Address Request to NPI Port for 1st Rx/Tx
Descriptor data (AddrReq)

17

Rx/Tx
Address Acknowledge from NPI port (AddrAck.)
Data Available on NPI (NPI RDFIFO Empty de-
asserted.)

Z
Memory dependent latency. Refer to MPMC
datasheet for standard values

Rx/Tx
Data Available on NPI.
Rx/Tx Buffer Descriptor Read Complete.

10 Cacheline Read

Tx
Rx Buffer Descriptor Read Complete.
Address Request to NPI port for 1st TX
descriptor data.

10 12 for Read FIFO Port Side Pipeline = 1

Tx
Address Acknowledge from NPI port.
Data Available on NPI.

Z
Memory dependent latency. Refer to MPMC
datasheet for standard values.

Tx
Data Available on NPI.
Tx Buffer Descriptor Read Complete.

10

Tx
Tx Buffer Descriptor Read Complete NPI.
Address Request for 1st 32-word block burst for
transmission on LocalLink.

7

Tx
Address Acknowledge from NPI port.
Data Available on NPI.

Y
Memory dependent latency. Refer to MPMC
datasheet for standard values

Tx
Data available on NPI
1st 32-word Block Transmit complete on
LocalLink.

33
Assumes complete 32-word transfer (with no flush
to NPI.(1))

Tx

1st 32-word block Transmit complete NPI.
Address Request for 2nd (or any subsequent,
except last) 32-word block burst for transmission
on LocalLink.

14 16 for Read FIFO Port Side Pipeline = 1.

Tx
Address Acknowledge from NPI port.
Data Available on NPI.

Y
Memory dependent latency. Refer to MPMC
datasheet for standard values

Tx
Data available on NPI.
2nd 32-word block Transmit complete on
LocalLink.

34
Assumes complete 32-word transfer (with no flush
to NPI. (1))

Tx

Second to Last 32-word Block Transmit
complete on LocalLink NPI
Address Request for last 32-word block burst for
transmission on LocalLink.

14 16 for Read FIFO Port Side Pipeline = 1.

Tx
NPI Address Request.
Data available on NPI.

Y
Memory dependent latency. Refer to MPMC
datasheet for standard values.
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 215
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Latency Calculation Examples

For Tx:

Ignoring timing for buffer descriptor fetches (like in large block transfers), the throughput for Tx averages are = 32
words / (11 + Y + 36) LocalLink cycles.

Examples:

• If the application is for 16-bit DDR2 at 133 MHz, then Y = 25.

• If the LocalLink clock is 125 Mhz, the throughput is:

• = 128 bytes / (11 + 25 + 36) * 8 ns

• = 222 MB/s

For Rx:

Ignoring timing for buffer descriptor fetches, the throughput for Rx average is = 32 words / (37 + 1 + 5) LocalLink
cycles. For example, if the LocalLink clock is 125 Mhz, the throughput is:

• 128 bytes / (43) * 8 ns

• = 372 MB/s

Note: Assuming No on NPI side and no throttling from LocalLink yields a high Rx Data throughput.

Latency Characteristics Assumptions

• Data re-alignment might be required

• No throttling on either NPI or LocalLink side

• No memory refresh

Tx
Data available on NPI.
Last 32-word block Transmit complete on
LocalLink.

34
Assumes complete 32-word transfer (with no flush
to NPI. (1))

Tx
Last 32-word Block Transmit complete on
LocalLink TX buffer descriptor Write update
complete.

14

Rx
1st Rx Source Ready (on LocalLink side)
Address Request for 1st 32-word block write on
NPI.

10
Assuming Rx Destination is ready to receive the
data

Rx
1st push issued on NPI for a burst write.
NPI Addrreq issued on NPI for burst write.

32

Rx
Address Request for any 32-word block write on
NPI Address.
Acknowledge from NPI.

1 Assuming usual response time from MPMC

Rx
RxSrcRdy asserted for 2nd (or any subsequent)
32-word block First push issued on NPI side.

5
Assuming Rx Destination is ready to receive the
data

Rx
Last 32-word Block write complete on NPI Rx
buffer descriptor Write update complete.

12

1. If less than 32-words are required, a flush is issued to NPI and the number of clock cycles required to complete the transmit operation = 5 + number
of words to be transmitted.

Table 96: SDMA Latency Expectations (Cont’d)

Operation Latency Between LocalLink
Clock Cycles Notes
216 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
These latency timings are associated with a 1:1 clock ratio with Read Data Delay = 0. However, the timings for
other values of clock ratio and Read Data Delay are relatively the same because the LocalLink data throughput is
the system bottleneck.

XCL PIM Latency and Throughput

The following table describes the latency and throughput for the XCL PIM port. The table provides performance
information for common MPMC and XCL PIM configurations. The XCL PIM latency is measured from the first
push of data into the access FIFO until the first data is available on the read data FIFO. The throughput transactions
were measured by transferring 1 kilobyte of data in simulation.

The time between the first transaction and the last data item is used to divide the number of bytes transferred to
calculate the read throughput. The time measured between the first transaction and the last transaction has been
sent over the access FIFO is used for the write throughput calculation.

Table 97: XCL PIM Latency and Throughput

Pipeline
Settings

Memory Interface Linesize
Port

Subtype

Memory
to XCL
Clock
Ratio

Initial
Transaction

Latency
(XCL Clocks)

Maximum
Total Data

Throughput
of XCL Port

(MBytes/sec)

Spartan-3 Generation Reads

Default DDR2 @ 133 MHz 32 bits 16 XCL 2:1 16 214

Default DDR2 @ 133 MHz 16 bits 16 XCL 2:1 16 213

Default DDR1 @ 83 MHz 16 bits 8 XCL 1:1 28 188

Default DDR1 @ 83 MHz 16 bits 4 DXCL 1:1 28 127

None DDR1 @ 83 MHz 16 bits 4 DXCL 1:1 22 157

Spartan-3 Generation Writes

Default DDR2 @ 133 MHz 32 bits 16 XCL 2:1 N/A 225

Default DDR2 @ 133 MHz 16 bits 16 XCL 2:1 N/A 225

Default DDR1 @ 83 MHz 16 bits 8 XCL 1:1 N/A 165

Default DDR1 @ 83 MHz 16 bits 1 DXCL 1:1 N/A 33

None DDR1 @ 83 MHz 16 bits 1 DXCL 1:1 N/A
33

Virtex-4/Virtex-5 Reads

Default DDR2 @ 200 MHz 32 bits 16 XCL 2:1 15 320

Default DDR2 @ 200 MHz 16 bits 16 XCL 2:1 15 320

Default DDR2 @ 200 MHz 16 bits 8 XCL 2:1 15 266

Default DDR1 @ 100 MHz 16 bits 4 DXCL 1:1 24 158

None DDR1 @ 100 MHz 16 bits 4 DXCL 1:1 24 197

Virtex-4/Virtex-5 Writes

Default DDR2 @ 200 MHz 32 bits 16 XCL 2:1 N/A 337

Default DDR2 @ 200 MHz 16 bits 16 XCL 2:1 N/A 337

Default DDR2 @ 200 MHz 16 bits 8 XCL 2:1 N/A 291
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 217
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Default DDR1 @ 100 MHz 16 bits 1 DXCL 1:1 N/A 40

None DDR1 @ 100 MHz 16 bits 1 DXCL 1:1 N/A 40

Virtex-6 Reads

Default DDR3 @ 400MHz 32 bits 16 XCL 4:1 18 320

Default DDR3 @ 400MHz 16 bits 16 XCL 4:1 18 320

Default DDR3 @ 400MHz 16 bits 8 XCL 4:1 18 266

Default DDR3 @ 400MHz 16 bits 8 DXCL 4:1 18 266

Default DDR3 @ 400MHz 16 bits 4 DXCL 4:1 18 194

None DDR3 @ 400MHz 16 bits 4 DXCL 4:1 16 261

Virtex-6 Writes

Default DDR3 @ 400MHz 32 bits 16 XCL 4:1 N/A 337

Default DDR3 @ 400MHz 16 bits 16 XCL 4:1 N/A 337

Default DDR3 @ 400MHz 16 bits 8 XCL 4:1 N/A 289

Default DDR3 @ 400MHz 16 bits 8 DXCL 4:1 N/A 49

Default DDR3 @ 400MHz 16 bits 4 DXCL 4:1 N/A 49

None DDR3 @ 400MHz 16 bits 4 DXCL 4:1 N/A 49

Spartan-6 Reads

Default DDR3 @ 400MHz 16 bits 16 XCL 4:1 13 337

Default DDR3 @ 400MHz 16 bits 8 DXCL 4:1 13 290

Default DDR3 @ 400MHz 16 bits 4 DXCL 4:1 13 226

Default DDR3 @ 400MHz 16 bits 4 DXCL 5:1 12 182

Spartan-6 Writes

Default DDR3 @ 400MHz 16 bits 16 XCL 4:1 N/A 337

Default DDR3 @ 400MHz 16 bits 1 DXCL 4:1 N/A 133

Default DDR3 @ 400MHz 16 bits 1 DXCL 4:1 N/A 133

Default DDR3 @ 400MHz 16 bits 1 DXCL 5:1 N/A 107

Table 97: XCL PIM Latency and Throughput (Cont’d)

Pipeline
Settings

Memory Interface Linesize
Port

Subtype

Memory
to XCL
Clock
Ratio

Initial
Transaction

Latency
(XCL Clocks)

Maximum
Total Data

Throughput
of XCL Port

(MBytes/sec)
218 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
VFBC PIM Latency and Throughput

The VFBC PIM uses the NPI interface of the MPMC, therefore the latency and throughput of the VFBC PIM is
similar to the NPI PIM. The maximum throughput of the VFBC PIM is 95.2% of the NPI PIM throughput (see
"Target Operating Frequency Ranges by FPGA Family," page 201). The VFBC uses 32-word bursts and 64-bit NPI
interface only; consequently, only those configurations from "NPI Latency and Throughput," page 208 are valid for
the VFBC numbers.

The VFBC PIM adds an additional 68 MPMC_Clk cycles for the first 32-word burst of each VFBC command. Each
subsequent burst does not have an additional latency cost. The minimum number of cycles between each 32-word
burst transaction is 0 MPMC_Clk cycles. This number will increase if the VFBC or MPMC FIFOs are not ready.

For Write transactions, data is written into the NPI interface starting at 8 MPMC_Clk cycles before the NPI address
request is asserted. (A complete Write transaction takes 16 MPMC_Clk cycles only for 32-word bursts.)

Resource Utilization

The following subsections detail the MPMC resource utilization:

• Resource (block RAM) Utilization

• Resource (LUT, Flip-Flop, and Slice) Utilization

Resource (block RAM) Utilization

By default, MPMC uses block RAM based FIFOs in each of its ports to buffer read and write data from the external
memory to improve memory efficiency, reduce LUT utilization, and to improve timing. MPMC also provides a
per-port parameter called C_PI<Port_Num>_RD_FIFO_TYPE and C_PI<Port_Num>_WR_FIFO_TYPE which can be
used to disable FIFOs for (read-only or write-only ports) or to choose the use of SRL FIFOs instead of block RAM
FIFOs.

MPMC block RAM utilization is outlined as follows:

• 1 block RAM for control state machine.

• 1 block RAM for arbitration if CUSTOM arbitration algorithm is used (C_ARB0_ALGO = CUSTOM). For FIXED
or ROUND_ROBIN arbitration, no block RAM is used. If only 1 port is used, no block RAM is used.

• If ECC is enabled, 1 block RAM is used for 8-, 16-, and 32-bit DDR/DDR2 memories, and two block RAMs for
64-bit DDR/DDR2 memories.

• 1 block RAM for every port where a Performance Monitor is enabled.

The following table shows the block RAM usage for each Read and Write port for the Spartan-3, Virtex-4, and
Virtex-5 FPGA devices:

Table 98: Read and Write Port block RAM Usage (Spartan-3, Virtex-4, and Virtex-5)

Read Ports

0 block RAMs if write-only port (C_PI<Port_Num>_RD_FIFO_TYPE = DISABLED).

1 block RAM for 32 bit NPI(1) port width and 8/16 bit DDR/DDR2 memory.

1 block RAM for 32 bit NPI port width and 8/16/32 bit SDRAM memory.

2 block RAMs for 64 bit NPI port width or 32 bit DDR/DDR2 memory or 64 bit SDRAM memory.

On Virtex-5, there is an optimization where 1 block RAM is used for 64 bit NPI with 32 bit DDR and DDR2 or 64 bit SDRAM
memory.

4 block RAMs for 64 bit DDR and DDR2 memory.

1. NPI Width is defined as: SDMA = 64 bits, XCL = 32 bits PLB PIM = value of parameter C_SPLB<Port_Num>_NATIVE_DWIDTH (the default is 64
and this value must be 64 for IPLB and DPLB SUBTYPES), NPI = value of parameter C_PIM<Port_Num>_DATA_WIDTH (default is 64).
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 219
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
The following table shows the block RAM usage for each Read and Write port for the Virtex-6 FPGA device:

To conserve block RAMs, the MPMC can be configured to use SRL FIFOs instead of block RAM FIFOs. With a 64-
bit NPI:

• Each read SRL FIFO uses approximately 288 LUTs per port.

• Each write SRL FIFO uses approximately 256 LUTs per port.

The use of SRL FIFOs might negatively impact timing due to the slower speed of SRL FIFOs compared to block
RAMs (BRAMs).

The VFBC PIM uses a number of block RAMs depending on the FIFO sizes. See "VFBC PIM Slice, LUT, FF, Slice,
and BRAM Resource Utilization," page 224.

Note: Spartan-6 does not use block RAMs with the exception of VFBC PIMs or Performance Monitors.

Write Ports

0 block RAMs if read-only port (C_PI<Port_Num>_WR_FIFO_TYPE = DISABLED) or for IXCL/IPLB PIM subtypes.

1 block RAM for 32 bit NPI port width and 8/16 bit DDR/DDR2 memory,

1 block RAM for 32 bit NPI port width and 8/16/32 bit SDRAM memory.

2 block RAMs for 64 bit NPI port width or 32 bit DDR/DDR2 memory or 64 bit SDRAM memory.

On Virtex-5, there is an optimization where 1 block RAM is used for 64 bit NPI with 32 bit DDR/DDR2 or 64 bit SDRAM
memory.

4 block RAMs for 64 bit DDR/DDR2 memory.

Table 99: Read and Write Port block RAM Usage (Virtex-6)

Read Ports

0 block RAMs if write-only port (C_PI<Port_Num>_RD_FIFO_TYPE = DISABLED).

1 block RAM for 32 bit NPI(1) port width and 8 bit DDR2/DDR3 memory.

2 block RAMs for 64 bit NPI port width or 32 bit DDR2/DDR3 memory or 64 bit SDRAM memory.

1 block RAM for 64 bit NPI(1) port width and 16 bit DDR2/DDR3 memory.

2 block RAMs for 32 bit NPI(1) port width and 16 bit DDR2/DDR3 memory.

4 block RAMs for 64 bit DDR2/DDR3 memory.

Write Ports

0 block RAMs if read-only port (C_PI<Port_Num>_WR_FIFO_TYPE = DISABLED) or for IXCL PIM subtypes.

1 block RAM for 32 bit NPI(1) port width and 8 bit DDR2/DDR3 memory.

2 block RAMs for 64 bit NPI(1) port width and 8 bit DDR2/DDR3 memory.

1 block RAMs for 64 bit NPI(1) port width and 16 bit DDR/DDR3 memory.

2 block RAMs for 32 bit NPI(1) port width and 16 bit DDR/DDR3 memory.

4 block RAMs for 32 bit DDR2/DDR3 memory

1. NPI Width is defined as: SDMA = 64 bits, XCL = 32 bits PLB PIM = value of parameter C_SPLB<Port_Num>_NATIVE_DWIDTH (the default is 64
and this value must be 64 for IPLB and DPLB SUBTYPES), NPI = value of parameter C_PIM<Port_Num>_DATA_WIDTH (default is 64).

Table 98: Read and Write Port block RAM Usage (Spartan-3, Virtex-4, and Virtex-5) (Cont’d)

1. NPI Width is defined as: SDMA = 64 bits, XCL = 32 bits PLB PIM = value of parameter C_SPLB<Port_Num>_NATIVE_DWIDTH (the default is 64
and this value must be 64 for IPLB and DPLB SUBTYPES), NPI = value of parameter C_PIM<Port_Num>_DATA_WIDTH (default is 64).
220 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
Resource (LUT, Flip-Flop, and Slice) Utilization

This section provides estimates for Lookup Table (LUT), Flip-Flop (FF), and Slice utilization for MPMC and PIMs.
The values provided are for resource estimation and are not guaranteed. These estimates assume default MPMC
settings and default implementation tool options. Actual FPGA resource utilization depends on exact MPMC
configuration parameters and implementation tool optimizations including cross boundary logic optimization,
logic sharing, register re-timing, global system optimization, logic trimming, timing targets, and implementation
tool settings.

MPMC Core (LUT, FF, and Slice) Resource Utilization

The following table provides MPMC Core LUT and FF resource utilization. This includes the PHY, arbiter, control
logic, and data path (using block RAM FIFOs) up to the internal NPI interfaces. PIM resource utilizations are
provided separately in the tables that follow. An estimate of Slice utilization is also provided for reference. The
reported Slice utilization numbers correspond to default slice packing effort for a medium full FPGA. The Slice
utilization might vary in actual systems due to factors such as the fullness of the FPGA device, Slice packing effort,
and the amount of Slice merging with other logic in the system.

XCL PIM LUT and FF Resource Utilization

The following table provides the XCL PIM LUT, FF, and Slice resource utilization

Table 100: LUT and Flip Flop Utilization Estimates(1)

FPGA
Family

Memory
Width

Memory Type

Base Single Port MPMC Core Size Each Additional Port Size

LUT
Utilization

FF Utilization
Slice
Utilization

LUT
Utilization

FF
Utilization

Slice
Utilization

Spartan-3
Generation

16(2) DDR/DDR2 340-390 850-970 620-720 180-200 220-250 210-240

Spartan-3
Generation

32 DDR/DDR2 450-510 1160-1330 840-970 170-200 250-290 220-260

Virtex-4 32 DDR/DDR2 1210-1390 1290-1480 1250-1440 250-290 310-360 280-320

Virtex-4 64 DDR/DDR2 2070-2380 2080-2390 2080-2390 240-280 350-410 290-340

Virtex-5 32 DDR/DDR2 960-1100 1410-1620 640-740 170-190 280-320 120-140

Virtex-5 64 DDR/DDR2 1770-2030 2050-2360 1030-1200 200-230 340-390 140-170

Virtex-6 32 DDR2/DDR3 2400-2600 3300-3600 1040-1200 150-250 320-450 140-180

Spartan-6 16
LPDDR/DDR/
DDR2/DDR3

520-560 320-360 200-250 80-100 120-190 40-70

1. The size values provided assume that, on average, half the ports have 32 bit NPI interfaces.
2. If all ports have 32 bit NPI interfaces the data path size would be further reduced because a 32 bit NPI has the same SDR data width as a 16 bit

DDR/DDR2 memory.

Table 101: XCL PIM LUT, FF, and Slice Resource Utilization

FPGA Family SUBTYPE LUT Utilization FF Utilization Slice Utilization

Spartan-3 IXCL 150 107 115

Spartan-3 DXCL 168 121 129

Virtex-4 IXCL 161 119 134
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 221
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
PLB PIM LUT, FF, and Slice Utilization

The following tables provide the PLB PIM LUT, FF and Slice by FPGA family, NPI width, and PLB SUBTYPE

Virtex-4 DXCL 194 129 152

Virtex-5/Virtex-6/Spartan-6 IXCL 189 112 101

Virtex-5/Virtex-6/Spartan-6 DXCL 207 131 118

Table 102: PLB PIM LUT and FF Resource Utilization

FPGA Family
PLB PIM

SUBTYPE
NPI Width

LUT
Utilization

FF
Utilization

Slice
Utilization

Spartan-3 PLB 32 571-631 388-497 437-524

Spartan-3 PLB 64 853-919 589-673 635-721

Spartan-3 Singles 32 222-284 333-399 274-344

Spartan-3 Singles 64 296-371 474-553 346-424

Virtex-4 PLB 32 593-655 388-495 435-532

Virtex-4 PLB 64 893-944 597-672 648-717

Virtex-4 DPLB 64 471-549 490-579 413-512

Virtex-4 IPLB 64 304-340 331-388 297-340

Virtex-4 Singles 32 229-328 332-400 267-333

Virtex-4 Singles 64 371-438 476-559 370-432

Virtex-5/Virtex-6/Spartan-6 PLB 32 480-577 385-488 303-370

Virtex-5/Virtex-6/Spartan-6 PLB 64 677-850 585-669 478-581

Virtex-5/Virtex-6/Spartan-6 Singles 32 195-212 330-394 207-224

Virtex-5/Virtex-6/Spartan-6 Singles 64 286-308 471-547 252-308

Table 101: XCL PIM LUT, FF, and Slice Resource Utilization (Cont’d)

FPGA Family SUBTYPE LUT Utilization FF Utilization Slice Utilization
DS643 (v6.01.a) July 23, 2010 www.xilinx.com 222
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
SDMA PIM LUT, FF, and Slice Resource Utilization

The following table provides SDMA PIM LUT, FF, and Slice resource utilization for the Spartan-3,
Virtex-4, Virtex-5, and Spartan-6 FPGA devices, as well as the values for C_SPLB_DWIDTH, C_SPLB_P2P,
C_PI_RDDATA_DELAY, C_COMPLETED_ERR_TX, and C_COMPLETED_ERR_RX,

PPC440MC LUT and FF Resource Utilization

The PPC440MC PIM uses approximately 50 Slices, 120 FFs, and 60 LUTs on Virtex-5 FXT.

Table 103: SDMA PIM LUT and FF Resource Utilization by FPGA Device

C_SPLB_
DWIDTH

C_SPLB_P2P
C_PI_RDDATA
_DELAY

C_COMPLETED
_ERR_TX

C_COMPLETED_
ERR_RX

LUT
Utilization
(4-input)

FF
Utilization

Slice
Utilization

xc3s1400a-4-fg676 (Spartan-3)

32 1 0 0 0 1881 962 1296

32 0 0 0 0 1878 1036 1323

32 0 1 0 0 1878 1036 1323

32 0 2 0 0 1924 1109 1364

32 0 2 1 0 1925 1110 1366

32 0 2 1 1 1927 1111 1368

64 0 2 1 1 1927 1111 1368

128 0 2 1 1 1927 1111 1367

xc4vfx100-10-ff1152 (Virtex-4)

32 1 0 0 0 1957 1018 1300

32 0 0 0 0 1961 1066 1332

32 0 1 0 0 1961 1066 1332

32 0 2 0 0 2026 1139 1384

32 0 2 1 0 2028 1141 1386

32 0 2 1 1 2030 1143 1388

64 0 2 1 1 2030 1143 1388

128 0 2 1 1 2030 1143 1388

Virtex-5/Virtex-6/Spartan-6

32 1 0 0 0 1486 944 738

32 0 0 0 0 1532 1018 869

32 0 1 0 0 1532 1018 869

32 0 2 0 0 1625 1091 792

32 0 2 1 0 1627 1092 844

32 0 2 1 1 1623 1093 813

64 0 2 1 1 1623 1093 773

128 0 2 1 1 1620 1093 795
223 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
VFBC PIM Slice, LUT, FF, Slice, and BRAM Resource Utilization

The following table provides the NPI data width, the allowable types for C_PI0_WR_FIFO_TYPE,
C_PI0_RD_FIFO_TYPE, the C_VFBC_RDWD_DATA_WIDTH, LUT, FF, and Slice resource utilization as well as the
block RAM usage by FPGA architecture.

Table 104: VFBC LUT and FF Resource Utilization

FPGA
Architecture

NPI
Data

Width

C_PI_WR_
FIFO_TYPE

C_PI_RD_
FIFO_TYPE

C_VFBC_R
DWD_DAT_

WIDTH

LUT
Utilization

FF
Utilization

Slice
Utilization block RAM

Virtex-5
Virtex-6

Spartan-6

32 BRAM BRAM 8 1,167 1,010 436 3 RAMB36s

32 BRAM BRAM 16 1,169 1,033 517 3 RAMB36s

32 DISABLED BRAM 32 1,045 895 368 2 RAMB36s

32 BRAM DISABLED 32 1,028 946 480 2 RAMB36s

32 BRAM BRAM 32 1,169 1,031 509 3 RAMB36s

32 BRAM BRAM 64 1,165 1,035 522 5 RAMB36s

64 BRAM BRAM 8 1,191 1,167 551 5 RAMB36s

64 BRAM BRAM 16 1,184 1,165 539 5 RAMB36s

64 DISABLED BRAM 32 1,044 961 468 3 RAMB36s

64 BRAM DISABLED 32 978 1,035 425 3 RAMB36s

64 BRAM BRAM 32 1,187 1,179 525 5 RAMB36s

64 BRAM BRAM 64 1,220 1,183 516 5 RAMB36s

Virtex-4

32 BRAM BRAM 8 1,869 1,075 1,133 3 RAMB16s

32 BRAM BRAM 16 1,867 1,073 1,131 3 RAMB16s

32 DISABLED BRAM 32 1,754 944 1,035 2 RAMB16s

32 BRAM DISABLED 32 1,721 984 1,044 2 RAMB16s

32 BRAM BRAM 32 1,864 1,072 1,129 3 RAMB16s

32 BRAM BRAM 64 1,854 975 1,112 5 RAMB16s

64 BRAM BRAM 8 1,486 1,164 956 5 RAMB16s

64 BRAM BRAM 16 1,484 1,162 954 5 RAMB16s

64 DISABLED BRAM 32 1,371 873 833 3 RAMB16s

64 BRAM DISABLED 32 1,300 980 861 3 RAMB16s

64 BRAM BRAM 32 1,513 1,114 990 5 RAMB16s

64 BRAM BRAM 64 1,539 1,125 1,001 5 RAMB16s
224 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)
IP Configuration Graphical User Interface
The IP Configuration interface offers a convenient and user-friendly way to configure a system. You can invoke the
IP Configurator GUI within XPS by double-clicking the MPMC IP in the System Assembly View, or by right-
clicking MPMC and selecting Configure IP. The tabs in the interface are:

• Base Configuration

• Memory Interface

• Port Configuration

• Advanced

To create a functional MPMC, you need to use the following three tabs only:

• Base Configuration: select the port type for each active port and remove unused ports between active ports

• Memory Interface: select the memory part and configure the memory settings

• Port Configuration: set the parameters for each port

The Advanced tab contains advanced features such as per-port addresses, per-port data path configuration,
arbitration algorithms, performance, and debugging. This tab is intended for advanced users only.

Base Configuration

MPMC provides up to eight ports for accessing the memory; each port can be configured to a different bus or port
type. For Spartan-6 devices, choose the MCB port configuration first using the pulldown menu to the right of the
MPMC diagram. Depending on Spartan-6 MCB port configuration, the maximum number of ports could be
limited to six or fewer ports.The Base Configuration tab lets you set:

• Port types of the eight available ports: the dropdown box contains INACTIVE, XCL, PLBv46, SDMA, NPI,
PPC440MC, VFBC, and MCB.
Depending on the FPGA architecture and port configuration, some PIM types might not be available.

• Common base addresses

Spartan-3
ADSP

32 BRAM BRAM 8 1,778 1,246 1,139 3 RAMB16BWEs

32 BRAM BRAM 16 1,776 1,244 1,137 3 RAMB16BWEs

32 DISABLED BRAM 32 1,664 1,116 1,049 2 RAMB16BWEs

32 BRAM DISABLED 32 1,628 1,159 1,049 2 RAMB16BWEs

32 BRAM BRAM 32 1,774 1,242 1,137 3 RAMB16BWEs

32 BRAM BRAM 64 1,886 1,062 1,148 5 RAMB16BWEs

64 BRAM BRAM 8 1474 1206 997 5 RAMB16BWEs

64 BRAM BRAM 16 1524 1105 988 5 RAMB16BWEs

64 DISABLED BRAM 32 1384 901 859 3 RAMB16BWEs

64 BRAM DISABLED 32 1322 977 864 3 RAMB16BWEs

64 BRAM BRAM 32 1555 1122 1006 5 RAMB16BWEs

64 BRAM BRAM 64 1557 1100 1005 5 RAMB16BWEs

Table 104: VFBC LUT and FF Resource Utilization (Cont’d)

FPGA
Architecture

NPI
Data

Width

C_PI_WR_
FIFO_TYPE

C_PI_RD_
FIFO_TYPE

C_VFBC_R
DWD_DAT_

WIDTH

LUT
Utilization

FF
Utilization

Slice
Utilization block RAM
225 www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

226
The Port Configuration box contains an interface diagram of MPMC; under each port interface is a
dropdown selection that lets you choose the port type. "Memory and Memory Part Parameters,"
page 11 contains a description of the parameter that specifies port types.

The LeftJustify button (which is not available for Spartan-6 MCB) is for eliminating the inactive ports
between active ports, which is desirable because inactive ports also consume logic. During this
justifying process, all parameters related to the ports and external bus connections are shifted left
accordingly. The following table is an example representing the action that occurs with a left-
justification of ports.

The Common Addresses box is where you enter common Base Addresses and SDMA register Base
Addresses. Common base addresses are used by every port for address decoding.

For common SDMA addresses, each port has its own set of registers which are offset at a fixed size from
the common SDMA base address. To configure each individual port address, go to the Address option
under the Advanced tab.

Memory Interface

MPMC can work with a wide variety of memory parts from different manufacturers. This tab lets you
select the memory part used in conjunction with the MPMC.

MPMC has a list of supported memory devices. To select the device to meet your needs, use the
Memory Part Selector area, where available memory parts can be filtered based on the following
criteria:

• Type

• Memory manufacturer

• Memory style

• Memory density – capacity of memory

• Memory width – data width of memory

The filtered results appear in the Part No. drop-down list. The Memory Part Selector/Part No.
dropdown contains a CUSTOM option also, if the correct part is not available in the built-in memory
database. After you select the CUSTOM option, all the memory parameters are editable and you can
enter the parameters you require. After you have selected a memory part, its parameters are
automatically loaded into the Selected Memory Info area and the Memory/DIMM Settings tab.

Note: If you select a similar memory part first and then select the CUSTOM option, the memory parameters from
the first memory part are retained, but are the fields are editable. This can simplify the process of entering a
CUSTOM memory part if it is in a format that is similar to one in the database.

Port0 Port1 Port2 Port3 Port4 Port5 Port6 Port7

Before Left
Justifying

XCL PLBv46 Inactive Inactive XCL Inactive SDMA Inactive

After Left
Justifying

XCL PLBv46 XCL SDMA Inactive Inactive Inactive Inactive
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Memory/DIMM Settings Tab

The Memory/DIMM Settings tab provides the following areas: Settings, Configuration, and Info.

Under the Settings area, selection and drop-down boxes are available where you can adjust settings
such as:

• Number of DIMMs

• Memory Data Width

• Memory Clock Period (ps)

• ODT Setting

• Part Information

A check box is available for Reduced Drive Output also.

Based on the selected device, the appropriate parameters are editable.

The Configuration area provides selection options for CE Width, ODT Width, Clock Width, CSn Width,
and No. of Ranks. A check box is available for Registered Memory also.

The Info area provides the following Memory Width options: DM, ADDr, Bank Addr, and DQS.

Memory Part Settings Tab

The Memory Part Settings tab has two areas: Part Settings and Memory Timing Settings.

• Part Settings contains options for selecting Data Depth, Data Width, Bank, Row, and Column Bits.

• Memory Timing Settings contains memory part options.

MIG Settings Tab

The MIG Settings tab allows you to launch the MIG Tool from within the MPMC GUI in Spartan-3,
Virtex4, Virtex-5, and Virtex-6 architectures. You can set some MIG specific parameters also. For more
information about the integrated MIG tool flow and how to set the MIG specific parameters, refer to
"MIG/MPMC Tool Flow," page 98.

MCB Setting Tab

The MCB Settings tab (Spartan-6 only) lets you configure some MCB specific parameters, generally
related to the Soft Calibration Logic, and for setting the RZQ/ZIO pinout locations.

Port Configuration

In the Port Configuration tab you can configure the parameters of each individual port. Tabs are
available for Port 0-3 and Port 4-7. The Port tabs are divided into quadrants with a port number
represented in each quadrant. Only the parameters related to the current port type (selected in the Base
Configuration tab) are active and editable. For a detailed description of parameters, refer to "Memory
and Memory Part Parameters," page 11.
01.a) July 23, 2010 www.xilinx.com 227
ecification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

228
Advanced

The Advanced tab contains the following tabs which offer more advanced MPMC customization:

• Address Configuration

• Data Path

• Arbitration

• ECC/Debug

• Misc

Address Configuration

In the Address Configuration tab, you can choose to ignore the common base addresses and configure
the addresses of each individual port.

The Use Common Port Address check box is checked on by default. If you do not want to use common
port address, you can deselect the check box to disable the use of common port addresses and enable
the Port Addresses box. You can then change the port addresses of each port.

The rows in the Port Addresses box are:

• Base Address: Base address of the port as specified by C_PIM<Port_Num>_BASEADDR which is
described in"Per-Port Parameters," page 18.

• High Address: High address of the port as specified by C_PIM<Port_Num>_HIGHADDR which is
described in"Per-Port Parameters," page 18.

• Offset: Address offset as specified by C_PIM<Port_Num>_OFFSET which is described in"Per-Port
Parameters," page 18. This allows a multi-processor system to have identical logic memory space
inside each processor while mapping each logical memory space to different physical locations
inside the memory.

• SDMA Control Port Base Address: logical base address of channel (if configured as SDMA).

• SDMA Control Port High Address: logical high address of channel (if configured as SDMA).

The Restore Default Addr button restores the address to common address mode.

Data Path

In the Data Path tab (which is not valid for Spartan-6), you can configure the common data path
(pipeline) settings and the individual settings for each port.

General Pipeline Settings let you set the general pipeline parameters, and Port-specific Settings let you
change the pipeline settings for the individual ports as follows:

• NPI Width: Width of Native Port Interface.

• Read FIFO Config: Implement FIFO using block RAM, SRL, or Wr-Only (Write Only, Read FIFO
Disabled).

• Write FIFO Config: Implement FIFO using block RAM, SRL, or Rd-Only (Read Only, Write FIFO
Disabled).

• Read Memory Pipeline: Enable pipeline for read access to memory.

• Read Port Pipeline: Enable pipeline for read access to the underlying port.

• Write Memory Pipeline: Enable pipeline for write access to memory.

• Write Port Pipeline: Enable pipeline for write access to port.

• Address Ack Pipeline: Enable pipeline for acknowledgement of address request.
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

DS643 (v6.
Product Sp
Arbitration

MPMC has a maximum of eight ports that can all access the memory at the same time. Consequently,
it is very important to have an arbitration algorithm to determine which port has priority at any given
moment. In the Arbitration tab, you can choose what arbitration algorithm to use.

From the Select Arbitration Algorithm box, select one of the three following arbitration algorithms:

• Round Robin: Perform Round Robin arbitration.

• Fixed: Perform Fixed priority arbitration. When set to Fixed, the priority order is from lowest
number port to highest number port and cannot be changed (Time Slot 0 is greyed out and is not
available for edit.)

• Custom: In this mode, you can customize the number of time slots, as well as the arbitration
priorities in each time slot. The arbitration priority in each time slot is encoded as a string to
indicate decreasing priorities among ports.
For example, the string “01234567” gives the highest priority to port 0, then decreasing priorities
from port 1 through port 7.

ECC/Debug

In the ECC/Debug tab, you can set debug, Error Correction Code (ECC), and Performance Monitor
(PM) related options. All debug registers, ECC registers and PMs are accessed using a Control bus
interface. With Virtex-6 and Spartan-6 devices some of these options might not be available.

In the General ECC/Debug Settings box, you can enable debug, ECC, and PM. If any one of them is
enabled, the Control Bus is activated and you must enter the base address in the Control Base Address
box. After you enable ECC, you can configure the behavior further in the ECC Settings box. After you
enable PM, you can change the general parameters of the Performance Monitor in the Common
Performance Monitor Settings box, and the port-specific parameters in Port-specific Performance
Monitor Settings box.

Misc

The Misc tab contains parameters that require your attention but do not fall into any of the previous
categories.

Reference Documents
• http://www.xilinx.com/ise/embedded/edk_docs.htm

• ISE documentation page: http://www.xilinx.com/ise/logic_design_prod/foundation.htm

• Memory web site documents: Memory Interfaces Data Capture Using Direct Clocking Technique and
MIG User Guide: http://www.xilinx.com/products/design_resources/mem_corner

• MicroBlaze Processor Reference Guide:
http://www.xilinx.com/ise/embedded_design_prod/index.htm

• Spartan-3 generation FPGAs page:
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/index.htm

• Virtex-4 page: http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm

• Virtex-5 page: http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm

• Embedded Processor Block in Virtex-5 FPGAs Reference Guide
<EDK Install Directory>/doc/usenglish/embedproc_ug200.pdf

• Specification for PLB v4.6 Bus Protocol with Xilinx Simplifications, SP026,
<EDK Install Directory>/doc/usenglish/sp026.pdf
01.a) July 23, 2010 www.xilinx.com 229
ecification

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/logic_design_prod/foundation.htm
http://www.xilinx.com/products/design_resources/mem_corner
http://www.xilinx.com/ise/embedded_design_prod/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm
www.xilinx.com

Multi-Port Memory Controller (MPMC) (v6.01.a)

230
• PLB v3.4 and OPB to PLB v4.6 System and Core Migration User Guide:
<EDK Install Directory>/doc/usenglish/mg_ug.pdf

• Application Notes:

- XAPP768C, Interfacing Spartan-3 Devices With 166 MHz or 333 Mb/s DDR SDRAM Memories:
http://www.xilinx.com/support/software/memory/protected/XAPP768c.pdf

- XAPP454, DDR2 SDRAM Memory Interface for Spartan-3 FPGAs
http://www.xilinx.com/bvdocs/appnotes/xapp454.pdf

- XAPP701, DDR2 SDRAM Physical Layer Using Direct-Clocking Technique:
http://www.xilinx.com/support/documentation/application_notes/xapp701.pdf

- XAPP851DDR SDRAM Controller Using Virtex-5 FPGA Devices:
http://www.xilinx.com/support/documentation/application_notes/xapp851.pdf

- XAPP858, High-Performance DDR2 SDRAM Interface in Virtex-5 Devices:
http://www.xilinx.com/support/documentation/application_notes/xapp858.pdf

• Design resources page:
http://www.xilinx.com/products/design_resources/proc_central/index.htm

• Development boards page: http://www.xilinx.com/products/devboards/index.htm

• IBM CoreConnect documentation: CoreConnect Device Control Register Bus: Architecture
Specification, IBM CoreConnect 64-Bit Processor Local Bus: Architecture Specification and IBM
CoreConnect 64-Bit On-Chip Peripheral Bus: Architectural Specification:
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm

• LocalLink User Interface page: http://www.xilinx.com/aurora/aurora_member/sp006.pdf

• Video Starter Kit:
http://www.xilinx.com/products/devboards/reference_design/vsk_s3/vsk_s3.htm

• Answer Records (Contain useful design, debug, and implementation):
http://www.xilinx.com/xlnx/xil_ans_browser.jsp

• Virtex-6 page: http://www.xilinx.com/products/virtex6/index.htm

• Virtex-6 FPGA Memory Interface Solutions User Guide (MIG):
http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf

• Spartan-6 page: http://www.xilinx.com/products/spartan6/index.htm

• Spartan-6 FPGA Memory Controller User Guide:
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf

• Spartan-6 FPGA Memory Interface Solutions User Guide:
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
www.xilinx.com DS643 (v6.01.a) July 23, 2010
Product Specification

http://www.xilinx.com/support/software/memory/protected/XAPP768c.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp454.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp701.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp851.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp858.pdf
http://www.xilinx.com/products/design_resources/proc_central/index.htm
http://www.xilinx.com/products/devboards/index.htm
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm
http://www.xilinx.com/aurora/aurora_member/sp006.pdf
http://www.xilinx.com/products/devboards/reference_design/vsk_s3/vsk_s3.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/products/virtex6/index.htm
http://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf
http://www.xilinx.com/products/spartan6/index.htm
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug416.pdf
www.xilinx.com

	Multi-Port Memory Controller (MPMC) (v6.01.a)
	Introduction
	Features
	Features (continued)
	FPGA Device Support

	Design Parameters
	System Parameters
	Memory and Memory Part Parameters
	Per-Port Parameters
	Personality Interface Module (PIM) Parameters
	XCL PIM Design Parameters
	PLB v4.6 PIM Design Parameters
	SDMA PIM Design Parameters
	NPI PIM Design Parameters
	MIB/PPC440MC PIM Design Parameters
	VFBC PIM Design Parameters

	I/O Signals
	System I/O Signals
	Memory Signals
	SDRAM PHY I /O Signals (Spartan-3, Virtex-4, and Virtex-5 Only)
	Double Data Rate (DDR), Double Data Rate 2 (DDR2), and Double Data Rate 3 (DDR3) I/O Signals
	DDR I/O Signals (Spartan-3, Virtex-4, and Virtex-5 Only)
	DDR2 I/O Signals (Spartan-3, Virtex-4, Virtex-5, and Virtex-6 Only)
	DDR3 I/O Signals (Virtex-6 Only)

	MCB PIM I/O Signals

	PIM I/O Signals
	XCL PIM I/O Signals
	PLB v4.6, SDMA_CTRL, and MPMC_CTRL PIM I/O Signals
	SDMA LocalLink I/O Signals
	NPI PIM I/O Signals
	PPC440MC PIM I/O Signals
	VFBC PIM I/O Signal
	MCB PIM I/O Signals

	Parameter and I/O Signal Dependencies
	PLB v4.6 Bus Parameter and I/O Signal Dependencies
	NPI Parameter and I/O Signal Dependencies

	Control and Status Registers
	ECC Register Summary
	Static PHY Register Summary
	MIG PHY Debug Register Summary
	Common MIG PHY Debug Registers
	Spartan-3 MIG PHY Debug Registers
	Virtex-4 MIG PHY Debug Registers
	Virtex-5 MIG PHY Debug Registers

	Status Register Summary
	Performance Monitor Register Summary
	SDMA Register Summary

	Getting Started with MPMC
	FPGA and Memory Device Selection
	Initial Instantiation and System Assembly
	Choosing a Physical Interface
	Choosing Memory Device Details
	Board Considerations
	Choosing Personality Interface Modules

	MPMC Use Cases
	Standard PowerPC 405 Processor CoreConnect Use Case
	Single MicroBlaze Processor Use Case
	Dual PowerPC 405 Processor Use Case
	Using MPMC in Standalone Systems
	Using EDK XPS to Manage the MPMC Core

	Transaction Ordering, Coherency, and Arbitration
	Transaction Ordering and Memory Coherency
	Multi-Port Arbitration Algorithms
	Fixed
	Round Robin (Default)
	Custom
	Arbitration Examples

	Soft Memory Controller Architecture
	Address Path
	Base/High/Offset Parameters
	Address Encoding
	Address Path Pipeline
	Address Alignment
	Read Requests
	Write Requests

	Data Path
	Supported Data Widths
	FIFO Types
	Read Word Address
	Data Path Pipelines
	Control Path / Arbiter
	Transfer Types
	Arbitration Algorithms
	Arbiter Pipeline
	Control Path and Arbiter block RAM Utilization

	Clock Logic
	Spartan-3, Virtex-4, and Virtex-5 Clock Logic
	Virtex-6 Clock Logic
	Virtex-6 PIM Clocking

	Spartan-3, Virtex-4, and Virtex-5 Reset Logic
	Error Correction Code
	ECC Features
	ECC Implementation
	ECC Read Data Handling
	ECC Need for Read Modify Write
	ECC Memory Organization and Word Size
	ECC Registers
	ECC Control Register
	ECC Status Register
	ECC Single-Bit Error Count Register
	ECC Double-Bit Error Count Register
	ECC Parity Field Bit Error Count Register
	ECC Error Address Register
	Device Global Interrupt Enable Register
	IP Interrupt Status Register

	IP Interrupt Enable Register

	ECC Testing

	Performance Monitoring
	PM Features
	Performance Monitor Operation
	Performance Monitor Measurement Methodology
	Performance Monitoring Usage Example
	Performance Monitor Registers
	Performance Monitor Control Register
	Performance Monitor Clear Register
	Performance Monitor Status Register
	Performance Monitor Global Cycle Count Register
	Performance Monitor Dead Cycle Count Register
	Performance Monitor Data Bin Registers
	Data Bin Organization
	Qualifier Definitions
	Data Bin Organization

	Configurable Physical Interface
	Available PHY Interface by FPGA Device
	Connecting Memory to the PHY Interface
	Little-Endian Label Settings
	Big-Endian Memory Data Types
	Connecting Memory to a DDR2 MPMC Design Example

	Memory Interface Generator PHY Interface
	MIG PHY Features
	MIG-Based PHY Design Considerations
	MIG/MPMC Tool Flow
	Integrated MIG GUI Flow
	Integrated MIG GUI Flow: Additional Information

	Standalone MIG GUI Flow
	Standalone Flow: Converting a MIG UCF to an MPMC UCF
	Standalone Flow: Migrating an MPMCv3 Design to MPMCv5
	Standalone Flow: Migrating an MPMCv4 Virtex-5 DDR2 Design to MPMCv5
	Standalone Flow: Migrating an MPMCv5 Virtex-6 Design to MPMCv6

	MIG Spartan-3 Design Considerations
	MIG Spartan-3 PHY Use of Top/Bottom I/O Banks for Data Signals
	MIG Spartan-3 Placement of Calibration Control Area Group and BUFG Driving Memory Clock Port MPMC_Clk0
	Spartan-3 Top Bank Clock Selection
	Spartan-3 Bottom Bank Clock Selection
	MIG Spartan-3 PHY Template Router and DQ/DQS Data Capture Logic
	MIG Spartan-3 PHY MAXDELAY Timing Constraints
	MIG Spartan-3 PHY Debug Tips and Hints

	Board Considerations
	Important Notes on MIG Board Compatibility
	Tips and Hints for Board Bring Up

	MIG Virtex-4 Design Considerations
	Single MPMC IDELAYCTRL Designs
	Multiple MPMC IDELAYCTRL IP Designs

	Additional MIG Information

	Static PHY Interface
	Static PHY Features
	Static PHY Implementation
	Static PHY Implementation Considerations
	Control Register Values
	Timing Constraints
	DCM Phase Adjust Port
	Matching Delay Traces
	Static PHY Interface Register
	Example Static PHY Calibration Algorithm

	SDRAM PHY Interface
	SDRAM PHY Features
	Low Frequency SDRAM Clock and DCM Phase Adjustment Limits

	Spartan-6 Hard Memory Controller Architecture
	Arbitration Algorithms
	Data Path and Physical Memory Interface
	Memory Interface Generator (MIG)
	Spartan-6 Clock Logic
	MCB Memory Clocking
	PIM Clocking
	Special Clocking Requirements: When 2 MCBs Are On The Same Side of The Device
	MCB Performance Mode
	Spartan-6 C_MCB_LOC Parameter
	Spartan-6 Reset Logic
	Soft Calibration Module
	MCB Bring-Up

	Personality Interface Modules
	PIM Base/High/Offset Parameters
	Xilinx CacheLink PIM
	XCL Features
	XCL Overview
	Connecting XCL to a MicroBlaze Soft Processor
	XCL Configuration Options
	Dual XCL Buses on One XCL PIM
	XCL PIM Subtypes

	XCL Line Size and Write Transfers
	XCL Pipeline Stages
	XCL Clock Requirements
	XCL Additional Information

	Soft Direct Memory Access Controller PIM for LocalLink Interfaces
	SDMA Features
	SDMA Overview
	SDMA Operation
	Scatter Gather Operation
	Starting and Stopping DMA Operations

	DMA Operation Descriptors
	Transmit Channel Operation
	Receive Channel Operation

	SDMA Error Conditions
	Managing SDMA Descriptors
	Dynamic Descriptors
	Appending a Descriptor Chain
	Modifying a Descriptor Using A Descriptor Ring

	SDMA LocalLink Interface
	SDMA LocalLink Headers and Footers
	Transmit LocalLink Interface
	Receive LocalLink Interface

	SDMA Interrupts and Errors
	SDMA Controller Interrupt Description
	SDMA Error Events
	SDMA Interrupt On End Event
	SDMA Interrupt Coalescing and Delay Timer
	SDMA Engine Reset

	SDMA Transaction Timing
	SDMA Descriptor Fetch
	SDMA Descriptor Update
	SDMA Transmit Data Read
	SDMA Receive Data Write
	SDMA Transmit LocalLink
	SDMA Receive LocalLink

	SDMA Registers
	Next Descriptor Pointer (TX_NXTDESC_PTR and RX_NXT_DESC_PTR) Offsets: 0x00 and 0x20
	Current Buffer Address (TX_CURBUF_ADDR and RX_CURBUF_ADDR) Offsets: 0x04 and 0x24
	Current Buffer Length (TX_CURBUF_LENGTH, RX_CURBUF_LENGTH) Offsets:0x08 and 0x28
	Current Descriptor Pointer (TX_CURDESC_PTR, RX_CURDESC_PTR) Offsets: 0x0C and 0x2C
	Tail Descriptor Pointer (TX_TAILDESC_PTR and RX_TAILDESC_PTR) Offsets: 0x10 and 0x30
	Channel Control Register (TX_CHNL_CTRL and RX_CHNL_CTRL) Offsets: 0x14 and 0x34
	Interrupt Status Register (TX_IRQ_REG and RX_IRQ_REG) Offsets: 0x18 and 0x38
	Channel Status Register (TX_CHNL_STS and RX_CHNL_STS) Offsets: 0x1C and 0x3C
	DMA Control Register Offset: 0x40

	Processor Local Bus Version 4.6 PIM
	PLB v4.6 PIM Features
	PLB v4.6 PIM Overview
	Supported NPI Transfer Types
	Supported PLB Master and Bus Widths
	Configuring PLB v4.6 for Point-To-Point or Shared Bus
	Configuring PLB v4.6 PIM SUBTYPES
	Supported Transactions by SUBTYPE

	PowerPC 440 Memory Controller PIM
	PPC440MC Features
	Supported PPC440MC Interface Configuration
	PPC440MC Overview
	PPC440MC Design Implementation
	PPC440MC Parameter and Port Dependencies
	PPC440MC Burstwidth and Burstlength by Memory Type/Width Dependencies

	Video Frame Buffer Controller PIM
	VFBC Features
	VFBC Overview
	VFBC Command Interface
	VFBC Write Data Interface
	VFBC Read Data Interface
	VFBC Transfer Examples
	Frame Mode 1080p to VGA Window
	Line Mode 720p
	Simple Interlacing and De-interlacing (Field-Jam) Example

	VFBC Synthesis Considerations
	VFBC Timing Constraints

	Native Port Interface PIM
	NPI PIM Features
	Connecting a Custom PIM to an NPI PIM
	NPI Design Restrictions and Recommendations
	Restrictions on Byte, Half-Word, Word, and Double-Word Write Transfers
	Restrictions between PIM<Port_Num>_AddrReq and PIM<Port_Num>_WrFIFO_Push
	Restrictions on Pipelining of Address Requests
	Restrictions on Address Alignment
	Restrictions on SRL FIFOs
	Restrictions on block RAM (BRAM) FIFOs
	Restrictions on 64-Word Burst Transfers
	Recommendation for Improving Write Latency

	NPI Clock Requirements
	Configuring the NPI PIM
	NPI Timing Diagrams
	64-bit NPI Timing Diagrams
	Double-Word Write
	Double-Word Read
	8-Word, Cacheline Write
	8-Word, Cacheline Read
	32-Word, Burst Write
	32-Word, Burst Read
	8-Word, Cacheline Write with Almost Full Flag Asserted
	8-Word, Cacheline Read with Back-to-Back Transfers
	32-Word, Burst Read with Read FIFO Flush Asserted

	32-Bit NPI Timing Diagrams
	Word Write
	Word Read
	8-Word, Cacheline Write
	8-Word, Cacheline Read

	MCB PIM

	Performance, Timing, and Resource Utilization
	MPMC Operational Frequencies
	Operating Frequency Range by Device
	MIG PHY Supported FMAX

	MPMC Optimization
	MPMC Performance Optimization
	MPMC Size Optimization
	Timing Optimization

	MPMC Latency and Throughput
	NPI PIM Latency and Throughput
	Notes on NPI Throughput

	PLB PIM Latency and Throughput
	Notes on PLB PIM Throughput

	SDMA Latency and Throughput
	Device Throughput Estimation for 32-bit NPI Operation
	Latency Calculation Examples
	For Tx:
	For Rx:

	Latency Characteristics Assumptions

	XCL PIM Latency and Throughput
	VFBC PIM Latency and Throughput

	Resource Utilization
	Resource (block RAM) Utilization
	Resource (LUT, Flip-Flop, and Slice) Utilization
	MPMC Core (LUT, FF, and Slice) Resource Utilization
	XCL PIM LUT and FF Resource Utilization
	PLB PIM LUT, FF, and Slice Utilization
	SDMA PIM LUT, FF, and Slice Resource Utilization
	PPC440MC LUT and FF Resource Utilization
	VFBC PIM Slice, LUT, FF, Slice, and BRAM Resource Utilization

	IP Configuration Graphical User Interface
	Base Configuration
	Memory Interface
	Memory/DIMM Settings Tab
	Memory Part Settings Tab
	MIG Settings Tab
	MCB Setting Tab

	Port Configuration
	Advanced
	Address Configuration
	Data Path
	Arbitration
	ECC/Debug
	Misc

	Reference Documents

